SkGeometry.h revision 562d0e1cd2286945cb73fca0233560071b052129
1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkGeometry_DEFINED
9#define SkGeometry_DEFINED
10
11#include "SkMatrix.h"
12
13/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
14    equation.
15*/
16int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
17
18///////////////////////////////////////////////////////////////////////////////
19
20/** Set pt to the point on the src quadratic specified by t. t must be
21    0 <= t <= 1.0
22*/
23void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt,
24                  SkVector* tangent = NULL);
25void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt,
26                      SkVector* tangent = NULL);
27
28/** Given a src quadratic bezier, chop it at the specified t value,
29    where 0 < t < 1, and return the two new quadratics in dst:
30    dst[0..2] and dst[2..4]
31*/
32void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
33
34/** Given a src quadratic bezier, chop it at the specified t == 1/2,
35    The new quads are returned in dst[0..2] and dst[2..4]
36*/
37void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
38
39/** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
40    for extrema, and return the number of t-values that are found that represent
41    these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
42    function returns 0.
43    Returned count      tValues[]
44    0                   ignored
45    1                   0 < tValues[0] < 1
46*/
47int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
48
49/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
50    the resulting beziers are monotonic in Y. This is called by the scan converter.
51    Depending on what is returned, dst[] is treated as follows
52    0   dst[0..2] is the original quad
53    1   dst[0..2] and dst[2..4] are the two new quads
54*/
55int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
56int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
57
58/** Given 3 points on a quadratic bezier, if the point of maximum
59    curvature exists on the segment, returns the t value for this
60    point along the curve. Otherwise it will return a value of 0.
61*/
62SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]);
63
64/** Given 3 points on a quadratic bezier, divide it into 2 quadratics
65    if the point of maximum curvature exists on the quad segment.
66    Depending on what is returned, dst[] is treated as follows
67    1   dst[0..2] is the original quad
68    2   dst[0..2] and dst[2..4] are the two new quads
69    If dst == null, it is ignored and only the count is returned.
70*/
71int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
72
73/** Given 3 points on a quadratic bezier, use degree elevation to
74    convert it into the cubic fitting the same curve. The new cubic
75    curve is returned in dst[0..3].
76*/
77SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
78
79///////////////////////////////////////////////////////////////////////////////
80
81/** Convert from parametric from (pts) to polynomial coefficients
82    coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
83*/
84void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]);
85
86/** Set pt to the point on the src cubic specified by t. t must be
87    0 <= t <= 1.0
88*/
89void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
90                   SkVector* tangentOrNull, SkVector* curvatureOrNull);
91
92/** Given a src cubic bezier, chop it at the specified t value,
93    where 0 < t < 1, and return the two new cubics in dst:
94    dst[0..3] and dst[3..6]
95*/
96void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
97/** Given a src cubic bezier, chop it at the specified t values,
98    where 0 < t < 1, and return the new cubics in dst:
99    dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
100*/
101void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
102                   int t_count);
103
104/** Given a src cubic bezier, chop it at the specified t == 1/2,
105    The new cubics are returned in dst[0..3] and dst[3..6]
106*/
107void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
108
109/** Given the 4 coefficients for a cubic bezier (either X or Y values), look
110    for extrema, and return the number of t-values that are found that represent
111    these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
112    function returns 0.
113    Returned count      tValues[]
114    0                   ignored
115    1                   0 < tValues[0] < 1
116    2                   0 < tValues[0] < tValues[1] < 1
117*/
118int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
119                       SkScalar tValues[2]);
120
121/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
122    the resulting beziers are monotonic in Y. This is called by the scan converter.
123    Depending on what is returned, dst[] is treated as follows
124    0   dst[0..3] is the original cubic
125    1   dst[0..3] and dst[3..6] are the two new cubics
126    2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
127    If dst == null, it is ignored and only the count is returned.
128*/
129int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
130int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
131
132/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
133    inflection points.
134*/
135int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
136
137/** Return 1 for no chop, 2 for having chopped the cubic at a single
138    inflection point, 3 for having chopped at 2 inflection points.
139    dst will hold the resulting 1, 2, or 3 cubics.
140*/
141int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
142
143int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
144int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
145                              SkScalar tValues[3] = NULL);
146
147enum SkCubicType {
148    kSerpentine_SkCubicType,
149    kCusp_SkCubicType,
150    kLoop_SkCubicType,
151    kQuadratic_SkCubicType,
152    kLine_SkCubicType,
153    kPoint_SkCubicType
154};
155
156/** Returns the cubic classification. Pass scratch storage for computing inflection data,
157    which can be used with additional work to find the loop intersections and so on.
158*/
159SkCubicType SkClassifyCubic(const SkPoint p[4], SkScalar inflection[3]);
160
161///////////////////////////////////////////////////////////////////////////////
162
163enum SkRotationDirection {
164    kCW_SkRotationDirection,
165    kCCW_SkRotationDirection
166};
167
168/** Maximum number of points needed in the quadPoints[] parameter for
169    SkBuildQuadArc()
170*/
171#define kSkBuildQuadArcStorage  17
172
173/** Given 2 unit vectors and a rotation direction, fill out the specified
174    array of points with quadratic segments. Return is the number of points
175    written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
176
177    matrix, if not null, is appled to the points before they are returned.
178*/
179int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop,
180                   SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]);
181
182struct SkConic {
183    SkConic() {}
184    SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
185        fPts[0] = p0;
186        fPts[1] = p1;
187        fPts[2] = p2;
188        fW = w;
189    }
190    SkConic(const SkPoint pts[3], SkScalar w) {
191        memcpy(fPts, pts, sizeof(fPts));
192        fW = w;
193    }
194
195    SkPoint  fPts[3];
196    SkScalar fW;
197
198    void set(const SkPoint pts[3], SkScalar w) {
199        memcpy(fPts, pts, 3 * sizeof(SkPoint));
200        fW = w;
201    }
202
203    void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
204        fPts[0] = p0;
205        fPts[1] = p1;
206        fPts[2] = p2;
207        fW = w;
208    }
209
210    /**
211     *  Given a t-value [0...1] return its position and/or tangent.
212     *  If pos is not null, return its position at the t-value.
213     *  If tangent is not null, return its tangent at the t-value. NOTE the
214     *  tangent value's length is arbitrary, and only its direction should
215     *  be used.
216     */
217    void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = NULL) const;
218    void chopAt(SkScalar t, SkConic dst[2]) const;
219    void chop(SkConic dst[2]) const;
220
221    void computeAsQuadError(SkVector* err) const;
222    bool asQuadTol(SkScalar tol) const;
223
224    /**
225     *  return the power-of-2 number of quads needed to approximate this conic
226     *  with a sequence of quads. Will be >= 0.
227     */
228    int computeQuadPOW2(SkScalar tol) const;
229
230    /**
231     *  Chop this conic into N quads, stored continguously in pts[], where
232     *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
233     */
234    int chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;
235
236    bool findXExtrema(SkScalar* t) const;
237    bool findYExtrema(SkScalar* t) const;
238    bool chopAtXExtrema(SkConic dst[2]) const;
239    bool chopAtYExtrema(SkConic dst[2]) const;
240
241    void computeTightBounds(SkRect* bounds) const;
242    void computeFastBounds(SkRect* bounds) const;
243
244    /** Find the parameter value where the conic takes on its maximum curvature.
245     *
246     *  @param t   output scalar for max curvature.  Will be unchanged if
247     *             max curvature outside 0..1 range.
248     *
249     *  @return  true if max curvature found inside 0..1 range, false otherwise
250     */
251    bool findMaxCurvature(SkScalar* t) const;
252
253    static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&);
254
255    enum {
256        kMaxConicsForArc = 5
257    };
258    static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection,
259                            const SkMatrix*, SkConic conics[kMaxConicsForArc]);
260};
261
262#include "SkTemplates.h"
263
264/**
265 *  Help class to allocate storage for approximating a conic with N quads.
266 */
267class SkAutoConicToQuads {
268public:
269    SkAutoConicToQuads() : fQuadCount(0) {}
270
271    /**
272     *  Given a conic and a tolerance, return the array of points for the
273     *  approximating quad(s). Call countQuads() to know the number of quads
274     *  represented in these points.
275     *
276     *  The quads are allocated to share end-points. e.g. if there are 4 quads,
277     *  there will be 9 points allocated as follows
278     *      quad[0] == pts[0..2]
279     *      quad[1] == pts[2..4]
280     *      quad[2] == pts[4..6]
281     *      quad[3] == pts[6..8]
282     */
283    const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
284        int pow2 = conic.computeQuadPOW2(tol);
285        fQuadCount = 1 << pow2;
286        SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
287        conic.chopIntoQuadsPOW2(pts, pow2);
288        return pts;
289    }
290
291    const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
292                                SkScalar tol) {
293        SkConic conic;
294        conic.set(pts, weight);
295        return computeQuads(conic, tol);
296    }
297
298    int countQuads() const { return fQuadCount; }
299
300private:
301    enum {
302        kQuadCount = 8, // should handle most conics
303        kPointCount = 1 + 2 * kQuadCount,
304    };
305    SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
306    int fQuadCount; // #quads for current usage
307};
308
309#endif
310