SkGeometry.h revision 639a82855b94b93c4fa45560e67df8ec4a8bbb3a
1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkGeometry_DEFINED
9#define SkGeometry_DEFINED
10
11#include "SkMatrix.h"
12
13/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
14    equation.
15*/
16int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
17
18///////////////////////////////////////////////////////////////////////////////
19
20SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t);
21SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t);
22
23/** Set pt to the point on the src quadratic specified by t. t must be
24    0 <= t <= 1.0
25*/
26void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = NULL);
27
28/** Given a src quadratic bezier, chop it at the specified t value,
29    where 0 < t < 1, and return the two new quadratics in dst:
30    dst[0..2] and dst[2..4]
31*/
32void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
33
34/** Given a src quadratic bezier, chop it at the specified t == 1/2,
35    The new quads are returned in dst[0..2] and dst[2..4]
36*/
37void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
38
39/** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
40    for extrema, and return the number of t-values that are found that represent
41    these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
42    function returns 0.
43    Returned count      tValues[]
44    0                   ignored
45    1                   0 < tValues[0] < 1
46*/
47int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
48
49/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
50    the resulting beziers are monotonic in Y. This is called by the scan converter.
51    Depending on what is returned, dst[] is treated as follows
52    0   dst[0..2] is the original quad
53    1   dst[0..2] and dst[2..4] are the two new quads
54*/
55int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
56int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]);
57
58/** Given 3 points on a quadratic bezier, if the point of maximum
59    curvature exists on the segment, returns the t value for this
60    point along the curve. Otherwise it will return a value of 0.
61*/
62SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]);
63
64/** Given 3 points on a quadratic bezier, divide it into 2 quadratics
65    if the point of maximum curvature exists on the quad segment.
66    Depending on what is returned, dst[] is treated as follows
67    1   dst[0..2] is the original quad
68    2   dst[0..2] and dst[2..4] are the two new quads
69    If dst == null, it is ignored and only the count is returned.
70*/
71int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
72
73/** Given 3 points on a quadratic bezier, use degree elevation to
74    convert it into the cubic fitting the same curve. The new cubic
75    curve is returned in dst[0..3].
76*/
77SK_API void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]);
78
79///////////////////////////////////////////////////////////////////////////////
80
81/** Convert from parametric from (pts) to polynomial coefficients
82    coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
83*/
84void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]);
85
86/** Set pt to the point on the src cubic specified by t. t must be
87    0 <= t <= 1.0
88*/
89void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull,
90                   SkVector* tangentOrNull, SkVector* curvatureOrNull);
91
92/** Given a src cubic bezier, chop it at the specified t value,
93    where 0 < t < 1, and return the two new cubics in dst:
94    dst[0..3] and dst[3..6]
95*/
96void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
97
98/** Given a src cubic bezier, chop it at the specified t values,
99    where 0 < t < 1, and return the new cubics in dst:
100    dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)]
101*/
102void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[],
103                   int t_count);
104
105/** Given a src cubic bezier, chop it at the specified t == 1/2,
106    The new cubics are returned in dst[0..3] and dst[3..6]
107*/
108void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
109
110/** Given the 4 coefficients for a cubic bezier (either X or Y values), look
111    for extrema, and return the number of t-values that are found that represent
112    these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
113    function returns 0.
114    Returned count      tValues[]
115    0                   ignored
116    1                   0 < tValues[0] < 1
117    2                   0 < tValues[0] < tValues[1] < 1
118*/
119int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
120                       SkScalar tValues[2]);
121
122/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
123    the resulting beziers are monotonic in Y. This is called by the scan converter.
124    Depending on what is returned, dst[] is treated as follows
125    0   dst[0..3] is the original cubic
126    1   dst[0..3] and dst[3..6] are the two new cubics
127    2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
128    If dst == null, it is ignored and only the count is returned.
129*/
130int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
131int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]);
132
133/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
134    inflection points.
135*/
136int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
137
138/** Return 1 for no chop, 2 for having chopped the cubic at a single
139    inflection point, 3 for having chopped at 2 inflection points.
140    dst will hold the resulting 1, 2, or 3 cubics.
141*/
142int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
143
144int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
145int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
146                              SkScalar tValues[3] = NULL);
147
148enum SkCubicType {
149    kSerpentine_SkCubicType,
150    kCusp_SkCubicType,
151    kLoop_SkCubicType,
152    kQuadratic_SkCubicType,
153    kLine_SkCubicType,
154    kPoint_SkCubicType
155};
156
157/** Returns the cubic classification. Pass scratch storage for computing inflection data,
158    which can be used with additional work to find the loop intersections and so on.
159*/
160SkCubicType SkClassifyCubic(const SkPoint p[4], SkScalar inflection[3]);
161
162///////////////////////////////////////////////////////////////////////////////
163
164enum SkRotationDirection {
165    kCW_SkRotationDirection,
166    kCCW_SkRotationDirection
167};
168
169/** Maximum number of points needed in the quadPoints[] parameter for
170    SkBuildQuadArc()
171*/
172#define kSkBuildQuadArcStorage  17
173
174/** Given 2 unit vectors and a rotation direction, fill out the specified
175    array of points with quadratic segments. Return is the number of points
176    written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
177
178    matrix, if not null, is appled to the points before they are returned.
179*/
180int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop,
181                   SkRotationDirection, const SkMatrix*, SkPoint quadPoints[]);
182
183struct SkConic {
184    SkConic() {}
185    SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
186        fPts[0] = p0;
187        fPts[1] = p1;
188        fPts[2] = p2;
189        fW = w;
190    }
191    SkConic(const SkPoint pts[3], SkScalar w) {
192        memcpy(fPts, pts, sizeof(fPts));
193        fW = w;
194    }
195
196    SkPoint  fPts[3];
197    SkScalar fW;
198
199    void set(const SkPoint pts[3], SkScalar w) {
200        memcpy(fPts, pts, 3 * sizeof(SkPoint));
201        fW = w;
202    }
203
204    void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) {
205        fPts[0] = p0;
206        fPts[1] = p1;
207        fPts[2] = p2;
208        fW = w;
209    }
210
211    /**
212     *  Given a t-value [0...1] return its position and/or tangent.
213     *  If pos is not null, return its position at the t-value.
214     *  If tangent is not null, return its tangent at the t-value. NOTE the
215     *  tangent value's length is arbitrary, and only its direction should
216     *  be used.
217     */
218    void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = NULL) const;
219    void chopAt(SkScalar t, SkConic dst[2]) const;
220    void chop(SkConic dst[2]) const;
221
222    SkPoint evalAt(SkScalar t) const;
223    SkVector evalTangentAt(SkScalar t) const;
224
225    void computeAsQuadError(SkVector* err) const;
226    bool asQuadTol(SkScalar tol) const;
227
228    /**
229     *  return the power-of-2 number of quads needed to approximate this conic
230     *  with a sequence of quads. Will be >= 0.
231     */
232    int computeQuadPOW2(SkScalar tol) const;
233
234    /**
235     *  Chop this conic into N quads, stored continguously in pts[], where
236     *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N)
237     */
238    int chopIntoQuadsPOW2(SkPoint pts[], int pow2) const;
239
240    bool findXExtrema(SkScalar* t) const;
241    bool findYExtrema(SkScalar* t) const;
242    bool chopAtXExtrema(SkConic dst[2]) const;
243    bool chopAtYExtrema(SkConic dst[2]) const;
244
245    void computeTightBounds(SkRect* bounds) const;
246    void computeFastBounds(SkRect* bounds) const;
247
248    /** Find the parameter value where the conic takes on its maximum curvature.
249     *
250     *  @param t   output scalar for max curvature.  Will be unchanged if
251     *             max curvature outside 0..1 range.
252     *
253     *  @return  true if max curvature found inside 0..1 range, false otherwise
254     */
255    bool findMaxCurvature(SkScalar* t) const;
256
257    static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&);
258
259    enum {
260        kMaxConicsForArc = 5
261    };
262    static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection,
263                            const SkMatrix*, SkConic conics[kMaxConicsForArc]);
264};
265
266#include "SkTemplates.h"
267
268/**
269 *  Help class to allocate storage for approximating a conic with N quads.
270 */
271class SkAutoConicToQuads {
272public:
273    SkAutoConicToQuads() : fQuadCount(0) {}
274
275    /**
276     *  Given a conic and a tolerance, return the array of points for the
277     *  approximating quad(s). Call countQuads() to know the number of quads
278     *  represented in these points.
279     *
280     *  The quads are allocated to share end-points. e.g. if there are 4 quads,
281     *  there will be 9 points allocated as follows
282     *      quad[0] == pts[0..2]
283     *      quad[1] == pts[2..4]
284     *      quad[2] == pts[4..6]
285     *      quad[3] == pts[6..8]
286     */
287    const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) {
288        int pow2 = conic.computeQuadPOW2(tol);
289        fQuadCount = 1 << pow2;
290        SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount);
291        conic.chopIntoQuadsPOW2(pts, pow2);
292        return pts;
293    }
294
295    const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight,
296                                SkScalar tol) {
297        SkConic conic;
298        conic.set(pts, weight);
299        return computeQuads(conic, tol);
300    }
301
302    int countQuads() const { return fQuadCount; }
303
304private:
305    enum {
306        kQuadCount = 8, // should handle most conics
307        kPointCount = 1 + 2 * kQuadCount,
308    };
309    SkAutoSTMalloc<kPointCount, SkPoint> fStorage;
310    int fQuadCount; // #quads for current usage
311};
312
313#endif
314