GrPathUtils.cpp revision 07e1c3fd5030869c480c15ff30d36bd161718262
1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrPathUtils.h"
9
10#include "GrPoint.h"
11#include "SkGeometry.h"
12
13SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
14                                          const SkMatrix& viewM,
15                                          const SkRect& pathBounds) {
16    // In order to tesselate the path we get a bound on how much the matrix can
17    // stretch when mapping to screen coordinates.
18    SkScalar stretch = viewM.getMaxStretch();
19    SkScalar srcTol = devTol;
20
21    if (stretch < 0) {
22        // take worst case mapRadius amoung four corners.
23        // (less than perfect)
24        for (int i = 0; i < 4; ++i) {
25            SkMatrix mat;
26            mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
27                             (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
28            mat.postConcat(viewM);
29            stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
30        }
31    }
32    srcTol = SkScalarDiv(srcTol, stretch);
33    return srcTol;
34}
35
36static const int MAX_POINTS_PER_CURVE = 1 << 10;
37static const SkScalar gMinCurveTol = SkFloatToScalar(0.0001f);
38
39uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[],
40                                          SkScalar tol) {
41    if (tol < gMinCurveTol) {
42        tol = gMinCurveTol;
43    }
44    SkASSERT(tol > 0);
45
46    SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
47    if (d <= tol) {
48        return 1;
49    } else {
50        // Each time we subdivide, d should be cut in 4. So we need to
51        // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
52        // points.
53        // 2^(log4(x)) = sqrt(x);
54        int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
55        int pow2 = GrNextPow2(temp);
56        // Because of NaNs & INFs we can wind up with a degenerate temp
57        // such that pow2 comes out negative. Also, our point generator
58        // will always output at least one pt.
59        if (pow2 < 1) {
60            pow2 = 1;
61        }
62        return GrMin(pow2, MAX_POINTS_PER_CURVE);
63    }
64}
65
66uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0,
67                                              const GrPoint& p1,
68                                              const GrPoint& p2,
69                                              SkScalar tolSqd,
70                                              GrPoint** points,
71                                              uint32_t pointsLeft) {
72    if (pointsLeft < 2 ||
73        (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
74        (*points)[0] = p2;
75        *points += 1;
76        return 1;
77    }
78
79    GrPoint q[] = {
80        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
81        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
82    };
83    GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
84
85    pointsLeft >>= 1;
86    uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
87    uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
88    return a + b;
89}
90
91uint32_t GrPathUtils::cubicPointCount(const GrPoint points[],
92                                           SkScalar tol) {
93    if (tol < gMinCurveTol) {
94        tol = gMinCurveTol;
95    }
96    SkASSERT(tol > 0);
97
98    SkScalar d = GrMax(
99        points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
100        points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
101    d = SkScalarSqrt(d);
102    if (d <= tol) {
103        return 1;
104    } else {
105        int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
106        int pow2 = GrNextPow2(temp);
107        // Because of NaNs & INFs we can wind up with a degenerate temp
108        // such that pow2 comes out negative. Also, our point generator
109        // will always output at least one pt.
110        if (pow2 < 1) {
111            pow2 = 1;
112        }
113        return GrMin(pow2, MAX_POINTS_PER_CURVE);
114    }
115}
116
117uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0,
118                                          const GrPoint& p1,
119                                          const GrPoint& p2,
120                                          const GrPoint& p3,
121                                          SkScalar tolSqd,
122                                          GrPoint** points,
123                                          uint32_t pointsLeft) {
124    if (pointsLeft < 2 ||
125        (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
126         p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
127            (*points)[0] = p3;
128            *points += 1;
129            return 1;
130        }
131    GrPoint q[] = {
132        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
133        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
134        { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
135    };
136    GrPoint r[] = {
137        { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
138        { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
139    };
140    GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
141    pointsLeft >>= 1;
142    uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
143    uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
144    return a + b;
145}
146
147int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
148                                     SkScalar tol) {
149    if (tol < gMinCurveTol) {
150        tol = gMinCurveTol;
151    }
152    SkASSERT(tol > 0);
153
154    int pointCount = 0;
155    *subpaths = 1;
156
157    bool first = true;
158
159    SkPath::Iter iter(path, false);
160    SkPath::Verb verb;
161
162    GrPoint pts[4];
163    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
164
165        switch (verb) {
166            case SkPath::kLine_Verb:
167                pointCount += 1;
168                break;
169            case SkPath::kQuad_Verb:
170                pointCount += quadraticPointCount(pts, tol);
171                break;
172            case SkPath::kCubic_Verb:
173                pointCount += cubicPointCount(pts, tol);
174                break;
175            case SkPath::kMove_Verb:
176                pointCount += 1;
177                if (!first) {
178                    ++(*subpaths);
179                }
180                break;
181            default:
182                break;
183        }
184        first = false;
185    }
186    return pointCount;
187}
188
189void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) {
190    // can't make this static, no cons :(
191    SkMatrix UVpts;
192#ifndef SK_SCALAR_IS_FLOAT
193    GrCrash("Expected scalar is float.");
194#endif
195    SkMatrix m;
196    // We want M such that M * xy_pt = uv_pt
197    // We know M * control_pts = [0  1/2 1]
198    //                           [0  0   1]
199    //                           [1  1   1]
200    // We invert the control pt matrix and post concat to both sides to get M.
201    UVpts.setAll(0,   SK_ScalarHalf,  SK_Scalar1,
202                 0,               0,  SK_Scalar1,
203                 SkScalarToPersp(SK_Scalar1),
204                 SkScalarToPersp(SK_Scalar1),
205                 SkScalarToPersp(SK_Scalar1));
206    m.setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX,
207             qPts[0].fY, qPts[1].fY, qPts[2].fY,
208             SkScalarToPersp(SK_Scalar1),
209             SkScalarToPersp(SK_Scalar1),
210             SkScalarToPersp(SK_Scalar1));
211    if (!m.invert(&m)) {
212        // The quad is degenerate. Hopefully this is rare. Find the pts that are
213        // farthest apart to compute a line (unless it is really a pt).
214        SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
215        int maxEdge = 0;
216        SkScalar d = qPts[1].distanceToSqd(qPts[2]);
217        if (d > maxD) {
218            maxD = d;
219            maxEdge = 1;
220        }
221        d = qPts[2].distanceToSqd(qPts[0]);
222        if (d > maxD) {
223            maxD = d;
224            maxEdge = 2;
225        }
226        // We could have a tolerance here, not sure if it would improve anything
227        if (maxD > 0) {
228            // Set the matrix to give (u = 0, v = distance_to_line)
229            GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
230            // when looking from the point 0 down the line we want positive
231            // distances to be to the left. This matches the non-degenerate
232            // case.
233            lineVec.setOrthog(lineVec, GrPoint::kLeft_Side);
234            lineVec.dot(qPts[0]);
235            // first row
236            fM[0] = 0;
237            fM[1] = 0;
238            fM[2] = 0;
239            // second row
240            fM[3] = lineVec.fX;
241            fM[4] = lineVec.fY;
242            fM[5] = -lineVec.dot(qPts[maxEdge]);
243        } else {
244            // It's a point. It should cover zero area. Just set the matrix such
245            // that (u, v) will always be far away from the quad.
246            fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
247            fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
248        }
249    } else {
250        m.postConcat(UVpts);
251
252        // The matrix should not have perspective.
253        SkDEBUGCODE(static const SkScalar gTOL = SkFloatToScalar(1.f / 100.f));
254        SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
255        SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
256
257        // It may not be normalized to have 1.0 in the bottom right
258        float m33 = m.get(SkMatrix::kMPersp2);
259        if (1.f != m33) {
260            m33 = 1.f / m33;
261            fM[0] = m33 * m.get(SkMatrix::kMScaleX);
262            fM[1] = m33 * m.get(SkMatrix::kMSkewX);
263            fM[2] = m33 * m.get(SkMatrix::kMTransX);
264            fM[3] = m33 * m.get(SkMatrix::kMSkewY);
265            fM[4] = m33 * m.get(SkMatrix::kMScaleY);
266            fM[5] = m33 * m.get(SkMatrix::kMTransY);
267        } else {
268            fM[0] = m.get(SkMatrix::kMScaleX);
269            fM[1] = m.get(SkMatrix::kMSkewX);
270            fM[2] = m.get(SkMatrix::kMTransX);
271            fM[3] = m.get(SkMatrix::kMSkewY);
272            fM[4] = m.get(SkMatrix::kMScaleY);
273            fM[5] = m.get(SkMatrix::kMTransY);
274        }
275    }
276}
277
278////////////////////////////////////////////////////////////////////////////////
279
280// k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 )
281// l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1))
282// m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2))
283void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]) {
284    const SkScalar w2 = 2.f * weight;
285    klm[0] = p[2].fY - p[0].fY;
286    klm[1] = p[0].fX - p[2].fX;
287    klm[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX;
288
289    klm[3] = w2 * (p[1].fY - p[0].fY);
290    klm[4] = w2 * (p[0].fX - p[1].fX);
291    klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
292
293    klm[6] = w2 * (p[2].fY - p[1].fY);
294    klm[7] = w2 * (p[1].fX - p[2].fX);
295    klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
296
297    // scale the max absolute value of coeffs to 10
298    SkScalar scale = 0.f;
299    for (int i = 0; i < 9; ++i) {
300       scale = SkMaxScalar(scale, SkScalarAbs(klm[i]));
301    }
302    SkASSERT(scale > 0.f);
303    scale = 10.f / scale;
304    for (int i = 0; i < 9; ++i) {
305        klm[i] *= scale;
306    }
307}
308
309////////////////////////////////////////////////////////////////////////////////
310
311namespace {
312
313// a is the first control point of the cubic.
314// ab is the vector from a to the second control point.
315// dc is the vector from the fourth to the third control point.
316// d is the fourth control point.
317// p is the candidate quadratic control point.
318// this assumes that the cubic doesn't inflect and is simple
319bool is_point_within_cubic_tangents(const SkPoint& a,
320                                    const SkVector& ab,
321                                    const SkVector& dc,
322                                    const SkPoint& d,
323                                    SkPath::Direction dir,
324                                    const SkPoint p) {
325    SkVector ap = p - a;
326    SkScalar apXab = ap.cross(ab);
327    if (SkPath::kCW_Direction == dir) {
328        if (apXab > 0) {
329            return false;
330        }
331    } else {
332        SkASSERT(SkPath::kCCW_Direction == dir);
333        if (apXab < 0) {
334            return false;
335        }
336    }
337
338    SkVector dp = p - d;
339    SkScalar dpXdc = dp.cross(dc);
340    if (SkPath::kCW_Direction == dir) {
341        if (dpXdc < 0) {
342            return false;
343        }
344    } else {
345        SkASSERT(SkPath::kCCW_Direction == dir);
346        if (dpXdc > 0) {
347            return false;
348        }
349    }
350    return true;
351}
352
353void convert_noninflect_cubic_to_quads(const SkPoint p[4],
354                                       SkScalar toleranceSqd,
355                                       bool constrainWithinTangents,
356                                       SkPath::Direction dir,
357                                       SkTArray<SkPoint, true>* quads,
358                                       int sublevel = 0) {
359
360    // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
361    // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
362
363    SkVector ab = p[1] - p[0];
364    SkVector dc = p[2] - p[3];
365
366    if (ab.isZero()) {
367        if (dc.isZero()) {
368            SkPoint* degQuad = quads->push_back_n(3);
369            degQuad[0] = p[0];
370            degQuad[1] = p[0];
371            degQuad[2] = p[3];
372            return;
373        }
374        ab = p[2] - p[0];
375    }
376    if (dc.isZero()) {
377        dc = p[1] - p[3];
378    }
379
380    // When the ab and cd tangents are nearly parallel with vector from d to a the constraint that
381    // the quad point falls between the tangents becomes hard to enforce and we are likely to hit
382    // the max subdivision count. However, in this case the cubic is approaching a line and the
383    // accuracy of the quad point isn't so important. We check if the two middle cubic control
384    // points are very close to the baseline vector. If so then we just pick quadratic points on the
385    // control polygon.
386
387    if (constrainWithinTangents) {
388        SkVector da = p[0] - p[3];
389        SkScalar invDALengthSqd = da.lengthSqd();
390        if (invDALengthSqd > SK_ScalarNearlyZero) {
391            invDALengthSqd = SkScalarInvert(invDALengthSqd);
392            // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
393            // same goed for point c using vector cd.
394            SkScalar detABSqd = ab.cross(da);
395            detABSqd = SkScalarSquare(detABSqd);
396            SkScalar detDCSqd = dc.cross(da);
397            detDCSqd = SkScalarSquare(detDCSqd);
398            if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
399                SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
400                SkPoint b = p[0] + ab;
401                SkPoint c = p[3] + dc;
402                SkPoint mid = b + c;
403                mid.scale(SK_ScalarHalf);
404                // Insert two quadratics to cover the case when ab points away from d and/or dc
405                // points away from a.
406                if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
407                    SkPoint* qpts = quads->push_back_n(6);
408                    qpts[0] = p[0];
409                    qpts[1] = b;
410                    qpts[2] = mid;
411                    qpts[3] = mid;
412                    qpts[4] = c;
413                    qpts[5] = p[3];
414                } else {
415                    SkPoint* qpts = quads->push_back_n(3);
416                    qpts[0] = p[0];
417                    qpts[1] = mid;
418                    qpts[2] = p[3];
419                }
420                return;
421            }
422        }
423    }
424
425    static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
426    static const int kMaxSubdivs = 10;
427
428    ab.scale(kLengthScale);
429    dc.scale(kLengthScale);
430
431    // e0 and e1 are extrapolations along vectors ab and dc.
432    SkVector c0 = p[0];
433    c0 += ab;
434    SkVector c1 = p[3];
435    c1 += dc;
436
437    SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
438    if (dSqd < toleranceSqd) {
439        SkPoint cAvg = c0;
440        cAvg += c1;
441        cAvg.scale(SK_ScalarHalf);
442
443        bool subdivide = false;
444
445        if (constrainWithinTangents &&
446            !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
447            // choose a new cAvg that is the intersection of the two tangent lines.
448            ab.setOrthog(ab);
449            SkScalar z0 = -ab.dot(p[0]);
450            dc.setOrthog(dc);
451            SkScalar z1 = -dc.dot(p[3]);
452            cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
453            cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
454            SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
455            z = SkScalarInvert(z);
456            cAvg.fX *= z;
457            cAvg.fY *= z;
458            if (sublevel <= kMaxSubdivs) {
459                SkScalar d0Sqd = c0.distanceToSqd(cAvg);
460                SkScalar d1Sqd = c1.distanceToSqd(cAvg);
461                // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
462                // the distances and tolerance can't be negative.
463                // (d0 + d1)^2 > toleranceSqd
464                // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
465                SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
466                subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
467            }
468        }
469        if (!subdivide) {
470            SkPoint* pts = quads->push_back_n(3);
471            pts[0] = p[0];
472            pts[1] = cAvg;
473            pts[2] = p[3];
474            return;
475        }
476    }
477    SkPoint choppedPts[7];
478    SkChopCubicAtHalf(p, choppedPts);
479    convert_noninflect_cubic_to_quads(choppedPts + 0,
480                                      toleranceSqd,
481                                      constrainWithinTangents,
482                                      dir,
483                                      quads,
484                                      sublevel + 1);
485    convert_noninflect_cubic_to_quads(choppedPts + 3,
486                                      toleranceSqd,
487                                      constrainWithinTangents,
488                                      dir,
489                                      quads,
490                                      sublevel + 1);
491}
492}
493
494void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
495                                      SkScalar tolScale,
496                                      bool constrainWithinTangents,
497                                      SkPath::Direction dir,
498                                      SkTArray<SkPoint, true>* quads) {
499    SkPoint chopped[10];
500    int count = SkChopCubicAtInflections(p, chopped);
501
502    // base tolerance is 1 pixel.
503    static const SkScalar kTolerance = SK_Scalar1;
504    const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance));
505
506    for (int i = 0; i < count; ++i) {
507        SkPoint* cubic = chopped + 3*i;
508        convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads);
509    }
510
511}
512
513////////////////////////////////////////////////////////////////////////////////
514
515enum CubicType {
516    kSerpentine_CubicType,
517    kCusp_CubicType,
518    kLoop_CubicType,
519    kQuadratic_CubicType,
520    kLine_CubicType,
521    kPoint_CubicType
522};
523
524// discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
525// Classification:
526// discr(I) > 0        Serpentine
527// discr(I) = 0        Cusp
528// discr(I) < 0        Loop
529// d0 = d1 = 0         Quadratic
530// d0 = d1 = d2 = 0    Line
531// p0 = p1 = p2 = p3   Point
532static CubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
533    if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
534        return kPoint_CubicType;
535    }
536    const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
537    if (discr > SK_ScalarNearlyZero) {
538        return kSerpentine_CubicType;
539    } else if (discr < -SK_ScalarNearlyZero) {
540        return kLoop_CubicType;
541    } else {
542        if (0.f == d[0] && 0.f == d[1]) {
543            return (0.f == d[2] ? kLine_CubicType : kQuadratic_CubicType);
544        } else {
545            return kCusp_CubicType;
546        }
547    }
548}
549
550// Assumes the third component of points is 1.
551// Calcs p0 . (p1 x p2)
552static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
553    const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
554    const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
555    const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
556    return (xComp + yComp + wComp);
557}
558
559// Solves linear system to extract klm
560// P.K = k (similarly for l, m)
561// Where P is matrix of control points
562// K is coefficients for the line K
563// k is vector of values of K evaluated at the control points
564// Solving for K, thus K = P^(-1) . k
565static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4],
566                           const SkScalar controlL[4], const SkScalar controlM[4],
567                           SkScalar k[3], SkScalar l[3], SkScalar m[3]) {
568    SkMatrix matrix;
569    matrix.setAll(p[0].fX, p[0].fY, 1.f,
570                  p[1].fX, p[1].fY, 1.f,
571                  p[2].fX, p[2].fY, 1.f);
572    SkMatrix inverse;
573    if (matrix.invert(&inverse)) {
574       inverse.mapHomogeneousPoints(k, controlK, 1);
575       inverse.mapHomogeneousPoints(l, controlL, 1);
576       inverse.mapHomogeneousPoints(m, controlM, 1);
577    }
578
579}
580
581static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
582    SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]);
583    SkScalar ls = 3.f * d[1] - tempSqrt;
584    SkScalar lt = 6.f * d[0];
585    SkScalar ms = 3.f * d[1] + tempSqrt;
586    SkScalar mt = 6.f * d[0];
587
588    k[0] = ls * ms;
589    k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f;
590    k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
591    k[3] = (lt - ls) * (mt - ms);
592
593    l[0] = ls * ls * ls;
594    const SkScalar lt_ls = lt - ls;
595    l[1] = ls * ls * lt_ls * -1.f;
596    l[2] = lt_ls * lt_ls * ls;
597    l[3] = -1.f * lt_ls * lt_ls * lt_ls;
598
599    m[0] = ms * ms * ms;
600    const SkScalar mt_ms = mt - ms;
601    m[1] = ms * ms * mt_ms * -1.f;
602    m[2] = mt_ms * mt_ms * ms;
603    m[3] = -1.f * mt_ms * mt_ms * mt_ms;
604
605    // If d0 < 0 we need to flip the orientation of our curve
606    // This is done by negating the k and l values
607    // We want negative distance values to be on the inside
608    if ( d[0] > 0) {
609        for (int i = 0; i < 4; ++i) {
610            k[i] = -k[i];
611            l[i] = -l[i];
612        }
613    }
614}
615
616static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
617    SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
618    SkScalar ls = d[1] - tempSqrt;
619    SkScalar lt = 2.f * d[0];
620    SkScalar ms = d[1] + tempSqrt;
621    SkScalar mt = 2.f * d[0];
622
623    k[0] = ls * ms;
624    k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f;
625    k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
626    k[3] = (lt - ls) * (mt - ms);
627
628    l[0] = ls * ls * ms;
629    l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f;
630    l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f;
631    l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms);
632
633    m[0] = ls * ms * ms;
634    m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f;
635    m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f;
636    m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms);
637
638
639    // If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0),
640    // we need to flip the orientation of our curve.
641    // This is done by negating the k and l values
642    if ( (d[0] < 0 && k[1] > 0) || (d[0] > 0 && k[1] < 0)) {
643        for (int i = 0; i < 4; ++i) {
644            k[i] = -k[i];
645            l[i] = -l[i];
646        }
647    }
648}
649
650static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
651    const SkScalar ls = d[2];
652    const SkScalar lt = 3.f * d[1];
653
654    k[0] = ls;
655    k[1] = ls - lt / 3.f;
656    k[2] = ls - 2.f * lt / 3.f;
657    k[3] = ls - lt;
658
659    l[0] = ls * ls * ls;
660    const SkScalar ls_lt = ls - lt;
661    l[1] = ls * ls * ls_lt;
662    l[2] = ls_lt * ls_lt * ls;
663    l[3] = ls_lt * ls_lt * ls_lt;
664
665    m[0] = 1.f;
666    m[1] = 1.f;
667    m[2] = 1.f;
668    m[3] = 1.f;
669}
670
671// For the case when a cubic is actually a quadratic
672// M =
673// 0     0     0
674// 1/3   0     1/3
675// 2/3   1/3   2/3
676// 1     1     1
677static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
678    k[0] = 0.f;
679    k[1] = 1.f/3.f;
680    k[2] = 2.f/3.f;
681    k[3] = 1.f;
682
683    l[0] = 0.f;
684    l[1] = 0.f;
685    l[2] = 1.f/3.f;
686    l[3] = 1.f;
687
688    m[0] = 0.f;
689    m[1] = 1.f/3.f;
690    m[2] = 2.f/3.f;
691    m[3] = 1.f;
692
693    // If d2 < 0 we need to flip the orientation of our curve
694    // This is done by negating the k and l values
695    if ( d[2] > 0) {
696        for (int i = 0; i < 4; ++i) {
697            k[i] = -k[i];
698            l[i] = -l[i];
699        }
700    }
701}
702
703// Calc coefficients of I(s,t) where roots of I are inflection points of curve
704// I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
705// d0 = a1 - 2*a2+3*a3
706// d1 = -a2 + 3*a3
707// d2 = 3*a3
708// a1 = p0 . (p3 x p2)
709// a2 = p1 . (p0 x p3)
710// a3 = p2 . (p1 x p0)
711// Places the values of d1, d2, d3 in array d passed in
712static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
713    SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
714    SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
715    SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
716
717    // need to scale a's or values in later calculations will grow to high
718    SkScalar max = SkScalarAbs(a1);
719    max = SkMaxScalar(max, SkScalarAbs(a2));
720    max = SkMaxScalar(max, SkScalarAbs(a3));
721    max = 1.f/max;
722    a1 = a1 * max;
723    a2 = a2 * max;
724    a3 = a3 * max;
725
726    d[2] = 3.f * a3;
727    d[1] = d[2] - a2;
728    d[0] = d[1] - a2 + a1;
729}
730
731int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9],
732                                             SkScalar klm_rev[3]) {
733    // Variable to store the two parametric values at the loop double point
734    SkScalar smallS = 0.f;
735    SkScalar largeS = 0.f;
736
737    SkScalar d[3];
738    calc_cubic_inflection_func(src, d);
739
740    CubicType cType = classify_cubic(src, d);
741
742    int chop_count = 0;
743    if (kLoop_CubicType == cType) {
744        SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
745        SkScalar ls = d[1] - tempSqrt;
746        SkScalar lt = 2.f * d[0];
747        SkScalar ms = d[1] + tempSqrt;
748        SkScalar mt = 2.f * d[0];
749        ls = ls / lt;
750        ms = ms / mt;
751        // need to have t values sorted since this is what is expected by SkChopCubicAt
752        if (ls <= ms) {
753            smallS = ls;
754            largeS = ms;
755        } else {
756            smallS = ms;
757            largeS = ls;
758        }
759
760        SkScalar chop_ts[2];
761        if (smallS > 0.f && smallS < 1.f) {
762            chop_ts[chop_count++] = smallS;
763        }
764        if (largeS > 0.f && largeS < 1.f) {
765            chop_ts[chop_count++] = largeS;
766        }
767        if(dst) {
768            SkChopCubicAt(src, dst, chop_ts, chop_count);
769        }
770    } else {
771        if (dst) {
772            memcpy(dst, src, sizeof(SkPoint) * 4);
773        }
774    }
775
776    if (klm && klm_rev) {
777        // Set klm_rev to to match the sub_section of cubic that needs to have its orientation
778        // flipped. This will always be the section that is the "loop"
779        if (2 == chop_count) {
780            klm_rev[0] = 1.f;
781            klm_rev[1] = -1.f;
782            klm_rev[2] = 1.f;
783        } else if (1 == chop_count) {
784            if (smallS < 0.f) {
785                klm_rev[0] = -1.f;
786                klm_rev[1] = 1.f;
787            } else {
788                klm_rev[0] = 1.f;
789                klm_rev[1] = -1.f;
790            }
791        } else {
792            if (smallS < 0.f && largeS > 1.f) {
793                klm_rev[0] = -1.f;
794            } else {
795                klm_rev[0] = 1.f;
796            }
797        }
798        SkScalar controlK[4];
799        SkScalar controlL[4];
800        SkScalar controlM[4];
801
802        if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
803            set_serp_klm(d, controlK, controlL, controlM);
804        } else if (kLoop_CubicType == cType) {
805            set_loop_klm(d, controlK, controlL, controlM);
806        } else if (kCusp_CubicType == cType) {
807            SkASSERT(0.f == d[0]);
808            set_cusp_klm(d, controlK, controlL, controlM);
809        } else if (kQuadratic_CubicType == cType) {
810            set_quadratic_klm(d, controlK, controlL, controlM);
811        }
812
813        calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
814    }
815    return chop_count + 1;
816}
817
818void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) {
819    SkScalar d[3];
820    calc_cubic_inflection_func(p, d);
821
822    CubicType cType = classify_cubic(p, d);
823
824    SkScalar controlK[4];
825    SkScalar controlL[4];
826    SkScalar controlM[4];
827
828    if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
829        set_serp_klm(d, controlK, controlL, controlM);
830    } else if (kLoop_CubicType == cType) {
831        set_loop_klm(d, controlK, controlL, controlM);
832    } else if (kCusp_CubicType == cType) {
833        SkASSERT(0.f == d[0]);
834        set_cusp_klm(d, controlK, controlL, controlM);
835    } else if (kQuadratic_CubicType == cType) {
836        set_quadratic_klm(d, controlK, controlL, controlM);
837    }
838
839    calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
840}
841