GrPathUtils.cpp revision 858638d8a5bef8f9940ccec2346a9bcc5f804979
1/*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "GrPathUtils.h"
9
10#include "GrPoint.h"
11#include "SkGeometry.h"
12
13SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
14                                          const SkMatrix& viewM,
15                                          const SkRect& pathBounds) {
16    // In order to tesselate the path we get a bound on how much the matrix can
17    // stretch when mapping to screen coordinates.
18    SkScalar stretch = viewM.getMaxStretch();
19    SkScalar srcTol = devTol;
20
21    if (stretch < 0) {
22        // take worst case mapRadius amoung four corners.
23        // (less than perfect)
24        for (int i = 0; i < 4; ++i) {
25            SkMatrix mat;
26            mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
27                             (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
28            mat.postConcat(viewM);
29            stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1));
30        }
31    }
32    srcTol = SkScalarDiv(srcTol, stretch);
33    return srcTol;
34}
35
36static const int MAX_POINTS_PER_CURVE = 1 << 10;
37static const SkScalar gMinCurveTol = SkFloatToScalar(0.0001f);
38
39uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[],
40                                          SkScalar tol) {
41    if (tol < gMinCurveTol) {
42        tol = gMinCurveTol;
43    }
44    SkASSERT(tol > 0);
45
46    SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]);
47    if (d <= tol) {
48        return 1;
49    } else {
50        // Each time we subdivide, d should be cut in 4. So we need to
51        // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x)
52        // points.
53        // 2^(log4(x)) = sqrt(x);
54        int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
55        int pow2 = GrNextPow2(temp);
56        // Because of NaNs & INFs we can wind up with a degenerate temp
57        // such that pow2 comes out negative. Also, our point generator
58        // will always output at least one pt.
59        if (pow2 < 1) {
60            pow2 = 1;
61        }
62        return GrMin(pow2, MAX_POINTS_PER_CURVE);
63    }
64}
65
66uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0,
67                                              const GrPoint& p1,
68                                              const GrPoint& p2,
69                                              SkScalar tolSqd,
70                                              GrPoint** points,
71                                              uint32_t pointsLeft) {
72    if (pointsLeft < 2 ||
73        (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) {
74        (*points)[0] = p2;
75        *points += 1;
76        return 1;
77    }
78
79    GrPoint q[] = {
80        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
81        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
82    };
83    GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
84
85    pointsLeft >>= 1;
86    uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
87    uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
88    return a + b;
89}
90
91uint32_t GrPathUtils::cubicPointCount(const GrPoint points[],
92                                           SkScalar tol) {
93    if (tol < gMinCurveTol) {
94        tol = gMinCurveTol;
95    }
96    SkASSERT(tol > 0);
97
98    SkScalar d = GrMax(
99        points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]),
100        points[2].distanceToLineSegmentBetweenSqd(points[0], points[3]));
101    d = SkScalarSqrt(d);
102    if (d <= tol) {
103        return 1;
104    } else {
105        int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol)));
106        int pow2 = GrNextPow2(temp);
107        // Because of NaNs & INFs we can wind up with a degenerate temp
108        // such that pow2 comes out negative. Also, our point generator
109        // will always output at least one pt.
110        if (pow2 < 1) {
111            pow2 = 1;
112        }
113        return GrMin(pow2, MAX_POINTS_PER_CURVE);
114    }
115}
116
117uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0,
118                                          const GrPoint& p1,
119                                          const GrPoint& p2,
120                                          const GrPoint& p3,
121                                          SkScalar tolSqd,
122                                          GrPoint** points,
123                                          uint32_t pointsLeft) {
124    if (pointsLeft < 2 ||
125        (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd &&
126         p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) {
127            (*points)[0] = p3;
128            *points += 1;
129            return 1;
130        }
131    GrPoint q[] = {
132        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
133        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
134        { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
135    };
136    GrPoint r[] = {
137        { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
138        { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
139    };
140    GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
141    pointsLeft >>= 1;
142    uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
143    uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
144    return a + b;
145}
146
147int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths,
148                                     SkScalar tol) {
149    if (tol < gMinCurveTol) {
150        tol = gMinCurveTol;
151    }
152    SkASSERT(tol > 0);
153
154    int pointCount = 0;
155    *subpaths = 1;
156
157    bool first = true;
158
159    SkPath::Iter iter(path, false);
160    SkPath::Verb verb;
161
162    GrPoint pts[4];
163    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
164
165        switch (verb) {
166            case SkPath::kLine_Verb:
167                pointCount += 1;
168                break;
169            case SkPath::kQuad_Verb:
170                pointCount += quadraticPointCount(pts, tol);
171                break;
172            case SkPath::kCubic_Verb:
173                pointCount += cubicPointCount(pts, tol);
174                break;
175            case SkPath::kMove_Verb:
176                pointCount += 1;
177                if (!first) {
178                    ++(*subpaths);
179                }
180                break;
181            default:
182                break;
183        }
184        first = false;
185    }
186    return pointCount;
187}
188
189void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) {
190    // can't make this static, no cons :(
191    SkMatrix UVpts;
192#ifndef SK_SCALAR_IS_FLOAT
193    GrCrash("Expected scalar is float.");
194#endif
195    SkMatrix m;
196    // We want M such that M * xy_pt = uv_pt
197    // We know M * control_pts = [0  1/2 1]
198    //                           [0  0   1]
199    //                           [1  1   1]
200    // We invert the control pt matrix and post concat to both sides to get M.
201    UVpts.setAll(0,   SK_ScalarHalf,  SK_Scalar1,
202                 0,               0,  SK_Scalar1,
203                 SkScalarToPersp(SK_Scalar1),
204                 SkScalarToPersp(SK_Scalar1),
205                 SkScalarToPersp(SK_Scalar1));
206    m.setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX,
207             qPts[0].fY, qPts[1].fY, qPts[2].fY,
208             SkScalarToPersp(SK_Scalar1),
209             SkScalarToPersp(SK_Scalar1),
210             SkScalarToPersp(SK_Scalar1));
211    if (!m.invert(&m)) {
212        // The quad is degenerate. Hopefully this is rare. Find the pts that are
213        // farthest apart to compute a line (unless it is really a pt).
214        SkScalar maxD = qPts[0].distanceToSqd(qPts[1]);
215        int maxEdge = 0;
216        SkScalar d = qPts[1].distanceToSqd(qPts[2]);
217        if (d > maxD) {
218            maxD = d;
219            maxEdge = 1;
220        }
221        d = qPts[2].distanceToSqd(qPts[0]);
222        if (d > maxD) {
223            maxD = d;
224            maxEdge = 2;
225        }
226        // We could have a tolerance here, not sure if it would improve anything
227        if (maxD > 0) {
228            // Set the matrix to give (u = 0, v = distance_to_line)
229            GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
230            // when looking from the point 0 down the line we want positive
231            // distances to be to the left. This matches the non-degenerate
232            // case.
233            lineVec.setOrthog(lineVec, GrPoint::kLeft_Side);
234            lineVec.dot(qPts[0]);
235            // first row
236            fM[0] = 0;
237            fM[1] = 0;
238            fM[2] = 0;
239            // second row
240            fM[3] = lineVec.fX;
241            fM[4] = lineVec.fY;
242            fM[5] = -lineVec.dot(qPts[maxEdge]);
243        } else {
244            // It's a point. It should cover zero area. Just set the matrix such
245            // that (u, v) will always be far away from the quad.
246            fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
247            fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
248        }
249    } else {
250        m.postConcat(UVpts);
251
252        // The matrix should not have perspective.
253        SkDEBUGCODE(static const SkScalar gTOL = SkFloatToScalar(1.f / 100.f));
254        SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL);
255        SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL);
256
257        // It may not be normalized to have 1.0 in the bottom right
258        float m33 = m.get(SkMatrix::kMPersp2);
259        if (1.f != m33) {
260            m33 = 1.f / m33;
261            fM[0] = m33 * m.get(SkMatrix::kMScaleX);
262            fM[1] = m33 * m.get(SkMatrix::kMSkewX);
263            fM[2] = m33 * m.get(SkMatrix::kMTransX);
264            fM[3] = m33 * m.get(SkMatrix::kMSkewY);
265            fM[4] = m33 * m.get(SkMatrix::kMScaleY);
266            fM[5] = m33 * m.get(SkMatrix::kMTransY);
267        } else {
268            fM[0] = m.get(SkMatrix::kMScaleX);
269            fM[1] = m.get(SkMatrix::kMSkewX);
270            fM[2] = m.get(SkMatrix::kMTransX);
271            fM[3] = m.get(SkMatrix::kMSkewY);
272            fM[4] = m.get(SkMatrix::kMScaleY);
273            fM[5] = m.get(SkMatrix::kMTransY);
274        }
275    }
276}
277
278namespace {
279
280// a is the first control point of the cubic.
281// ab is the vector from a to the second control point.
282// dc is the vector from the fourth to the third control point.
283// d is the fourth control point.
284// p is the candidate quadratic control point.
285// this assumes that the cubic doesn't inflect and is simple
286bool is_point_within_cubic_tangents(const SkPoint& a,
287                                    const SkVector& ab,
288                                    const SkVector& dc,
289                                    const SkPoint& d,
290                                    SkPath::Direction dir,
291                                    const SkPoint p) {
292    SkVector ap = p - a;
293    SkScalar apXab = ap.cross(ab);
294    if (SkPath::kCW_Direction == dir) {
295        if (apXab > 0) {
296            return false;
297        }
298    } else {
299        SkASSERT(SkPath::kCCW_Direction == dir);
300        if (apXab < 0) {
301            return false;
302        }
303    }
304
305    SkVector dp = p - d;
306    SkScalar dpXdc = dp.cross(dc);
307    if (SkPath::kCW_Direction == dir) {
308        if (dpXdc < 0) {
309            return false;
310        }
311    } else {
312        SkASSERT(SkPath::kCCW_Direction == dir);
313        if (dpXdc > 0) {
314            return false;
315        }
316    }
317    return true;
318}
319
320void convert_noninflect_cubic_to_quads(const SkPoint p[4],
321                                       SkScalar toleranceSqd,
322                                       bool constrainWithinTangents,
323                                       SkPath::Direction dir,
324                                       SkTArray<SkPoint, true>* quads,
325                                       int sublevel = 0) {
326
327    // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
328    // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
329
330    SkVector ab = p[1] - p[0];
331    SkVector dc = p[2] - p[3];
332
333    if (ab.isZero()) {
334        if (dc.isZero()) {
335            SkPoint* degQuad = quads->push_back_n(3);
336            degQuad[0] = p[0];
337            degQuad[1] = p[0];
338            degQuad[2] = p[3];
339            return;
340        }
341        ab = p[2] - p[0];
342    }
343    if (dc.isZero()) {
344        dc = p[1] - p[3];
345    }
346
347    // When the ab and cd tangents are nearly parallel with vector from d to a the constraint that
348    // the quad point falls between the tangents becomes hard to enforce and we are likely to hit
349    // the max subdivision count. However, in this case the cubic is approaching a line and the
350    // accuracy of the quad point isn't so important. We check if the two middle cubic control
351    // points are very close to the baseline vector. If so then we just pick quadratic points on the
352    // control polygon.
353
354    if (constrainWithinTangents) {
355        SkVector da = p[0] - p[3];
356        SkScalar invDALengthSqd = da.lengthSqd();
357        if (invDALengthSqd > SK_ScalarNearlyZero) {
358            invDALengthSqd = SkScalarInvert(invDALengthSqd);
359            // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
360            // same goed for point c using vector cd.
361            SkScalar detABSqd = ab.cross(da);
362            detABSqd = SkScalarSquare(detABSqd);
363            SkScalar detDCSqd = dc.cross(da);
364            detDCSqd = SkScalarSquare(detDCSqd);
365            if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd &&
366                SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) {
367                SkPoint b = p[0] + ab;
368                SkPoint c = p[3] + dc;
369                SkPoint mid = b + c;
370                mid.scale(SK_ScalarHalf);
371                // Insert two quadratics to cover the case when ab points away from d and/or dc
372                // points away from a.
373                if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) {
374                    SkPoint* qpts = quads->push_back_n(6);
375                    qpts[0] = p[0];
376                    qpts[1] = b;
377                    qpts[2] = mid;
378                    qpts[3] = mid;
379                    qpts[4] = c;
380                    qpts[5] = p[3];
381                } else {
382                    SkPoint* qpts = quads->push_back_n(3);
383                    qpts[0] = p[0];
384                    qpts[1] = mid;
385                    qpts[2] = p[3];
386                }
387                return;
388            }
389        }
390    }
391
392    static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
393    static const int kMaxSubdivs = 10;
394
395    ab.scale(kLengthScale);
396    dc.scale(kLengthScale);
397
398    // e0 and e1 are extrapolations along vectors ab and dc.
399    SkVector c0 = p[0];
400    c0 += ab;
401    SkVector c1 = p[3];
402    c1 += dc;
403
404    SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1);
405    if (dSqd < toleranceSqd) {
406        SkPoint cAvg = c0;
407        cAvg += c1;
408        cAvg.scale(SK_ScalarHalf);
409
410        bool subdivide = false;
411
412        if (constrainWithinTangents &&
413            !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
414            // choose a new cAvg that is the intersection of the two tangent lines.
415            ab.setOrthog(ab);
416            SkScalar z0 = -ab.dot(p[0]);
417            dc.setOrthog(dc);
418            SkScalar z1 = -dc.dot(p[3]);
419            cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY);
420            cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1);
421            SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX);
422            z = SkScalarInvert(z);
423            cAvg.fX *= z;
424            cAvg.fY *= z;
425            if (sublevel <= kMaxSubdivs) {
426                SkScalar d0Sqd = c0.distanceToSqd(cAvg);
427                SkScalar d1Sqd = c1.distanceToSqd(cAvg);
428                // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
429                // the distances and tolerance can't be negative.
430                // (d0 + d1)^2 > toleranceSqd
431                // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
432                SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd));
433                subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
434            }
435        }
436        if (!subdivide) {
437            SkPoint* pts = quads->push_back_n(3);
438            pts[0] = p[0];
439            pts[1] = cAvg;
440            pts[2] = p[3];
441            return;
442        }
443    }
444    SkPoint choppedPts[7];
445    SkChopCubicAtHalf(p, choppedPts);
446    convert_noninflect_cubic_to_quads(choppedPts + 0,
447                                      toleranceSqd,
448                                      constrainWithinTangents,
449                                      dir,
450                                      quads,
451                                      sublevel + 1);
452    convert_noninflect_cubic_to_quads(choppedPts + 3,
453                                      toleranceSqd,
454                                      constrainWithinTangents,
455                                      dir,
456                                      quads,
457                                      sublevel + 1);
458}
459}
460
461void GrPathUtils::convertCubicToQuads(const GrPoint p[4],
462                                      SkScalar tolScale,
463                                      bool constrainWithinTangents,
464                                      SkPath::Direction dir,
465                                      SkTArray<SkPoint, true>* quads) {
466    SkPoint chopped[10];
467    int count = SkChopCubicAtInflections(p, chopped);
468
469    // base tolerance is 1 pixel.
470    static const SkScalar kTolerance = SK_Scalar1;
471    const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance));
472
473    for (int i = 0; i < count; ++i) {
474        SkPoint* cubic = chopped + 3*i;
475        convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads);
476    }
477
478}
479
480////////////////////////////////////////////////////////////////////////////////
481
482enum CubicType {
483    kSerpentine_CubicType,
484    kCusp_CubicType,
485    kLoop_CubicType,
486    kQuadratic_CubicType,
487    kLine_CubicType,
488    kPoint_CubicType
489};
490
491// discr(I) = d0^2 * (3*d1^2 - 4*d0*d2)
492// Classification:
493// discr(I) > 0        Serpentine
494// discr(I) = 0        Cusp
495// discr(I) < 0        Loop
496// d0 = d1 = 0         Quadratic
497// d0 = d1 = d2 = 0    Line
498// p0 = p1 = p2 = p3   Point
499static CubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) {
500    if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) {
501        return kPoint_CubicType;
502    }
503    const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]);
504    if (discr > SK_ScalarNearlyZero) {
505        return kSerpentine_CubicType;
506    } else if (discr < -SK_ScalarNearlyZero) {
507        return kLoop_CubicType;
508    } else {
509        if (0.f == d[0] && 0.f == d[1]) {
510            return (0.f == d[2] ? kLine_CubicType : kQuadratic_CubicType);
511        } else {
512            return kCusp_CubicType;
513        }
514    }
515}
516
517// Assumes the third component of points is 1.
518// Calcs p0 . (p1 x p2)
519static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
520    const SkScalar xComp = p0.fX * (p1.fY - p2.fY);
521    const SkScalar yComp = p0.fY * (p2.fX - p1.fX);
522    const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX;
523    return (xComp + yComp + wComp);
524}
525
526// Solves linear system to extract klm
527// P.K = k (similarly for l, m)
528// Where P is matrix of control points
529// K is coefficients for the line K
530// k is vector of values of K evaluated at the control points
531// Solving for K, thus K = P^(-1) . k
532static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4],
533                           const SkScalar controlL[4], const SkScalar controlM[4],
534                           SkScalar k[3], SkScalar l[3], SkScalar m[3]) {
535    SkMatrix matrix;
536    matrix.setAll(p[0].fX, p[0].fY, 1.f,
537                  p[1].fX, p[1].fY, 1.f,
538                  p[2].fX, p[2].fY, 1.f);
539    SkMatrix inverse;
540    if (matrix.invert(&inverse)) {
541       inverse.mapHomogeneousPoints(k, controlK, 1);
542       inverse.mapHomogeneousPoints(l, controlL, 1);
543       inverse.mapHomogeneousPoints(m, controlM, 1);
544    }
545
546}
547
548static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
549    SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]);
550    SkScalar ls = 3.f * d[1] - tempSqrt;
551    SkScalar lt = 6.f * d[0];
552    SkScalar ms = 3.f * d[1] + tempSqrt;
553    SkScalar mt = 6.f * d[0];
554
555    k[0] = ls * ms;
556    k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f;
557    k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
558    k[3] = (lt - ls) * (mt - ms);
559
560    l[0] = ls * ls * ls;
561    const SkScalar lt_ls = lt - ls;
562    l[1] = ls * ls * lt_ls * -1.f;
563    l[2] = lt_ls * lt_ls * ls;
564    l[3] = -1.f * lt_ls * lt_ls * lt_ls;
565
566    m[0] = ms * ms * ms;
567    const SkScalar mt_ms = mt - ms;
568    m[1] = ms * ms * mt_ms * -1.f;
569    m[2] = mt_ms * mt_ms * ms;
570    m[3] = -1.f * mt_ms * mt_ms * mt_ms;
571
572    // If d0 < 0 we need to flip the orientation of our curve
573    // This is done by negating the k and l values
574    // We want negative distance values to be on the inside
575    if ( d[0] > 0) {
576        for (int i = 0; i < 4; ++i) {
577            k[i] = -k[i];
578            l[i] = -l[i];
579        }
580    }
581}
582
583static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
584    SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
585    SkScalar ls = d[1] - tempSqrt;
586    SkScalar lt = 2.f * d[0];
587    SkScalar ms = d[1] + tempSqrt;
588    SkScalar mt = 2.f * d[0];
589
590    k[0] = ls * ms;
591    k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f;
592    k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f;
593    k[3] = (lt - ls) * (mt - ms);
594
595    l[0] = ls * ls * ms;
596    l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f;
597    l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f;
598    l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms);
599
600    m[0] = ls * ms * ms;
601    m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f;
602    m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f;
603    m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms);
604
605
606    // If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0),
607    // we need to flip the orientation of our curve.
608    // This is done by negating the k and l values
609    if ( (d[0] < 0 && k[1] < 0) || (d[0] > 0 && k[1] > 0)) {
610        for (int i = 0; i < 4; ++i) {
611            k[i] = -k[i];
612            l[i] = -l[i];
613        }
614    }
615}
616
617static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
618    const SkScalar ls = d[2];
619    const SkScalar lt = 3.f * d[1];
620
621    k[0] = ls;
622    k[1] = ls - lt / 3.f;
623    k[2] = ls - 2.f * lt / 3.f;
624    k[3] = ls - lt;
625
626    l[0] = ls * ls * ls;
627    const SkScalar ls_lt = ls - lt;
628    l[1] = ls * ls * ls_lt;
629    l[2] = ls_lt * ls_lt * ls;
630    l[3] = ls_lt * ls_lt * ls_lt;
631
632    m[0] = 1.f;
633    m[1] = 1.f;
634    m[2] = 1.f;
635    m[3] = 1.f;
636}
637
638// For the case when a cubic is actually a quadratic
639// M =
640// 0     0     0
641// 1/3   0     1/3
642// 2/3   1/3   2/3
643// 1     1     1
644static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) {
645    k[0] = 0.f;
646    k[1] = 1.f/3.f;
647    k[2] = 2.f/3.f;
648    k[3] = 1.f;
649
650    l[0] = 0.f;
651    l[1] = 0.f;
652    l[2] = 1.f/3.f;
653    l[3] = 1.f;
654
655    m[0] = 0.f;
656    m[1] = 1.f/3.f;
657    m[2] = 2.f/3.f;
658    m[3] = 1.f;
659
660    // If d2 < 0 we need to flip the orientation of our curve
661    // This is done by negating the k and l values
662    if ( d[2] > 0) {
663        for (int i = 0; i < 4; ++i) {
664            k[i] = -k[i];
665            l[i] = -l[i];
666        }
667    }
668}
669
670// Calc coefficients of I(s,t) where roots of I are inflection points of curve
671// I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
672// d0 = a1 - 2*a2+3*a3
673// d1 = -a2 + 3*a3
674// d2 = 3*a3
675// a1 = p0 . (p3 x p2)
676// a2 = p1 . (p0 x p3)
677// a3 = p2 . (p1 x p0)
678// Places the values of d1, d2, d3 in array d passed in
679static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) {
680    SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
681    SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
682    SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
683
684    // need to scale a's or values in later calculations will grow to high
685    SkScalar max = SkScalarAbs(a1);
686    max = SkMaxScalar(max, SkScalarAbs(a2));
687    max = SkMaxScalar(max, SkScalarAbs(a3));
688    max = 1.f/max;
689    a1 = a1 * max;
690    a2 = a2 * max;
691    a3 = a3 * max;
692
693    d[2] = 3.f * a3;
694    d[1] = d[2] - a2;
695    d[0] = d[1] - a2 + a1;
696}
697
698int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9],
699                                             SkScalar klm_rev[3]) {
700    // Variable to store the two parametric values at the loop double point
701    SkScalar smallS = 0.f;
702    SkScalar largeS = 0.f;
703
704    SkScalar d[3];
705    calc_cubic_inflection_func(src, d);
706
707    CubicType cType = classify_cubic(src, d);
708
709    int chop_count = 0;
710    if (kLoop_CubicType == cType) {
711        SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]);
712        SkScalar ls = d[1] - tempSqrt;
713        SkScalar lt = 2.f * d[0];
714        SkScalar ms = d[1] + tempSqrt;
715        SkScalar mt = 2.f * d[0];
716        ls = ls / lt;
717        ms = ms / mt;
718        // need to have t values sorted since this is what is expected by SkChopCubicAt
719        if (ls <= ms) {
720            smallS = ls;
721            largeS = ms;
722        } else {
723            smallS = ms;
724            largeS = ls;
725        }
726
727        SkScalar chop_ts[2];
728        if (smallS > 0.f && smallS < 1.f) {
729            chop_ts[chop_count++] = smallS;
730        }
731        if (largeS > 0.f && largeS < 1.f) {
732            chop_ts[chop_count++] = largeS;
733        }
734        if(dst) {
735            SkChopCubicAt(src, dst, chop_ts, chop_count);
736        }
737    } else {
738        if (dst) {
739            memcpy(dst, src, sizeof(SkPoint) * 4);
740        }
741    }
742
743    if (klm && klm_rev) {
744        // Set klm_rev to to match the sub_section of cubic that needs to have its orientation
745        // flipped. This will always be the section that is the "loop"
746        if (2 == chop_count) {
747            klm_rev[0] = 1.f;
748            klm_rev[1] = -1.f;
749            klm_rev[2] = 1.f;
750        } else if (1 == chop_count) {
751            if (smallS < 0.f) {
752                klm_rev[0] = -1.f;
753                klm_rev[1] = 1.f;
754            } else {
755                klm_rev[0] = 1.f;
756                klm_rev[1] = -1.f;
757            }
758        } else {
759            if (smallS < 0.f && largeS > 1.f) {
760                klm_rev[0] = -1.f;
761            } else {
762                klm_rev[0] = 1.f;
763            }
764        }
765        SkScalar controlK[4];
766        SkScalar controlL[4];
767        SkScalar controlM[4];
768
769        if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
770            set_serp_klm(d, controlK, controlL, controlM);
771        } else if (kLoop_CubicType == cType) {
772            set_loop_klm(d, controlK, controlL, controlM);
773        } else if (kCusp_CubicType == cType) {
774            SkASSERT(0.f == d[0]);
775            set_cusp_klm(d, controlK, controlL, controlM);
776        } else if (kQuadratic_CubicType == cType) {
777            set_quadratic_klm(d, controlK, controlL, controlM);
778        }
779
780        calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
781    }
782    return chop_count + 1;
783}
784
785void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) {
786    SkScalar d[3];
787    calc_cubic_inflection_func(p, d);
788
789    CubicType cType = classify_cubic(p, d);
790
791    SkScalar controlK[4];
792    SkScalar controlL[4];
793    SkScalar controlM[4];
794
795    if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) {
796        set_serp_klm(d, controlK, controlL, controlM);
797    } else if (kLoop_CubicType == cType) {
798        set_loop_klm(d, controlK, controlL, controlM);
799    } else if (kCusp_CubicType == cType) {
800        SkASSERT(0.f == d[0]);
801        set_cusp_klm(d, controlK, controlL, controlM);
802    } else if (kQuadratic_CubicType == cType) {
803        set_quadratic_klm(d, controlK, controlL, controlM);
804    }
805
806    calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]);
807}
808