SkPathOpsQuad.cpp revision 8f6ef4010f6835c5ce9ede180e50a6a58512a81e
1/* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7#include "SkIntersections.h" 8#include "SkLineParameters.h" 9#include "SkPathOpsCubic.h" 10#include "SkPathOpsQuad.h" 11#include "SkPathOpsTriangle.h" 12 13// from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html 14// (currently only used by testing) 15double SkDQuad::nearestT(const SkDPoint& pt) const { 16 SkDVector pos = fPts[0] - pt; 17 // search points P of bezier curve with PM.(dP / dt) = 0 18 // a calculus leads to a 3d degree equation : 19 SkDVector A = fPts[1] - fPts[0]; 20 SkDVector B = fPts[2] - fPts[1]; 21 B -= A; 22 double a = B.dot(B); 23 double b = 3 * A.dot(B); 24 double c = 2 * A.dot(A) + pos.dot(B); 25 double d = pos.dot(A); 26 double ts[3]; 27 int roots = SkDCubic::RootsValidT(a, b, c, d, ts); 28 double d0 = pt.distanceSquared(fPts[0]); 29 double d2 = pt.distanceSquared(fPts[2]); 30 double distMin = SkTMin(d0, d2); 31 int bestIndex = -1; 32 for (int index = 0; index < roots; ++index) { 33 SkDPoint onQuad = xyAtT(ts[index]); 34 double dist = pt.distanceSquared(onQuad); 35 if (distMin > dist) { 36 distMin = dist; 37 bestIndex = index; 38 } 39 } 40 if (bestIndex >= 0) { 41 return ts[bestIndex]; 42 } 43 return d0 < d2 ? 0 : 1; 44} 45 46bool SkDQuad::pointInHull(const SkDPoint& pt) const { 47 return ((const SkDTriangle&) fPts).contains(pt); 48} 49 50SkDPoint SkDQuad::top(double startT, double endT) const { 51 SkDQuad sub = subDivide(startT, endT); 52 SkDPoint topPt = sub[0]; 53 if (topPt.fY > sub[2].fY || (topPt.fY == sub[2].fY && topPt.fX > sub[2].fX)) { 54 topPt = sub[2]; 55 } 56 if (!between(sub[0].fY, sub[1].fY, sub[2].fY)) { 57 double extremeT; 58 if (FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, &extremeT)) { 59 extremeT = startT + (endT - startT) * extremeT; 60 SkDPoint test = xyAtT(extremeT); 61 if (topPt.fY > test.fY || (topPt.fY == test.fY && topPt.fX > test.fX)) { 62 topPt = test; 63 } 64 } 65 } 66 return topPt; 67} 68 69int SkDQuad::AddValidTs(double s[], int realRoots, double* t) { 70 int foundRoots = 0; 71 for (int index = 0; index < realRoots; ++index) { 72 double tValue = s[index]; 73 if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) { 74 if (approximately_less_than_zero(tValue)) { 75 tValue = 0; 76 } else if (approximately_greater_than_one(tValue)) { 77 tValue = 1; 78 } 79 for (int idx2 = 0; idx2 < foundRoots; ++idx2) { 80 if (approximately_equal(t[idx2], tValue)) { 81 goto nextRoot; 82 } 83 } 84 t[foundRoots++] = tValue; 85 } 86nextRoot: 87 {} 88 } 89 return foundRoots; 90} 91 92// note: caller expects multiple results to be sorted smaller first 93// note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting 94// analysis of the quadratic equation, suggesting why the following looks at 95// the sign of B -- and further suggesting that the greatest loss of precision 96// is in b squared less two a c 97int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) { 98 double s[2]; 99 int realRoots = RootsReal(A, B, C, s); 100 int foundRoots = AddValidTs(s, realRoots, t); 101 return foundRoots; 102} 103 104/* 105Numeric Solutions (5.6) suggests to solve the quadratic by computing 106 Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) 107and using the roots 108 t1 = Q / A 109 t2 = C / Q 110*/ 111// this does not discard real roots <= 0 or >= 1 112int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) { 113 const double p = B / (2 * A); 114 const double q = C / A; 115 if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) { 116 if (approximately_zero(B)) { 117 s[0] = 0; 118 return C == 0; 119 } 120 s[0] = -C / B; 121 return 1; 122 } 123 /* normal form: x^2 + px + q = 0 */ 124 const double p2 = p * p; 125 if (!AlmostEqualUlps(p2, q) && p2 < q) { 126 return 0; 127 } 128 double sqrt_D = 0; 129 if (p2 > q) { 130 sqrt_D = sqrt(p2 - q); 131 } 132 s[0] = sqrt_D - p; 133 s[1] = -sqrt_D - p; 134 return 1 + !AlmostEqualUlps(s[0], s[1]); 135} 136 137bool SkDQuad::isLinear(int startIndex, int endIndex) const { 138 SkLineParameters lineParameters; 139 lineParameters.quadEndPoints(*this, startIndex, endIndex); 140 // FIXME: maybe it's possible to avoid this and compare non-normalized 141 lineParameters.normalize(); 142 double distance = lineParameters.controlPtDistance(*this); 143 return approximately_zero(distance); 144} 145 146SkDCubic SkDQuad::toCubic() const { 147 SkDCubic cubic; 148 cubic[0] = fPts[0]; 149 cubic[2] = fPts[1]; 150 cubic[3] = fPts[2]; 151 cubic[1].fX = (cubic[0].fX + cubic[2].fX * 2) / 3; 152 cubic[1].fY = (cubic[0].fY + cubic[2].fY * 2) / 3; 153 cubic[2].fX = (cubic[3].fX + cubic[2].fX * 2) / 3; 154 cubic[2].fY = (cubic[3].fY + cubic[2].fY * 2) / 3; 155 return cubic; 156} 157 158SkDVector SkDQuad::dxdyAtT(double t) const { 159 double a = t - 1; 160 double b = 1 - 2 * t; 161 double c = t; 162 SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, 163 a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; 164 return result; 165} 166 167SkDPoint SkDQuad::xyAtT(double t) const { 168 double one_t = 1 - t; 169 double a = one_t * one_t; 170 double b = 2 * one_t * t; 171 double c = t * t; 172 SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX, 173 a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY }; 174 return result; 175} 176 177/* 178Given a quadratic q, t1, and t2, find a small quadratic segment. 179 180The new quadratic is defined by A, B, and C, where 181 A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1 182 C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1 183 184To find B, compute the point halfway between t1 and t2: 185 186q(at (t1 + t2)/2) == D 187 188Next, compute where D must be if we know the value of B: 189 190_12 = A/2 + B/2 19112_ = B/2 + C/2 192123 = A/4 + B/2 + C/4 193 = D 194 195Group the known values on one side: 196 197B = D*2 - A/2 - C/2 198*/ 199 200static double interp_quad_coords(const double* src, double t) { 201 double ab = SkDInterp(src[0], src[2], t); 202 double bc = SkDInterp(src[2], src[4], t); 203 double abc = SkDInterp(ab, bc, t); 204 return abc; 205} 206 207bool SkDQuad::monotonicInY() const { 208 return between(fPts[0].fY, fPts[1].fY, fPts[2].fY); 209} 210 211SkDQuad SkDQuad::subDivide(double t1, double t2) const { 212 SkDQuad dst; 213 double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1); 214 double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1); 215 double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2); 216 double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2); 217 double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2); 218 double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2); 219 /* bx = */ dst[1].fX = 2*dx - (ax + cx)/2; 220 /* by = */ dst[1].fY = 2*dy - (ay + cy)/2; 221 return dst; 222} 223 224void SkDQuad::align(int endIndex, SkDPoint* dstPt) const { 225 if (fPts[endIndex].fX == fPts[1].fX) { 226 dstPt->fX = fPts[endIndex].fX; 227 } 228 if (fPts[endIndex].fY == fPts[1].fY) { 229 dstPt->fY = fPts[endIndex].fY; 230 } 231} 232 233SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const { 234 SkASSERT(t1 != t2); 235 SkDPoint b; 236#if 0 237 // this approach assumes that the control point computed directly is accurate enough 238 double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2); 239 double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2); 240 b.fX = 2 * dx - (a.fX + c.fX) / 2; 241 b.fY = 2 * dy - (a.fY + c.fY) / 2; 242#else 243 SkDQuad sub = subDivide(t1, t2); 244 SkDLine b0 = {{a, sub[1] + (a - sub[0])}}; 245 SkDLine b1 = {{c, sub[1] + (c - sub[2])}}; 246 SkIntersections i; 247 i.intersectRay(b0, b1); 248 if (i.used() == 1) { 249 b = i.pt(0); 250 } else { 251 SkASSERT(i.used() == 2 || i.used() == 0); 252 b = SkDPoint::Mid(b0[1], b1[1]); 253 } 254#endif 255 if (t1 == 0 || t2 == 0) { 256 align(0, &b); 257 } 258 if (t1 == 1 || t2 == 1) { 259 align(2, &b); 260 } 261 if (precisely_subdivide_equal(b.fX, a.fX)) { 262 b.fX = a.fX; 263 } else if (precisely_subdivide_equal(b.fX, c.fX)) { 264 b.fX = c.fX; 265 } 266 if (precisely_subdivide_equal(b.fY, a.fY)) { 267 b.fY = a.fY; 268 } else if (precisely_subdivide_equal(b.fY, c.fY)) { 269 b.fY = c.fY; 270 } 271 return b; 272} 273 274/* classic one t subdivision */ 275static void interp_quad_coords(const double* src, double* dst, double t) { 276 double ab = SkDInterp(src[0], src[2], t); 277 double bc = SkDInterp(src[2], src[4], t); 278 dst[0] = src[0]; 279 dst[2] = ab; 280 dst[4] = SkDInterp(ab, bc, t); 281 dst[6] = bc; 282 dst[8] = src[4]; 283} 284 285SkDQuadPair SkDQuad::chopAt(double t) const 286{ 287 SkDQuadPair dst; 288 interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t); 289 interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t); 290 return dst; 291} 292 293static int valid_unit_divide(double numer, double denom, double* ratio) 294{ 295 if (numer < 0) { 296 numer = -numer; 297 denom = -denom; 298 } 299 if (denom == 0 || numer == 0 || numer >= denom) { 300 return 0; 301 } 302 double r = numer / denom; 303 if (r == 0) { // catch underflow if numer <<<< denom 304 return 0; 305 } 306 *ratio = r; 307 return 1; 308} 309 310/** Quad'(t) = At + B, where 311 A = 2(a - 2b + c) 312 B = 2(b - a) 313 Solve for t, only if it fits between 0 < t < 1 314*/ 315int SkDQuad::FindExtrema(double a, double b, double c, double tValue[1]) { 316 /* At + B == 0 317 t = -B / A 318 */ 319 return valid_unit_divide(a - b, a - b - b + c, tValue); 320} 321 322/* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t) 323 * 324 * a = A - 2*B + C 325 * b = 2*B - 2*C 326 * c = C 327 */ 328void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) { 329 *a = quad[0]; // a = A 330 *b = 2 * quad[2]; // b = 2*B 331 *c = quad[4]; // c = C 332 *b -= *c; // b = 2*B - C 333 *a -= *b; // a = A - 2*B + C 334 *b -= *c; // b = 2*B - 2*C 335} 336