1
2/*
3 * Copyright 2011 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10#include "SkPDFShader.h"
11
12#include "SkData.h"
13#include "SkPDFCanon.h"
14#include "SkPDFDevice.h"
15#include "SkPDFFormXObject.h"
16#include "SkPDFGraphicState.h"
17#include "SkPDFResourceDict.h"
18#include "SkPDFUtils.h"
19#include "SkScalar.h"
20#include "SkStream.h"
21#include "SkTemplates.h"
22#include "SkTypes.h"
23
24static bool inverse_transform_bbox(const SkMatrix& matrix, SkRect* bbox) {
25    SkMatrix inverse;
26    if (!matrix.invert(&inverse)) {
27        return false;
28    }
29    inverse.mapRect(bbox);
30    return true;
31}
32
33static void unitToPointsMatrix(const SkPoint pts[2], SkMatrix* matrix) {
34    SkVector    vec = pts[1] - pts[0];
35    SkScalar    mag = vec.length();
36    SkScalar    inv = mag ? SkScalarInvert(mag) : 0;
37
38    vec.scale(inv);
39    matrix->setSinCos(vec.fY, vec.fX);
40    matrix->preScale(mag, mag);
41    matrix->postTranslate(pts[0].fX, pts[0].fY);
42}
43
44/* Assumes t + startOffset is on the stack and does a linear interpolation on t
45   between startOffset and endOffset from prevColor to curColor (for each color
46   component), leaving the result in component order on the stack. It assumes
47   there are always 3 components per color.
48   @param range                  endOffset - startOffset
49   @param curColor[components]   The current color components.
50   @param prevColor[components]  The previous color components.
51   @param result                 The result ps function.
52 */
53static void interpolateColorCode(SkScalar range, SkScalar* curColor,
54                                 SkScalar* prevColor, SkString* result) {
55    SkASSERT(range != SkIntToScalar(0));
56    static const int kColorComponents = 3;
57
58    // Figure out how to scale each color component.
59    SkScalar multiplier[kColorComponents];
60    for (int i = 0; i < kColorComponents; i++) {
61        multiplier[i] = (curColor[i] - prevColor[i]) / range;
62    }
63
64    // Calculate when we no longer need to keep a copy of the input parameter t.
65    // If the last component to use t is i, then dupInput[0..i - 1] = true
66    // and dupInput[i .. components] = false.
67    bool dupInput[kColorComponents];
68    dupInput[kColorComponents - 1] = false;
69    for (int i = kColorComponents - 2; i >= 0; i--) {
70        dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0;
71    }
72
73    if (!dupInput[0] && multiplier[0] == 0) {
74        result->append("pop ");
75    }
76
77    for (int i = 0; i < kColorComponents; i++) {
78        // If the next components needs t and this component will consume a
79        // copy, make another copy.
80        if (dupInput[i] && multiplier[i] != 0) {
81            result->append("dup ");
82        }
83
84        if (multiplier[i] == 0) {
85            result->appendScalar(prevColor[i]);
86            result->append(" ");
87        } else {
88            if (multiplier[i] != 1) {
89                result->appendScalar(multiplier[i]);
90                result->append(" mul ");
91            }
92            if (prevColor[i] != 0) {
93                result->appendScalar(prevColor[i]);
94                result->append(" add ");
95            }
96        }
97
98        if (dupInput[i]) {
99            result->append("exch\n");
100        }
101    }
102}
103
104/* Generate Type 4 function code to map t=[0,1) to the passed gradient,
105   clamping at the edges of the range.  The generated code will be of the form:
106       if (t < 0) {
107           return colorData[0][r,g,b];
108       } else {
109           if (t < info.fColorOffsets[1]) {
110               return linearinterpolation(colorData[0][r,g,b],
111                                          colorData[1][r,g,b]);
112           } else {
113               if (t < info.fColorOffsets[2]) {
114                   return linearinterpolation(colorData[1][r,g,b],
115                                              colorData[2][r,g,b]);
116               } else {
117
118                ...    } else {
119                           return colorData[info.fColorCount - 1][r,g,b];
120                       }
121                ...
122           }
123       }
124 */
125static void gradientFunctionCode(const SkShader::GradientInfo& info,
126                                 SkString* result) {
127    /* We want to linearly interpolate from the previous color to the next.
128       Scale the colors from 0..255 to 0..1 and determine the multipliers
129       for interpolation.
130       C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}.
131     */
132    static const int kColorComponents = 3;
133    typedef SkScalar ColorTuple[kColorComponents];
134    SkAutoSTMalloc<4, ColorTuple> colorDataAlloc(info.fColorCount);
135    ColorTuple *colorData = colorDataAlloc.get();
136    const SkScalar scale = SkScalarInvert(SkIntToScalar(255));
137    for (int i = 0; i < info.fColorCount; i++) {
138        colorData[i][0] = SkScalarMul(SkColorGetR(info.fColors[i]), scale);
139        colorData[i][1] = SkScalarMul(SkColorGetG(info.fColors[i]), scale);
140        colorData[i][2] = SkScalarMul(SkColorGetB(info.fColors[i]), scale);
141    }
142
143    // Clamp the initial color.
144    result->append("dup 0 le {pop ");
145    result->appendScalar(colorData[0][0]);
146    result->append(" ");
147    result->appendScalar(colorData[0][1]);
148    result->append(" ");
149    result->appendScalar(colorData[0][2]);
150    result->append(" }\n");
151
152    // The gradient colors.
153    int gradients = 0;
154    for (int i = 1 ; i < info.fColorCount; i++) {
155        if (info.fColorOffsets[i] == info.fColorOffsets[i - 1]) {
156            continue;
157        }
158        gradients++;
159
160        result->append("{dup ");
161        result->appendScalar(info.fColorOffsets[i]);
162        result->append(" le {");
163        if (info.fColorOffsets[i - 1] != 0) {
164            result->appendScalar(info.fColorOffsets[i - 1]);
165            result->append(" sub\n");
166        }
167
168        interpolateColorCode(info.fColorOffsets[i] - info.fColorOffsets[i - 1],
169                             colorData[i], colorData[i - 1], result);
170        result->append("}\n");
171    }
172
173    // Clamp the final color.
174    result->append("{pop ");
175    result->appendScalar(colorData[info.fColorCount - 1][0]);
176    result->append(" ");
177    result->appendScalar(colorData[info.fColorCount - 1][1]);
178    result->append(" ");
179    result->appendScalar(colorData[info.fColorCount - 1][2]);
180
181    for (int i = 0 ; i < gradients + 1; i++) {
182        result->append("} ifelse\n");
183    }
184}
185
186/* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */
187static void tileModeCode(SkShader::TileMode mode, SkString* result) {
188    if (mode == SkShader::kRepeat_TileMode) {
189        result->append("dup truncate sub\n");  // Get the fractional part.
190        result->append("dup 0 le {1 add} if\n");  // Map (-1,0) => (0,1)
191        return;
192    }
193
194    if (mode == SkShader::kMirror_TileMode) {
195        // Map t mod 2 into [0, 1, 1, 0].
196        //               Code                     Stack
197        result->append("abs "                 // Map negative to positive.
198                       "dup "                 // t.s t.s
199                       "truncate "            // t.s t
200                       "dup "                 // t.s t t
201                       "cvi "                 // t.s t T
202                       "2 mod "               // t.s t (i mod 2)
203                       "1 eq "                // t.s t true|false
204                       "3 1 roll "            // true|false t.s t
205                       "sub "                 // true|false 0.s
206                       "exch "                // 0.s true|false
207                       "{1 exch sub} if\n");  // 1 - 0.s|0.s
208    }
209}
210
211/**
212 *  Returns PS function code that applies inverse perspective
213 *  to a x, y point.
214 *  The function assumes that the stack has at least two elements,
215 *  and that the top 2 elements are numeric values.
216 *  After executing this code on a PS stack, the last 2 elements are updated
217 *  while the rest of the stack is preserved intact.
218 *  inversePerspectiveMatrix is the inverse perspective matrix.
219 */
220static SkString apply_perspective_to_coordinates(
221        const SkMatrix& inversePerspectiveMatrix) {
222    SkString code;
223    if (!inversePerspectiveMatrix.hasPerspective()) {
224        return code;
225    }
226
227    // Perspective matrix should be:
228    // 1   0  0
229    // 0   1  0
230    // p0 p1 p2
231
232    const SkScalar p0 = inversePerspectiveMatrix[SkMatrix::kMPersp0];
233    const SkScalar p1 = inversePerspectiveMatrix[SkMatrix::kMPersp1];
234    const SkScalar p2 = inversePerspectiveMatrix[SkMatrix::kMPersp2];
235
236    // y = y / (p2 + p0 x + p1 y)
237    // x = x / (p2 + p0 x + p1 y)
238
239    // Input on stack: x y
240    code.append(" dup ");               // x y y
241    code.appendScalar(p1);              // x y y p1
242    code.append(" mul "                 // x y y*p1
243                " 2 index ");           // x y y*p1 x
244    code.appendScalar(p0);              // x y y p1 x p0
245    code.append(" mul ");               // x y y*p1 x*p0
246    code.appendScalar(p2);              // x y y p1 x*p0 p2
247    code.append(" add "                 // x y y*p1 x*p0+p2
248                "add "                  // x y y*p1+x*p0+p2
249                "3 1 roll "             // y*p1+x*p0+p2 x y
250                "2 index "              // z x y y*p1+x*p0+p2
251                "div "                  // y*p1+x*p0+p2 x y/(y*p1+x*p0+p2)
252                "3 1 roll "             // y/(y*p1+x*p0+p2) y*p1+x*p0+p2 x
253                "exch "                 // y/(y*p1+x*p0+p2) x y*p1+x*p0+p2
254                "div "                  // y/(y*p1+x*p0+p2) x/(y*p1+x*p0+p2)
255                "exch\n");              // x/(y*p1+x*p0+p2) y/(y*p1+x*p0+p2)
256    return code;
257}
258
259static SkString linearCode(const SkShader::GradientInfo& info,
260                           const SkMatrix& perspectiveRemover) {
261    SkString function("{");
262
263    function.append(apply_perspective_to_coordinates(perspectiveRemover));
264
265    function.append("pop\n");  // Just ditch the y value.
266    tileModeCode(info.fTileMode, &function);
267    gradientFunctionCode(info, &function);
268    function.append("}");
269    return function;
270}
271
272static SkString radialCode(const SkShader::GradientInfo& info,
273                           const SkMatrix& perspectiveRemover) {
274    SkString function("{");
275
276    function.append(apply_perspective_to_coordinates(perspectiveRemover));
277
278    // Find the distance from the origin.
279    function.append("dup "      // x y y
280                    "mul "      // x y^2
281                    "exch "     // y^2 x
282                    "dup "      // y^2 x x
283                    "mul "      // y^2 x^2
284                    "add "      // y^2+x^2
285                    "sqrt\n");  // sqrt(y^2+x^2)
286
287    tileModeCode(info.fTileMode, &function);
288    gradientFunctionCode(info, &function);
289    function.append("}");
290    return function;
291}
292
293/* Conical gradient shader, based on the Canvas spec for radial gradients
294   See: http://www.w3.org/TR/2dcontext/#dom-context-2d-createradialgradient
295 */
296static SkString twoPointConicalCode(const SkShader::GradientInfo& info,
297                                    const SkMatrix& perspectiveRemover) {
298    SkScalar dx = info.fPoint[1].fX - info.fPoint[0].fX;
299    SkScalar dy = info.fPoint[1].fY - info.fPoint[0].fY;
300    SkScalar r0 = info.fRadius[0];
301    SkScalar dr = info.fRadius[1] - info.fRadius[0];
302    SkScalar a = SkScalarMul(dx, dx) + SkScalarMul(dy, dy) -
303                 SkScalarMul(dr, dr);
304
305    // First compute t, if the pixel falls outside the cone, then we'll end
306    // with 'false' on the stack, otherwise we'll push 'true' with t below it
307
308    // We start with a stack of (x y), copy it and then consume one copy in
309    // order to calculate b and the other to calculate c.
310    SkString function("{");
311
312    function.append(apply_perspective_to_coordinates(perspectiveRemover));
313
314    function.append("2 copy ");
315
316    // Calculate b and b^2; b = -2 * (y * dy + x * dx + r0 * dr).
317    function.appendScalar(dy);
318    function.append(" mul exch ");
319    function.appendScalar(dx);
320    function.append(" mul add ");
321    function.appendScalar(SkScalarMul(r0, dr));
322    function.append(" add -2 mul dup dup mul\n");
323
324    // c = x^2 + y^2 + radius0^2
325    function.append("4 2 roll dup mul exch dup mul add ");
326    function.appendScalar(SkScalarMul(r0, r0));
327    function.append(" sub dup 4 1 roll\n");
328
329    // Contents of the stack at this point: c, b, b^2, c
330
331    // if a = 0, then we collapse to a simpler linear case
332    if (a == 0) {
333
334        // t = -c/b
335        function.append("pop pop div neg dup ");
336
337        // compute radius(t)
338        function.appendScalar(dr);
339        function.append(" mul ");
340        function.appendScalar(r0);
341        function.append(" add\n");
342
343        // if r(t) < 0, then it's outside the cone
344        function.append("0 lt {pop false} {true} ifelse\n");
345
346    } else {
347
348        // quadratic case: the Canvas spec wants the largest
349        // root t for which radius(t) > 0
350
351        // compute the discriminant (b^2 - 4ac)
352        function.appendScalar(SkScalarMul(SkIntToScalar(4), a));
353        function.append(" mul sub dup\n");
354
355        // if d >= 0, proceed
356        function.append("0 ge {\n");
357
358        // an intermediate value we'll use to compute the roots:
359        // q = -0.5 * (b +/- sqrt(d))
360        function.append("sqrt exch dup 0 lt {exch -1 mul} if");
361        function.append(" add -0.5 mul dup\n");
362
363        // first root = q / a
364        function.appendScalar(a);
365        function.append(" div\n");
366
367        // second root = c / q
368        function.append("3 1 roll div\n");
369
370        // put the larger root on top of the stack
371        function.append("2 copy gt {exch} if\n");
372
373        // compute radius(t) for larger root
374        function.append("dup ");
375        function.appendScalar(dr);
376        function.append(" mul ");
377        function.appendScalar(r0);
378        function.append(" add\n");
379
380        // if r(t) > 0, we have our t, pop off the smaller root and we're done
381        function.append(" 0 gt {exch pop true}\n");
382
383        // otherwise, throw out the larger one and try the smaller root
384        function.append("{pop dup\n");
385        function.appendScalar(dr);
386        function.append(" mul ");
387        function.appendScalar(r0);
388        function.append(" add\n");
389
390        // if r(t) < 0, push false, otherwise the smaller root is our t
391        function.append("0 le {pop false} {true} ifelse\n");
392        function.append("} ifelse\n");
393
394        // d < 0, clear the stack and push false
395        function.append("} {pop pop pop false} ifelse\n");
396    }
397
398    // if the pixel is in the cone, proceed to compute a color
399    function.append("{");
400    tileModeCode(info.fTileMode, &function);
401    gradientFunctionCode(info, &function);
402
403    // otherwise, just write black
404    function.append("} {0 0 0} ifelse }");
405
406    return function;
407}
408
409static SkString sweepCode(const SkShader::GradientInfo& info,
410                          const SkMatrix& perspectiveRemover) {
411    SkString function("{exch atan 360 div\n");
412    tileModeCode(info.fTileMode, &function);
413    gradientFunctionCode(info, &function);
414    function.append("}");
415    return function;
416}
417
418static void drawBitmapMatrix(SkCanvas* canvas, const SkBitmap& bm, const SkMatrix& matrix) {
419    SkAutoCanvasRestore acr(canvas, true);
420    canvas->concat(matrix);
421    canvas->drawBitmap(bm, 0, 0);
422}
423
424class SkPDFShader::State {
425public:
426    SkShader::GradientType fType;
427    SkShader::GradientInfo fInfo;
428    SkAutoFree fColorData;    // This provides storage for arrays in fInfo.
429    SkMatrix fCanvasTransform;
430    SkMatrix fShaderTransform;
431    SkIRect fBBox;
432
433    SkBitmap fImage;
434    uint32_t fPixelGeneration;
435    SkShader::TileMode fImageTileModes[2];
436
437    State(const SkShader& shader, const SkMatrix& canvasTransform,
438          const SkIRect& bbox, SkScalar rasterScale);
439
440    bool operator==(const State& b) const;
441
442    SkPDFShader::State* CreateAlphaToLuminosityState() const;
443    SkPDFShader::State* CreateOpaqueState() const;
444
445    bool GradientHasAlpha() const;
446
447private:
448    State(const State& other);
449    State operator=(const State& rhs);
450    void AllocateGradientInfoStorage();
451};
452
453////////////////////////////////////////////////////////////////////////////////
454
455SkPDFFunctionShader::SkPDFFunctionShader(SkPDFShader::State* state)
456    : SkPDFDict("Pattern"), fShaderState(state) {}
457
458SkPDFFunctionShader::~SkPDFFunctionShader() {}
459
460bool SkPDFFunctionShader::equals(const SkPDFShader::State& state) const {
461    return state == *fShaderState;
462}
463
464////////////////////////////////////////////////////////////////////////////////
465
466SkPDFAlphaFunctionShader::SkPDFAlphaFunctionShader(SkPDFShader::State* state)
467    : fShaderState(state) {}
468
469bool SkPDFAlphaFunctionShader::equals(const SkPDFShader::State& state) const {
470    return state == *fShaderState;
471}
472
473SkPDFAlphaFunctionShader::~SkPDFAlphaFunctionShader() {}
474
475////////////////////////////////////////////////////////////////////////////////
476
477SkPDFImageShader::SkPDFImageShader(SkPDFShader::State* state)
478    : fShaderState(state) {}
479
480bool SkPDFImageShader::equals(const SkPDFShader::State& state) const {
481    return state == *fShaderState;
482}
483
484SkPDFImageShader::~SkPDFImageShader() {}
485
486////////////////////////////////////////////////////////////////////////////////
487
488static SkPDFObject* get_pdf_shader_by_state(
489        SkPDFCanon* canon,
490        SkScalar dpi,
491        SkAutoTDelete<SkPDFShader::State>* autoState) {
492    const SkPDFShader::State& state = **autoState;
493    if (state.fType == SkShader::kNone_GradientType && state.fImage.isNull()) {
494        // TODO(vandebo) This drops SKComposeShader on the floor.  We could
495        // handle compose shader by pulling things up to a layer, drawing with
496        // the first shader, applying the xfer mode and drawing again with the
497        // second shader, then applying the layer to the original drawing.
498        return NULL;
499    } else if (state.fType == SkShader::kNone_GradientType) {
500        SkPDFObject* shader = canon->findImageShader(state);
501        return shader ? SkRef(shader)
502                      : SkPDFImageShader::Create(canon, dpi, autoState);
503    } else if (state.GradientHasAlpha()) {
504        SkPDFObject* shader = canon->findAlphaShader(state);
505        return shader ? SkRef(shader)
506                      : SkPDFAlphaFunctionShader::Create(canon, dpi, autoState);
507    } else {
508        SkPDFObject* shader = canon->findFunctionShader(state);
509        return shader ? SkRef(shader)
510                      : SkPDFFunctionShader::Create(canon, autoState);
511    }
512}
513
514// static
515SkPDFObject* SkPDFShader::GetPDFShader(SkPDFCanon* canon,
516                                       SkScalar dpi,
517                                       const SkShader& shader,
518                                       const SkMatrix& matrix,
519                                       const SkIRect& surfaceBBox,
520                                       SkScalar rasterScale) {
521    SkAutoTDelete<SkPDFShader::State> state(
522            SkNEW_ARGS(State, (shader, matrix, surfaceBBox, rasterScale)));
523    return get_pdf_shader_by_state(canon, dpi, &state);
524}
525
526static SkPDFDict* get_gradient_resource_dict(
527        SkPDFObject* functionShader,
528        SkPDFObject* gState) {
529    SkTDArray<SkPDFObject*> patterns;
530    if (functionShader) {
531        patterns.push(functionShader);
532    }
533    SkTDArray<SkPDFObject*> graphicStates;
534    if (gState) {
535        graphicStates.push(gState);
536    }
537    return SkPDFResourceDict::Create(&graphicStates, &patterns, NULL, NULL);
538}
539
540static void populate_tiling_pattern_dict(SkPDFDict* pattern,
541                                         SkRect& bbox,
542                                         SkPDFDict* resources,
543                                         const SkMatrix& matrix) {
544    const int kTiling_PatternType = 1;
545    const int kColoredTilingPattern_PaintType = 1;
546    const int kConstantSpacing_TilingType = 1;
547
548    pattern->insertName("Type", "Pattern");
549    pattern->insertInt("PatternType", kTiling_PatternType);
550    pattern->insertInt("PaintType", kColoredTilingPattern_PaintType);
551    pattern->insertInt("TilingType", kConstantSpacing_TilingType);
552    pattern->insertObject("BBox", SkPDFUtils::RectToArray(bbox));
553    pattern->insertScalar("XStep", bbox.width());
554    pattern->insertScalar("YStep", bbox.height());
555    pattern->insertObject("Resources", SkRef(resources));
556    if (!matrix.isIdentity()) {
557        pattern->insertObject("Matrix", SkPDFUtils::MatrixToArray(matrix));
558    }
559}
560
561/**
562 * Creates a content stream which fills the pattern P0 across bounds.
563 * @param gsIndex A graphics state resource index to apply, or <0 if no
564 * graphics state to apply.
565 */
566static SkStream* create_pattern_fill_content(int gsIndex, SkRect& bounds) {
567    SkDynamicMemoryWStream content;
568    if (gsIndex >= 0) {
569        SkPDFUtils::ApplyGraphicState(gsIndex, &content);
570    }
571    SkPDFUtils::ApplyPattern(0, &content);
572    SkPDFUtils::AppendRectangle(bounds, &content);
573    SkPDFUtils::PaintPath(SkPaint::kFill_Style, SkPath::kEvenOdd_FillType,
574                          &content);
575
576    return content.detachAsStream();
577}
578
579/**
580 * Creates a ExtGState with the SMask set to the luminosityShader in
581 * luminosity mode. The shader pattern extends to the bbox.
582 */
583static SkPDFObject* create_smask_graphic_state(
584        SkPDFCanon* canon, SkScalar dpi, const SkPDFShader::State& state) {
585    SkRect bbox;
586    bbox.set(state.fBBox);
587
588    SkAutoTDelete<SkPDFShader::State> alphaToLuminosityState(
589            state.CreateAlphaToLuminosityState());
590    SkAutoTUnref<SkPDFObject> luminosityShader(
591            get_pdf_shader_by_state(canon, dpi, &alphaToLuminosityState));
592
593    SkAutoTDelete<SkStream> alphaStream(create_pattern_fill_content(-1, bbox));
594
595    SkAutoTUnref<SkPDFDict>
596        resources(get_gradient_resource_dict(luminosityShader, NULL));
597
598    SkAutoTUnref<SkPDFFormXObject> alphaMask(
599            new SkPDFFormXObject(alphaStream.get(), bbox, resources.get()));
600
601    return SkPDFGraphicState::GetSMaskGraphicState(
602            alphaMask.get(), false,
603            SkPDFGraphicState::kLuminosity_SMaskMode);
604}
605
606SkPDFAlphaFunctionShader* SkPDFAlphaFunctionShader::Create(
607        SkPDFCanon* canon,
608        SkScalar dpi,
609        SkAutoTDelete<SkPDFShader::State>* autoState) {
610    const SkPDFShader::State& state = **autoState;
611    SkRect bbox;
612    bbox.set(state.fBBox);
613
614    SkAutoTDelete<SkPDFShader::State> opaqueState(state.CreateOpaqueState());
615
616    SkAutoTUnref<SkPDFObject> colorShader(
617            get_pdf_shader_by_state(canon, dpi, &opaqueState));
618    if (!colorShader) {
619        return NULL;
620    }
621
622    // Create resource dict with alpha graphics state as G0 and
623    // pattern shader as P0, then write content stream.
624    SkAutoTUnref<SkPDFObject> alphaGs(
625            create_smask_graphic_state(canon, dpi, state));
626
627    SkPDFAlphaFunctionShader* alphaFunctionShader =
628            SkNEW_ARGS(SkPDFAlphaFunctionShader, (autoState->detach()));
629
630    SkAutoTUnref<SkPDFDict> resourceDict(
631            get_gradient_resource_dict(colorShader.get(), alphaGs.get()));
632
633    SkAutoTDelete<SkStream> colorStream(
634            create_pattern_fill_content(0, bbox));
635    alphaFunctionShader->setData(colorStream.get());
636
637    populate_tiling_pattern_dict(alphaFunctionShader, bbox, resourceDict.get(),
638                                 SkMatrix::I());
639    canon->addAlphaShader(alphaFunctionShader);
640    return alphaFunctionShader;
641}
642
643// Finds affine and persp such that in = affine * persp.
644// but it returns the inverse of perspective matrix.
645static bool split_perspective(const SkMatrix in, SkMatrix* affine,
646                              SkMatrix* perspectiveInverse) {
647    const SkScalar p2 = in[SkMatrix::kMPersp2];
648
649    if (SkScalarNearlyZero(p2)) {
650        return false;
651    }
652
653    const SkScalar zero = SkIntToScalar(0);
654    const SkScalar one = SkIntToScalar(1);
655
656    const SkScalar sx = in[SkMatrix::kMScaleX];
657    const SkScalar kx = in[SkMatrix::kMSkewX];
658    const SkScalar tx = in[SkMatrix::kMTransX];
659    const SkScalar ky = in[SkMatrix::kMSkewY];
660    const SkScalar sy = in[SkMatrix::kMScaleY];
661    const SkScalar ty = in[SkMatrix::kMTransY];
662    const SkScalar p0 = in[SkMatrix::kMPersp0];
663    const SkScalar p1 = in[SkMatrix::kMPersp1];
664
665    // Perspective matrix would be:
666    // 1  0  0
667    // 0  1  0
668    // p0 p1 p2
669    // But we need the inverse of persp.
670    perspectiveInverse->setAll(one,          zero,       zero,
671                               zero,         one,        zero,
672                               -p0/p2,     -p1/p2,     1/p2);
673
674    affine->setAll(sx - p0 * tx / p2,       kx - p1 * tx / p2,      tx / p2,
675                   ky - p0 * ty / p2,       sy - p1 * ty / p2,      ty / p2,
676                   zero,                    zero,                   one);
677
678    return true;
679}
680
681namespace {
682SkPDFObject* create_range_object() {
683    SkPDFArray* range = SkNEW(SkPDFArray);
684    range->reserve(6);
685    range->appendInt(0);
686    range->appendInt(1);
687    range->appendInt(0);
688    range->appendInt(1);
689    range->appendInt(0);
690    range->appendInt(1);
691    return range;
692}
693
694template <typename T> void unref(T* ptr) { ptr->unref();}
695}  // namespace
696
697SK_DECLARE_STATIC_LAZY_PTR(SkPDFObject, rangeObject,
698                           create_range_object, unref<SkPDFObject>);
699
700static SkPDFStream* make_ps_function(const SkString& psCode,
701                                     SkPDFArray* domain) {
702    SkAutoDataUnref funcData(
703            SkData::NewWithCopy(psCode.c_str(), psCode.size()));
704    SkPDFStream* result = SkNEW_ARGS(SkPDFStream, (funcData.get()));
705    result->insertInt("FunctionType", 4);
706    result->insertObject("Domain", SkRef(domain));
707    result->insertObject("Range", SkRef(rangeObject.get()));
708    return result;
709}
710
711SkPDFFunctionShader* SkPDFFunctionShader::Create(
712        SkPDFCanon* canon, SkAutoTDelete<SkPDFShader::State>* autoState) {
713    const SkPDFShader::State& state = **autoState;
714
715    SkString (*codeFunction)(const SkShader::GradientInfo& info,
716                             const SkMatrix& perspectiveRemover) = NULL;
717    SkPoint transformPoints[2];
718
719    // Depending on the type of the gradient, we want to transform the
720    // coordinate space in different ways.
721    const SkShader::GradientInfo* info = &state.fInfo;
722    transformPoints[0] = info->fPoint[0];
723    transformPoints[1] = info->fPoint[1];
724    switch (state.fType) {
725        case SkShader::kLinear_GradientType:
726            codeFunction = &linearCode;
727            break;
728        case SkShader::kRadial_GradientType:
729            transformPoints[1] = transformPoints[0];
730            transformPoints[1].fX += info->fRadius[0];
731            codeFunction = &radialCode;
732            break;
733        case SkShader::kConical_GradientType: {
734            transformPoints[1] = transformPoints[0];
735            transformPoints[1].fX += SK_Scalar1;
736            codeFunction = &twoPointConicalCode;
737            break;
738        }
739        case SkShader::kSweep_GradientType:
740            transformPoints[1] = transformPoints[0];
741            transformPoints[1].fX += SK_Scalar1;
742            codeFunction = &sweepCode;
743            break;
744        case SkShader::kColor_GradientType:
745        case SkShader::kNone_GradientType:
746        default:
747            return NULL;
748    }
749
750    // Move any scaling (assuming a unit gradient) or translation
751    // (and rotation for linear gradient), of the final gradient from
752    // info->fPoints to the matrix (updating bbox appropriately).  Now
753    // the gradient can be drawn on on the unit segment.
754    SkMatrix mapperMatrix;
755    unitToPointsMatrix(transformPoints, &mapperMatrix);
756
757    SkMatrix finalMatrix = state.fCanvasTransform;
758    finalMatrix.preConcat(state.fShaderTransform);
759    finalMatrix.preConcat(mapperMatrix);
760
761    // Preserves as much as posible in the final matrix, and only removes
762    // the perspective. The inverse of the perspective is stored in
763    // perspectiveInverseOnly matrix and has 3 useful numbers
764    // (p0, p1, p2), while everything else is either 0 or 1.
765    // In this way the shader will handle it eficiently, with minimal code.
766    SkMatrix perspectiveInverseOnly = SkMatrix::I();
767    if (finalMatrix.hasPerspective()) {
768        if (!split_perspective(finalMatrix,
769                               &finalMatrix, &perspectiveInverseOnly)) {
770            return NULL;
771        }
772    }
773
774    SkRect bbox;
775    bbox.set(state.fBBox);
776    if (!inverse_transform_bbox(finalMatrix, &bbox)) {
777        return NULL;
778    }
779
780    SkAutoTUnref<SkPDFArray> domain(new SkPDFArray);
781    domain->reserve(4);
782    domain->appendScalar(bbox.fLeft);
783    domain->appendScalar(bbox.fRight);
784    domain->appendScalar(bbox.fTop);
785    domain->appendScalar(bbox.fBottom);
786
787    SkString functionCode;
788    // The two point radial gradient further references
789    // state.fInfo
790    // in translating from x, y coordinates to the t parameter. So, we have
791    // to transform the points and radii according to the calculated matrix.
792    if (state.fType == SkShader::kConical_GradientType) {
793        SkShader::GradientInfo twoPointRadialInfo = *info;
794        SkMatrix inverseMapperMatrix;
795        if (!mapperMatrix.invert(&inverseMapperMatrix)) {
796            return NULL;
797        }
798        inverseMapperMatrix.mapPoints(twoPointRadialInfo.fPoint, 2);
799        twoPointRadialInfo.fRadius[0] =
800            inverseMapperMatrix.mapRadius(info->fRadius[0]);
801        twoPointRadialInfo.fRadius[1] =
802            inverseMapperMatrix.mapRadius(info->fRadius[1]);
803        functionCode = codeFunction(twoPointRadialInfo, perspectiveInverseOnly);
804    } else {
805        functionCode = codeFunction(*info, perspectiveInverseOnly);
806    }
807
808    SkAutoTUnref<SkPDFDict> pdfShader(new SkPDFDict);
809    pdfShader->insertInt("ShadingType", 1);
810    pdfShader->insertName("ColorSpace", "DeviceRGB");
811    pdfShader->insertObject("Domain", SkRef(domain.get()));
812
813    SkAutoTUnref<SkPDFStream> function(
814            make_ps_function(functionCode, domain.get()));
815    pdfShader->insertObjRef("Function", function.detach());
816
817    SkPDFFunctionShader* pdfFunctionShader =
818            SkNEW_ARGS(SkPDFFunctionShader, (autoState->detach()));
819
820    pdfFunctionShader->insertInt("PatternType", 2);
821    pdfFunctionShader->insertObject("Matrix",
822                                    SkPDFUtils::MatrixToArray(finalMatrix));
823    pdfFunctionShader->insertObject("Shading", pdfShader.detach());
824
825    canon->addFunctionShader(pdfFunctionShader);
826    return pdfFunctionShader;
827}
828
829SkPDFImageShader* SkPDFImageShader::Create(
830        SkPDFCanon* canon,
831        SkScalar dpi,
832        SkAutoTDelete<SkPDFShader::State>* autoState) {
833    const SkPDFShader::State& state = **autoState;
834
835    state.fImage.lockPixels();
836
837    // The image shader pattern cell will be drawn into a separate device
838    // in pattern cell space (no scaling on the bitmap, though there may be
839    // translations so that all content is in the device, coordinates > 0).
840
841    // Map clip bounds to shader space to ensure the device is large enough
842    // to handle fake clamping.
843    SkMatrix finalMatrix = state.fCanvasTransform;
844    finalMatrix.preConcat(state.fShaderTransform);
845    SkRect deviceBounds;
846    deviceBounds.set(state.fBBox);
847    if (!inverse_transform_bbox(finalMatrix, &deviceBounds)) {
848        return NULL;
849    }
850
851    const SkBitmap* image = &state.fImage;
852    SkRect bitmapBounds;
853    image->getBounds(&bitmapBounds);
854
855    // For tiling modes, the bounds should be extended to include the bitmap,
856    // otherwise the bitmap gets clipped out and the shader is empty and awful.
857    // For clamp modes, we're only interested in the clip region, whether
858    // or not the main bitmap is in it.
859    SkShader::TileMode tileModes[2];
860    tileModes[0] = state.fImageTileModes[0];
861    tileModes[1] = state.fImageTileModes[1];
862    if (tileModes[0] != SkShader::kClamp_TileMode ||
863            tileModes[1] != SkShader::kClamp_TileMode) {
864        deviceBounds.join(bitmapBounds);
865    }
866
867    SkISize size = SkISize::Make(SkScalarRoundToInt(deviceBounds.width()),
868                                 SkScalarRoundToInt(deviceBounds.height()));
869    SkAutoTUnref<SkPDFDevice> patternDevice(
870            SkPDFDevice::CreateUnflipped(size, dpi, canon));
871    SkCanvas canvas(patternDevice.get());
872
873    SkRect patternBBox;
874    image->getBounds(&patternBBox);
875
876    // Translate the canvas so that the bitmap origin is at (0, 0).
877    canvas.translate(-deviceBounds.left(), -deviceBounds.top());
878    patternBBox.offset(-deviceBounds.left(), -deviceBounds.top());
879    // Undo the translation in the final matrix
880    finalMatrix.preTranslate(deviceBounds.left(), deviceBounds.top());
881
882    // If the bitmap is out of bounds (i.e. clamp mode where we only see the
883    // stretched sides), canvas will clip this out and the extraneous data
884    // won't be saved to the PDF.
885    canvas.drawBitmap(*image, 0, 0);
886
887    SkScalar width = SkIntToScalar(image->width());
888    SkScalar height = SkIntToScalar(image->height());
889
890    // Tiling is implied.  First we handle mirroring.
891    if (tileModes[0] == SkShader::kMirror_TileMode) {
892        SkMatrix xMirror;
893        xMirror.setScale(-1, 1);
894        xMirror.postTranslate(2 * width, 0);
895        drawBitmapMatrix(&canvas, *image, xMirror);
896        patternBBox.fRight += width;
897    }
898    if (tileModes[1] == SkShader::kMirror_TileMode) {
899        SkMatrix yMirror;
900        yMirror.setScale(SK_Scalar1, -SK_Scalar1);
901        yMirror.postTranslate(0, 2 * height);
902        drawBitmapMatrix(&canvas, *image, yMirror);
903        patternBBox.fBottom += height;
904    }
905    if (tileModes[0] == SkShader::kMirror_TileMode &&
906            tileModes[1] == SkShader::kMirror_TileMode) {
907        SkMatrix mirror;
908        mirror.setScale(-1, -1);
909        mirror.postTranslate(2 * width, 2 * height);
910        drawBitmapMatrix(&canvas, *image, mirror);
911    }
912
913    // Then handle Clamping, which requires expanding the pattern canvas to
914    // cover the entire surfaceBBox.
915
916    // If both x and y are in clamp mode, we start by filling in the corners.
917    // (Which are just a rectangles of the corner colors.)
918    if (tileModes[0] == SkShader::kClamp_TileMode &&
919            tileModes[1] == SkShader::kClamp_TileMode) {
920        SkPaint paint;
921        SkRect rect;
922        rect = SkRect::MakeLTRB(deviceBounds.left(), deviceBounds.top(), 0, 0);
923        if (!rect.isEmpty()) {
924            paint.setColor(image->getColor(0, 0));
925            canvas.drawRect(rect, paint);
926        }
927
928        rect = SkRect::MakeLTRB(width, deviceBounds.top(),
929                                deviceBounds.right(), 0);
930        if (!rect.isEmpty()) {
931            paint.setColor(image->getColor(image->width() - 1, 0));
932            canvas.drawRect(rect, paint);
933        }
934
935        rect = SkRect::MakeLTRB(width, height,
936                                deviceBounds.right(), deviceBounds.bottom());
937        if (!rect.isEmpty()) {
938            paint.setColor(image->getColor(image->width() - 1,
939                                           image->height() - 1));
940            canvas.drawRect(rect, paint);
941        }
942
943        rect = SkRect::MakeLTRB(deviceBounds.left(), height,
944                                0, deviceBounds.bottom());
945        if (!rect.isEmpty()) {
946            paint.setColor(image->getColor(0, image->height() - 1));
947            canvas.drawRect(rect, paint);
948        }
949    }
950
951    // Then expand the left, right, top, then bottom.
952    if (tileModes[0] == SkShader::kClamp_TileMode) {
953        SkIRect subset = SkIRect::MakeXYWH(0, 0, 1, image->height());
954        if (deviceBounds.left() < 0) {
955            SkBitmap left;
956            SkAssertResult(image->extractSubset(&left, subset));
957
958            SkMatrix leftMatrix;
959            leftMatrix.setScale(-deviceBounds.left(), 1);
960            leftMatrix.postTranslate(deviceBounds.left(), 0);
961            drawBitmapMatrix(&canvas, left, leftMatrix);
962
963            if (tileModes[1] == SkShader::kMirror_TileMode) {
964                leftMatrix.postScale(SK_Scalar1, -SK_Scalar1);
965                leftMatrix.postTranslate(0, 2 * height);
966                drawBitmapMatrix(&canvas, left, leftMatrix);
967            }
968            patternBBox.fLeft = 0;
969        }
970
971        if (deviceBounds.right() > width) {
972            SkBitmap right;
973            subset.offset(image->width() - 1, 0);
974            SkAssertResult(image->extractSubset(&right, subset));
975
976            SkMatrix rightMatrix;
977            rightMatrix.setScale(deviceBounds.right() - width, 1);
978            rightMatrix.postTranslate(width, 0);
979            drawBitmapMatrix(&canvas, right, rightMatrix);
980
981            if (tileModes[1] == SkShader::kMirror_TileMode) {
982                rightMatrix.postScale(SK_Scalar1, -SK_Scalar1);
983                rightMatrix.postTranslate(0, 2 * height);
984                drawBitmapMatrix(&canvas, right, rightMatrix);
985            }
986            patternBBox.fRight = deviceBounds.width();
987        }
988    }
989
990    if (tileModes[1] == SkShader::kClamp_TileMode) {
991        SkIRect subset = SkIRect::MakeXYWH(0, 0, image->width(), 1);
992        if (deviceBounds.top() < 0) {
993            SkBitmap top;
994            SkAssertResult(image->extractSubset(&top, subset));
995
996            SkMatrix topMatrix;
997            topMatrix.setScale(SK_Scalar1, -deviceBounds.top());
998            topMatrix.postTranslate(0, deviceBounds.top());
999            drawBitmapMatrix(&canvas, top, topMatrix);
1000
1001            if (tileModes[0] == SkShader::kMirror_TileMode) {
1002                topMatrix.postScale(-1, 1);
1003                topMatrix.postTranslate(2 * width, 0);
1004                drawBitmapMatrix(&canvas, top, topMatrix);
1005            }
1006            patternBBox.fTop = 0;
1007        }
1008
1009        if (deviceBounds.bottom() > height) {
1010            SkBitmap bottom;
1011            subset.offset(0, image->height() - 1);
1012            SkAssertResult(image->extractSubset(&bottom, subset));
1013
1014            SkMatrix bottomMatrix;
1015            bottomMatrix.setScale(SK_Scalar1, deviceBounds.bottom() - height);
1016            bottomMatrix.postTranslate(0, height);
1017            drawBitmapMatrix(&canvas, bottom, bottomMatrix);
1018
1019            if (tileModes[0] == SkShader::kMirror_TileMode) {
1020                bottomMatrix.postScale(-1, 1);
1021                bottomMatrix.postTranslate(2 * width, 0);
1022                drawBitmapMatrix(&canvas, bottom, bottomMatrix);
1023            }
1024            patternBBox.fBottom = deviceBounds.height();
1025        }
1026    }
1027
1028    // Put the canvas into the pattern stream (fContent).
1029    SkAutoTDelete<SkStreamAsset> content(patternDevice->content());
1030
1031    SkPDFImageShader* imageShader =
1032            SkNEW_ARGS(SkPDFImageShader, (autoState->detach()));
1033    imageShader->setData(content.get());
1034
1035    SkAutoTUnref<SkPDFDict> resourceDict(
1036            patternDevice->createResourceDict());
1037    populate_tiling_pattern_dict(imageShader, patternBBox,
1038                                 resourceDict.get(), finalMatrix);
1039
1040    imageShader->fShaderState->fImage.unlockPixels();
1041
1042    canon->addImageShader(imageShader);
1043    return imageShader;
1044}
1045
1046bool SkPDFShader::State::operator==(const SkPDFShader::State& b) const {
1047    if (fType != b.fType ||
1048            fCanvasTransform != b.fCanvasTransform ||
1049            fShaderTransform != b.fShaderTransform ||
1050            fBBox != b.fBBox) {
1051        return false;
1052    }
1053
1054    if (fType == SkShader::kNone_GradientType) {
1055        if (fPixelGeneration != b.fPixelGeneration ||
1056                fPixelGeneration == 0 ||
1057                fImageTileModes[0] != b.fImageTileModes[0] ||
1058                fImageTileModes[1] != b.fImageTileModes[1]) {
1059            return false;
1060        }
1061    } else {
1062        if (fInfo.fColorCount != b.fInfo.fColorCount ||
1063                memcmp(fInfo.fColors, b.fInfo.fColors,
1064                       sizeof(SkColor) * fInfo.fColorCount) != 0 ||
1065                memcmp(fInfo.fColorOffsets, b.fInfo.fColorOffsets,
1066                       sizeof(SkScalar) * fInfo.fColorCount) != 0 ||
1067                fInfo.fPoint[0] != b.fInfo.fPoint[0] ||
1068                fInfo.fTileMode != b.fInfo.fTileMode) {
1069            return false;
1070        }
1071
1072        switch (fType) {
1073            case SkShader::kLinear_GradientType:
1074                if (fInfo.fPoint[1] != b.fInfo.fPoint[1]) {
1075                    return false;
1076                }
1077                break;
1078            case SkShader::kRadial_GradientType:
1079                if (fInfo.fRadius[0] != b.fInfo.fRadius[0]) {
1080                    return false;
1081                }
1082                break;
1083            case SkShader::kConical_GradientType:
1084                if (fInfo.fPoint[1] != b.fInfo.fPoint[1] ||
1085                        fInfo.fRadius[0] != b.fInfo.fRadius[0] ||
1086                        fInfo.fRadius[1] != b.fInfo.fRadius[1]) {
1087                    return false;
1088                }
1089                break;
1090            case SkShader::kSweep_GradientType:
1091            case SkShader::kNone_GradientType:
1092            case SkShader::kColor_GradientType:
1093                break;
1094        }
1095    }
1096    return true;
1097}
1098
1099SkPDFShader::State::State(const SkShader& shader, const SkMatrix& canvasTransform,
1100                          const SkIRect& bbox, SkScalar rasterScale)
1101        : fCanvasTransform(canvasTransform),
1102          fBBox(bbox),
1103          fPixelGeneration(0) {
1104    fInfo.fColorCount = 0;
1105    fInfo.fColors = NULL;
1106    fInfo.fColorOffsets = NULL;
1107    fShaderTransform = shader.getLocalMatrix();
1108    fImageTileModes[0] = fImageTileModes[1] = SkShader::kClamp_TileMode;
1109
1110    fType = shader.asAGradient(&fInfo);
1111
1112    if (fType == SkShader::kNone_GradientType) {
1113        SkShader::BitmapType bitmapType;
1114        SkMatrix matrix;
1115        bitmapType = shader.asABitmap(&fImage, &matrix, fImageTileModes);
1116        if (bitmapType != SkShader::kDefault_BitmapType) {
1117            // Generic fallback for unsupported shaders:
1118            //  * allocate a bbox-sized bitmap
1119            //  * shade the whole area
1120            //  * use the result as a bitmap shader
1121
1122            // bbox is in device space. While that's exactly what we want for sizing our bitmap,
1123            // we need to map it into shader space for adjustments (to match
1124            // SkPDFImageShader::Create's behavior).
1125            SkRect shaderRect = SkRect::Make(bbox);
1126            if (!inverse_transform_bbox(canvasTransform, &shaderRect)) {
1127                fImage.reset();
1128                return;
1129            }
1130
1131            // Clamp the bitmap size to about 1M pixels
1132            static const SkScalar kMaxBitmapArea = 1024 * 1024;
1133            SkScalar bitmapArea = rasterScale * bbox.width() * rasterScale * bbox.height();
1134            if (bitmapArea > kMaxBitmapArea) {
1135                rasterScale *= SkScalarSqrt(kMaxBitmapArea / bitmapArea);
1136            }
1137
1138            SkISize size = SkISize::Make(SkScalarRoundToInt(rasterScale * bbox.width()),
1139                                         SkScalarRoundToInt(rasterScale * bbox.height()));
1140            SkSize scale = SkSize::Make(SkIntToScalar(size.width()) / shaderRect.width(),
1141                                        SkIntToScalar(size.height()) / shaderRect.height());
1142
1143            fImage.allocN32Pixels(size.width(), size.height());
1144            fImage.eraseColor(SK_ColorTRANSPARENT);
1145
1146            SkPaint p;
1147            p.setShader(const_cast<SkShader*>(&shader));
1148
1149            SkCanvas canvas(fImage);
1150            canvas.scale(scale.width(), scale.height());
1151            canvas.translate(-shaderRect.x(), -shaderRect.y());
1152            canvas.drawPaint(p);
1153
1154            fShaderTransform.setTranslate(shaderRect.x(), shaderRect.y());
1155            fShaderTransform.preScale(1 / scale.width(), 1 / scale.height());
1156        } else {
1157            SkASSERT(matrix.isIdentity());
1158        }
1159        fPixelGeneration = fImage.getGenerationID();
1160    } else {
1161        AllocateGradientInfoStorage();
1162        shader.asAGradient(&fInfo);
1163    }
1164}
1165
1166SkPDFShader::State::State(const SkPDFShader::State& other)
1167  : fType(other.fType),
1168    fCanvasTransform(other.fCanvasTransform),
1169    fShaderTransform(other.fShaderTransform),
1170    fBBox(other.fBBox)
1171{
1172    // Only gradients supported for now, since that is all that is used.
1173    // If needed, image state copy constructor can be added here later.
1174    SkASSERT(fType != SkShader::kNone_GradientType);
1175
1176    if (fType != SkShader::kNone_GradientType) {
1177        fInfo = other.fInfo;
1178
1179        AllocateGradientInfoStorage();
1180        for (int i = 0; i < fInfo.fColorCount; i++) {
1181            fInfo.fColors[i] = other.fInfo.fColors[i];
1182            fInfo.fColorOffsets[i] = other.fInfo.fColorOffsets[i];
1183        }
1184    }
1185}
1186
1187/**
1188 * Create a copy of this gradient state with alpha assigned to RGB luminousity.
1189 * Only valid for gradient states.
1190 */
1191SkPDFShader::State* SkPDFShader::State::CreateAlphaToLuminosityState() const {
1192    SkASSERT(fType != SkShader::kNone_GradientType);
1193
1194    SkPDFShader::State* newState = new SkPDFShader::State(*this);
1195
1196    for (int i = 0; i < fInfo.fColorCount; i++) {
1197        SkAlpha alpha = SkColorGetA(fInfo.fColors[i]);
1198        newState->fInfo.fColors[i] = SkColorSetARGB(255, alpha, alpha, alpha);
1199    }
1200
1201    return newState;
1202}
1203
1204/**
1205 * Create a copy of this gradient state with alpha set to fully opaque
1206 * Only valid for gradient states.
1207 */
1208SkPDFShader::State* SkPDFShader::State::CreateOpaqueState() const {
1209    SkASSERT(fType != SkShader::kNone_GradientType);
1210
1211    SkPDFShader::State* newState = new SkPDFShader::State(*this);
1212    for (int i = 0; i < fInfo.fColorCount; i++) {
1213        newState->fInfo.fColors[i] = SkColorSetA(fInfo.fColors[i],
1214                                                 SK_AlphaOPAQUE);
1215    }
1216
1217    return newState;
1218}
1219
1220/**
1221 * Returns true if state is a gradient and the gradient has alpha.
1222 */
1223bool SkPDFShader::State::GradientHasAlpha() const {
1224    if (fType == SkShader::kNone_GradientType) {
1225        return false;
1226    }
1227
1228    for (int i = 0; i < fInfo.fColorCount; i++) {
1229        SkAlpha alpha = SkColorGetA(fInfo.fColors[i]);
1230        if (alpha != SK_AlphaOPAQUE) {
1231            return true;
1232        }
1233    }
1234    return false;
1235}
1236
1237void SkPDFShader::State::AllocateGradientInfoStorage() {
1238    fColorData.set(sk_malloc_throw(
1239               fInfo.fColorCount * (sizeof(SkColor) + sizeof(SkScalar))));
1240    fInfo.fColors = reinterpret_cast<SkColor*>(fColorData.get());
1241    fInfo.fColorOffsets =
1242            reinterpret_cast<SkScalar*>(fInfo.fColors + fInfo.fColorCount);
1243}
1244