syscall.c revision 5b9b7e1d347eb4556084cdccad75e8247c535ed5
1/*
2 * Copyright (c) 1991, 1992 Paul Kranenburg <pk@cs.few.eur.nl>
3 * Copyright (c) 1993 Branko Lankester <branko@hacktic.nl>
4 * Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey <jrs@world.std.com>
5 * Copyright (c) 1996-1999 Wichert Akkerman <wichert@cistron.nl>
6 * Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
7 *                     Linux for s390 port by D.J. Barrow
8 *                    <barrow_dj@mail.yahoo.com,djbarrow@de.ibm.com>
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 * 3. The name of the author may not be used to endorse or promote products
20 *    derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include "defs.h"
35#include <sys/param.h>
36
37/* for struct iovec */
38#include <sys/uio.h>
39
40#include "regs.h"
41#include "ptrace.h"
42
43#if defined(SPARC64)
44# undef PTRACE_GETREGS
45# define PTRACE_GETREGS PTRACE_GETREGS64
46# undef PTRACE_SETREGS
47# define PTRACE_SETREGS PTRACE_SETREGS64
48#endif
49
50#if defined SPARC64
51# include <asm/psrcompat.h>
52#elif defined SPARC
53# include <asm/psr.h>
54#endif
55
56#ifndef NT_PRSTATUS
57# define NT_PRSTATUS 1
58#endif
59
60#ifndef NSIG
61# warning: NSIG is not defined, using 32
62# define NSIG 32
63#endif
64
65#include "syscall.h"
66
67/* Define these shorthand notations to simplify the syscallent files. */
68#define TD TRACE_DESC
69#define TF TRACE_FILE
70#define TI TRACE_IPC
71#define TN TRACE_NETWORK
72#define TP TRACE_PROCESS
73#define TS TRACE_SIGNAL
74#define TM TRACE_MEMORY
75#define NF SYSCALL_NEVER_FAILS
76#define MA MAX_ARGS
77#define SI STACKTRACE_INVALIDATE_CACHE
78#define SE STACKTRACE_CAPTURE_ON_ENTER
79
80const struct_sysent sysent0[] = {
81#include "syscallent.h"
82};
83
84#if SUPPORTED_PERSONALITIES > 1
85static const struct_sysent sysent1[] = {
86# include "syscallent1.h"
87};
88#endif
89
90#if SUPPORTED_PERSONALITIES > 2
91static const struct_sysent sysent2[] = {
92# include "syscallent2.h"
93};
94#endif
95
96/* Now undef them since short defines cause wicked namespace pollution. */
97#undef TD
98#undef TF
99#undef TI
100#undef TN
101#undef TP
102#undef TS
103#undef TM
104#undef NF
105#undef MA
106#undef SI
107#undef SE
108
109/*
110 * `ioctlent[012].h' files are automatically generated by the auxiliary
111 * program `ioctlsort', such that the list is sorted by the `code' field.
112 * This has the side-effect of resolving the _IO.. macros into
113 * plain integers, eliminating the need to include here everything
114 * in "/usr/include".
115 */
116
117const char *const errnoent0[] = {
118#include "errnoent.h"
119};
120const char *const signalent0[] = {
121#include "signalent.h"
122};
123const struct_ioctlent ioctlent0[] = {
124#include "ioctlent0.h"
125};
126
127#if SUPPORTED_PERSONALITIES > 1
128static const char *const errnoent1[] = {
129# include "errnoent1.h"
130};
131static const char *const signalent1[] = {
132# include "signalent1.h"
133};
134static const struct_ioctlent ioctlent1[] = {
135# include "ioctlent1.h"
136};
137#endif
138
139#if SUPPORTED_PERSONALITIES > 2
140static const char *const errnoent2[] = {
141# include "errnoent2.h"
142};
143static const char *const signalent2[] = {
144# include "signalent2.h"
145};
146static const struct_ioctlent ioctlent2[] = {
147# include "ioctlent2.h"
148};
149#endif
150
151enum {
152	nsyscalls0 = ARRAY_SIZE(sysent0)
153#if SUPPORTED_PERSONALITIES > 1
154	, nsyscalls1 = ARRAY_SIZE(sysent1)
155# if SUPPORTED_PERSONALITIES > 2
156	, nsyscalls2 = ARRAY_SIZE(sysent2)
157# endif
158#endif
159};
160
161enum {
162	nerrnos0 = ARRAY_SIZE(errnoent0)
163#if SUPPORTED_PERSONALITIES > 1
164	, nerrnos1 = ARRAY_SIZE(errnoent1)
165# if SUPPORTED_PERSONALITIES > 2
166	, nerrnos2 = ARRAY_SIZE(errnoent2)
167# endif
168#endif
169};
170
171enum {
172	nsignals0 = ARRAY_SIZE(signalent0)
173#if SUPPORTED_PERSONALITIES > 1
174	, nsignals1 = ARRAY_SIZE(signalent1)
175# if SUPPORTED_PERSONALITIES > 2
176	, nsignals2 = ARRAY_SIZE(signalent2)
177# endif
178#endif
179};
180
181enum {
182	nioctlents0 = ARRAY_SIZE(ioctlent0)
183#if SUPPORTED_PERSONALITIES > 1
184	, nioctlents1 = ARRAY_SIZE(ioctlent1)
185# if SUPPORTED_PERSONALITIES > 2
186	, nioctlents2 = ARRAY_SIZE(ioctlent2)
187# endif
188#endif
189};
190
191#if SUPPORTED_PERSONALITIES > 1
192const struct_sysent *sysent = sysent0;
193const char *const *errnoent = errnoent0;
194const char *const *signalent = signalent0;
195const struct_ioctlent *ioctlent = ioctlent0;
196#endif
197unsigned nsyscalls = nsyscalls0;
198unsigned nerrnos = nerrnos0;
199unsigned nsignals = nsignals0;
200unsigned nioctlents = nioctlents0;
201
202unsigned num_quals;
203qualbits_t *qual_vec[SUPPORTED_PERSONALITIES];
204
205static const unsigned nsyscall_vec[SUPPORTED_PERSONALITIES] = {
206	nsyscalls0,
207#if SUPPORTED_PERSONALITIES > 1
208	nsyscalls1,
209#endif
210#if SUPPORTED_PERSONALITIES > 2
211	nsyscalls2,
212#endif
213};
214static const struct_sysent *const sysent_vec[SUPPORTED_PERSONALITIES] = {
215	sysent0,
216#if SUPPORTED_PERSONALITIES > 1
217	sysent1,
218#endif
219#if SUPPORTED_PERSONALITIES > 2
220	sysent2,
221#endif
222};
223
224enum {
225	MAX_NSYSCALLS1 = (nsyscalls0
226#if SUPPORTED_PERSONALITIES > 1
227			> nsyscalls1 ? nsyscalls0 : nsyscalls1
228#endif
229			),
230	MAX_NSYSCALLS2 = (MAX_NSYSCALLS1
231#if SUPPORTED_PERSONALITIES > 2
232			> nsyscalls2 ? MAX_NSYSCALLS1 : nsyscalls2
233#endif
234			),
235	MAX_NSYSCALLS = MAX_NSYSCALLS2,
236	/* We are ready for arches with up to 255 signals,
237	 * even though the largest known signo is on MIPS and it is 128.
238	 * The number of existing syscalls on all arches is
239	 * larger that 255 anyway, so it is just a pedantic matter.
240	 */
241	MIN_QUALS = MAX_NSYSCALLS > 255 ? MAX_NSYSCALLS : 255
242};
243
244#if SUPPORTED_PERSONALITIES > 1
245unsigned current_personality;
246
247# ifndef current_wordsize
248unsigned current_wordsize;
249static const int personality_wordsize[SUPPORTED_PERSONALITIES] = {
250	PERSONALITY0_WORDSIZE,
251	PERSONALITY1_WORDSIZE,
252# if SUPPORTED_PERSONALITIES > 2
253	PERSONALITY2_WORDSIZE,
254# endif
255};
256# endif
257
258void
259set_personality(int personality)
260{
261	nsyscalls = nsyscall_vec[personality];
262	sysent = sysent_vec[personality];
263
264	switch (personality) {
265	case 0:
266		errnoent = errnoent0;
267		nerrnos = nerrnos0;
268		ioctlent = ioctlent0;
269		nioctlents = nioctlents0;
270		signalent = signalent0;
271		nsignals = nsignals0;
272		break;
273
274	case 1:
275		errnoent = errnoent1;
276		nerrnos = nerrnos1;
277		ioctlent = ioctlent1;
278		nioctlents = nioctlents1;
279		signalent = signalent1;
280		nsignals = nsignals1;
281		break;
282
283# if SUPPORTED_PERSONALITIES > 2
284	case 2:
285		errnoent = errnoent2;
286		nerrnos = nerrnos2;
287		ioctlent = ioctlent2;
288		nioctlents = nioctlents2;
289		signalent = signalent2;
290		nsignals = nsignals2;
291		break;
292# endif
293	}
294
295	current_personality = personality;
296# ifndef current_wordsize
297	current_wordsize = personality_wordsize[personality];
298# endif
299}
300
301static void
302update_personality(struct tcb *tcp, unsigned int personality)
303{
304	if (personality == current_personality)
305		return;
306	set_personality(personality);
307
308	if (personality == tcp->currpers)
309		return;
310	tcp->currpers = personality;
311
312# if defined(POWERPC64)
313	if (!qflag) {
314		static const char *const names[] = {"64 bit", "32 bit"};
315		fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
316			tcp->pid, names[personality]);
317	}
318# elif defined(X86_64)
319	if (!qflag) {
320		static const char *const names[] = {"64 bit", "32 bit", "x32"};
321		fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
322			tcp->pid, names[personality]);
323	}
324# elif defined(X32)
325	if (!qflag) {
326		static const char *const names[] = {"x32", "32 bit"};
327		fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
328			tcp->pid, names[personality]);
329	}
330# elif defined(AARCH64)
331	if (!qflag) {
332		static const char *const names[] = {"32-bit", "AArch64"};
333		fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
334			tcp->pid, names[personality]);
335	}
336# elif defined(TILE)
337	if (!qflag) {
338		static const char *const names[] = {"64-bit", "32-bit"};
339		fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
340			tcp->pid, names[personality]);
341	}
342# endif
343}
344#endif
345
346static int qual_syscall(), qual_signal(), qual_desc();
347
348static const struct qual_options {
349	unsigned int bitflag;
350	const char *option_name;
351	int (*qualify)(const char *, int, int);
352	const char *argument_name;
353} qual_options[] = {
354	{ QUAL_TRACE,	"trace",	qual_syscall,	"system call"	},
355	{ QUAL_TRACE,	"t",		qual_syscall,	"system call"	},
356	{ QUAL_ABBREV,	"abbrev",	qual_syscall,	"system call"	},
357	{ QUAL_ABBREV,	"a",		qual_syscall,	"system call"	},
358	{ QUAL_VERBOSE,	"verbose",	qual_syscall,	"system call"	},
359	{ QUAL_VERBOSE,	"v",		qual_syscall,	"system call"	},
360	{ QUAL_RAW,	"raw",		qual_syscall,	"system call"	},
361	{ QUAL_RAW,	"x",		qual_syscall,	"system call"	},
362	{ QUAL_SIGNAL,	"signal",	qual_signal,	"signal"	},
363	{ QUAL_SIGNAL,	"signals",	qual_signal,	"signal"	},
364	{ QUAL_SIGNAL,	"s",		qual_signal,	"signal"	},
365	{ QUAL_READ,	"read",		qual_desc,	"descriptor"	},
366	{ QUAL_READ,	"reads",	qual_desc,	"descriptor"	},
367	{ QUAL_READ,	"r",		qual_desc,	"descriptor"	},
368	{ QUAL_WRITE,	"write",	qual_desc,	"descriptor"	},
369	{ QUAL_WRITE,	"writes",	qual_desc,	"descriptor"	},
370	{ QUAL_WRITE,	"w",		qual_desc,	"descriptor"	},
371	{ 0,		NULL,		NULL,		NULL		},
372};
373
374static void
375reallocate_qual(const unsigned int n)
376{
377	unsigned p;
378	qualbits_t *qp;
379	for (p = 0; p < SUPPORTED_PERSONALITIES; p++) {
380		qp = qual_vec[p] = realloc(qual_vec[p], n * sizeof(qualbits_t));
381		if (!qp)
382			die_out_of_memory();
383		memset(&qp[num_quals], 0, (n - num_quals) * sizeof(qualbits_t));
384	}
385	num_quals = n;
386}
387
388static void
389qualify_one(const unsigned int n, unsigned int bitflag, const int not, const int pers)
390{
391	int p;
392
393	if (num_quals <= n)
394		reallocate_qual(n + 1);
395
396	for (p = 0; p < SUPPORTED_PERSONALITIES; p++) {
397		if (pers == p || pers < 0) {
398			if (not)
399				qual_vec[p][n] &= ~bitflag;
400			else
401				qual_vec[p][n] |= bitflag;
402		}
403	}
404}
405
406static int
407qual_syscall(const char *s, const unsigned int bitflag, const int not)
408{
409	int p;
410	unsigned int i;
411	int rc = -1;
412
413	if (*s >= '0' && *s <= '9') {
414		i = string_to_uint(s);
415		if (i >= MAX_NSYSCALLS)
416			return -1;
417		qualify_one(i, bitflag, not, -1);
418		return 0;
419	}
420
421	for (p = 0; p < SUPPORTED_PERSONALITIES; p++) {
422		for (i = 0; i < nsyscall_vec[p]; i++) {
423			if (sysent_vec[p][i].sys_name
424			 && strcmp(s, sysent_vec[p][i].sys_name) == 0
425			) {
426				qualify_one(i, bitflag, not, p);
427				rc = 0;
428			}
429		}
430	}
431
432	return rc;
433}
434
435static int
436qual_signal(const char *s, const unsigned int bitflag, const int not)
437{
438	unsigned int i;
439
440	if (*s >= '0' && *s <= '9') {
441		int signo = string_to_uint(s);
442		if (signo < 0 || signo > 255)
443			return -1;
444		qualify_one(signo, bitflag, not, -1);
445		return 0;
446	}
447	if (strncasecmp(s, "SIG", 3) == 0)
448		s += 3;
449	for (i = 0; i <= NSIG; i++) {
450		if (strcasecmp(s, signame(i) + 3) == 0) {
451			qualify_one(i, bitflag, not, -1);
452			return 0;
453		}
454	}
455	return -1;
456}
457
458static int
459qual_desc(const char *s, const unsigned int bitflag, const int not)
460{
461	if (*s >= '0' && *s <= '9') {
462		int desc = string_to_uint(s);
463		if (desc < 0 || desc > 0x7fff) /* paranoia */
464			return -1;
465		qualify_one(desc, bitflag, not, -1);
466		return 0;
467	}
468	return -1;
469}
470
471static int
472lookup_class(const char *s)
473{
474	if (strcmp(s, "file") == 0)
475		return TRACE_FILE;
476	if (strcmp(s, "ipc") == 0)
477		return TRACE_IPC;
478	if (strcmp(s, "network") == 0)
479		return TRACE_NETWORK;
480	if (strcmp(s, "process") == 0)
481		return TRACE_PROCESS;
482	if (strcmp(s, "signal") == 0)
483		return TRACE_SIGNAL;
484	if (strcmp(s, "desc") == 0)
485		return TRACE_DESC;
486	if (strcmp(s, "memory") == 0)
487		return TRACE_MEMORY;
488	return -1;
489}
490
491void
492qualify(const char *s)
493{
494	const struct qual_options *opt;
495	char *copy;
496	const char *p;
497	int not;
498	unsigned int i;
499
500	if (num_quals == 0)
501		reallocate_qual(MIN_QUALS);
502
503	opt = &qual_options[0];
504	for (i = 0; (p = qual_options[i].option_name); i++) {
505		unsigned int len = strlen(p);
506		if (strncmp(s, p, len) == 0 && s[len] == '=') {
507			opt = &qual_options[i];
508			s += len + 1;
509			break;
510		}
511	}
512	not = 0;
513	if (*s == '!') {
514		not = 1;
515		s++;
516	}
517	if (strcmp(s, "none") == 0) {
518		not = 1 - not;
519		s = "all";
520	}
521	if (strcmp(s, "all") == 0) {
522		for (i = 0; i < num_quals; i++) {
523			qualify_one(i, opt->bitflag, not, -1);
524		}
525		return;
526	}
527	for (i = 0; i < num_quals; i++) {
528		qualify_one(i, opt->bitflag, !not, -1);
529	}
530	copy = strdup(s);
531	if (!copy)
532		die_out_of_memory();
533	for (p = strtok(copy, ","); p; p = strtok(NULL, ",")) {
534		int n;
535		if (opt->bitflag == QUAL_TRACE && (n = lookup_class(p)) > 0) {
536			unsigned pers;
537			for (pers = 0; pers < SUPPORTED_PERSONALITIES; pers++) {
538				for (i = 0; i < nsyscall_vec[pers]; i++)
539					if (sysent_vec[pers][i].sys_flags & n)
540						qualify_one(i, opt->bitflag, not, pers);
541			}
542			continue;
543		}
544		if (opt->qualify(p, opt->bitflag, not)) {
545			error_msg_and_die("invalid %s '%s'",
546				opt->argument_name, p);
547		}
548	}
549	free(copy);
550	return;
551}
552
553#ifdef SYS_socket_subcall
554static void
555decode_socket_subcall(struct tcb *tcp)
556{
557	unsigned long addr;
558	unsigned int i, n, size;
559
560	if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= SYS_socket_nsubcalls)
561		return;
562
563	tcp->scno = SYS_socket_subcall + tcp->u_arg[0];
564	tcp->qual_flg = qual_flags[tcp->scno];
565	tcp->s_ent = &sysent[tcp->scno];
566	addr = tcp->u_arg[1];
567	size = current_wordsize;
568	n = tcp->s_ent->nargs;
569	for (i = 0; i < n; ++i) {
570		if (size == sizeof(int)) {
571			unsigned int arg;
572			if (umove(tcp, addr, &arg) < 0)
573				arg = 0;
574			tcp->u_arg[i] = arg;
575		}
576		else {
577			unsigned long arg;
578			if (umove(tcp, addr, &arg) < 0)
579				arg = 0;
580			tcp->u_arg[i] = arg;
581		}
582		addr += size;
583	}
584}
585#endif
586
587#ifdef SYS_ipc_subcall
588static void
589decode_ipc_subcall(struct tcb *tcp)
590{
591	unsigned int i, n;
592
593	if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= SYS_ipc_nsubcalls)
594		return;
595
596	tcp->scno = SYS_ipc_subcall + tcp->u_arg[0];
597	tcp->qual_flg = qual_flags[tcp->scno];
598	tcp->s_ent = &sysent[tcp->scno];
599	n = tcp->s_ent->nargs;
600	for (i = 0; i < n; i++)
601		tcp->u_arg[i] = tcp->u_arg[i + 1];
602}
603#endif
604
605int
606printargs(struct tcb *tcp)
607{
608	if (entering(tcp)) {
609		int i;
610		int n = tcp->s_ent->nargs;
611		for (i = 0; i < n; i++)
612			tprintf("%s%#lx", i ? ", " : "", tcp->u_arg[i]);
613	}
614	return 0;
615}
616
617int
618printargs_lu(struct tcb *tcp)
619{
620	if (entering(tcp)) {
621		int i;
622		int n = tcp->s_ent->nargs;
623		for (i = 0; i < n; i++)
624			tprintf("%s%lu", i ? ", " : "", tcp->u_arg[i]);
625	}
626	return 0;
627}
628
629int
630printargs_ld(struct tcb *tcp)
631{
632	if (entering(tcp)) {
633		int i;
634		int n = tcp->s_ent->nargs;
635		for (i = 0; i < n; i++)
636			tprintf("%s%ld", i ? ", " : "", tcp->u_arg[i]);
637	}
638	return 0;
639}
640
641#if defined(SPARC) || defined(SPARC64) || defined(IA64) || defined(SH)
642long
643getrval2(struct tcb *tcp)
644{
645	long val;
646
647# if defined(SPARC) || defined(SPARC64)
648	val = sparc_regs.u_regs[U_REG_O1];
649# elif defined(SH)
650	if (upeek(tcp->pid, 4*(REG_REG0+1), &val) < 0)
651		return -1;
652# elif defined(IA64)
653	if (upeek(tcp->pid, PT_R9, &val) < 0)
654		return -1;
655# endif
656
657	return val;
658}
659#endif
660
661#if defined(I386)
662static struct user_regs_struct i386_regs;
663long *const i386_esp_ptr = &i386_regs.esp;
664# define ARCH_REGS_FOR_GETREGS i386_regs
665#elif defined(X86_64) || defined(X32)
666/*
667 * On i386, pt_regs and user_regs_struct are the same,
668 * but on 64 bit x86, user_regs_struct has six more fields:
669 * fs_base, gs_base, ds, es, fs, gs.
670 * PTRACE_GETREGS fills them too, so struct pt_regs would overflow.
671 */
672struct i386_user_regs_struct {
673	uint32_t ebx;
674	uint32_t ecx;
675	uint32_t edx;
676	uint32_t esi;
677	uint32_t edi;
678	uint32_t ebp;
679	uint32_t eax;
680	uint32_t xds;
681	uint32_t xes;
682	uint32_t xfs;
683	uint32_t xgs;
684	uint32_t orig_eax;
685	uint32_t eip;
686	uint32_t xcs;
687	uint32_t eflags;
688	uint32_t esp;
689	uint32_t xss;
690};
691static union {
692	struct user_regs_struct      x86_64_r;
693	struct i386_user_regs_struct i386_r;
694} x86_regs_union;
695# define x86_64_regs x86_regs_union.x86_64_r
696# define i386_regs   x86_regs_union.i386_r
697uint32_t *const i386_esp_ptr = &i386_regs.esp;
698uint64_t *const x86_64_rsp_ptr = (uint64_t *) &x86_64_regs.rsp;
699static struct iovec x86_io = {
700	.iov_base = &x86_regs_union
701};
702# define ARCH_REGS_FOR_GETREGSET x86_regs_union
703# define ARCH_IOVEC_FOR_GETREGSET x86_io
704#elif defined(IA64)
705static bool ia64_ia32mode;
706static long ia64_r8, ia64_r10;
707#elif defined(POWERPC)
708struct pt_regs ppc_regs; /* not static */
709# define ARCH_REGS_FOR_GETREGS ppc_regs
710#elif defined(M68K)
711static long m68k_d0;
712#elif defined(BFIN)
713static long bfin_r0;
714#elif defined(ARM)
715static struct pt_regs arm_regs;
716long *const arm_sp_ptr = &arm_regs.ARM_sp;
717# define ARCH_REGS_FOR_GETREGS arm_regs
718#elif defined(AARCH64)
719struct arm_pt_regs {
720        int uregs[18];
721};
722# define ARM_cpsr       uregs[16]
723# define ARM_pc         uregs[15]
724# define ARM_lr         uregs[14]
725# define ARM_sp         uregs[13]
726# define ARM_ip         uregs[12]
727# define ARM_fp         uregs[11]
728# define ARM_r10        uregs[10]
729# define ARM_r9         uregs[9]
730# define ARM_r8         uregs[8]
731# define ARM_r7         uregs[7]
732# define ARM_r6         uregs[6]
733# define ARM_r5         uregs[5]
734# define ARM_r4         uregs[4]
735# define ARM_r3         uregs[3]
736# define ARM_r2         uregs[2]
737# define ARM_r1         uregs[1]
738# define ARM_r0         uregs[0]
739# define ARM_ORIG_r0    uregs[17]
740static union {
741	struct user_pt_regs aarch64_r;
742	struct arm_pt_regs  arm_r;
743} arm_regs_union;
744# define aarch64_regs arm_regs_union.aarch64_r
745# define arm_regs     arm_regs_union.arm_r
746uint64_t *const aarch64_sp_ptr = &aarch64_regs.sp;
747int *const arm_sp_ptr = &arm_regs.ARM_sp;
748static struct iovec aarch64_io = {
749	.iov_base = &arm_regs_union
750};
751# define ARCH_REGS_FOR_GETREGSET arm_regs_union
752# define ARCH_IOVEC_FOR_GETREGSET aarch64_io
753#elif defined(ALPHA)
754static long alpha_r0;
755static long alpha_a3;
756#elif defined(AVR32)
757static struct pt_regs avr32_regs;
758# define ARCH_REGS_FOR_GETREGS avr32_regs
759#elif defined(SPARC) || defined(SPARC64)
760struct pt_regs sparc_regs; /* not static */
761# define ARCH_REGS_FOR_GETREGS sparc_regs
762#elif defined(MIPS)
763struct mips_regs mips_regs; /* not static */
764/* PTRACE_GETREGS on MIPS is available since linux v2.6.15. */
765# define ARCH_REGS_FOR_GETREGS mips_regs
766#elif defined(S390) || defined(S390X)
767static long s390_gpr2;
768#elif defined(HPPA)
769static long hppa_r28;
770#elif defined(SH)
771static long sh_r0;
772#elif defined(SH64)
773static long sh64_r9;
774#elif defined(CRISV10) || defined(CRISV32)
775static long cris_r10;
776#elif defined(TILE)
777struct pt_regs tile_regs; /* not static */
778# define ARCH_REGS_FOR_GETREGS tile_regs
779#elif defined(MICROBLAZE)
780static long microblaze_r3;
781#elif defined(OR1K)
782static struct user_regs_struct or1k_regs;
783# define ARCH_REGS_FOR_GETREGSET or1k_regs
784#elif defined(METAG)
785static struct user_gp_regs metag_regs;
786# define ARCH_REGS_FOR_GETREGSET metag_regs
787#elif defined(XTENSA)
788static long xtensa_a2;
789# elif defined(ARC)
790static struct user_regs_struct arc_regs;
791# define ARCH_REGS_FOR_GETREGSET arc_regs
792#endif
793
794static long get_regs_error;
795
796void
797print_pc(struct tcb *tcp)
798{
799	const char *fmt;
800	const char *bad;
801
802#ifdef current_wordsize
803# define pc_wordsize current_wordsize
804#else
805# define pc_wordsize personality_wordsize[tcp->currpers]
806#endif
807
808	if (pc_wordsize == 4) {
809		fmt = "[%08lx] ";
810		bad = "[????????] ";
811	} else {
812		fmt = "[%016lx] ";
813		bad = "[????????????????] ";
814	}
815
816#undef pc_wordsize
817#define PRINTBADPC tprints(bad)
818
819	if (get_regs_error) {
820		PRINTBADPC;
821		return;
822	}
823
824#if defined(I386)
825	tprintf(fmt, i386_regs.eip);
826#elif defined(X86_64) || defined(X32)
827	if (x86_io.iov_len == sizeof(i386_regs))
828		tprintf(fmt, (unsigned long) i386_regs.eip);
829	else
830		tprintf(fmt, (unsigned long) x86_64_regs.rip);
831#elif defined(S390) || defined(S390X)
832	long psw;
833	if (upeek(tcp->pid, PT_PSWADDR, &psw) < 0) {
834		PRINTBADPC;
835		return;
836	}
837	tprintf(fmt, psw);
838#elif defined(IA64)
839	long ip;
840	if (upeek(tcp->pid, PT_B0, &ip) < 0) {
841		PRINTBADPC;
842		return;
843	}
844	tprintf(fmt, ip);
845#elif defined(POWERPC)
846	tprintf(fmt, ppc_regs.nip);
847#elif defined(M68K)
848	long pc;
849	if (upeek(tcp->pid, 4*PT_PC, &pc) < 0) {
850		PRINTBADPC;
851		return;
852	}
853	tprintf(fmt, pc);
854#elif defined(ALPHA)
855	long pc;
856	if (upeek(tcp->pid, REG_PC, &pc) < 0) {
857		PRINTBADPC;
858		return;
859	}
860	tprintf(fmt, pc);
861#elif defined(SPARC)
862	tprintf(fmt, sparc_regs.pc);
863#elif defined(SPARC64)
864	tprintf(fmt, sparc_regs.tpc);
865#elif defined(HPPA)
866	long pc;
867	if (upeek(tcp->pid, PT_IAOQ0, &pc) < 0) {
868		PRINTBADPC;
869		return;
870	}
871	tprintf(fmt, pc);
872#elif defined MIPS
873	tprintf(fmt, (unsigned long) mips_REG_EPC);
874#elif defined(SH)
875	long pc;
876	if (upeek(tcp->pid, 4*REG_PC, &pc) < 0) {
877		PRINTBADPC;
878		return;
879	}
880	tprintf(fmt, pc);
881#elif defined(SH64)
882	long pc;
883	if (upeek(tcp->pid, REG_PC, &pc) < 0) {
884		PRINTBADPC;
885		return;
886	}
887	tprintf(fmt, pc);
888#elif defined(AARCH64)
889	if (aarch64_io.iov_len == sizeof(arm_regs))
890		tprintf(fmt, (unsigned long) arm_regs.ARM_pc);
891	else
892		tprintf(fmt, (unsigned long) aarch64_regs.pc);
893#elif defined(ARM)
894	tprintf(fmt, arm_regs.ARM_pc);
895#elif defined(AVR32)
896	tprintf(fmt, avr32_regs.pc);
897#elif defined(BFIN)
898	long pc;
899	if (upeek(tcp->pid, PT_PC, &pc) < 0) {
900		PRINTBADPC;
901		return;
902	}
903	tprintf(fmt, pc);
904#elif defined(CRISV10)
905	long pc;
906	if (upeek(tcp->pid, 4*PT_IRP, &pc) < 0) {
907		PRINTBADPC;
908		return;
909	}
910	tprintf(fmt, pc);
911#elif defined(CRISV32)
912	long pc;
913	if (upeek(tcp->pid, 4*PT_ERP, &pc) < 0) {
914		PRINTBADPC;
915		return;
916	}
917	tprintf(fmt, pc);
918#elif defined(TILE)
919	tprintf(fmt, (unsigned long) tile_regs.pc);
920#elif defined(OR1K)
921	tprintf(fmt, or1k_regs.pc);
922#elif defined(METAG)
923	tprintf(fmt, metag_regs.pc);
924#elif defined(XTENSA)
925	long pc;
926	if (upeek(tcp->pid, REG_PC, &pc) < 0) {
927		PRINTBADPC;
928		return;
929	}
930	tprintf(fmt, pc);
931#elif defined(ARC)
932	tprintf(fmt, arc_regs.efa);
933#else
934# warning print_pc is not implemented for this architecture
935	PRINTBADPC;
936#endif /* architecture */
937}
938
939/*
940 * Shuffle syscall numbers so that we don't have huge gaps in syscall table.
941 * The shuffling should be an involution: shuffle_scno(shuffle_scno(n)) == n.
942 */
943#if defined(ARM) || defined(AARCH64) /* So far only 32-bit ARM needs this */
944static long
945shuffle_scno(unsigned long scno)
946{
947	if (scno < ARM_FIRST_SHUFFLED_SYSCALL)
948		return scno;
949
950	/* __ARM_NR_cmpxchg? Swap with LAST_ORDINARY+1 */
951	if (scno == ARM_FIRST_SHUFFLED_SYSCALL)
952		return 0x000ffff0;
953	if (scno == 0x000ffff0)
954		return ARM_FIRST_SHUFFLED_SYSCALL;
955
956#define ARM_SECOND_SHUFFLED_SYSCALL (ARM_FIRST_SHUFFLED_SYSCALL + 1)
957	/*
958	 * Is it ARM specific syscall?
959	 * Swap [0x000f0000, 0x000f0000 + LAST_SPECIAL] range
960	 * with [SECOND_SHUFFLED, SECOND_SHUFFLED + LAST_SPECIAL] range.
961	 */
962	if (scno >= 0x000f0000 &&
963	    scno <= 0x000f0000 + ARM_LAST_SPECIAL_SYSCALL) {
964		return scno - 0x000f0000 + ARM_SECOND_SHUFFLED_SYSCALL;
965	}
966	if (scno <= ARM_SECOND_SHUFFLED_SYSCALL + ARM_LAST_SPECIAL_SYSCALL) {
967		return scno + 0x000f0000 - ARM_SECOND_SHUFFLED_SYSCALL;
968	}
969
970	return scno;
971}
972#else
973# define shuffle_scno(scno) ((long)(scno))
974#endif
975
976static char*
977undefined_scno_name(struct tcb *tcp)
978{
979	static char buf[sizeof("syscall_%lu") + sizeof(long)*3];
980
981	sprintf(buf, "syscall_%lu", shuffle_scno(tcp->scno));
982	return buf;
983}
984
985#ifdef POWERPC
986/*
987 * PTRACE_GETREGS was added to the PowerPC kernel in v2.6.23,
988 * we provide a slow fallback for old kernels.
989 */
990static int powerpc_getregs_old(pid_t pid)
991{
992	int i;
993	long r;
994
995	if (iflag) {
996		r = upeek(pid, sizeof(long) * PT_NIP, (long *)&ppc_regs.nip);
997		if (r)
998			goto out;
999	}
1000#ifdef POWERPC64 /* else we never use it */
1001	r = upeek(pid, sizeof(long) * PT_MSR, (long *)&ppc_regs.msr);
1002	if (r)
1003		goto out;
1004#endif
1005	r = upeek(pid, sizeof(long) * PT_CCR, (long *)&ppc_regs.ccr);
1006	if (r)
1007		goto out;
1008	r = upeek(pid, sizeof(long) * PT_ORIG_R3, (long *)&ppc_regs.orig_gpr3);
1009	if (r)
1010		goto out;
1011	for (i = 0; i <= 8; i++) {
1012		r = upeek(pid, sizeof(long) * (PT_R0 + i),
1013			  (long *)&ppc_regs.gpr[i]);
1014		if (r)
1015			goto out;
1016	}
1017 out:
1018	return r;
1019}
1020#endif
1021
1022void
1023clear_regs(void)
1024{
1025	get_regs_error = -1;
1026}
1027
1028#if defined ARCH_REGS_FOR_GETREGSET
1029static long
1030get_regset(pid_t pid)
1031{
1032# ifdef ARCH_IOVEC_FOR_GETREGSET
1033	/* variable iovec */
1034	ARCH_IOVEC_FOR_GETREGSET.iov_len = sizeof(ARCH_REGS_FOR_GETREGSET);
1035	return ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS,
1036		      &ARCH_IOVEC_FOR_GETREGSET);
1037# else
1038	/* constant iovec */
1039	static struct iovec io = {
1040		.iov_base = &ARCH_REGS_FOR_GETREGSET,
1041		.iov_len = sizeof(ARCH_REGS_FOR_GETREGSET)
1042	};
1043	return ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &io);
1044
1045# endif
1046}
1047#endif /* ARCH_REGS_FOR_GETREGSET */
1048
1049void
1050get_regs(pid_t pid)
1051{
1052#ifdef ARCH_REGS_FOR_GETREGSET
1053# ifdef X86_64
1054	/* Try PTRACE_GETREGSET first, fallback to PTRACE_GETREGS. */
1055	static int getregset_support;
1056
1057	if (getregset_support >= 0) {
1058		get_regs_error = get_regset(pid);
1059		if (getregset_support > 0)
1060			return;
1061		if (get_regs_error >= 0) {
1062			getregset_support = 1;
1063			return;
1064		}
1065		if (errno == EPERM || errno == ESRCH)
1066			return;
1067		getregset_support = -1;
1068	}
1069	/* Use old method, with unreliable heuristical detection of 32-bitness. */
1070	x86_io.iov_len = sizeof(x86_64_regs);
1071	get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &x86_64_regs);
1072	if (!get_regs_error && x86_64_regs.cs == 0x23) {
1073		x86_io.iov_len = sizeof(i386_regs);
1074		/*
1075		 * The order is important: i386_regs and x86_64_regs
1076		 * are overlaid in memory!
1077		 */
1078		i386_regs.ebx = x86_64_regs.rbx;
1079		i386_regs.ecx = x86_64_regs.rcx;
1080		i386_regs.edx = x86_64_regs.rdx;
1081		i386_regs.esi = x86_64_regs.rsi;
1082		i386_regs.edi = x86_64_regs.rdi;
1083		i386_regs.ebp = x86_64_regs.rbp;
1084		i386_regs.eax = x86_64_regs.rax;
1085		/* i386_regs.xds = x86_64_regs.ds; unused by strace */
1086		/* i386_regs.xes = x86_64_regs.es; ditto... */
1087		/* i386_regs.xfs = x86_64_regs.fs; */
1088		/* i386_regs.xgs = x86_64_regs.gs; */
1089		i386_regs.orig_eax = x86_64_regs.orig_rax;
1090		i386_regs.eip = x86_64_regs.rip;
1091		/* i386_regs.xcs = x86_64_regs.cs; */
1092		/* i386_regs.eflags = x86_64_regs.eflags; */
1093		i386_regs.esp = x86_64_regs.rsp;
1094		/* i386_regs.xss = x86_64_regs.ss; */
1095	}
1096# else /* !X86_64 */
1097	/* Assume that PTRACE_GETREGSET works. */
1098	get_regs_error = get_regset(pid);
1099# endif
1100#elif defined ARCH_REGS_FOR_GETREGS
1101# if defined SPARC || defined SPARC64
1102	/* SPARC systems have the meaning of data and addr reversed */
1103	get_regs_error = ptrace(PTRACE_GETREGS, pid, (char *)&ARCH_REGS_FOR_GETREGS, 0);
1104# elif defined POWERPC
1105	static bool old_kernel = 0;
1106	if (old_kernel)
1107		goto old;
1108	get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &ARCH_REGS_FOR_GETREGS);
1109	if (get_regs_error && errno == EIO) {
1110		old_kernel = 1;
1111 old:
1112		get_regs_error = powerpc_getregs_old(pid);
1113	}
1114# else
1115	/* Assume that PTRACE_GETREGS works. */
1116	get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &ARCH_REGS_FOR_GETREGS);
1117# endif
1118
1119#else /* !ARCH_REGS_FOR_GETREGSET && !ARCH_REGS_FOR_GETREGS */
1120#  warning get_regs is not implemented for this architecture yet
1121	get_regs_error = 0;
1122#endif
1123}
1124
1125/* Returns:
1126 * 0: "ignore this ptrace stop", bail out of trace_syscall_entering() silently.
1127 * 1: ok, continue in trace_syscall_entering().
1128 * other: error, trace_syscall_entering() should print error indicator
1129 *    ("????" etc) and bail out.
1130 */
1131static int
1132get_scno(struct tcb *tcp)
1133{
1134	long scno = 0;
1135
1136#if defined(S390) || defined(S390X)
1137	if (upeek(tcp->pid, PT_GPR2, &s390_gpr2) < 0)
1138		return -1;
1139
1140	if (s390_gpr2 != -ENOSYS) {
1141		/*
1142		 * Since kernel version 2.5.44 the scno gets passed in gpr2.
1143		 */
1144		scno = s390_gpr2;
1145	} else {
1146		/*
1147		 * Old style of "passing" the scno via the SVC instruction.
1148		 */
1149		long psw;
1150		long opcode, offset_reg, tmp;
1151		void *svc_addr;
1152		static const int gpr_offset[16] = {
1153				PT_GPR0,  PT_GPR1,  PT_ORIGGPR2, PT_GPR3,
1154				PT_GPR4,  PT_GPR5,  PT_GPR6,     PT_GPR7,
1155				PT_GPR8,  PT_GPR9,  PT_GPR10,    PT_GPR11,
1156				PT_GPR12, PT_GPR13, PT_GPR14,    PT_GPR15
1157		};
1158
1159		if (upeek(tcp->pid, PT_PSWADDR, &psw) < 0)
1160			return -1;
1161		errno = 0;
1162		opcode = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)(psw - sizeof(long)), 0);
1163		if (errno) {
1164			perror_msg("peektext(psw-oneword)");
1165			return -1;
1166		}
1167
1168		/*
1169		 *  We have to check if the SVC got executed directly or via an
1170		 *  EXECUTE instruction. In case of EXECUTE it is necessary to do
1171		 *  instruction decoding to derive the system call number.
1172		 *  Unfortunately the opcode sizes of EXECUTE and SVC are differently,
1173		 *  so that this doesn't work if a SVC opcode is part of an EXECUTE
1174		 *  opcode. Since there is no way to find out the opcode size this
1175		 *  is the best we can do...
1176		 */
1177		if ((opcode & 0xff00) == 0x0a00) {
1178			/* SVC opcode */
1179			scno = opcode & 0xff;
1180		}
1181		else {
1182			/* SVC got executed by EXECUTE instruction */
1183
1184			/*
1185			 *  Do instruction decoding of EXECUTE. If you really want to
1186			 *  understand this, read the Principles of Operations.
1187			 */
1188			svc_addr = (void *) (opcode & 0xfff);
1189
1190			tmp = 0;
1191			offset_reg = (opcode & 0x000f0000) >> 16;
1192			if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0))
1193				return -1;
1194			svc_addr += tmp;
1195
1196			tmp = 0;
1197			offset_reg = (opcode & 0x0000f000) >> 12;
1198			if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0))
1199				return -1;
1200			svc_addr += tmp;
1201
1202			scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, svc_addr, 0);
1203			if (errno)
1204				return -1;
1205# if defined(S390X)
1206			scno >>= 48;
1207# else
1208			scno >>= 16;
1209# endif
1210			tmp = 0;
1211			offset_reg = (opcode & 0x00f00000) >> 20;
1212			if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0))
1213				return -1;
1214
1215			scno = (scno | tmp) & 0xff;
1216		}
1217	}
1218#elif defined(POWERPC)
1219	scno = ppc_regs.gpr[0];
1220# ifdef POWERPC64
1221	unsigned int currpers;
1222
1223	/*
1224	 * Check for 64/32 bit mode.
1225	 * Embedded implementations covered by Book E extension of PPC use
1226	 * bit 0 (CM) of 32-bit Machine state register (MSR).
1227	 * Other implementations use bit 0 (SF) of 64-bit MSR.
1228	 */
1229	currpers = (ppc_regs.msr & 0x8000000080000000) ? 0 : 1;
1230	update_personality(tcp, currpers);
1231# endif
1232#elif defined(AVR32)
1233	scno = avr32_regs.r8;
1234#elif defined(BFIN)
1235	if (upeek(tcp->pid, PT_ORIG_P0, &scno))
1236		return -1;
1237#elif defined(I386)
1238	scno = i386_regs.orig_eax;
1239#elif defined(X86_64) || defined(X32)
1240# ifndef __X32_SYSCALL_BIT
1241#  define __X32_SYSCALL_BIT	0x40000000
1242# endif
1243	unsigned int currpers;
1244# if 1
1245	/* GETREGSET of NT_PRSTATUS tells us regset size,
1246	 * which unambiguously detects i386.
1247	 *
1248	 * Linux kernel distinguishes x86-64 and x32 processes
1249	 * solely by looking at __X32_SYSCALL_BIT:
1250	 * arch/x86/include/asm/compat.h::is_x32_task():
1251	 * if (task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT)
1252	 *         return true;
1253	 */
1254	if (x86_io.iov_len == sizeof(i386_regs)) {
1255		scno = i386_regs.orig_eax;
1256		currpers = 1;
1257	} else {
1258		scno = x86_64_regs.orig_rax;
1259		currpers = 0;
1260		if (scno & __X32_SYSCALL_BIT) {
1261			/*
1262			 * Syscall number -1 requires special treatment:
1263			 * it might be a side effect of SECCOMP_RET_ERRNO
1264			 * filtering that sets orig_rax to -1
1265			 * in some versions of linux kernel.
1266			 * If that is the case, then
1267			 * __X32_SYSCALL_BIT logic does not apply.
1268			 */
1269			if ((long long) x86_64_regs.orig_rax != -1) {
1270				scno -= __X32_SYSCALL_BIT;
1271				currpers = 2;
1272			} else {
1273#  ifdef X32
1274				currpers = 2;
1275#  endif
1276			}
1277		}
1278	}
1279# elif 0
1280	/* cs = 0x33 for long mode (native 64 bit and x32)
1281	 * cs = 0x23 for compatibility mode (32 bit)
1282	 * ds = 0x2b for x32 mode (x86-64 in 32 bit)
1283	 */
1284	scno = x86_64_regs.orig_rax;
1285	switch (x86_64_regs.cs) {
1286		case 0x23: currpers = 1; break;
1287		case 0x33:
1288			if (x86_64_regs.ds == 0x2b) {
1289				currpers = 2;
1290				scno &= ~__X32_SYSCALL_BIT;
1291			} else
1292				currpers = 0;
1293			break;
1294		default:
1295			fprintf(stderr, "Unknown value CS=0x%08X while "
1296				 "detecting personality of process "
1297				 "PID=%d\n", (int)x86_64_regs.cs, tcp->pid);
1298			currpers = current_personality;
1299			break;
1300	}
1301# elif 0
1302	/* This version analyzes the opcode of a syscall instruction.
1303	 * (int 0x80 on i386 vs. syscall on x86-64)
1304	 * It works, but is too complicated, and strictly speaking, unreliable.
1305	 */
1306	unsigned long call, rip = x86_64_regs.rip;
1307	/* sizeof(syscall) == sizeof(int 0x80) == 2 */
1308	rip -= 2;
1309	errno = 0;
1310	call = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)rip, (char *)0);
1311	if (errno)
1312		fprintf(stderr, "ptrace_peektext failed: %s\n",
1313				strerror(errno));
1314	switch (call & 0xffff) {
1315		/* x86-64: syscall = 0x0f 0x05 */
1316		case 0x050f: currpers = 0; break;
1317		/* i386: int 0x80 = 0xcd 0x80 */
1318		case 0x80cd: currpers = 1; break;
1319		default:
1320			currpers = current_personality;
1321			fprintf(stderr,
1322				"Unknown syscall opcode (0x%04X) while "
1323				"detecting personality of process "
1324				"PID=%d\n", (int)call, tcp->pid);
1325			break;
1326	}
1327# endif
1328
1329# ifdef X32
1330	/* If we are built for a x32 system, then personality 0 is x32
1331	 * (not x86_64), and stracing of x86_64 apps is not supported.
1332	 * Stracing of i386 apps is still supported.
1333	 */
1334	if (currpers == 0) {
1335		fprintf(stderr, "syscall_%lu(...) in unsupported "
1336				"64-bit mode of process PID=%d\n",
1337			scno, tcp->pid);
1338		return 0;
1339	}
1340	currpers &= ~2; /* map 2,1 to 0,1 */
1341# endif
1342	update_personality(tcp, currpers);
1343#elif defined(IA64)
1344#	define IA64_PSR_IS	((long)1 << 34)
1345	long psr;
1346	if (upeek(tcp->pid, PT_CR_IPSR, &psr) >= 0)
1347		ia64_ia32mode = ((psr & IA64_PSR_IS) != 0);
1348	if (ia64_ia32mode) {
1349		if (upeek(tcp->pid, PT_R1, &scno) < 0)
1350			return -1;
1351	} else {
1352		if (upeek(tcp->pid, PT_R15, &scno) < 0)
1353			return -1;
1354	}
1355#elif defined(AARCH64)
1356	switch (aarch64_io.iov_len) {
1357		case sizeof(aarch64_regs):
1358			/* We are in 64-bit mode */
1359			scno = aarch64_regs.regs[8];
1360			update_personality(tcp, 1);
1361			break;
1362		case sizeof(arm_regs):
1363			/* We are in 32-bit mode */
1364			/* Note: we don't support OABI, unlike 32-bit ARM build */
1365			scno = arm_regs.ARM_r7;
1366			scno = shuffle_scno(scno);
1367			update_personality(tcp, 0);
1368			break;
1369	}
1370#elif defined(ARM)
1371	if (arm_regs.ARM_ip != 0) {
1372		/* It is not a syscall entry */
1373		fprintf(stderr, "pid %d stray syscall exit\n", tcp->pid);
1374		tcp->flags |= TCB_INSYSCALL;
1375		return 0;
1376	}
1377	/* Note: we support only 32-bit CPUs, not 26-bit */
1378
1379# if !defined(__ARM_EABI__) || ENABLE_ARM_OABI
1380	if (arm_regs.ARM_cpsr & 0x20)
1381		/* Thumb mode */
1382		goto scno_in_r7;
1383	/* ARM mode */
1384	/* Check EABI/OABI by examining SVC insn's low 24 bits */
1385	errno = 0;
1386	scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, (void *)(arm_regs.ARM_pc - 4), NULL);
1387	if (errno)
1388		return -1;
1389	/* EABI syscall convention? */
1390	if ((unsigned long) scno != 0xef000000) {
1391		/* No, it's OABI */
1392		if ((scno & 0x0ff00000) != 0x0f900000) {
1393			fprintf(stderr, "pid %d unknown syscall trap 0x%08lx\n",
1394				tcp->pid, scno);
1395			return -1;
1396		}
1397		/* Fixup the syscall number */
1398		scno &= 0x000fffff;
1399	} else {
1400 scno_in_r7:
1401		scno = arm_regs.ARM_r7;
1402	}
1403# else /* __ARM_EABI__ || !ENABLE_ARM_OABI */
1404	scno = arm_regs.ARM_r7;
1405# endif
1406	scno = shuffle_scno(scno);
1407#elif defined(M68K)
1408	if (upeek(tcp->pid, 4*PT_ORIG_D0, &scno) < 0)
1409		return -1;
1410#elif defined(MIPS)
1411	scno = mips_REG_V0;
1412
1413	if (!SCNO_IN_RANGE(scno)) {
1414		if (mips_REG_A3 == 0 || mips_REG_A3 == (uint64_t) -1) {
1415			if (debug_flag)
1416				fprintf(stderr, "stray syscall exit: v0 = %ld\n", scno);
1417			return 0;
1418		}
1419	}
1420#elif defined(ALPHA)
1421	if (upeek(tcp->pid, REG_A3, &alpha_a3) < 0)
1422		return -1;
1423	if (upeek(tcp->pid, REG_R0, &scno) < 0)
1424		return -1;
1425
1426	/*
1427	 * Do some sanity checks to figure out if it's
1428	 * really a syscall entry
1429	 */
1430	if (!SCNO_IN_RANGE(scno)) {
1431		if (alpha_a3 == 0 || alpha_a3 == -1) {
1432			if (debug_flag)
1433				fprintf(stderr, "stray syscall exit: r0 = %ld\n", scno);
1434			return 0;
1435		}
1436	}
1437#elif defined(SPARC) || defined(SPARC64)
1438	/* Disassemble the syscall trap. */
1439	/* Retrieve the syscall trap instruction. */
1440	unsigned long trap;
1441	errno = 0;
1442# if defined(SPARC64)
1443	trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)sparc_regs.tpc, 0);
1444	trap >>= 32;
1445# else
1446	trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)sparc_regs.pc, 0);
1447# endif
1448	if (errno)
1449		return -1;
1450
1451	/* Disassemble the trap to see what personality to use. */
1452	switch (trap) {
1453	case 0x91d02010:
1454		/* Linux/SPARC syscall trap. */
1455		update_personality(tcp, 0);
1456		break;
1457	case 0x91d0206d:
1458		/* Linux/SPARC64 syscall trap. */
1459		update_personality(tcp, 2);
1460		break;
1461	case 0x91d02000:
1462		/* SunOS syscall trap. (pers 1) */
1463		fprintf(stderr, "syscall: SunOS no support\n");
1464		return -1;
1465	case 0x91d02008:
1466		/* Solaris 2.x syscall trap. (per 2) */
1467		update_personality(tcp, 1);
1468		break;
1469	case 0x91d02009:
1470		/* NetBSD/FreeBSD syscall trap. */
1471		fprintf(stderr, "syscall: NetBSD/FreeBSD not supported\n");
1472		return -1;
1473	case 0x91d02027:
1474		/* Solaris 2.x gettimeofday */
1475		update_personality(tcp, 1);
1476		break;
1477	default:
1478# if defined(SPARC64)
1479		fprintf(stderr, "syscall: unknown syscall trap %08lx %016lx\n", trap, sparc_regs.tpc);
1480# else
1481		fprintf(stderr, "syscall: unknown syscall trap %08lx %08lx\n", trap, sparc_regs.pc);
1482# endif
1483		return -1;
1484	}
1485
1486	/* Extract the system call number from the registers. */
1487	if (trap == 0x91d02027)
1488		scno = 156;
1489	else
1490		scno = sparc_regs.u_regs[U_REG_G1];
1491	if (scno == 0) {
1492		scno = sparc_regs.u_regs[U_REG_O0];
1493		memmove(&sparc_regs.u_regs[U_REG_O0], &sparc_regs.u_regs[U_REG_O1], 7*sizeof(sparc_regs.u_regs[0]));
1494	}
1495#elif defined(HPPA)
1496	if (upeek(tcp->pid, PT_GR20, &scno) < 0)
1497		return -1;
1498#elif defined(SH)
1499	/*
1500	 * In the new syscall ABI, the system call number is in R3.
1501	 */
1502	if (upeek(tcp->pid, 4*(REG_REG0+3), &scno) < 0)
1503		return -1;
1504
1505	if (scno < 0) {
1506		/* Odd as it may seem, a glibc bug has been known to cause
1507		   glibc to issue bogus negative syscall numbers.  So for
1508		   our purposes, make strace print what it *should* have been */
1509		long correct_scno = (scno & 0xff);
1510		if (debug_flag)
1511			fprintf(stderr,
1512				"Detected glibc bug: bogus system call"
1513				" number = %ld, correcting to %ld\n",
1514				scno,
1515				correct_scno);
1516		scno = correct_scno;
1517	}
1518#elif defined(SH64)
1519	if (upeek(tcp->pid, REG_SYSCALL, &scno) < 0)
1520		return -1;
1521	scno &= 0xFFFF;
1522#elif defined(CRISV10) || defined(CRISV32)
1523	if (upeek(tcp->pid, 4*PT_R9, &scno) < 0)
1524		return -1;
1525#elif defined(TILE)
1526	unsigned int currpers;
1527	scno = tile_regs.regs[10];
1528# ifdef __tilepro__
1529	currpers = 1;
1530# else
1531#  ifndef PT_FLAGS_COMPAT
1532#   define PT_FLAGS_COMPAT 0x10000  /* from Linux 3.8 on */
1533#  endif
1534	if (tile_regs.flags & PT_FLAGS_COMPAT)
1535		currpers = 1;
1536	else
1537		currpers = 0;
1538# endif
1539	update_personality(tcp, currpers);
1540#elif defined(MICROBLAZE)
1541	if (upeek(tcp->pid, 0, &scno) < 0)
1542		return -1;
1543#elif defined(OR1K)
1544	scno = or1k_regs.gpr[11];
1545#elif defined(METAG)
1546	scno = metag_regs.dx[0][1];	/* syscall number in D1Re0 (D1.0) */
1547#elif defined(XTENSA)
1548	if (upeek(tcp->pid, SYSCALL_NR, &scno) < 0)
1549		return -1;
1550# elif defined(ARC)
1551	scno = arc_regs.scratch.r8;
1552#endif
1553
1554	tcp->scno = scno;
1555	if (SCNO_IS_VALID(tcp->scno)) {
1556		tcp->s_ent = &sysent[scno];
1557		tcp->qual_flg = qual_flags[scno];
1558	} else {
1559		static const struct_sysent unknown = {
1560			.nargs = MAX_ARGS,
1561			.sys_flags = 0,
1562			.sys_func = printargs,
1563			.sys_name = "unknown", /* not used */
1564		};
1565		tcp->s_ent = &unknown;
1566		tcp->qual_flg = UNDEFINED_SCNO | QUAL_RAW | DEFAULT_QUAL_FLAGS;
1567	}
1568	return 1;
1569}
1570
1571/*
1572 * Cannot rely on __kernel_[u]long_t being defined,
1573 * it is quite a recent feature of <asm/posix_types.h>.
1574 */
1575#ifdef __kernel_long_t
1576typedef __kernel_long_t kernel_long_t;
1577typedef __kernel_ulong_t kernel_ulong_t;
1578#else
1579# ifdef X32
1580typedef long long kernel_long_t;
1581typedef unsigned long long kernel_ulong_t;
1582# else
1583typedef long kernel_long_t;
1584typedef unsigned long kernel_ulong_t;
1585# endif
1586#endif
1587
1588/*
1589 * Check the syscall return value register value for whether it is
1590 * a negated errno code indicating an error, or a success return value.
1591 */
1592static inline bool
1593is_negated_errno(kernel_ulong_t val)
1594{
1595	/* Linux kernel defines MAX_ERRNO to 4095. */
1596	kernel_ulong_t max = -(kernel_long_t) 4095;
1597
1598#if SUPPORTED_PERSONALITIES > 1 && SIZEOF_LONG > 4
1599	if (current_wordsize < sizeof(val)) {
1600		val = (uint32_t) val;
1601		max = (uint32_t) max;
1602	}
1603#elif defined X32
1604	/*
1605	 * current_wordsize is 4 even in personality 0 (native X32)
1606	 * but truncation _must not_ be done in it.
1607	 * can't check current_wordsize here!
1608	 */
1609	if (current_personality != 0) {
1610		val = (uint32_t) val;
1611		max = (uint32_t) max;
1612	}
1613#endif
1614
1615	return val >= max;
1616}
1617
1618/* Return -1 on error or 1 on success (never 0!) */
1619static int
1620get_syscall_args(struct tcb *tcp)
1621{
1622	int i, nargs;
1623
1624	nargs = tcp->s_ent->nargs;
1625
1626#if defined(S390) || defined(S390X)
1627	for (i = 0; i < nargs; ++i)
1628		if (upeek(tcp->pid, i==0 ? PT_ORIGGPR2 : PT_GPR2 + i*sizeof(long), &tcp->u_arg[i]) < 0)
1629			return -1;
1630#elif defined(ALPHA)
1631	for (i = 0; i < nargs; ++i)
1632		if (upeek(tcp->pid, REG_A0+i, &tcp->u_arg[i]) < 0)
1633			return -1;
1634#elif defined(IA64)
1635	if (!ia64_ia32mode) {
1636		unsigned long *out0, cfm, sof, sol;
1637		long rbs_end;
1638		/* be backwards compatible with kernel < 2.4.4... */
1639#		ifndef PT_RBS_END
1640#		  define PT_RBS_END	PT_AR_BSP
1641#		endif
1642
1643		if (upeek(tcp->pid, PT_RBS_END, &rbs_end) < 0)
1644			return -1;
1645		if (upeek(tcp->pid, PT_CFM, (long *) &cfm) < 0)
1646			return -1;
1647
1648		sof = (cfm >> 0) & 0x7f;
1649		sol = (cfm >> 7) & 0x7f;
1650		out0 = ia64_rse_skip_regs((unsigned long *) rbs_end, -sof + sol);
1651
1652		for (i = 0; i < nargs; ++i) {
1653			if (umoven(tcp, (unsigned long) ia64_rse_skip_regs(out0, i),
1654				   sizeof(long), (char *) &tcp->u_arg[i]) < 0)
1655				return -1;
1656		}
1657	} else {
1658		static const int argreg[MAX_ARGS] = { PT_R11 /* EBX = out0 */,
1659						      PT_R9  /* ECX = out1 */,
1660						      PT_R10 /* EDX = out2 */,
1661						      PT_R14 /* ESI = out3 */,
1662						      PT_R15 /* EDI = out4 */,
1663						      PT_R13 /* EBP = out5 */};
1664
1665		for (i = 0; i < nargs; ++i) {
1666			if (upeek(tcp->pid, argreg[i], &tcp->u_arg[i]) < 0)
1667				return -1;
1668			/* truncate away IVE sign-extension */
1669			tcp->u_arg[i] &= 0xffffffff;
1670		}
1671	}
1672#elif defined LINUX_MIPSN64
1673	(void)i;
1674	(void)nargs;
1675	tcp->u_arg[0] = mips_REG_A0;
1676	tcp->u_arg[1] = mips_REG_A1;
1677	tcp->u_arg[2] = mips_REG_A2;
1678	tcp->u_arg[3] = mips_REG_A3;
1679	tcp->u_arg[4] = mips_REG_A4;
1680	tcp->u_arg[5] = mips_REG_A5;
1681#elif defined LINUX_MIPSN32
1682	(void)i;
1683	(void)nargs;
1684	tcp->u_arg[0] = tcp->ext_arg[0] = mips_REG_A0;
1685	tcp->u_arg[1] = tcp->ext_arg[1] = mips_REG_A1;
1686	tcp->u_arg[2] = tcp->ext_arg[2] = mips_REG_A2;
1687	tcp->u_arg[3] = tcp->ext_arg[3] = mips_REG_A3;
1688	tcp->u_arg[4] = tcp->ext_arg[4] = mips_REG_A4;
1689	tcp->u_arg[5] = tcp->ext_arg[5] = mips_REG_A5;
1690#elif defined LINUX_MIPSO32
1691	(void)i;
1692	(void)nargs;
1693	tcp->u_arg[0] = mips_REG_A0;
1694	tcp->u_arg[1] = mips_REG_A1;
1695	tcp->u_arg[2] = mips_REG_A2;
1696	tcp->u_arg[3] = mips_REG_A3;
1697	if (nargs > 4) {
1698		umoven(tcp, mips_REG_SP + 4 * 4,
1699		       (nargs - 4) * sizeof(tcp->u_arg[0]),
1700		       (char *)(tcp->u_arg + 4));
1701	}
1702#elif defined(POWERPC)
1703	(void)i;
1704	(void)nargs;
1705	tcp->u_arg[0] = ppc_regs.orig_gpr3;
1706	tcp->u_arg[1] = ppc_regs.gpr[4];
1707	tcp->u_arg[2] = ppc_regs.gpr[5];
1708	tcp->u_arg[3] = ppc_regs.gpr[6];
1709	tcp->u_arg[4] = ppc_regs.gpr[7];
1710	tcp->u_arg[5] = ppc_regs.gpr[8];
1711#elif defined(SPARC) || defined(SPARC64)
1712	for (i = 0; i < nargs; ++i)
1713		tcp->u_arg[i] = sparc_regs.u_regs[U_REG_O0 + i];
1714#elif defined(HPPA)
1715	for (i = 0; i < nargs; ++i)
1716		if (upeek(tcp->pid, PT_GR26-4*i, &tcp->u_arg[i]) < 0)
1717			return -1;
1718#elif defined(ARM) || defined(AARCH64)
1719# if defined(AARCH64)
1720	if (tcp->currpers == 1)
1721		for (i = 0; i < nargs; ++i)
1722			tcp->u_arg[i] = aarch64_regs.regs[i];
1723	else
1724# endif
1725	for (i = 0; i < nargs; ++i)
1726		tcp->u_arg[i] = arm_regs.uregs[i];
1727#elif defined(AVR32)
1728	(void)i;
1729	(void)nargs;
1730	tcp->u_arg[0] = avr32_regs.r12;
1731	tcp->u_arg[1] = avr32_regs.r11;
1732	tcp->u_arg[2] = avr32_regs.r10;
1733	tcp->u_arg[3] = avr32_regs.r9;
1734	tcp->u_arg[4] = avr32_regs.r5;
1735	tcp->u_arg[5] = avr32_regs.r3;
1736#elif defined(BFIN)
1737	static const int argreg[MAX_ARGS] = { PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5 };
1738
1739	for (i = 0; i < nargs; ++i)
1740		if (upeek(tcp->pid, argreg[i], &tcp->u_arg[i]) < 0)
1741			return -1;
1742#elif defined(SH)
1743	static const int syscall_regs[MAX_ARGS] = {
1744		4 * (REG_REG0+4), 4 * (REG_REG0+5), 4 * (REG_REG0+6),
1745		4 * (REG_REG0+7), 4 * (REG_REG0  ), 4 * (REG_REG0+1)
1746	};
1747
1748	for (i = 0; i < nargs; ++i)
1749		if (upeek(tcp->pid, syscall_regs[i], &tcp->u_arg[i]) < 0)
1750			return -1;
1751#elif defined(SH64)
1752	int i;
1753	/* Registers used by SH5 Linux system calls for parameters */
1754	static const int syscall_regs[MAX_ARGS] = { 2, 3, 4, 5, 6, 7 };
1755
1756	for (i = 0; i < nargs; ++i)
1757		if (upeek(tcp->pid, REG_GENERAL(syscall_regs[i]), &tcp->u_arg[i]) < 0)
1758			return -1;
1759#elif defined(I386)
1760	(void)i;
1761	(void)nargs;
1762	tcp->u_arg[0] = i386_regs.ebx;
1763	tcp->u_arg[1] = i386_regs.ecx;
1764	tcp->u_arg[2] = i386_regs.edx;
1765	tcp->u_arg[3] = i386_regs.esi;
1766	tcp->u_arg[4] = i386_regs.edi;
1767	tcp->u_arg[5] = i386_regs.ebp;
1768#elif defined(X86_64) || defined(X32)
1769	(void)i;
1770	(void)nargs;
1771	if (x86_io.iov_len != sizeof(i386_regs)) {
1772		/* x86-64 or x32 ABI */
1773		tcp->u_arg[0] = x86_64_regs.rdi;
1774		tcp->u_arg[1] = x86_64_regs.rsi;
1775		tcp->u_arg[2] = x86_64_regs.rdx;
1776		tcp->u_arg[3] = x86_64_regs.r10;
1777		tcp->u_arg[4] = x86_64_regs.r8;
1778		tcp->u_arg[5] = x86_64_regs.r9;
1779#  ifdef X32
1780		tcp->ext_arg[0] = x86_64_regs.rdi;
1781		tcp->ext_arg[1] = x86_64_regs.rsi;
1782		tcp->ext_arg[2] = x86_64_regs.rdx;
1783		tcp->ext_arg[3] = x86_64_regs.r10;
1784		tcp->ext_arg[4] = x86_64_regs.r8;
1785		tcp->ext_arg[5] = x86_64_regs.r9;
1786#  endif
1787	} else {
1788		/* i386 ABI */
1789		/* Zero-extend from 32 bits */
1790		/* Use widen_to_long(tcp->u_arg[N]) in syscall handlers
1791		 * if you need to use *sign-extended* parameter.
1792		 */
1793		tcp->u_arg[0] = (long)(uint32_t)i386_regs.ebx;
1794		tcp->u_arg[1] = (long)(uint32_t)i386_regs.ecx;
1795		tcp->u_arg[2] = (long)(uint32_t)i386_regs.edx;
1796		tcp->u_arg[3] = (long)(uint32_t)i386_regs.esi;
1797		tcp->u_arg[4] = (long)(uint32_t)i386_regs.edi;
1798		tcp->u_arg[5] = (long)(uint32_t)i386_regs.ebp;
1799	}
1800#elif defined(MICROBLAZE)
1801	for (i = 0; i < nargs; ++i)
1802		if (upeek(tcp->pid, (5 + i) * 4, &tcp->u_arg[i]) < 0)
1803			return -1;
1804#elif defined(CRISV10) || defined(CRISV32)
1805	static const int crisregs[MAX_ARGS] = {
1806		4*PT_ORIG_R10, 4*PT_R11, 4*PT_R12,
1807		4*PT_R13     , 4*PT_MOF, 4*PT_SRP
1808	};
1809
1810	for (i = 0; i < nargs; ++i)
1811		if (upeek(tcp->pid, crisregs[i], &tcp->u_arg[i]) < 0)
1812			return -1;
1813#elif defined(TILE)
1814	for (i = 0; i < nargs; ++i)
1815		tcp->u_arg[i] = tile_regs.regs[i];
1816#elif defined(M68K)
1817	for (i = 0; i < nargs; ++i)
1818		if (upeek(tcp->pid, (i < 5 ? i : i + 2)*4, &tcp->u_arg[i]) < 0)
1819			return -1;
1820#elif defined(OR1K)
1821	(void)nargs;
1822	for (i = 0; i < 6; ++i)
1823		tcp->u_arg[i] = or1k_regs.gpr[3 + i];
1824#elif defined(METAG)
1825	for (i = 0; i < nargs; i++)
1826		/* arguments go backwards from D1Ar1 (D1.3) */
1827		tcp->u_arg[i] = ((unsigned long *)&metag_regs.dx[3][1])[-i];
1828#elif defined(XTENSA)
1829	/* arg0: a6, arg1: a3, arg2: a4, arg3: a5, arg4: a8, arg5: a9 */
1830	static const int xtensaregs[MAX_ARGS] = { 6, 3, 4, 5, 8, 9 };
1831	for (i = 0; i < nargs; ++i)
1832		if (upeek(tcp->pid, REG_A_BASE + xtensaregs[i], &tcp->u_arg[i]) < 0)
1833			return -1;
1834# elif defined(ARC)
1835	long *arc_args = &arc_regs.scratch.r0;
1836	for (i = 0; i < nargs; ++i)
1837		tcp->u_arg[i] = *arc_args--;
1838
1839#else /* Other architecture (32bits specific) */
1840	for (i = 0; i < nargs; ++i)
1841		if (upeek(tcp->pid, i*4, &tcp->u_arg[i]) < 0)
1842			return -1;
1843#endif
1844	return 1;
1845}
1846
1847static int
1848trace_syscall_entering(struct tcb *tcp)
1849{
1850	int res, scno_good;
1851
1852	scno_good = res = (get_regs_error ? -1 : get_scno(tcp));
1853	if (res == 0)
1854		return res;
1855	if (res == 1)
1856		res = get_syscall_args(tcp);
1857
1858	if (res != 1) {
1859		printleader(tcp);
1860		if (scno_good != 1)
1861			tprints("????" /* anti-trigraph gap */ "(");
1862		else if (tcp->qual_flg & UNDEFINED_SCNO)
1863			tprintf("%s(", undefined_scno_name(tcp));
1864		else
1865			tprintf("%s(", tcp->s_ent->sys_name);
1866		/*
1867		 * " <unavailable>" will be added later by the code which
1868		 * detects ptrace errors.
1869		 */
1870		goto ret;
1871	}
1872
1873	if (   sys_execve == tcp->s_ent->sys_func
1874# if defined(SPARC) || defined(SPARC64)
1875	    || sys_execv == tcp->s_ent->sys_func
1876# endif
1877	   ) {
1878		hide_log_until_execve = 0;
1879	}
1880
1881#if defined(SYS_socket_subcall) || defined(SYS_ipc_subcall)
1882	while (1) {
1883# ifdef SYS_socket_subcall
1884		if (tcp->s_ent->sys_func == sys_socketcall) {
1885			decode_socket_subcall(tcp);
1886			break;
1887		}
1888# endif
1889# ifdef SYS_ipc_subcall
1890		if (tcp->s_ent->sys_func == sys_ipc) {
1891			decode_ipc_subcall(tcp);
1892			break;
1893		}
1894# endif
1895		break;
1896	}
1897#endif
1898
1899	if (!(tcp->qual_flg & QUAL_TRACE)
1900	 || (tracing_paths && !pathtrace_match(tcp))
1901	) {
1902		tcp->flags |= TCB_INSYSCALL | TCB_FILTERED;
1903		return 0;
1904	}
1905
1906	tcp->flags &= ~TCB_FILTERED;
1907
1908	if (cflag == CFLAG_ONLY_STATS || hide_log_until_execve) {
1909		res = 0;
1910		goto ret;
1911	}
1912
1913#ifdef USE_LIBUNWIND
1914	if (stack_trace_enabled) {
1915		if (tcp->s_ent->sys_flags & STACKTRACE_CAPTURE_ON_ENTER)
1916			unwind_capture_stacktrace(tcp);
1917	}
1918#endif
1919
1920	printleader(tcp);
1921	if (tcp->qual_flg & UNDEFINED_SCNO)
1922		tprintf("%s(", undefined_scno_name(tcp));
1923	else
1924		tprintf("%s(", tcp->s_ent->sys_name);
1925	if ((tcp->qual_flg & QUAL_RAW) && tcp->s_ent->sys_func != sys_exit)
1926		res = printargs(tcp);
1927	else
1928		res = tcp->s_ent->sys_func(tcp);
1929
1930	fflush(tcp->outf);
1931 ret:
1932	tcp->flags |= TCB_INSYSCALL;
1933	/* Measure the entrance time as late as possible to avoid errors. */
1934	if (Tflag || cflag)
1935		gettimeofday(&tcp->etime, NULL);
1936	return res;
1937}
1938
1939/* Returns:
1940 * 1: ok, continue in trace_syscall_exiting().
1941 * -1: error, trace_syscall_exiting() should print error indicator
1942 *    ("????" etc) and bail out.
1943 */
1944static int
1945get_syscall_result(struct tcb *tcp)
1946{
1947#if defined ARCH_REGS_FOR_GETREGSET || defined ARCH_REGS_FOR_GETREGS
1948	/* already done by get_regs */
1949#elif defined(S390) || defined(S390X)
1950	if (upeek(tcp->pid, PT_GPR2, &s390_gpr2) < 0)
1951		return -1;
1952#elif defined(BFIN)
1953	if (upeek(tcp->pid, PT_R0, &bfin_r0) < 0)
1954		return -1;
1955#elif defined(IA64)
1956#	define IA64_PSR_IS	((long)1 << 34)
1957	long psr;
1958	if (upeek(tcp->pid, PT_CR_IPSR, &psr) >= 0)
1959		ia64_ia32mode = ((psr & IA64_PSR_IS) != 0);
1960	if (upeek(tcp->pid, PT_R8, &ia64_r8) < 0)
1961		return -1;
1962	if (upeek(tcp->pid, PT_R10, &ia64_r10) < 0)
1963		return -1;
1964#elif defined(M68K)
1965	if (upeek(tcp->pid, 4*PT_D0, &m68k_d0) < 0)
1966		return -1;
1967#elif defined(ALPHA)
1968	if (upeek(tcp->pid, REG_A3, &alpha_a3) < 0)
1969		return -1;
1970	if (upeek(tcp->pid, REG_R0, &alpha_r0) < 0)
1971		return -1;
1972#elif defined(HPPA)
1973	if (upeek(tcp->pid, PT_GR28, &hppa_r28) < 0)
1974		return -1;
1975#elif defined(SH)
1976	/* new syscall ABI returns result in R0 */
1977	if (upeek(tcp->pid, 4*REG_REG0, (long *)&sh_r0) < 0)
1978		return -1;
1979#elif defined(SH64)
1980	/* ABI defines result returned in r9 */
1981	if (upeek(tcp->pid, REG_GENERAL(9), (long *)&sh64_r9) < 0)
1982		return -1;
1983#elif defined(CRISV10) || defined(CRISV32)
1984	if (upeek(tcp->pid, 4*PT_R10, &cris_r10) < 0)
1985		return -1;
1986#elif defined(MICROBLAZE)
1987	if (upeek(tcp->pid, 3 * 4, &microblaze_r3) < 0)
1988		return -1;
1989#elif defined(XTENSA)
1990	if (upeek(tcp->pid, REG_A_BASE + 2, &xtensa_a2) < 0)
1991		return -1;
1992#else
1993# error get_syscall_result is not implemented for this architecture
1994#endif
1995	return 1;
1996}
1997
1998/* Returns:
1999 * 1: ok, continue in trace_syscall_exiting().
2000 * -1: error, trace_syscall_exiting() should print error indicator
2001 *    ("????" etc) and bail out.
2002 */
2003static void
2004get_error(struct tcb *tcp)
2005{
2006	int u_error = 0;
2007	int check_errno = 1;
2008	if (tcp->s_ent->sys_flags & SYSCALL_NEVER_FAILS) {
2009		check_errno = 0;
2010	}
2011#if defined(S390) || defined(S390X)
2012	if (check_errno && is_negated_errno(s390_gpr2)) {
2013		tcp->u_rval = -1;
2014		u_error = -s390_gpr2;
2015	}
2016	else {
2017		tcp->u_rval = s390_gpr2;
2018	}
2019#elif defined(I386)
2020	if (check_errno && is_negated_errno(i386_regs.eax)) {
2021		tcp->u_rval = -1;
2022		u_error = -i386_regs.eax;
2023	}
2024	else {
2025		tcp->u_rval = i386_regs.eax;
2026	}
2027#elif defined(X86_64) || defined(X32)
2028	/*
2029	 * In X32, return value is 64-bit (llseek uses one).
2030	 * Using merely "long rax" would not work.
2031	 */
2032	kernel_long_t rax;
2033
2034	if (x86_io.iov_len == sizeof(i386_regs)) {
2035		/* Sign extend from 32 bits */
2036		rax = (int32_t) i386_regs.eax;
2037	} else {
2038		rax = x86_64_regs.rax;
2039	}
2040	if (check_errno && is_negated_errno(rax)) {
2041		tcp->u_rval = -1;
2042		u_error = -rax;
2043	}
2044	else {
2045		tcp->u_rval = rax;
2046# ifdef X32
2047		/* tcp->u_rval contains a truncated value */
2048		tcp->u_lrval = rax;
2049# endif
2050	}
2051#elif defined(IA64)
2052	if (ia64_ia32mode) {
2053		int err;
2054
2055		err = (int)ia64_r8;
2056		if (check_errno && is_negated_errno(err)) {
2057			tcp->u_rval = -1;
2058			u_error = -err;
2059		}
2060		else {
2061			tcp->u_rval = err;
2062		}
2063	} else {
2064		if (check_errno && ia64_r10) {
2065			tcp->u_rval = -1;
2066			u_error = ia64_r8;
2067		} else {
2068			tcp->u_rval = ia64_r8;
2069		}
2070	}
2071#elif defined(MIPS)
2072	if (check_errno && mips_REG_A3) {
2073		tcp->u_rval = -1;
2074		u_error = mips_REG_V0;
2075	} else {
2076# if defined LINUX_MIPSN32
2077		tcp->u_lrval = mips_REG_V0;
2078# endif
2079		tcp->u_rval = mips_REG_V0;
2080	}
2081#elif defined(POWERPC)
2082	if (check_errno && (ppc_regs.ccr & 0x10000000)) {
2083		tcp->u_rval = -1;
2084		u_error = ppc_regs.gpr[3];
2085	}
2086	else {
2087		tcp->u_rval = ppc_regs.gpr[3];
2088	}
2089#elif defined(M68K)
2090	if (check_errno && is_negated_errno(m68k_d0)) {
2091		tcp->u_rval = -1;
2092		u_error = -m68k_d0;
2093	}
2094	else {
2095		tcp->u_rval = m68k_d0;
2096	}
2097#elif defined(ARM) || defined(AARCH64)
2098# if defined(AARCH64)
2099	if (tcp->currpers == 1) {
2100		if (check_errno && is_negated_errno(aarch64_regs.regs[0])) {
2101			tcp->u_rval = -1;
2102			u_error = -aarch64_regs.regs[0];
2103		}
2104		else {
2105			tcp->u_rval = aarch64_regs.regs[0];
2106		}
2107	}
2108	else
2109# endif
2110	{
2111		if (check_errno && is_negated_errno(arm_regs.ARM_r0)) {
2112			tcp->u_rval = -1;
2113			u_error = -arm_regs.ARM_r0;
2114		}
2115		else {
2116			tcp->u_rval = arm_regs.ARM_r0;
2117		}
2118	}
2119#elif defined(AVR32)
2120	if (check_errno && avr32_regs.r12 && (unsigned) -avr32_regs.r12 < nerrnos) {
2121		tcp->u_rval = -1;
2122		u_error = -avr32_regs.r12;
2123	}
2124	else {
2125		tcp->u_rval = avr32_regs.r12;
2126	}
2127#elif defined(BFIN)
2128	if (check_errno && is_negated_errno(bfin_r0)) {
2129		tcp->u_rval = -1;
2130		u_error = -bfin_r0;
2131	} else {
2132		tcp->u_rval = bfin_r0;
2133	}
2134#elif defined(ALPHA)
2135	if (check_errno && alpha_a3) {
2136		tcp->u_rval = -1;
2137		u_error = alpha_r0;
2138	}
2139	else {
2140		tcp->u_rval = alpha_r0;
2141	}
2142#elif defined(SPARC)
2143	if (check_errno && sparc_regs.psr & PSR_C) {
2144		tcp->u_rval = -1;
2145		u_error = sparc_regs.u_regs[U_REG_O0];
2146	}
2147	else {
2148		tcp->u_rval = sparc_regs.u_regs[U_REG_O0];
2149	}
2150#elif defined(SPARC64)
2151	if (check_errno && sparc_regs.tstate & 0x1100000000UL) {
2152		tcp->u_rval = -1;
2153		u_error = sparc_regs.u_regs[U_REG_O0];
2154	}
2155	else {
2156		tcp->u_rval = sparc_regs.u_regs[U_REG_O0];
2157	}
2158#elif defined(HPPA)
2159	if (check_errno && is_negated_errno(hppa_r28)) {
2160		tcp->u_rval = -1;
2161		u_error = -hppa_r28;
2162	}
2163	else {
2164		tcp->u_rval = hppa_r28;
2165	}
2166#elif defined(SH)
2167	if (check_errno && is_negated_errno(sh_r0)) {
2168		tcp->u_rval = -1;
2169		u_error = -sh_r0;
2170	}
2171	else {
2172		tcp->u_rval = sh_r0;
2173	}
2174#elif defined(SH64)
2175	if (check_errno && is_negated_errno(sh64_r9)) {
2176		tcp->u_rval = -1;
2177		u_error = -sh64_r9;
2178	}
2179	else {
2180		tcp->u_rval = sh64_r9;
2181	}
2182#elif defined(METAG)
2183	/* result pointer in D0Re0 (D0.0) */
2184	if (check_errno && is_negated_errno(metag_regs.dx[0][0])) {
2185		tcp->u_rval = -1;
2186		u_error = -metag_regs.dx[0][0];
2187	}
2188	else {
2189		tcp->u_rval = metag_regs.dx[0][0];
2190	}
2191#elif defined(CRISV10) || defined(CRISV32)
2192	if (check_errno && cris_r10 && (unsigned) -cris_r10 < nerrnos) {
2193		tcp->u_rval = -1;
2194		u_error = -cris_r10;
2195	}
2196	else {
2197		tcp->u_rval = cris_r10;
2198	}
2199#elif defined(TILE)
2200	/*
2201	 * The standard tile calling convention returns the value (or negative
2202	 * errno) in r0, and zero (or positive errno) in r1.
2203	 * Until at least kernel 3.8, however, the r1 value is not reflected
2204	 * in ptregs at this point, so we use r0 here.
2205	 */
2206	if (check_errno && is_negated_errno(tile_regs.regs[0])) {
2207		tcp->u_rval = -1;
2208		u_error = -tile_regs.regs[0];
2209	} else {
2210		tcp->u_rval = tile_regs.regs[0];
2211	}
2212#elif defined(MICROBLAZE)
2213	if (check_errno && is_negated_errno(microblaze_r3)) {
2214		tcp->u_rval = -1;
2215		u_error = -microblaze_r3;
2216	}
2217	else {
2218		tcp->u_rval = microblaze_r3;
2219	}
2220#elif defined(OR1K)
2221	if (check_errno && is_negated_errno(or1k_regs.gpr[11])) {
2222		tcp->u_rval = -1;
2223		u_error = -or1k_regs.gpr[11];
2224	}
2225	else {
2226		tcp->u_rval = or1k_regs.gpr[11];
2227	}
2228#elif defined(XTENSA)
2229	if (check_errno && is_negated_errno(xtensa_a2)) {
2230		tcp->u_rval = -1;
2231		u_error = -xtensa_a2;
2232	}
2233	else {
2234		tcp->u_rval = xtensa_a2;
2235	}
2236#elif defined(ARC)
2237	if (check_errno && is_negated_errno(arc_regs.scratch.r0)) {
2238		tcp->u_rval = -1;
2239		u_error = -arc_regs.scratch.r0;
2240	}
2241	else {
2242		tcp->u_rval = arc_regs.scratch.r0;
2243	}
2244#endif
2245	tcp->u_error = u_error;
2246}
2247
2248static void
2249dumpio(struct tcb *tcp)
2250{
2251	int (*func)();
2252
2253	if (syserror(tcp))
2254		return;
2255	if ((unsigned long) tcp->u_arg[0] >= num_quals)
2256		return;
2257	func = tcp->s_ent->sys_func;
2258	if (func == printargs)
2259		return;
2260	if (qual_flags[tcp->u_arg[0]] & QUAL_READ) {
2261		if (func == sys_read ||
2262		    func == sys_pread ||
2263		    func == sys_recv ||
2264		    func == sys_recvfrom) {
2265			dumpstr(tcp, tcp->u_arg[1], tcp->u_rval);
2266			return;
2267		} else if (func == sys_readv) {
2268			dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]);
2269			return;
2270#if HAVE_SENDMSG
2271		} else if (func == sys_recvmsg) {
2272			dumpiov_in_msghdr(tcp, tcp->u_arg[1]);
2273			return;
2274		} else if (func == sys_recvmmsg) {
2275			dumpiov_in_mmsghdr(tcp, tcp->u_arg[1]);
2276			return;
2277#endif
2278		}
2279	}
2280	if (qual_flags[tcp->u_arg[0]] & QUAL_WRITE) {
2281		if (func == sys_write ||
2282		    func == sys_pwrite ||
2283		    func == sys_send ||
2284		    func == sys_sendto)
2285			dumpstr(tcp, tcp->u_arg[1], tcp->u_arg[2]);
2286		else if (func == sys_writev)
2287			dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]);
2288#if HAVE_SENDMSG
2289		else if (func == sys_sendmsg)
2290			dumpiov_in_msghdr(tcp, tcp->u_arg[1]);
2291		else if (func == sys_sendmmsg)
2292			dumpiov_in_mmsghdr(tcp, tcp->u_arg[1]);
2293#endif
2294	}
2295}
2296
2297static int
2298trace_syscall_exiting(struct tcb *tcp)
2299{
2300	int sys_res;
2301	struct timeval tv;
2302	int res;
2303	long u_error;
2304
2305	/* Measure the exit time as early as possible to avoid errors. */
2306	if (Tflag || cflag)
2307		gettimeofday(&tv, NULL);
2308
2309#ifdef USE_LIBUNWIND
2310	if (stack_trace_enabled) {
2311		if (tcp->s_ent->sys_flags & STACKTRACE_INVALIDATE_CACHE)
2312			unwind_cache_invalidate(tcp);
2313	}
2314#endif
2315
2316#if SUPPORTED_PERSONALITIES > 1
2317	update_personality(tcp, tcp->currpers);
2318#endif
2319	res = (get_regs_error ? -1 : get_syscall_result(tcp));
2320	if (res == 1) {
2321		get_error(tcp); /* never fails */
2322		if (filtered(tcp) || hide_log_until_execve)
2323			goto ret;
2324	}
2325
2326	if (cflag) {
2327		count_syscall(tcp, &tv);
2328		if (cflag == CFLAG_ONLY_STATS) {
2329			goto ret;
2330		}
2331	}
2332
2333	/* If not in -ff mode, and printing_tcp != tcp,
2334	 * then the log currently does not end with output
2335	 * of _our syscall entry_, but with something else.
2336	 * We need to say which syscall's return is this.
2337	 *
2338	 * Forced reprinting via TCB_REPRINT is used only by
2339	 * "strace -ff -oLOG test/threaded_execve" corner case.
2340	 * It's the only case when -ff mode needs reprinting.
2341	 */
2342	if ((followfork < 2 && printing_tcp != tcp) || (tcp->flags & TCB_REPRINT)) {
2343		tcp->flags &= ~TCB_REPRINT;
2344		printleader(tcp);
2345		if (tcp->qual_flg & UNDEFINED_SCNO)
2346			tprintf("<... %s resumed> ", undefined_scno_name(tcp));
2347		else
2348			tprintf("<... %s resumed> ", tcp->s_ent->sys_name);
2349	}
2350	printing_tcp = tcp;
2351
2352	if (res != 1) {
2353		/* There was error in one of prior ptrace ops */
2354		tprints(") ");
2355		tabto();
2356		tprints("= ? <unavailable>\n");
2357		line_ended();
2358		tcp->flags &= ~TCB_INSYSCALL;
2359		return res;
2360	}
2361
2362	sys_res = 0;
2363	if (tcp->qual_flg & QUAL_RAW) {
2364		/* sys_res = printargs(tcp); - but it's nop on sysexit */
2365	} else {
2366	/* FIXME: not_failing_only (IOW, option -z) is broken:
2367	 * failure of syscall is known only after syscall return.
2368	 * Thus we end up with something like this on, say, ENOENT:
2369	 *     open("doesnt_exist", O_RDONLY <unfinished ...>
2370	 *     {next syscall decode}
2371	 * whereas the intended result is that open(...) line
2372	 * is not shown at all.
2373	 */
2374		if (not_failing_only && tcp->u_error)
2375			goto ret;	/* ignore failed syscalls */
2376		sys_res = tcp->s_ent->sys_func(tcp);
2377	}
2378
2379	tprints(") ");
2380	tabto();
2381	u_error = tcp->u_error;
2382	if (tcp->qual_flg & QUAL_RAW) {
2383		if (u_error)
2384			tprintf("= -1 (errno %ld)", u_error);
2385		else
2386			tprintf("= %#lx", tcp->u_rval);
2387	}
2388	else if (!(sys_res & RVAL_NONE) && u_error) {
2389		switch (u_error) {
2390		/* Blocked signals do not interrupt any syscalls.
2391		 * In this case syscalls don't return ERESTARTfoo codes.
2392		 *
2393		 * Deadly signals set to SIG_DFL interrupt syscalls
2394		 * and kill the process regardless of which of the codes below
2395		 * is returned by the interrupted syscall.
2396		 * In some cases, kernel forces a kernel-generated deadly
2397		 * signal to be unblocked and set to SIG_DFL (and thus cause
2398		 * death) if it is blocked or SIG_IGNed: for example, SIGSEGV
2399		 * or SIGILL. (The alternative is to leave process spinning
2400		 * forever on the faulty instruction - not useful).
2401		 *
2402		 * SIG_IGNed signals and non-deadly signals set to SIG_DFL
2403		 * (for example, SIGCHLD, SIGWINCH) interrupt syscalls,
2404		 * but kernel will always restart them.
2405		 */
2406		case ERESTARTSYS:
2407			/* Most common type of signal-interrupted syscall exit code.
2408			 * The system call will be restarted with the same arguments
2409			 * if SA_RESTART is set; otherwise, it will fail with EINTR.
2410			 */
2411			tprints("= ? ERESTARTSYS (To be restarted if SA_RESTART is set)");
2412			break;
2413		case ERESTARTNOINTR:
2414			/* Rare. For example, fork() returns this if interrupted.
2415			 * SA_RESTART is ignored (assumed set): the restart is unconditional.
2416			 */
2417			tprints("= ? ERESTARTNOINTR (To be restarted)");
2418			break;
2419		case ERESTARTNOHAND:
2420			/* pause(), rt_sigsuspend() etc use this code.
2421			 * SA_RESTART is ignored (assumed not set):
2422			 * syscall won't restart (will return EINTR instead)
2423			 * even after signal with SA_RESTART set. However,
2424			 * after SIG_IGN or SIG_DFL signal it will restart
2425			 * (thus the name "restart only if has no handler").
2426			 */
2427			tprints("= ? ERESTARTNOHAND (To be restarted if no handler)");
2428			break;
2429		case ERESTART_RESTARTBLOCK:
2430			/* Syscalls like nanosleep(), poll() which can't be
2431			 * restarted with their original arguments use this
2432			 * code. Kernel will execute restart_syscall() instead,
2433			 * which changes arguments before restarting syscall.
2434			 * SA_RESTART is ignored (assumed not set) similarly
2435			 * to ERESTARTNOHAND. (Kernel can't honor SA_RESTART
2436			 * since restart data is saved in "restart block"
2437			 * in task struct, and if signal handler uses a syscall
2438			 * which in turn saves another such restart block,
2439			 * old data is lost and restart becomes impossible)
2440			 */
2441			tprints("= ? ERESTART_RESTARTBLOCK (Interrupted by signal)");
2442			break;
2443		default:
2444			if ((unsigned long) u_error < nerrnos
2445			    && errnoent[u_error])
2446				tprintf("= -1 %s (%s)", errnoent[u_error],
2447					strerror(u_error));
2448			else
2449				tprintf("= -1 ERRNO_%lu (%s)", u_error,
2450					strerror(u_error));
2451			break;
2452		}
2453		if ((sys_res & RVAL_STR) && tcp->auxstr)
2454			tprintf(" (%s)", tcp->auxstr);
2455	}
2456	else {
2457		if (sys_res & RVAL_NONE)
2458			tprints("= ?");
2459		else {
2460			switch (sys_res & RVAL_MASK) {
2461			case RVAL_HEX:
2462#if SUPPORTED_PERSONALITIES > 1
2463				if (current_wordsize < sizeof(long))
2464					tprintf("= %#x",
2465						(unsigned int) tcp->u_rval);
2466				else
2467#endif
2468					tprintf("= %#lx", tcp->u_rval);
2469				break;
2470			case RVAL_OCTAL:
2471				tprintf("= %#lo", tcp->u_rval);
2472				break;
2473			case RVAL_UDECIMAL:
2474				tprintf("= %lu", tcp->u_rval);
2475				break;
2476			case RVAL_DECIMAL:
2477				tprintf("= %ld", tcp->u_rval);
2478				break;
2479			case RVAL_FD:
2480				if (show_fd_path) {
2481					tprints("= ");
2482					printfd(tcp, tcp->u_rval);
2483				}
2484				else
2485					tprintf("= %ld", tcp->u_rval);
2486				break;
2487#if defined(LINUX_MIPSN32) || defined(X32)
2488			/*
2489			case RVAL_LHEX:
2490				tprintf("= %#llx", tcp->u_lrval);
2491				break;
2492			case RVAL_LOCTAL:
2493				tprintf("= %#llo", tcp->u_lrval);
2494				break;
2495			*/
2496			case RVAL_LUDECIMAL:
2497				tprintf("= %llu", tcp->u_lrval);
2498				break;
2499			/*
2500			case RVAL_LDECIMAL:
2501				tprintf("= %lld", tcp->u_lrval);
2502				break;
2503			*/
2504#endif
2505			default:
2506				fprintf(stderr,
2507					"invalid rval format\n");
2508				break;
2509			}
2510		}
2511		if ((sys_res & RVAL_STR) && tcp->auxstr)
2512			tprintf(" (%s)", tcp->auxstr);
2513	}
2514	if (Tflag) {
2515		tv_sub(&tv, &tv, &tcp->etime);
2516		tprintf(" <%ld.%06ld>",
2517			(long) tv.tv_sec, (long) tv.tv_usec);
2518	}
2519	tprints("\n");
2520	dumpio(tcp);
2521	line_ended();
2522
2523#ifdef USE_LIBUNWIND
2524	if (stack_trace_enabled)
2525		unwind_print_stacktrace(tcp);
2526#endif
2527
2528 ret:
2529	tcp->flags &= ~TCB_INSYSCALL;
2530	return 0;
2531}
2532
2533int
2534trace_syscall(struct tcb *tcp)
2535{
2536	return exiting(tcp) ?
2537		trace_syscall_exiting(tcp) : trace_syscall_entering(tcp);
2538}
2539