Parcel.java revision 719e6b167041ffaffc2245f692714c8de191863f
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.text.TextUtils;
20import android.util.ArrayMap;
21import android.util.Log;
22import android.util.SparseArray;
23import android.util.SparseBooleanArray;
24
25import java.io.ByteArrayInputStream;
26import java.io.ByteArrayOutputStream;
27import java.io.FileDescriptor;
28import java.io.FileNotFoundException;
29import java.io.IOException;
30import java.io.ObjectInputStream;
31import java.io.ObjectOutputStream;
32import java.io.ObjectStreamClass;
33import java.io.Serializable;
34import java.lang.reflect.Field;
35import java.util.ArrayList;
36import java.util.Arrays;
37import java.util.HashMap;
38import java.util.List;
39import java.util.Map;
40import java.util.Set;
41
42/**
43 * Container for a message (data and object references) that can
44 * be sent through an IBinder.  A Parcel can contain both flattened data
45 * that will be unflattened on the other side of the IPC (using the various
46 * methods here for writing specific types, or the general
47 * {@link Parcelable} interface), and references to live {@link IBinder}
48 * objects that will result in the other side receiving a proxy IBinder
49 * connected with the original IBinder in the Parcel.
50 *
51 * <p class="note">Parcel is <strong>not</strong> a general-purpose
52 * serialization mechanism.  This class (and the corresponding
53 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
54 * designed as a high-performance IPC transport.  As such, it is not
55 * appropriate to place any Parcel data in to persistent storage: changes
56 * in the underlying implementation of any of the data in the Parcel can
57 * render older data unreadable.</p>
58 *
59 * <p>The bulk of the Parcel API revolves around reading and writing data
60 * of various types.  There are six major classes of such functions available.</p>
61 *
62 * <h3>Primitives</h3>
63 *
64 * <p>The most basic data functions are for writing and reading primitive
65 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
66 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
67 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
68 * {@link #writeString}, {@link #readString}.  Most other
69 * data operations are built on top of these.  The given data is written and
70 * read using the endianess of the host CPU.</p>
71 *
72 * <h3>Primitive Arrays</h3>
73 *
74 * <p>There are a variety of methods for reading and writing raw arrays
75 * of primitive objects, which generally result in writing a 4-byte length
76 * followed by the primitive data items.  The methods for reading can either
77 * read the data into an existing array, or create and return a new array.
78 * These available types are:</p>
79 *
80 * <ul>
81 * <li> {@link #writeBooleanArray(boolean[])},
82 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
83 * <li> {@link #writeByteArray(byte[])},
84 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
85 * {@link #createByteArray()}
86 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
87 * {@link #createCharArray()}
88 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
89 * {@link #createDoubleArray()}
90 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
91 * {@link #createFloatArray()}
92 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
93 * {@link #createIntArray()}
94 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
95 * {@link #createLongArray()}
96 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
97 * {@link #createStringArray()}.
98 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
99 * {@link #readSparseBooleanArray()}.
100 * </ul>
101 *
102 * <h3>Parcelables</h3>
103 *
104 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
105 * low-level) protocol for objects to write and read themselves from Parcels.
106 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
107 * and {@link #readParcelable(ClassLoader)} or
108 * {@link #writeParcelableArray} and
109 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
110 * methods write both the class type and its data to the Parcel, allowing
111 * that class to be reconstructed from the appropriate class loader when
112 * later reading.</p>
113 *
114 * <p>There are also some methods that provide a more efficient way to work
115 * with Parcelables: {@link #writeTypedArray},
116 * {@link #writeTypedList(List)},
117 * {@link #readTypedArray} and {@link #readTypedList}.  These methods
118 * do not write the class information of the original object: instead, the
119 * caller of the read function must know what type to expect and pass in the
120 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
121 * properly construct the new object and read its data.  (To more efficient
122 * write and read a single Parceable object, you can directly call
123 * {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
124 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
125 * yourself.)</p>
126 *
127 * <h3>Bundles</h3>
128 *
129 * <p>A special type-safe container, called {@link Bundle}, is available
130 * for key/value maps of heterogeneous values.  This has many optimizations
131 * for improved performance when reading and writing data, and its type-safe
132 * API avoids difficult to debug type errors when finally marshalling the
133 * data contents into a Parcel.  The methods to use are
134 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
135 * {@link #readBundle(ClassLoader)}.
136 *
137 * <h3>Active Objects</h3>
138 *
139 * <p>An unusual feature of Parcel is the ability to read and write active
140 * objects.  For these objects the actual contents of the object is not
141 * written, rather a special token referencing the object is written.  When
142 * reading the object back from the Parcel, you do not get a new instance of
143 * the object, but rather a handle that operates on the exact same object that
144 * was originally written.  There are two forms of active objects available.</p>
145 *
146 * <p>{@link Binder} objects are a core facility of Android's general cross-process
147 * communication system.  The {@link IBinder} interface describes an abstract
148 * protocol with a Binder object.  Any such interface can be written in to
149 * a Parcel, and upon reading you will receive either the original object
150 * implementing that interface or a special proxy implementation
151 * that communicates calls back to the original object.  The methods to use are
152 * {@link #writeStrongBinder(IBinder)},
153 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
154 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
155 * {@link #createBinderArray()},
156 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
157 * {@link #createBinderArrayList()}.</p>
158 *
159 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
160 * can be written and {@link ParcelFileDescriptor} objects returned to operate
161 * on the original file descriptor.  The returned file descriptor is a dup
162 * of the original file descriptor: the object and fd is different, but
163 * operating on the same underlying file stream, with the same position, etc.
164 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
165 * {@link #readFileDescriptor()}.
166 *
167 * <h3>Untyped Containers</h3>
168 *
169 * <p>A final class of methods are for writing and reading standard Java
170 * containers of arbitrary types.  These all revolve around the
171 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
172 * which define the types of objects allowed.  The container methods are
173 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
174 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
175 * {@link #readArrayList(ClassLoader)},
176 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
177 * {@link #writeSparseArray(SparseArray)},
178 * {@link #readSparseArray(ClassLoader)}.
179 */
180public final class Parcel {
181    private static final boolean DEBUG_RECYCLE = false;
182    private static final boolean DEBUG_ARRAY_MAP = false;
183    private static final String TAG = "Parcel";
184
185    @SuppressWarnings({"UnusedDeclaration"})
186    private long mNativePtr; // used by native code
187
188    /**
189     * Flag indicating if {@link #mNativePtr} was allocated by this object,
190     * indicating that we're responsible for its lifecycle.
191     */
192    private boolean mOwnsNativeParcelObject;
193
194    private RuntimeException mStack;
195
196    private static final int POOL_SIZE = 6;
197    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
198    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
199
200    private static final int VAL_NULL = -1;
201    private static final int VAL_STRING = 0;
202    private static final int VAL_INTEGER = 1;
203    private static final int VAL_MAP = 2;
204    private static final int VAL_BUNDLE = 3;
205    private static final int VAL_PARCELABLE = 4;
206    private static final int VAL_SHORT = 5;
207    private static final int VAL_LONG = 6;
208    private static final int VAL_FLOAT = 7;
209    private static final int VAL_DOUBLE = 8;
210    private static final int VAL_BOOLEAN = 9;
211    private static final int VAL_CHARSEQUENCE = 10;
212    private static final int VAL_LIST  = 11;
213    private static final int VAL_SPARSEARRAY = 12;
214    private static final int VAL_BYTEARRAY = 13;
215    private static final int VAL_STRINGARRAY = 14;
216    private static final int VAL_IBINDER = 15;
217    private static final int VAL_PARCELABLEARRAY = 16;
218    private static final int VAL_OBJECTARRAY = 17;
219    private static final int VAL_INTARRAY = 18;
220    private static final int VAL_LONGARRAY = 19;
221    private static final int VAL_BYTE = 20;
222    private static final int VAL_SERIALIZABLE = 21;
223    private static final int VAL_SPARSEBOOLEANARRAY = 22;
224    private static final int VAL_BOOLEANARRAY = 23;
225    private static final int VAL_CHARSEQUENCEARRAY = 24;
226    private static final int VAL_PERSISTABLEBUNDLE = 25;
227
228    // The initial int32 in a Binder call's reply Parcel header:
229    private static final int EX_SECURITY = -1;
230    private static final int EX_BAD_PARCELABLE = -2;
231    private static final int EX_ILLEGAL_ARGUMENT = -3;
232    private static final int EX_NULL_POINTER = -4;
233    private static final int EX_ILLEGAL_STATE = -5;
234    private static final int EX_NETWORK_MAIN_THREAD = -6;
235    private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
236
237    private static native int nativeDataSize(long nativePtr);
238    private static native int nativeDataAvail(long nativePtr);
239    private static native int nativeDataPosition(long nativePtr);
240    private static native int nativeDataCapacity(long nativePtr);
241    private static native void nativeSetDataSize(long nativePtr, int size);
242    private static native void nativeSetDataPosition(long nativePtr, int pos);
243    private static native void nativeSetDataCapacity(long nativePtr, int size);
244
245    private static native boolean nativePushAllowFds(long nativePtr, boolean allowFds);
246    private static native void nativeRestoreAllowFds(long nativePtr, boolean lastValue);
247
248    private static native void nativeWriteByteArray(long nativePtr, byte[] b, int offset, int len);
249    private static native void nativeWriteInt(long nativePtr, int val);
250    private static native void nativeWriteLong(long nativePtr, long val);
251    private static native void nativeWriteFloat(long nativePtr, float val);
252    private static native void nativeWriteDouble(long nativePtr, double val);
253    private static native void nativeWriteString(long nativePtr, String val);
254    private static native void nativeWriteStrongBinder(long nativePtr, IBinder val);
255    private static native void nativeWriteFileDescriptor(long nativePtr, FileDescriptor val);
256
257    private static native byte[] nativeCreateByteArray(long nativePtr);
258    private static native int nativeReadInt(long nativePtr);
259    private static native long nativeReadLong(long nativePtr);
260    private static native float nativeReadFloat(long nativePtr);
261    private static native double nativeReadDouble(long nativePtr);
262    private static native String nativeReadString(long nativePtr);
263    private static native IBinder nativeReadStrongBinder(long nativePtr);
264    private static native FileDescriptor nativeReadFileDescriptor(long nativePtr);
265
266    private static native long nativeCreate();
267    private static native void nativeFreeBuffer(long nativePtr);
268    private static native void nativeDestroy(long nativePtr);
269
270    private static native byte[] nativeMarshall(long nativePtr);
271    private static native void nativeUnmarshall(
272            long nativePtr, byte[] data, int offest, int length);
273    private static native void nativeAppendFrom(
274            long thisNativePtr, long otherNativePtr, int offset, int length);
275    private static native boolean nativeHasFileDescriptors(long nativePtr);
276    private static native void nativeWriteInterfaceToken(long nativePtr, String interfaceName);
277    private static native void nativeEnforceInterface(long nativePtr, String interfaceName);
278
279    public final static Parcelable.Creator<String> STRING_CREATOR
280             = new Parcelable.Creator<String>() {
281        public String createFromParcel(Parcel source) {
282            return source.readString();
283        }
284        public String[] newArray(int size) {
285            return new String[size];
286        }
287    };
288
289    /**
290     * Retrieve a new Parcel object from the pool.
291     */
292    public static Parcel obtain() {
293        final Parcel[] pool = sOwnedPool;
294        synchronized (pool) {
295            Parcel p;
296            for (int i=0; i<POOL_SIZE; i++) {
297                p = pool[i];
298                if (p != null) {
299                    pool[i] = null;
300                    if (DEBUG_RECYCLE) {
301                        p.mStack = new RuntimeException();
302                    }
303                    return p;
304                }
305            }
306        }
307        return new Parcel(0);
308    }
309
310    /**
311     * Put a Parcel object back into the pool.  You must not touch
312     * the object after this call.
313     */
314    public final void recycle() {
315        if (DEBUG_RECYCLE) mStack = null;
316        freeBuffer();
317
318        final Parcel[] pool;
319        if (mOwnsNativeParcelObject) {
320            pool = sOwnedPool;
321        } else {
322            mNativePtr = 0;
323            pool = sHolderPool;
324        }
325
326        synchronized (pool) {
327            for (int i=0; i<POOL_SIZE; i++) {
328                if (pool[i] == null) {
329                    pool[i] = this;
330                    return;
331                }
332            }
333        }
334    }
335
336    /**
337     * Returns the total amount of data contained in the parcel.
338     */
339    public final int dataSize() {
340        return nativeDataSize(mNativePtr);
341    }
342
343    /**
344     * Returns the amount of data remaining to be read from the
345     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
346     */
347    public final int dataAvail() {
348        return nativeDataAvail(mNativePtr);
349    }
350
351    /**
352     * Returns the current position in the parcel data.  Never
353     * more than {@link #dataSize}.
354     */
355    public final int dataPosition() {
356        return nativeDataPosition(mNativePtr);
357    }
358
359    /**
360     * Returns the total amount of space in the parcel.  This is always
361     * >= {@link #dataSize}.  The difference between it and dataSize() is the
362     * amount of room left until the parcel needs to re-allocate its
363     * data buffer.
364     */
365    public final int dataCapacity() {
366        return nativeDataCapacity(mNativePtr);
367    }
368
369    /**
370     * Change the amount of data in the parcel.  Can be either smaller or
371     * larger than the current size.  If larger than the current capacity,
372     * more memory will be allocated.
373     *
374     * @param size The new number of bytes in the Parcel.
375     */
376    public final void setDataSize(int size) {
377        nativeSetDataSize(mNativePtr, size);
378    }
379
380    /**
381     * Move the current read/write position in the parcel.
382     * @param pos New offset in the parcel; must be between 0 and
383     * {@link #dataSize}.
384     */
385    public final void setDataPosition(int pos) {
386        nativeSetDataPosition(mNativePtr, pos);
387    }
388
389    /**
390     * Change the capacity (current available space) of the parcel.
391     *
392     * @param size The new capacity of the parcel, in bytes.  Can not be
393     * less than {@link #dataSize} -- that is, you can not drop existing data
394     * with this method.
395     */
396    public final void setDataCapacity(int size) {
397        nativeSetDataCapacity(mNativePtr, size);
398    }
399
400    /** @hide */
401    public final boolean pushAllowFds(boolean allowFds) {
402        return nativePushAllowFds(mNativePtr, allowFds);
403    }
404
405    /** @hide */
406    public final void restoreAllowFds(boolean lastValue) {
407        nativeRestoreAllowFds(mNativePtr, lastValue);
408    }
409
410    /**
411     * Returns the raw bytes of the parcel.
412     *
413     * <p class="note">The data you retrieve here <strong>must not</strong>
414     * be placed in any kind of persistent storage (on local disk, across
415     * a network, etc).  For that, you should use standard serialization
416     * or another kind of general serialization mechanism.  The Parcel
417     * marshalled representation is highly optimized for local IPC, and as
418     * such does not attempt to maintain compatibility with data created
419     * in different versions of the platform.
420     */
421    public final byte[] marshall() {
422        return nativeMarshall(mNativePtr);
423    }
424
425    /**
426     * Set the bytes in data to be the raw bytes of this Parcel.
427     */
428    public final void unmarshall(byte[] data, int offest, int length) {
429        nativeUnmarshall(mNativePtr, data, offest, length);
430    }
431
432    public final void appendFrom(Parcel parcel, int offset, int length) {
433        nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length);
434    }
435
436    /**
437     * Report whether the parcel contains any marshalled file descriptors.
438     */
439    public final boolean hasFileDescriptors() {
440        return nativeHasFileDescriptors(mNativePtr);
441    }
442
443    /**
444     * Store or read an IBinder interface token in the parcel at the current
445     * {@link #dataPosition}.  This is used to validate that the marshalled
446     * transaction is intended for the target interface.
447     */
448    public final void writeInterfaceToken(String interfaceName) {
449        nativeWriteInterfaceToken(mNativePtr, interfaceName);
450    }
451
452    public final void enforceInterface(String interfaceName) {
453        nativeEnforceInterface(mNativePtr, interfaceName);
454    }
455
456    /**
457     * Write a byte array into the parcel at the current {@link #dataPosition},
458     * growing {@link #dataCapacity} if needed.
459     * @param b Bytes to place into the parcel.
460     */
461    public final void writeByteArray(byte[] b) {
462        writeByteArray(b, 0, (b != null) ? b.length : 0);
463    }
464
465    /**
466     * Write a byte array into the parcel at the current {@link #dataPosition},
467     * growing {@link #dataCapacity} if needed.
468     * @param b Bytes to place into the parcel.
469     * @param offset Index of first byte to be written.
470     * @param len Number of bytes to write.
471     */
472    public final void writeByteArray(byte[] b, int offset, int len) {
473        if (b == null) {
474            writeInt(-1);
475            return;
476        }
477        Arrays.checkOffsetAndCount(b.length, offset, len);
478        nativeWriteByteArray(mNativePtr, b, offset, len);
479    }
480
481    /**
482     * Write an integer value into the parcel at the current dataPosition(),
483     * growing dataCapacity() if needed.
484     */
485    public final void writeInt(int val) {
486        nativeWriteInt(mNativePtr, val);
487    }
488
489    /**
490     * Write a long integer value into the parcel at the current dataPosition(),
491     * growing dataCapacity() if needed.
492     */
493    public final void writeLong(long val) {
494        nativeWriteLong(mNativePtr, val);
495    }
496
497    /**
498     * Write a floating point value into the parcel at the current
499     * dataPosition(), growing dataCapacity() if needed.
500     */
501    public final void writeFloat(float val) {
502        nativeWriteFloat(mNativePtr, val);
503    }
504
505    /**
506     * Write a double precision floating point value into the parcel at the
507     * current dataPosition(), growing dataCapacity() if needed.
508     */
509    public final void writeDouble(double val) {
510        nativeWriteDouble(mNativePtr, val);
511    }
512
513    /**
514     * Write a string value into the parcel at the current dataPosition(),
515     * growing dataCapacity() if needed.
516     */
517    public final void writeString(String val) {
518        nativeWriteString(mNativePtr, val);
519    }
520
521    /**
522     * Write a CharSequence value into the parcel at the current dataPosition(),
523     * growing dataCapacity() if needed.
524     * @hide
525     */
526    public final void writeCharSequence(CharSequence val) {
527        TextUtils.writeToParcel(val, this, 0);
528    }
529
530    /**
531     * Write an object into the parcel at the current dataPosition(),
532     * growing dataCapacity() if needed.
533     */
534    public final void writeStrongBinder(IBinder val) {
535        nativeWriteStrongBinder(mNativePtr, val);
536    }
537
538    /**
539     * Write an object into the parcel at the current dataPosition(),
540     * growing dataCapacity() if needed.
541     */
542    public final void writeStrongInterface(IInterface val) {
543        writeStrongBinder(val == null ? null : val.asBinder());
544    }
545
546    /**
547     * Write a FileDescriptor into the parcel at the current dataPosition(),
548     * growing dataCapacity() if needed.
549     *
550     * <p class="caution">The file descriptor will not be closed, which may
551     * result in file descriptor leaks when objects are returned from Binder
552     * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
553     * accepts contextual flags and will close the original file descriptor
554     * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
555     */
556    public final void writeFileDescriptor(FileDescriptor val) {
557        nativeWriteFileDescriptor(mNativePtr, val);
558    }
559
560    /**
561     * Write a byte value into the parcel at the current dataPosition(),
562     * growing dataCapacity() if needed.
563     */
564    public final void writeByte(byte val) {
565        writeInt(val);
566    }
567
568    /**
569     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
570     * at the current dataPosition(),
571     * growing dataCapacity() if needed.  The Map keys must be String objects.
572     * The Map values are written using {@link #writeValue} and must follow
573     * the specification there.
574     *
575     * <p>It is strongly recommended to use {@link #writeBundle} instead of
576     * this method, since the Bundle class provides a type-safe API that
577     * allows you to avoid mysterious type errors at the point of marshalling.
578     */
579    public final void writeMap(Map val) {
580        writeMapInternal((Map<String, Object>) val);
581    }
582
583    /**
584     * Flatten a Map into the parcel at the current dataPosition(),
585     * growing dataCapacity() if needed.  The Map keys must be String objects.
586     */
587    /* package */ void writeMapInternal(Map<String,Object> val) {
588        if (val == null) {
589            writeInt(-1);
590            return;
591        }
592        Set<Map.Entry<String,Object>> entries = val.entrySet();
593        writeInt(entries.size());
594        for (Map.Entry<String,Object> e : entries) {
595            writeValue(e.getKey());
596            writeValue(e.getValue());
597        }
598    }
599
600    /**
601     * Flatten an ArrayMap into the parcel at the current dataPosition(),
602     * growing dataCapacity() if needed.  The Map keys must be String objects.
603     */
604    /* package */ void writeArrayMapInternal(ArrayMap<String,Object> val) {
605        if (val == null) {
606            writeInt(-1);
607            return;
608        }
609        final int N = val.size();
610        writeInt(N);
611        if (DEBUG_ARRAY_MAP) {
612            RuntimeException here =  new RuntimeException("here");
613            here.fillInStackTrace();
614            Log.d(TAG, "Writing " + N + " ArrayMap entries", here);
615        }
616        int startPos;
617        for (int i=0; i<N; i++) {
618            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
619            writeValue(val.keyAt(i));
620            writeValue(val.valueAt(i));
621            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Write #" + i + " "
622                    + (dataPosition()-startPos) + " bytes: key=0x"
623                    + Integer.toHexString(val.keyAt(i) != null ? val.keyAt(i).hashCode() : 0)
624                    + " " + val.keyAt(i));
625        }
626    }
627
628    /**
629     * Flatten a Bundle into the parcel at the current dataPosition(),
630     * growing dataCapacity() if needed.
631     */
632    public final void writeBundle(Bundle val) {
633        if (val == null) {
634            writeInt(-1);
635            return;
636        }
637
638        val.writeToParcel(this, 0);
639    }
640
641    /**
642     * Flatten a PersistableBundle into the parcel at the current dataPosition(),
643     * growing dataCapacity() if needed.
644     */
645    public final void writePersistableBundle(PersistableBundle val) {
646        if (val == null) {
647            writeInt(-1);
648            return;
649        }
650
651        val.writeToParcel(this, 0);
652    }
653
654    /**
655     * Flatten a List into the parcel at the current dataPosition(), growing
656     * dataCapacity() if needed.  The List values are written using
657     * {@link #writeValue} and must follow the specification there.
658     */
659    public final void writeList(List val) {
660        if (val == null) {
661            writeInt(-1);
662            return;
663        }
664        int N = val.size();
665        int i=0;
666        writeInt(N);
667        while (i < N) {
668            writeValue(val.get(i));
669            i++;
670        }
671    }
672
673    /**
674     * Flatten an Object array into the parcel at the current dataPosition(),
675     * growing dataCapacity() if needed.  The array values are written using
676     * {@link #writeValue} and must follow the specification there.
677     */
678    public final void writeArray(Object[] val) {
679        if (val == null) {
680            writeInt(-1);
681            return;
682        }
683        int N = val.length;
684        int i=0;
685        writeInt(N);
686        while (i < N) {
687            writeValue(val[i]);
688            i++;
689        }
690    }
691
692    /**
693     * Flatten a generic SparseArray into the parcel at the current
694     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
695     * values are written using {@link #writeValue} and must follow the
696     * specification there.
697     */
698    public final void writeSparseArray(SparseArray<Object> val) {
699        if (val == null) {
700            writeInt(-1);
701            return;
702        }
703        int N = val.size();
704        writeInt(N);
705        int i=0;
706        while (i < N) {
707            writeInt(val.keyAt(i));
708            writeValue(val.valueAt(i));
709            i++;
710        }
711    }
712
713    public final void writeSparseBooleanArray(SparseBooleanArray val) {
714        if (val == null) {
715            writeInt(-1);
716            return;
717        }
718        int N = val.size();
719        writeInt(N);
720        int i=0;
721        while (i < N) {
722            writeInt(val.keyAt(i));
723            writeByte((byte)(val.valueAt(i) ? 1 : 0));
724            i++;
725        }
726    }
727
728    public final void writeBooleanArray(boolean[] val) {
729        if (val != null) {
730            int N = val.length;
731            writeInt(N);
732            for (int i=0; i<N; i++) {
733                writeInt(val[i] ? 1 : 0);
734            }
735        } else {
736            writeInt(-1);
737        }
738    }
739
740    public final boolean[] createBooleanArray() {
741        int N = readInt();
742        // >>2 as a fast divide-by-4 works in the create*Array() functions
743        // because dataAvail() will never return a negative number.  4 is
744        // the size of a stored boolean in the stream.
745        if (N >= 0 && N <= (dataAvail() >> 2)) {
746            boolean[] val = new boolean[N];
747            for (int i=0; i<N; i++) {
748                val[i] = readInt() != 0;
749            }
750            return val;
751        } else {
752            return null;
753        }
754    }
755
756    public final void readBooleanArray(boolean[] val) {
757        int N = readInt();
758        if (N == val.length) {
759            for (int i=0; i<N; i++) {
760                val[i] = readInt() != 0;
761            }
762        } else {
763            throw new RuntimeException("bad array lengths");
764        }
765    }
766
767    public final void writeCharArray(char[] val) {
768        if (val != null) {
769            int N = val.length;
770            writeInt(N);
771            for (int i=0; i<N; i++) {
772                writeInt((int)val[i]);
773            }
774        } else {
775            writeInt(-1);
776        }
777    }
778
779    public final char[] createCharArray() {
780        int N = readInt();
781        if (N >= 0 && N <= (dataAvail() >> 2)) {
782            char[] val = new char[N];
783            for (int i=0; i<N; i++) {
784                val[i] = (char)readInt();
785            }
786            return val;
787        } else {
788            return null;
789        }
790    }
791
792    public final void readCharArray(char[] val) {
793        int N = readInt();
794        if (N == val.length) {
795            for (int i=0; i<N; i++) {
796                val[i] = (char)readInt();
797            }
798        } else {
799            throw new RuntimeException("bad array lengths");
800        }
801    }
802
803    public final void writeIntArray(int[] val) {
804        if (val != null) {
805            int N = val.length;
806            writeInt(N);
807            for (int i=0; i<N; i++) {
808                writeInt(val[i]);
809            }
810        } else {
811            writeInt(-1);
812        }
813    }
814
815    public final int[] createIntArray() {
816        int N = readInt();
817        if (N >= 0 && N <= (dataAvail() >> 2)) {
818            int[] val = new int[N];
819            for (int i=0; i<N; i++) {
820                val[i] = readInt();
821            }
822            return val;
823        } else {
824            return null;
825        }
826    }
827
828    public final void readIntArray(int[] val) {
829        int N = readInt();
830        if (N == val.length) {
831            for (int i=0; i<N; i++) {
832                val[i] = readInt();
833            }
834        } else {
835            throw new RuntimeException("bad array lengths");
836        }
837    }
838
839    public final void writeLongArray(long[] val) {
840        if (val != null) {
841            int N = val.length;
842            writeInt(N);
843            for (int i=0; i<N; i++) {
844                writeLong(val[i]);
845            }
846        } else {
847            writeInt(-1);
848        }
849    }
850
851    public final long[] createLongArray() {
852        int N = readInt();
853        // >>3 because stored longs are 64 bits
854        if (N >= 0 && N <= (dataAvail() >> 3)) {
855            long[] val = new long[N];
856            for (int i=0; i<N; i++) {
857                val[i] = readLong();
858            }
859            return val;
860        } else {
861            return null;
862        }
863    }
864
865    public final void readLongArray(long[] val) {
866        int N = readInt();
867        if (N == val.length) {
868            for (int i=0; i<N; i++) {
869                val[i] = readLong();
870            }
871        } else {
872            throw new RuntimeException("bad array lengths");
873        }
874    }
875
876    public final void writeFloatArray(float[] val) {
877        if (val != null) {
878            int N = val.length;
879            writeInt(N);
880            for (int i=0; i<N; i++) {
881                writeFloat(val[i]);
882            }
883        } else {
884            writeInt(-1);
885        }
886    }
887
888    public final float[] createFloatArray() {
889        int N = readInt();
890        // >>2 because stored floats are 4 bytes
891        if (N >= 0 && N <= (dataAvail() >> 2)) {
892            float[] val = new float[N];
893            for (int i=0; i<N; i++) {
894                val[i] = readFloat();
895            }
896            return val;
897        } else {
898            return null;
899        }
900    }
901
902    public final void readFloatArray(float[] val) {
903        int N = readInt();
904        if (N == val.length) {
905            for (int i=0; i<N; i++) {
906                val[i] = readFloat();
907            }
908        } else {
909            throw new RuntimeException("bad array lengths");
910        }
911    }
912
913    public final void writeDoubleArray(double[] val) {
914        if (val != null) {
915            int N = val.length;
916            writeInt(N);
917            for (int i=0; i<N; i++) {
918                writeDouble(val[i]);
919            }
920        } else {
921            writeInt(-1);
922        }
923    }
924
925    public final double[] createDoubleArray() {
926        int N = readInt();
927        // >>3 because stored doubles are 8 bytes
928        if (N >= 0 && N <= (dataAvail() >> 3)) {
929            double[] val = new double[N];
930            for (int i=0; i<N; i++) {
931                val[i] = readDouble();
932            }
933            return val;
934        } else {
935            return null;
936        }
937    }
938
939    public final void readDoubleArray(double[] val) {
940        int N = readInt();
941        if (N == val.length) {
942            for (int i=0; i<N; i++) {
943                val[i] = readDouble();
944            }
945        } else {
946            throw new RuntimeException("bad array lengths");
947        }
948    }
949
950    public final void writeStringArray(String[] val) {
951        if (val != null) {
952            int N = val.length;
953            writeInt(N);
954            for (int i=0; i<N; i++) {
955                writeString(val[i]);
956            }
957        } else {
958            writeInt(-1);
959        }
960    }
961
962    public final String[] createStringArray() {
963        int N = readInt();
964        if (N >= 0) {
965            String[] val = new String[N];
966            for (int i=0; i<N; i++) {
967                val[i] = readString();
968            }
969            return val;
970        } else {
971            return null;
972        }
973    }
974
975    public final void readStringArray(String[] val) {
976        int N = readInt();
977        if (N == val.length) {
978            for (int i=0; i<N; i++) {
979                val[i] = readString();
980            }
981        } else {
982            throw new RuntimeException("bad array lengths");
983        }
984    }
985
986    public final void writeBinderArray(IBinder[] val) {
987        if (val != null) {
988            int N = val.length;
989            writeInt(N);
990            for (int i=0; i<N; i++) {
991                writeStrongBinder(val[i]);
992            }
993        } else {
994            writeInt(-1);
995        }
996    }
997
998    /**
999     * @hide
1000     */
1001    public final void writeCharSequenceArray(CharSequence[] val) {
1002        if (val != null) {
1003            int N = val.length;
1004            writeInt(N);
1005            for (int i=0; i<N; i++) {
1006                writeCharSequence(val[i]);
1007            }
1008        } else {
1009            writeInt(-1);
1010        }
1011    }
1012
1013    public final IBinder[] createBinderArray() {
1014        int N = readInt();
1015        if (N >= 0) {
1016            IBinder[] val = new IBinder[N];
1017            for (int i=0; i<N; i++) {
1018                val[i] = readStrongBinder();
1019            }
1020            return val;
1021        } else {
1022            return null;
1023        }
1024    }
1025
1026    public final void readBinderArray(IBinder[] val) {
1027        int N = readInt();
1028        if (N == val.length) {
1029            for (int i=0; i<N; i++) {
1030                val[i] = readStrongBinder();
1031            }
1032        } else {
1033            throw new RuntimeException("bad array lengths");
1034        }
1035    }
1036
1037    /**
1038     * Flatten a List containing a particular object type into the parcel, at
1039     * the current dataPosition() and growing dataCapacity() if needed.  The
1040     * type of the objects in the list must be one that implements Parcelable.
1041     * Unlike the generic writeList() method, however, only the raw data of the
1042     * objects is written and not their type, so you must use the corresponding
1043     * readTypedList() to unmarshall them.
1044     *
1045     * @param val The list of objects to be written.
1046     *
1047     * @see #createTypedArrayList
1048     * @see #readTypedList
1049     * @see Parcelable
1050     */
1051    public final <T extends Parcelable> void writeTypedList(List<T> val) {
1052        if (val == null) {
1053            writeInt(-1);
1054            return;
1055        }
1056        int N = val.size();
1057        int i=0;
1058        writeInt(N);
1059        while (i < N) {
1060            T item = val.get(i);
1061            if (item != null) {
1062                writeInt(1);
1063                item.writeToParcel(this, 0);
1064            } else {
1065                writeInt(0);
1066            }
1067            i++;
1068        }
1069    }
1070
1071    /**
1072     * Flatten a List containing String objects into the parcel, at
1073     * the current dataPosition() and growing dataCapacity() if needed.  They
1074     * can later be retrieved with {@link #createStringArrayList} or
1075     * {@link #readStringList}.
1076     *
1077     * @param val The list of strings to be written.
1078     *
1079     * @see #createStringArrayList
1080     * @see #readStringList
1081     */
1082    public final void writeStringList(List<String> val) {
1083        if (val == null) {
1084            writeInt(-1);
1085            return;
1086        }
1087        int N = val.size();
1088        int i=0;
1089        writeInt(N);
1090        while (i < N) {
1091            writeString(val.get(i));
1092            i++;
1093        }
1094    }
1095
1096    /**
1097     * Flatten a List containing IBinder objects into the parcel, at
1098     * the current dataPosition() and growing dataCapacity() if needed.  They
1099     * can later be retrieved with {@link #createBinderArrayList} or
1100     * {@link #readBinderList}.
1101     *
1102     * @param val The list of strings to be written.
1103     *
1104     * @see #createBinderArrayList
1105     * @see #readBinderList
1106     */
1107    public final void writeBinderList(List<IBinder> val) {
1108        if (val == null) {
1109            writeInt(-1);
1110            return;
1111        }
1112        int N = val.size();
1113        int i=0;
1114        writeInt(N);
1115        while (i < N) {
1116            writeStrongBinder(val.get(i));
1117            i++;
1118        }
1119    }
1120
1121    /**
1122     * Flatten a heterogeneous array containing a particular object type into
1123     * the parcel, at
1124     * the current dataPosition() and growing dataCapacity() if needed.  The
1125     * type of the objects in the array must be one that implements Parcelable.
1126     * Unlike the {@link #writeParcelableArray} method, however, only the
1127     * raw data of the objects is written and not their type, so you must use
1128     * {@link #readTypedArray} with the correct corresponding
1129     * {@link Parcelable.Creator} implementation to unmarshall them.
1130     *
1131     * @param val The array of objects to be written.
1132     * @param parcelableFlags Contextual flags as per
1133     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1134     *
1135     * @see #readTypedArray
1136     * @see #writeParcelableArray
1137     * @see Parcelable.Creator
1138     */
1139    public final <T extends Parcelable> void writeTypedArray(T[] val,
1140            int parcelableFlags) {
1141        if (val != null) {
1142            int N = val.length;
1143            writeInt(N);
1144            for (int i=0; i<N; i++) {
1145                T item = val[i];
1146                if (item != null) {
1147                    writeInt(1);
1148                    item.writeToParcel(this, parcelableFlags);
1149                } else {
1150                    writeInt(0);
1151                }
1152            }
1153        } else {
1154            writeInt(-1);
1155        }
1156    }
1157
1158    /**
1159     * Flatten a generic object in to a parcel.  The given Object value may
1160     * currently be one of the following types:
1161     *
1162     * <ul>
1163     * <li> null
1164     * <li> String
1165     * <li> Byte
1166     * <li> Short
1167     * <li> Integer
1168     * <li> Long
1169     * <li> Float
1170     * <li> Double
1171     * <li> Boolean
1172     * <li> String[]
1173     * <li> boolean[]
1174     * <li> byte[]
1175     * <li> int[]
1176     * <li> long[]
1177     * <li> Object[] (supporting objects of the same type defined here).
1178     * <li> {@link Bundle}
1179     * <li> Map (as supported by {@link #writeMap}).
1180     * <li> Any object that implements the {@link Parcelable} protocol.
1181     * <li> Parcelable[]
1182     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1183     * <li> List (as supported by {@link #writeList}).
1184     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1185     * <li> {@link IBinder}
1186     * <li> Any object that implements Serializable (but see
1187     *      {@link #writeSerializable} for caveats).  Note that all of the
1188     *      previous types have relatively efficient implementations for
1189     *      writing to a Parcel; having to rely on the generic serialization
1190     *      approach is much less efficient and should be avoided whenever
1191     *      possible.
1192     * </ul>
1193     *
1194     * <p class="caution">{@link Parcelable} objects are written with
1195     * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1196     * serializing objects containing {@link ParcelFileDescriptor}s,
1197     * this may result in file descriptor leaks when they are returned from
1198     * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1199     * should be used).</p>
1200     */
1201    public final void writeValue(Object v) {
1202        if (v == null) {
1203            writeInt(VAL_NULL);
1204        } else if (v instanceof String) {
1205            writeInt(VAL_STRING);
1206            writeString((String) v);
1207        } else if (v instanceof Integer) {
1208            writeInt(VAL_INTEGER);
1209            writeInt((Integer) v);
1210        } else if (v instanceof Map) {
1211            writeInt(VAL_MAP);
1212            writeMap((Map) v);
1213        } else if (v instanceof Bundle) {
1214            // Must be before Parcelable
1215            writeInt(VAL_BUNDLE);
1216            writeBundle((Bundle) v);
1217        } else if (v instanceof Parcelable) {
1218            writeInt(VAL_PARCELABLE);
1219            writeParcelable((Parcelable) v, 0);
1220        } else if (v instanceof Short) {
1221            writeInt(VAL_SHORT);
1222            writeInt(((Short) v).intValue());
1223        } else if (v instanceof Long) {
1224            writeInt(VAL_LONG);
1225            writeLong((Long) v);
1226        } else if (v instanceof Float) {
1227            writeInt(VAL_FLOAT);
1228            writeFloat((Float) v);
1229        } else if (v instanceof Double) {
1230            writeInt(VAL_DOUBLE);
1231            writeDouble((Double) v);
1232        } else if (v instanceof Boolean) {
1233            writeInt(VAL_BOOLEAN);
1234            writeInt((Boolean) v ? 1 : 0);
1235        } else if (v instanceof CharSequence) {
1236            // Must be after String
1237            writeInt(VAL_CHARSEQUENCE);
1238            writeCharSequence((CharSequence) v);
1239        } else if (v instanceof List) {
1240            writeInt(VAL_LIST);
1241            writeList((List) v);
1242        } else if (v instanceof SparseArray) {
1243            writeInt(VAL_SPARSEARRAY);
1244            writeSparseArray((SparseArray) v);
1245        } else if (v instanceof boolean[]) {
1246            writeInt(VAL_BOOLEANARRAY);
1247            writeBooleanArray((boolean[]) v);
1248        } else if (v instanceof byte[]) {
1249            writeInt(VAL_BYTEARRAY);
1250            writeByteArray((byte[]) v);
1251        } else if (v instanceof String[]) {
1252            writeInt(VAL_STRINGARRAY);
1253            writeStringArray((String[]) v);
1254        } else if (v instanceof CharSequence[]) {
1255            // Must be after String[] and before Object[]
1256            writeInt(VAL_CHARSEQUENCEARRAY);
1257            writeCharSequenceArray((CharSequence[]) v);
1258        } else if (v instanceof IBinder) {
1259            writeInt(VAL_IBINDER);
1260            writeStrongBinder((IBinder) v);
1261        } else if (v instanceof Parcelable[]) {
1262            writeInt(VAL_PARCELABLEARRAY);
1263            writeParcelableArray((Parcelable[]) v, 0);
1264        } else if (v instanceof int[]) {
1265            writeInt(VAL_INTARRAY);
1266            writeIntArray((int[]) v);
1267        } else if (v instanceof long[]) {
1268            writeInt(VAL_LONGARRAY);
1269            writeLongArray((long[]) v);
1270        } else if (v instanceof Byte) {
1271            writeInt(VAL_BYTE);
1272            writeInt((Byte) v);
1273        } else if (v instanceof PersistableBundle) {
1274            writeInt(VAL_PERSISTABLEBUNDLE);
1275            writePersistableBundle((PersistableBundle) v);
1276        } else {
1277            Class<?> clazz = v.getClass();
1278            if (clazz.isArray() && clazz.getComponentType() == Object.class) {
1279                // Only pure Object[] are written here, Other arrays of non-primitive types are
1280                // handled by serialization as this does not record the component type.
1281                writeInt(VAL_OBJECTARRAY);
1282                writeArray((Object[]) v);
1283            } else if (v instanceof Serializable) {
1284                // Must be last
1285                writeInt(VAL_SERIALIZABLE);
1286                writeSerializable((Serializable) v);
1287            } else {
1288                throw new RuntimeException("Parcel: unable to marshal value " + v);
1289            }
1290        }
1291    }
1292
1293    /**
1294     * Flatten the name of the class of the Parcelable and its contents
1295     * into the parcel.
1296     *
1297     * @param p The Parcelable object to be written.
1298     * @param parcelableFlags Contextual flags as per
1299     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1300     */
1301    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1302        if (p == null) {
1303            writeString(null);
1304            return;
1305        }
1306        String name = p.getClass().getName();
1307        writeString(name);
1308        p.writeToParcel(this, parcelableFlags);
1309    }
1310
1311    /** @hide */
1312    public final void writeParcelableCreator(Parcelable p) {
1313        String name = p.getClass().getName();
1314        writeString(name);
1315    }
1316
1317    /**
1318     * Write a generic serializable object in to a Parcel.  It is strongly
1319     * recommended that this method be avoided, since the serialization
1320     * overhead is extremely large, and this approach will be much slower than
1321     * using the other approaches to writing data in to a Parcel.
1322     */
1323    public final void writeSerializable(Serializable s) {
1324        if (s == null) {
1325            writeString(null);
1326            return;
1327        }
1328        String name = s.getClass().getName();
1329        writeString(name);
1330
1331        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1332        try {
1333            ObjectOutputStream oos = new ObjectOutputStream(baos);
1334            oos.writeObject(s);
1335            oos.close();
1336
1337            writeByteArray(baos.toByteArray());
1338        } catch (IOException ioe) {
1339            throw new RuntimeException("Parcelable encountered " +
1340                "IOException writing serializable object (name = " + name +
1341                ")", ioe);
1342        }
1343    }
1344
1345    /**
1346     * Special function for writing an exception result at the header of
1347     * a parcel, to be used when returning an exception from a transaction.
1348     * Note that this currently only supports a few exception types; any other
1349     * exception will be re-thrown by this function as a RuntimeException
1350     * (to be caught by the system's last-resort exception handling when
1351     * dispatching a transaction).
1352     *
1353     * <p>The supported exception types are:
1354     * <ul>
1355     * <li>{@link BadParcelableException}
1356     * <li>{@link IllegalArgumentException}
1357     * <li>{@link IllegalStateException}
1358     * <li>{@link NullPointerException}
1359     * <li>{@link SecurityException}
1360     * <li>{@link NetworkOnMainThreadException}
1361     * </ul>
1362     *
1363     * @param e The Exception to be written.
1364     *
1365     * @see #writeNoException
1366     * @see #readException
1367     */
1368    public final void writeException(Exception e) {
1369        int code = 0;
1370        if (e instanceof SecurityException) {
1371            code = EX_SECURITY;
1372        } else if (e instanceof BadParcelableException) {
1373            code = EX_BAD_PARCELABLE;
1374        } else if (e instanceof IllegalArgumentException) {
1375            code = EX_ILLEGAL_ARGUMENT;
1376        } else if (e instanceof NullPointerException) {
1377            code = EX_NULL_POINTER;
1378        } else if (e instanceof IllegalStateException) {
1379            code = EX_ILLEGAL_STATE;
1380        } else if (e instanceof NetworkOnMainThreadException) {
1381            code = EX_NETWORK_MAIN_THREAD;
1382        }
1383        writeInt(code);
1384        StrictMode.clearGatheredViolations();
1385        if (code == 0) {
1386            if (e instanceof RuntimeException) {
1387                throw (RuntimeException) e;
1388            }
1389            throw new RuntimeException(e);
1390        }
1391        writeString(e.getMessage());
1392    }
1393
1394    /**
1395     * Special function for writing information at the front of the Parcel
1396     * indicating that no exception occurred.
1397     *
1398     * @see #writeException
1399     * @see #readException
1400     */
1401    public final void writeNoException() {
1402        // Despite the name of this function ("write no exception"),
1403        // it should instead be thought of as "write the RPC response
1404        // header", but because this function name is written out by
1405        // the AIDL compiler, we're not going to rename it.
1406        //
1407        // The response header, in the non-exception case (see also
1408        // writeException above, also called by the AIDL compiler), is
1409        // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1410        // StrictMode has gathered up violations that have occurred
1411        // during a Binder call, in which case we write out the number
1412        // of violations and their details, serialized, before the
1413        // actual RPC respons data.  The receiving end of this is
1414        // readException(), below.
1415        if (StrictMode.hasGatheredViolations()) {
1416            writeInt(EX_HAS_REPLY_HEADER);
1417            final int sizePosition = dataPosition();
1418            writeInt(0);  // total size of fat header, to be filled in later
1419            StrictMode.writeGatheredViolationsToParcel(this);
1420            final int payloadPosition = dataPosition();
1421            setDataPosition(sizePosition);
1422            writeInt(payloadPosition - sizePosition);  // header size
1423            setDataPosition(payloadPosition);
1424        } else {
1425            writeInt(0);
1426        }
1427    }
1428
1429    /**
1430     * Special function for reading an exception result from the header of
1431     * a parcel, to be used after receiving the result of a transaction.  This
1432     * will throw the exception for you if it had been written to the Parcel,
1433     * otherwise return and let you read the normal result data from the Parcel.
1434     *
1435     * @see #writeException
1436     * @see #writeNoException
1437     */
1438    public final void readException() {
1439        int code = readExceptionCode();
1440        if (code != 0) {
1441            String msg = readString();
1442            readException(code, msg);
1443        }
1444    }
1445
1446    /**
1447     * Parses the header of a Binder call's response Parcel and
1448     * returns the exception code.  Deals with lite or fat headers.
1449     * In the common successful case, this header is generally zero.
1450     * In less common cases, it's a small negative number and will be
1451     * followed by an error string.
1452     *
1453     * This exists purely for android.database.DatabaseUtils and
1454     * insulating it from having to handle fat headers as returned by
1455     * e.g. StrictMode-induced RPC responses.
1456     *
1457     * @hide
1458     */
1459    public final int readExceptionCode() {
1460        int code = readInt();
1461        if (code == EX_HAS_REPLY_HEADER) {
1462            int headerSize = readInt();
1463            if (headerSize == 0) {
1464                Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1465            } else {
1466                // Currently the only thing in the header is StrictMode stacks,
1467                // but discussions around event/RPC tracing suggest we might
1468                // put that here too.  If so, switch on sub-header tags here.
1469                // But for now, just parse out the StrictMode stuff.
1470                StrictMode.readAndHandleBinderCallViolations(this);
1471            }
1472            // And fat response headers are currently only used when
1473            // there are no exceptions, so return no error:
1474            return 0;
1475        }
1476        return code;
1477    }
1478
1479    /**
1480     * Throw an exception with the given message. Not intended for use
1481     * outside the Parcel class.
1482     *
1483     * @param code Used to determine which exception class to throw.
1484     * @param msg The exception message.
1485     */
1486    public final void readException(int code, String msg) {
1487        switch (code) {
1488            case EX_SECURITY:
1489                throw new SecurityException(msg);
1490            case EX_BAD_PARCELABLE:
1491                throw new BadParcelableException(msg);
1492            case EX_ILLEGAL_ARGUMENT:
1493                throw new IllegalArgumentException(msg);
1494            case EX_NULL_POINTER:
1495                throw new NullPointerException(msg);
1496            case EX_ILLEGAL_STATE:
1497                throw new IllegalStateException(msg);
1498            case EX_NETWORK_MAIN_THREAD:
1499                throw new NetworkOnMainThreadException();
1500        }
1501        throw new RuntimeException("Unknown exception code: " + code
1502                + " msg " + msg);
1503    }
1504
1505    /**
1506     * Read an integer value from the parcel at the current dataPosition().
1507     */
1508    public final int readInt() {
1509        return nativeReadInt(mNativePtr);
1510    }
1511
1512    /**
1513     * Read a long integer value from the parcel at the current dataPosition().
1514     */
1515    public final long readLong() {
1516        return nativeReadLong(mNativePtr);
1517    }
1518
1519    /**
1520     * Read a floating point value from the parcel at the current
1521     * dataPosition().
1522     */
1523    public final float readFloat() {
1524        return nativeReadFloat(mNativePtr);
1525    }
1526
1527    /**
1528     * Read a double precision floating point value from the parcel at the
1529     * current dataPosition().
1530     */
1531    public final double readDouble() {
1532        return nativeReadDouble(mNativePtr);
1533    }
1534
1535    /**
1536     * Read a string value from the parcel at the current dataPosition().
1537     */
1538    public final String readString() {
1539        return nativeReadString(mNativePtr);
1540    }
1541
1542    /**
1543     * Read a CharSequence value from the parcel at the current dataPosition().
1544     * @hide
1545     */
1546    public final CharSequence readCharSequence() {
1547        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1548    }
1549
1550    /**
1551     * Read an object from the parcel at the current dataPosition().
1552     */
1553    public final IBinder readStrongBinder() {
1554        return nativeReadStrongBinder(mNativePtr);
1555    }
1556
1557    /**
1558     * Read a FileDescriptor from the parcel at the current dataPosition().
1559     */
1560    public final ParcelFileDescriptor readFileDescriptor() {
1561        FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
1562        return fd != null ? new ParcelFileDescriptor(fd) : null;
1563    }
1564
1565    /** {@hide} */
1566    public final FileDescriptor readRawFileDescriptor() {
1567        return nativeReadFileDescriptor(mNativePtr);
1568    }
1569
1570    /*package*/ static native FileDescriptor openFileDescriptor(String file,
1571            int mode) throws FileNotFoundException;
1572    /*package*/ static native FileDescriptor dupFileDescriptor(FileDescriptor orig)
1573            throws IOException;
1574    /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1575            throws IOException;
1576    /*package*/ static native void clearFileDescriptor(FileDescriptor desc);
1577
1578    /**
1579     * Read a byte value from the parcel at the current dataPosition().
1580     */
1581    public final byte readByte() {
1582        return (byte)(readInt() & 0xff);
1583    }
1584
1585    /**
1586     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1587     * been written with {@link #writeBundle}.  Read into an existing Map object
1588     * from the parcel at the current dataPosition().
1589     */
1590    public final void readMap(Map outVal, ClassLoader loader) {
1591        int N = readInt();
1592        readMapInternal(outVal, N, loader);
1593    }
1594
1595    /**
1596     * Read into an existing List object from the parcel at the current
1597     * dataPosition(), using the given class loader to load any enclosed
1598     * Parcelables.  If it is null, the default class loader is used.
1599     */
1600    public final void readList(List outVal, ClassLoader loader) {
1601        int N = readInt();
1602        readListInternal(outVal, N, loader);
1603    }
1604
1605    /**
1606     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1607     * been written with {@link #writeBundle}.  Read and return a new HashMap
1608     * object from the parcel at the current dataPosition(), using the given
1609     * class loader to load any enclosed Parcelables.  Returns null if
1610     * the previously written map object was null.
1611     */
1612    public final HashMap readHashMap(ClassLoader loader)
1613    {
1614        int N = readInt();
1615        if (N < 0) {
1616            return null;
1617        }
1618        HashMap m = new HashMap(N);
1619        readMapInternal(m, N, loader);
1620        return m;
1621    }
1622
1623    /**
1624     * Read and return a new Bundle object from the parcel at the current
1625     * dataPosition().  Returns null if the previously written Bundle object was
1626     * null.
1627     */
1628    public final Bundle readBundle() {
1629        return readBundle(null);
1630    }
1631
1632    /**
1633     * Read and return a new Bundle object from the parcel at the current
1634     * dataPosition(), using the given class loader to initialize the class
1635     * loader of the Bundle for later retrieval of Parcelable objects.
1636     * Returns null if the previously written Bundle object was null.
1637     */
1638    public final Bundle readBundle(ClassLoader loader) {
1639        int length = readInt();
1640        if (length < 0) {
1641            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1642            return null;
1643        }
1644
1645        final Bundle bundle = new Bundle(this, length);
1646        if (loader != null) {
1647            bundle.setClassLoader(loader);
1648        }
1649        return bundle;
1650    }
1651
1652    /**
1653     * Read and return a new Bundle object from the parcel at the current
1654     * dataPosition().  Returns null if the previously written Bundle object was
1655     * null.
1656     */
1657    public final PersistableBundle readPersistableBundle() {
1658        return readPersistableBundle(null);
1659    }
1660
1661    /**
1662     * Read and return a new Bundle object from the parcel at the current
1663     * dataPosition(), using the given class loader to initialize the class
1664     * loader of the Bundle for later retrieval of Parcelable objects.
1665     * Returns null if the previously written Bundle object was null.
1666     */
1667    public final PersistableBundle readPersistableBundle(ClassLoader loader) {
1668        int length = readInt();
1669        if (length < 0) {
1670            if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1671            return null;
1672        }
1673
1674        final PersistableBundle bundle = new PersistableBundle(this, length);
1675        if (loader != null) {
1676            bundle.setClassLoader(loader);
1677        }
1678        return bundle;
1679    }
1680
1681    /**
1682     * Read and return a byte[] object from the parcel.
1683     */
1684    public final byte[] createByteArray() {
1685        return nativeCreateByteArray(mNativePtr);
1686    }
1687
1688    /**
1689     * Read a byte[] object from the parcel and copy it into the
1690     * given byte array.
1691     */
1692    public final void readByteArray(byte[] val) {
1693        // TODO: make this a native method to avoid the extra copy.
1694        byte[] ba = createByteArray();
1695        if (ba.length == val.length) {
1696           System.arraycopy(ba, 0, val, 0, ba.length);
1697        } else {
1698            throw new RuntimeException("bad array lengths");
1699        }
1700    }
1701
1702    /**
1703     * Read and return a String[] object from the parcel.
1704     * {@hide}
1705     */
1706    public final String[] readStringArray() {
1707        String[] array = null;
1708
1709        int length = readInt();
1710        if (length >= 0)
1711        {
1712            array = new String[length];
1713
1714            for (int i = 0 ; i < length ; i++)
1715            {
1716                array[i] = readString();
1717            }
1718        }
1719
1720        return array;
1721    }
1722
1723    /**
1724     * Read and return a CharSequence[] object from the parcel.
1725     * {@hide}
1726     */
1727    public final CharSequence[] readCharSequenceArray() {
1728        CharSequence[] array = null;
1729
1730        int length = readInt();
1731        if (length >= 0)
1732        {
1733            array = new CharSequence[length];
1734
1735            for (int i = 0 ; i < length ; i++)
1736            {
1737                array[i] = readCharSequence();
1738            }
1739        }
1740
1741        return array;
1742    }
1743
1744    /**
1745     * Read and return a new ArrayList object from the parcel at the current
1746     * dataPosition().  Returns null if the previously written list object was
1747     * null.  The given class loader will be used to load any enclosed
1748     * Parcelables.
1749     */
1750    public final ArrayList readArrayList(ClassLoader loader) {
1751        int N = readInt();
1752        if (N < 0) {
1753            return null;
1754        }
1755        ArrayList l = new ArrayList(N);
1756        readListInternal(l, N, loader);
1757        return l;
1758    }
1759
1760    /**
1761     * Read and return a new Object array from the parcel at the current
1762     * dataPosition().  Returns null if the previously written array was
1763     * null.  The given class loader will be used to load any enclosed
1764     * Parcelables.
1765     */
1766    public final Object[] readArray(ClassLoader loader) {
1767        int N = readInt();
1768        if (N < 0) {
1769            return null;
1770        }
1771        Object[] l = new Object[N];
1772        readArrayInternal(l, N, loader);
1773        return l;
1774    }
1775
1776    /**
1777     * Read and return a new SparseArray object from the parcel at the current
1778     * dataPosition().  Returns null if the previously written list object was
1779     * null.  The given class loader will be used to load any enclosed
1780     * Parcelables.
1781     */
1782    public final SparseArray readSparseArray(ClassLoader loader) {
1783        int N = readInt();
1784        if (N < 0) {
1785            return null;
1786        }
1787        SparseArray sa = new SparseArray(N);
1788        readSparseArrayInternal(sa, N, loader);
1789        return sa;
1790    }
1791
1792    /**
1793     * Read and return a new SparseBooleanArray object from the parcel at the current
1794     * dataPosition().  Returns null if the previously written list object was
1795     * null.
1796     */
1797    public final SparseBooleanArray readSparseBooleanArray() {
1798        int N = readInt();
1799        if (N < 0) {
1800            return null;
1801        }
1802        SparseBooleanArray sa = new SparseBooleanArray(N);
1803        readSparseBooleanArrayInternal(sa, N);
1804        return sa;
1805    }
1806
1807    /**
1808     * Read and return a new ArrayList containing a particular object type from
1809     * the parcel that was written with {@link #writeTypedList} at the
1810     * current dataPosition().  Returns null if the
1811     * previously written list object was null.  The list <em>must</em> have
1812     * previously been written via {@link #writeTypedList} with the same object
1813     * type.
1814     *
1815     * @return A newly created ArrayList containing objects with the same data
1816     *         as those that were previously written.
1817     *
1818     * @see #writeTypedList
1819     */
1820    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
1821        int N = readInt();
1822        if (N < 0) {
1823            return null;
1824        }
1825        ArrayList<T> l = new ArrayList<T>(N);
1826        while (N > 0) {
1827            if (readInt() != 0) {
1828                l.add(c.createFromParcel(this));
1829            } else {
1830                l.add(null);
1831            }
1832            N--;
1833        }
1834        return l;
1835    }
1836
1837    /**
1838     * Read into the given List items containing a particular object type
1839     * that were written with {@link #writeTypedList} at the
1840     * current dataPosition().  The list <em>must</em> have
1841     * previously been written via {@link #writeTypedList} with the same object
1842     * type.
1843     *
1844     * @return A newly created ArrayList containing objects with the same data
1845     *         as those that were previously written.
1846     *
1847     * @see #writeTypedList
1848     */
1849    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
1850        int M = list.size();
1851        int N = readInt();
1852        int i = 0;
1853        for (; i < M && i < N; i++) {
1854            if (readInt() != 0) {
1855                list.set(i, c.createFromParcel(this));
1856            } else {
1857                list.set(i, null);
1858            }
1859        }
1860        for (; i<N; i++) {
1861            if (readInt() != 0) {
1862                list.add(c.createFromParcel(this));
1863            } else {
1864                list.add(null);
1865            }
1866        }
1867        for (; i<M; i++) {
1868            list.remove(N);
1869        }
1870    }
1871
1872    /**
1873     * Read and return a new ArrayList containing String objects from
1874     * the parcel that was written with {@link #writeStringList} at the
1875     * current dataPosition().  Returns null if the
1876     * previously written list object was null.
1877     *
1878     * @return A newly created ArrayList containing strings with the same data
1879     *         as those that were previously written.
1880     *
1881     * @see #writeStringList
1882     */
1883    public final ArrayList<String> createStringArrayList() {
1884        int N = readInt();
1885        if (N < 0) {
1886            return null;
1887        }
1888        ArrayList<String> l = new ArrayList<String>(N);
1889        while (N > 0) {
1890            l.add(readString());
1891            N--;
1892        }
1893        return l;
1894    }
1895
1896    /**
1897     * Read and return a new ArrayList containing IBinder objects from
1898     * the parcel that was written with {@link #writeBinderList} at the
1899     * current dataPosition().  Returns null if the
1900     * previously written list object was null.
1901     *
1902     * @return A newly created ArrayList containing strings with the same data
1903     *         as those that were previously written.
1904     *
1905     * @see #writeBinderList
1906     */
1907    public final ArrayList<IBinder> createBinderArrayList() {
1908        int N = readInt();
1909        if (N < 0) {
1910            return null;
1911        }
1912        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
1913        while (N > 0) {
1914            l.add(readStrongBinder());
1915            N--;
1916        }
1917        return l;
1918    }
1919
1920    /**
1921     * Read into the given List items String objects that were written with
1922     * {@link #writeStringList} at the current dataPosition().
1923     *
1924     * @return A newly created ArrayList containing strings with the same data
1925     *         as those that were previously written.
1926     *
1927     * @see #writeStringList
1928     */
1929    public final void readStringList(List<String> list) {
1930        int M = list.size();
1931        int N = readInt();
1932        int i = 0;
1933        for (; i < M && i < N; i++) {
1934            list.set(i, readString());
1935        }
1936        for (; i<N; i++) {
1937            list.add(readString());
1938        }
1939        for (; i<M; i++) {
1940            list.remove(N);
1941        }
1942    }
1943
1944    /**
1945     * Read into the given List items IBinder objects that were written with
1946     * {@link #writeBinderList} at the current dataPosition().
1947     *
1948     * @return A newly created ArrayList containing strings with the same data
1949     *         as those that were previously written.
1950     *
1951     * @see #writeBinderList
1952     */
1953    public final void readBinderList(List<IBinder> list) {
1954        int M = list.size();
1955        int N = readInt();
1956        int i = 0;
1957        for (; i < M && i < N; i++) {
1958            list.set(i, readStrongBinder());
1959        }
1960        for (; i<N; i++) {
1961            list.add(readStrongBinder());
1962        }
1963        for (; i<M; i++) {
1964            list.remove(N);
1965        }
1966    }
1967
1968    /**
1969     * Read and return a new array containing a particular object type from
1970     * the parcel at the current dataPosition().  Returns null if the
1971     * previously written array was null.  The array <em>must</em> have
1972     * previously been written via {@link #writeTypedArray} with the same
1973     * object type.
1974     *
1975     * @return A newly created array containing objects with the same data
1976     *         as those that were previously written.
1977     *
1978     * @see #writeTypedArray
1979     */
1980    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
1981        int N = readInt();
1982        if (N < 0) {
1983            return null;
1984        }
1985        T[] l = c.newArray(N);
1986        for (int i=0; i<N; i++) {
1987            if (readInt() != 0) {
1988                l[i] = c.createFromParcel(this);
1989            }
1990        }
1991        return l;
1992    }
1993
1994    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
1995        int N = readInt();
1996        if (N == val.length) {
1997            for (int i=0; i<N; i++) {
1998                if (readInt() != 0) {
1999                    val[i] = c.createFromParcel(this);
2000                } else {
2001                    val[i] = null;
2002                }
2003            }
2004        } else {
2005            throw new RuntimeException("bad array lengths");
2006        }
2007    }
2008
2009    /**
2010     * @deprecated
2011     * @hide
2012     */
2013    @Deprecated
2014    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
2015        return createTypedArray(c);
2016    }
2017
2018    /**
2019     * Write a heterogeneous array of Parcelable objects into the Parcel.
2020     * Each object in the array is written along with its class name, so
2021     * that the correct class can later be instantiated.  As a result, this
2022     * has significantly more overhead than {@link #writeTypedArray}, but will
2023     * correctly handle an array containing more than one type of object.
2024     *
2025     * @param value The array of objects to be written.
2026     * @param parcelableFlags Contextual flags as per
2027     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
2028     *
2029     * @see #writeTypedArray
2030     */
2031    public final <T extends Parcelable> void writeParcelableArray(T[] value,
2032            int parcelableFlags) {
2033        if (value != null) {
2034            int N = value.length;
2035            writeInt(N);
2036            for (int i=0; i<N; i++) {
2037                writeParcelable(value[i], parcelableFlags);
2038            }
2039        } else {
2040            writeInt(-1);
2041        }
2042    }
2043
2044    /**
2045     * Read a typed object from a parcel.  The given class loader will be
2046     * used to load any enclosed Parcelables.  If it is null, the default class
2047     * loader will be used.
2048     */
2049    public final Object readValue(ClassLoader loader) {
2050        int type = readInt();
2051
2052        switch (type) {
2053        case VAL_NULL:
2054            return null;
2055
2056        case VAL_STRING:
2057            return readString();
2058
2059        case VAL_INTEGER:
2060            return readInt();
2061
2062        case VAL_MAP:
2063            return readHashMap(loader);
2064
2065        case VAL_PARCELABLE:
2066            return readParcelable(loader);
2067
2068        case VAL_SHORT:
2069            return (short) readInt();
2070
2071        case VAL_LONG:
2072            return readLong();
2073
2074        case VAL_FLOAT:
2075            return readFloat();
2076
2077        case VAL_DOUBLE:
2078            return readDouble();
2079
2080        case VAL_BOOLEAN:
2081            return readInt() == 1;
2082
2083        case VAL_CHARSEQUENCE:
2084            return readCharSequence();
2085
2086        case VAL_LIST:
2087            return readArrayList(loader);
2088
2089        case VAL_BOOLEANARRAY:
2090            return createBooleanArray();
2091
2092        case VAL_BYTEARRAY:
2093            return createByteArray();
2094
2095        case VAL_STRINGARRAY:
2096            return readStringArray();
2097
2098        case VAL_CHARSEQUENCEARRAY:
2099            return readCharSequenceArray();
2100
2101        case VAL_IBINDER:
2102            return readStrongBinder();
2103
2104        case VAL_OBJECTARRAY:
2105            return readArray(loader);
2106
2107        case VAL_INTARRAY:
2108            return createIntArray();
2109
2110        case VAL_LONGARRAY:
2111            return createLongArray();
2112
2113        case VAL_BYTE:
2114            return readByte();
2115
2116        case VAL_SERIALIZABLE:
2117            return readSerializable(loader);
2118
2119        case VAL_PARCELABLEARRAY:
2120            return readParcelableArray(loader);
2121
2122        case VAL_SPARSEARRAY:
2123            return readSparseArray(loader);
2124
2125        case VAL_SPARSEBOOLEANARRAY:
2126            return readSparseBooleanArray();
2127
2128        case VAL_BUNDLE:
2129            return readBundle(loader); // loading will be deferred
2130
2131        case VAL_PERSISTABLEBUNDLE:
2132            return readPersistableBundle(loader);
2133
2134        default:
2135            int off = dataPosition() - 4;
2136            throw new RuntimeException(
2137                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
2138        }
2139    }
2140
2141    /**
2142     * Read and return a new Parcelable from the parcel.  The given class loader
2143     * will be used to load any enclosed Parcelables.  If it is null, the default
2144     * class loader will be used.
2145     * @param loader A ClassLoader from which to instantiate the Parcelable
2146     * object, or null for the default class loader.
2147     * @return Returns the newly created Parcelable, or null if a null
2148     * object has been written.
2149     * @throws BadParcelableException Throws BadParcelableException if there
2150     * was an error trying to instantiate the Parcelable.
2151     */
2152    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
2153        Parcelable.Creator<T> creator = readParcelableCreator(loader);
2154        if (creator == null) {
2155            return null;
2156        }
2157        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2158            return ((Parcelable.ClassLoaderCreator<T>)creator).createFromParcel(this, loader);
2159        }
2160        return creator.createFromParcel(this);
2161    }
2162
2163    /** @hide */
2164    public final <T extends Parcelable> T readCreator(Parcelable.Creator<T> creator,
2165            ClassLoader loader) {
2166        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2167            return ((Parcelable.ClassLoaderCreator<T>)creator).createFromParcel(this, loader);
2168        }
2169        return creator.createFromParcel(this);
2170    }
2171
2172    /** @hide */
2173    public final <T extends Parcelable> Parcelable.Creator<T> readParcelableCreator(
2174            ClassLoader loader) {
2175        String name = readString();
2176        if (name == null) {
2177            return null;
2178        }
2179        Parcelable.Creator<T> creator;
2180        synchronized (mCreators) {
2181            HashMap<String,Parcelable.Creator> map = mCreators.get(loader);
2182            if (map == null) {
2183                map = new HashMap<String,Parcelable.Creator>();
2184                mCreators.put(loader, map);
2185            }
2186            creator = map.get(name);
2187            if (creator == null) {
2188                try {
2189                    Class c = loader == null ?
2190                        Class.forName(name) : Class.forName(name, true, loader);
2191                    Field f = c.getField("CREATOR");
2192                    creator = (Parcelable.Creator)f.get(null);
2193                }
2194                catch (IllegalAccessException e) {
2195                    Log.e(TAG, "Illegal access when unmarshalling: "
2196                                        + name, e);
2197                    throw new BadParcelableException(
2198                            "IllegalAccessException when unmarshalling: " + name);
2199                }
2200                catch (ClassNotFoundException e) {
2201                    Log.e(TAG, "Class not found when unmarshalling: "
2202                                        + name, e);
2203                    throw new BadParcelableException(
2204                            "ClassNotFoundException when unmarshalling: " + name);
2205                }
2206                catch (ClassCastException e) {
2207                    throw new BadParcelableException("Parcelable protocol requires a "
2208                                        + "Parcelable.Creator object called "
2209                                        + " CREATOR on class " + name);
2210                }
2211                catch (NoSuchFieldException e) {
2212                    throw new BadParcelableException("Parcelable protocol requires a "
2213                                        + "Parcelable.Creator object called "
2214                                        + " CREATOR on class " + name);
2215                }
2216                catch (NullPointerException e) {
2217                    throw new BadParcelableException("Parcelable protocol requires "
2218                            + "the CREATOR object to be static on class " + name);
2219                }
2220                if (creator == null) {
2221                    throw new BadParcelableException("Parcelable protocol requires a "
2222                                        + "Parcelable.Creator object called "
2223                                        + " CREATOR on class " + name);
2224                }
2225
2226                map.put(name, creator);
2227            }
2228        }
2229
2230        return creator;
2231    }
2232
2233    /**
2234     * Read and return a new Parcelable array from the parcel.
2235     * The given class loader will be used to load any enclosed
2236     * Parcelables.
2237     * @return the Parcelable array, or null if the array is null
2238     */
2239    public final Parcelable[] readParcelableArray(ClassLoader loader) {
2240        int N = readInt();
2241        if (N < 0) {
2242            return null;
2243        }
2244        Parcelable[] p = new Parcelable[N];
2245        for (int i = 0; i < N; i++) {
2246            p[i] = (Parcelable) readParcelable(loader);
2247        }
2248        return p;
2249    }
2250
2251    /**
2252     * Read and return a new Serializable object from the parcel.
2253     * @return the Serializable object, or null if the Serializable name
2254     * wasn't found in the parcel.
2255     */
2256    public final Serializable readSerializable() {
2257        return readSerializable(null);
2258    }
2259
2260    private final Serializable readSerializable(final ClassLoader loader) {
2261        String name = readString();
2262        if (name == null) {
2263            // For some reason we were unable to read the name of the Serializable (either there
2264            // is nothing left in the Parcel to read, or the next value wasn't a String), so
2265            // return null, which indicates that the name wasn't found in the parcel.
2266            return null;
2267        }
2268
2269        byte[] serializedData = createByteArray();
2270        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2271        try {
2272            ObjectInputStream ois = new ObjectInputStream(bais) {
2273                @Override
2274                protected Class<?> resolveClass(ObjectStreamClass osClass)
2275                        throws IOException, ClassNotFoundException {
2276                    // try the custom classloader if provided
2277                    if (loader != null) {
2278                        Class<?> c = Class.forName(osClass.getName(), false, loader);
2279                        if (c != null) {
2280                            return c;
2281                        }
2282                    }
2283                    return super.resolveClass(osClass);
2284                }
2285            };
2286            return (Serializable) ois.readObject();
2287        } catch (IOException ioe) {
2288            throw new RuntimeException("Parcelable encountered " +
2289                "IOException reading a Serializable object (name = " + name +
2290                ")", ioe);
2291        } catch (ClassNotFoundException cnfe) {
2292            throw new RuntimeException("Parcelable encountered " +
2293                "ClassNotFoundException reading a Serializable object (name = "
2294                + name + ")", cnfe);
2295        }
2296    }
2297
2298    // Cache of previously looked up CREATOR.createFromParcel() methods for
2299    // particular classes.  Keys are the names of the classes, values are
2300    // Method objects.
2301    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>
2302        mCreators = new HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>();
2303
2304    /** @hide for internal use only. */
2305    static protected final Parcel obtain(int obj) {
2306        throw new UnsupportedOperationException();
2307    }
2308
2309    /** @hide */
2310    static protected final Parcel obtain(long obj) {
2311        final Parcel[] pool = sHolderPool;
2312        synchronized (pool) {
2313            Parcel p;
2314            for (int i=0; i<POOL_SIZE; i++) {
2315                p = pool[i];
2316                if (p != null) {
2317                    pool[i] = null;
2318                    if (DEBUG_RECYCLE) {
2319                        p.mStack = new RuntimeException();
2320                    }
2321                    p.init(obj);
2322                    return p;
2323                }
2324            }
2325        }
2326        return new Parcel(obj);
2327    }
2328
2329    private Parcel(long nativePtr) {
2330        if (DEBUG_RECYCLE) {
2331            mStack = new RuntimeException();
2332        }
2333        //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2334        init(nativePtr);
2335    }
2336
2337    private void init(long nativePtr) {
2338        if (nativePtr != 0) {
2339            mNativePtr = nativePtr;
2340            mOwnsNativeParcelObject = false;
2341        } else {
2342            mNativePtr = nativeCreate();
2343            mOwnsNativeParcelObject = true;
2344        }
2345    }
2346
2347    private void freeBuffer() {
2348        if (mOwnsNativeParcelObject) {
2349            nativeFreeBuffer(mNativePtr);
2350        }
2351    }
2352
2353    private void destroy() {
2354        if (mNativePtr != 0) {
2355            if (mOwnsNativeParcelObject) {
2356                nativeDestroy(mNativePtr);
2357            }
2358            mNativePtr = 0;
2359        }
2360    }
2361
2362    @Override
2363    protected void finalize() throws Throwable {
2364        if (DEBUG_RECYCLE) {
2365            if (mStack != null) {
2366                Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
2367            }
2368        }
2369        destroy();
2370    }
2371
2372    /* package */ void readMapInternal(Map outVal, int N,
2373        ClassLoader loader) {
2374        while (N > 0) {
2375            Object key = readValue(loader);
2376            Object value = readValue(loader);
2377            outVal.put(key, value);
2378            N--;
2379        }
2380    }
2381
2382    /* package */ void readArrayMapInternal(ArrayMap outVal, int N,
2383        ClassLoader loader) {
2384        if (DEBUG_ARRAY_MAP) {
2385            RuntimeException here =  new RuntimeException("here");
2386            here.fillInStackTrace();
2387            Log.d(TAG, "Reading " + N + " ArrayMap entries", here);
2388        }
2389        int startPos;
2390        while (N > 0) {
2391            if (DEBUG_ARRAY_MAP) startPos = dataPosition();
2392            Object key = readValue(loader);
2393            Object value = readValue(loader);
2394            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read #" + (N-1) + " "
2395                    + (dataPosition()-startPos) + " bytes: key=0x"
2396                    + Integer.toHexString((key != null ? key.hashCode() : 0)) + " " + key);
2397            outVal.append(key, value);
2398            N--;
2399        }
2400    }
2401
2402    /* package */ void readArrayMapSafelyInternal(ArrayMap outVal, int N,
2403        ClassLoader loader) {
2404        if (DEBUG_ARRAY_MAP) {
2405            RuntimeException here =  new RuntimeException("here");
2406            here.fillInStackTrace();
2407            Log.d(TAG, "Reading safely " + N + " ArrayMap entries", here);
2408        }
2409        while (N > 0) {
2410            Object key = readValue(loader);
2411            if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read safe #" + (N-1) + ": key=0x"
2412                    + (key != null ? key.hashCode() : 0) + " " + key);
2413            Object value = readValue(loader);
2414            outVal.put(key, value);
2415            N--;
2416        }
2417    }
2418
2419    private void readListInternal(List outVal, int N,
2420        ClassLoader loader) {
2421        while (N > 0) {
2422            Object value = readValue(loader);
2423            //Log.d(TAG, "Unmarshalling value=" + value);
2424            outVal.add(value);
2425            N--;
2426        }
2427    }
2428
2429    private void readArrayInternal(Object[] outVal, int N,
2430        ClassLoader loader) {
2431        for (int i = 0; i < N; i++) {
2432            Object value = readValue(loader);
2433            //Log.d(TAG, "Unmarshalling value=" + value);
2434            outVal[i] = value;
2435        }
2436    }
2437
2438    private void readSparseArrayInternal(SparseArray outVal, int N,
2439        ClassLoader loader) {
2440        while (N > 0) {
2441            int key = readInt();
2442            Object value = readValue(loader);
2443            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2444            outVal.append(key, value);
2445            N--;
2446        }
2447    }
2448
2449
2450    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2451        while (N > 0) {
2452            int key = readInt();
2453            boolean value = this.readByte() == 1;
2454            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2455            outVal.append(key, value);
2456            N--;
2457        }
2458    }
2459}
2460