Parcel.java revision d8e1dbb6bc1fbaf4f2e38c3ba92ced94270deaac
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.text.TextUtils;
20import android.util.Log;
21import android.util.SparseArray;
22import android.util.SparseBooleanArray;
23
24import java.io.ByteArrayInputStream;
25import java.io.ByteArrayOutputStream;
26import java.io.FileDescriptor;
27import java.io.FileNotFoundException;
28import java.io.IOException;
29import java.io.ObjectInputStream;
30import java.io.ObjectOutputStream;
31import java.io.Serializable;
32import java.lang.reflect.Field;
33import java.util.ArrayList;
34import java.util.Arrays;
35import java.util.HashMap;
36import java.util.List;
37import java.util.Map;
38import java.util.Set;
39
40/**
41 * Container for a message (data and object references) that can
42 * be sent through an IBinder.  A Parcel can contain both flattened data
43 * that will be unflattened on the other side of the IPC (using the various
44 * methods here for writing specific types, or the general
45 * {@link Parcelable} interface), and references to live {@link IBinder}
46 * objects that will result in the other side receiving a proxy IBinder
47 * connected with the original IBinder in the Parcel.
48 *
49 * <p class="note">Parcel is <strong>not</strong> a general-purpose
50 * serialization mechanism.  This class (and the corresponding
51 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
52 * designed as a high-performance IPC transport.  As such, it is not
53 * appropriate to place any Parcel data in to persistent storage: changes
54 * in the underlying implementation of any of the data in the Parcel can
55 * render older data unreadable.</p>
56 *
57 * <p>The bulk of the Parcel API revolves around reading and writing data
58 * of various types.  There are six major classes of such functions available.</p>
59 *
60 * <h3>Primitives</h3>
61 *
62 * <p>The most basic data functions are for writing and reading primitive
63 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
64 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
65 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
66 * {@link #writeString}, {@link #readString}.  Most other
67 * data operations are built on top of these.  The given data is written and
68 * read using the endianess of the host CPU.</p>
69 *
70 * <h3>Primitive Arrays</h3>
71 *
72 * <p>There are a variety of methods for reading and writing raw arrays
73 * of primitive objects, which generally result in writing a 4-byte length
74 * followed by the primitive data items.  The methods for reading can either
75 * read the data into an existing array, or create and return a new array.
76 * These available types are:</p>
77 *
78 * <ul>
79 * <li> {@link #writeBooleanArray(boolean[])},
80 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
81 * <li> {@link #writeByteArray(byte[])},
82 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
83 * {@link #createByteArray()}
84 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
85 * {@link #createCharArray()}
86 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
87 * {@link #createDoubleArray()}
88 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
89 * {@link #createFloatArray()}
90 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
91 * {@link #createIntArray()}
92 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
93 * {@link #createLongArray()}
94 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
95 * {@link #createStringArray()}.
96 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
97 * {@link #readSparseBooleanArray()}.
98 * </ul>
99 *
100 * <h3>Parcelables</h3>
101 *
102 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
103 * low-level) protocol for objects to write and read themselves from Parcels.
104 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
105 * and {@link #readParcelable(ClassLoader)} or
106 * {@link #writeParcelableArray} and
107 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
108 * methods write both the class type and its data to the Parcel, allowing
109 * that class to be reconstructed from the appropriate class loader when
110 * later reading.</p>
111 *
112 * <p>There are also some methods that provide a more efficient way to work
113 * with Parcelables: {@link #writeTypedArray},
114 * {@link #writeTypedList(List)},
115 * {@link #readTypedArray} and {@link #readTypedList}.  These methods
116 * do not write the class information of the original object: instead, the
117 * caller of the read function must know what type to expect and pass in the
118 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
119 * properly construct the new object and read its data.  (To more efficient
120 * write and read a single Parceable object, you can directly call
121 * {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
122 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
123 * yourself.)</p>
124 *
125 * <h3>Bundles</h3>
126 *
127 * <p>A special type-safe container, called {@link Bundle}, is available
128 * for key/value maps of heterogeneous values.  This has many optimizations
129 * for improved performance when reading and writing data, and its type-safe
130 * API avoids difficult to debug type errors when finally marshalling the
131 * data contents into a Parcel.  The methods to use are
132 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
133 * {@link #readBundle(ClassLoader)}.
134 *
135 * <h3>Active Objects</h3>
136 *
137 * <p>An unusual feature of Parcel is the ability to read and write active
138 * objects.  For these objects the actual contents of the object is not
139 * written, rather a special token referencing the object is written.  When
140 * reading the object back from the Parcel, you do not get a new instance of
141 * the object, but rather a handle that operates on the exact same object that
142 * was originally written.  There are two forms of active objects available.</p>
143 *
144 * <p>{@link Binder} objects are a core facility of Android's general cross-process
145 * communication system.  The {@link IBinder} interface describes an abstract
146 * protocol with a Binder object.  Any such interface can be written in to
147 * a Parcel, and upon reading you will receive either the original object
148 * implementing that interface or a special proxy implementation
149 * that communicates calls back to the original object.  The methods to use are
150 * {@link #writeStrongBinder(IBinder)},
151 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
152 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
153 * {@link #createBinderArray()},
154 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
155 * {@link #createBinderArrayList()}.</p>
156 *
157 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
158 * can be written and {@link ParcelFileDescriptor} objects returned to operate
159 * on the original file descriptor.  The returned file descriptor is a dup
160 * of the original file descriptor: the object and fd is different, but
161 * operating on the same underlying file stream, with the same position, etc.
162 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
163 * {@link #readFileDescriptor()}.
164 *
165 * <h3>Untyped Containers</h3>
166 *
167 * <p>A final class of methods are for writing and reading standard Java
168 * containers of arbitrary types.  These all revolve around the
169 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
170 * which define the types of objects allowed.  The container methods are
171 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
172 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
173 * {@link #readArrayList(ClassLoader)},
174 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
175 * {@link #writeSparseArray(SparseArray)},
176 * {@link #readSparseArray(ClassLoader)}.
177 */
178public final class Parcel {
179    private static final boolean DEBUG_RECYCLE = false;
180    private static final String TAG = "Parcel";
181
182    @SuppressWarnings({"UnusedDeclaration"})
183    private int mNativePtr; // used by native code
184
185    /**
186     * Flag indicating if {@link #mNativePtr} was allocated by this object,
187     * indicating that we're responsible for its lifecycle.
188     */
189    private boolean mOwnsNativeParcelObject;
190
191    private RuntimeException mStack;
192
193    private static final int POOL_SIZE = 6;
194    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
195    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
196
197    private static final int VAL_NULL = -1;
198    private static final int VAL_STRING = 0;
199    private static final int VAL_INTEGER = 1;
200    private static final int VAL_MAP = 2;
201    private static final int VAL_BUNDLE = 3;
202    private static final int VAL_PARCELABLE = 4;
203    private static final int VAL_SHORT = 5;
204    private static final int VAL_LONG = 6;
205    private static final int VAL_FLOAT = 7;
206    private static final int VAL_DOUBLE = 8;
207    private static final int VAL_BOOLEAN = 9;
208    private static final int VAL_CHARSEQUENCE = 10;
209    private static final int VAL_LIST  = 11;
210    private static final int VAL_SPARSEARRAY = 12;
211    private static final int VAL_BYTEARRAY = 13;
212    private static final int VAL_STRINGARRAY = 14;
213    private static final int VAL_IBINDER = 15;
214    private static final int VAL_PARCELABLEARRAY = 16;
215    private static final int VAL_OBJECTARRAY = 17;
216    private static final int VAL_INTARRAY = 18;
217    private static final int VAL_LONGARRAY = 19;
218    private static final int VAL_BYTE = 20;
219    private static final int VAL_SERIALIZABLE = 21;
220    private static final int VAL_SPARSEBOOLEANARRAY = 22;
221    private static final int VAL_BOOLEANARRAY = 23;
222    private static final int VAL_CHARSEQUENCEARRAY = 24;
223
224    // The initial int32 in a Binder call's reply Parcel header:
225    private static final int EX_SECURITY = -1;
226    private static final int EX_BAD_PARCELABLE = -2;
227    private static final int EX_ILLEGAL_ARGUMENT = -3;
228    private static final int EX_NULL_POINTER = -4;
229    private static final int EX_ILLEGAL_STATE = -5;
230    private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
231
232    private static native int nativeDataSize(int nativePtr);
233    private static native int nativeDataAvail(int nativePtr);
234    private static native int nativeDataPosition(int nativePtr);
235    private static native int nativeDataCapacity(int nativePtr);
236    private static native void nativeSetDataSize(int nativePtr, int size);
237    private static native void nativeSetDataPosition(int nativePtr, int pos);
238    private static native void nativeSetDataCapacity(int nativePtr, int size);
239
240    private static native boolean nativePushAllowFds(int nativePtr, boolean allowFds);
241    private static native void nativeRestoreAllowFds(int nativePtr, boolean lastValue);
242
243    private static native void nativeWriteByteArray(int nativePtr, byte[] b, int offset, int len);
244    private static native void nativeWriteInt(int nativePtr, int val);
245    private static native void nativeWriteLong(int nativePtr, long val);
246    private static native void nativeWriteFloat(int nativePtr, float val);
247    private static native void nativeWriteDouble(int nativePtr, double val);
248    private static native void nativeWriteString(int nativePtr, String val);
249    private static native void nativeWriteStrongBinder(int nativePtr, IBinder val);
250    private static native void nativeWriteFileDescriptor(int nativePtr, FileDescriptor val);
251
252    private static native byte[] nativeCreateByteArray(int nativePtr);
253    private static native int nativeReadInt(int nativePtr);
254    private static native long nativeReadLong(int nativePtr);
255    private static native float nativeReadFloat(int nativePtr);
256    private static native double nativeReadDouble(int nativePtr);
257    private static native String nativeReadString(int nativePtr);
258    private static native IBinder nativeReadStrongBinder(int nativePtr);
259    private static native FileDescriptor nativeReadFileDescriptor(int nativePtr);
260
261    private static native int nativeCreate();
262    private static native void nativeFreeBuffer(int nativePtr);
263    private static native void nativeDestroy(int nativePtr);
264
265    private static native byte[] nativeMarshall(int nativePtr);
266    private static native void nativeUnmarshall(
267            int nativePtr, byte[] data, int offest, int length);
268    private static native void nativeAppendFrom(
269            int thisNativePtr, int otherNativePtr, int offset, int length);
270    private static native boolean nativeHasFileDescriptors(int nativePtr);
271    private static native void nativeWriteInterfaceToken(int nativePtr, String interfaceName);
272    private static native void nativeEnforceInterface(int nativePtr, String interfaceName);
273
274    public final static Parcelable.Creator<String> STRING_CREATOR
275             = new Parcelable.Creator<String>() {
276        public String createFromParcel(Parcel source) {
277            return source.readString();
278        }
279        public String[] newArray(int size) {
280            return new String[size];
281        }
282    };
283
284    /**
285     * Retrieve a new Parcel object from the pool.
286     */
287    public static Parcel obtain() {
288        final Parcel[] pool = sOwnedPool;
289        synchronized (pool) {
290            Parcel p;
291            for (int i=0; i<POOL_SIZE; i++) {
292                p = pool[i];
293                if (p != null) {
294                    pool[i] = null;
295                    if (DEBUG_RECYCLE) {
296                        p.mStack = new RuntimeException();
297                    }
298                    return p;
299                }
300            }
301        }
302        return new Parcel(0);
303    }
304
305    /**
306     * Put a Parcel object back into the pool.  You must not touch
307     * the object after this call.
308     */
309    public final void recycle() {
310        if (DEBUG_RECYCLE) mStack = null;
311        freeBuffer();
312
313        final Parcel[] pool;
314        if (mOwnsNativeParcelObject) {
315            pool = sOwnedPool;
316        } else {
317            mNativePtr = 0;
318            pool = sHolderPool;
319        }
320
321        synchronized (pool) {
322            for (int i=0; i<POOL_SIZE; i++) {
323                if (pool[i] == null) {
324                    pool[i] = this;
325                    return;
326                }
327            }
328        }
329    }
330
331    /**
332     * Returns the total amount of data contained in the parcel.
333     */
334    public final int dataSize() {
335        return nativeDataSize(mNativePtr);
336    }
337
338    /**
339     * Returns the amount of data remaining to be read from the
340     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
341     */
342    public final int dataAvail() {
343        return nativeDataAvail(mNativePtr);
344    }
345
346    /**
347     * Returns the current position in the parcel data.  Never
348     * more than {@link #dataSize}.
349     */
350    public final int dataPosition() {
351        return nativeDataPosition(mNativePtr);
352    }
353
354    /**
355     * Returns the total amount of space in the parcel.  This is always
356     * >= {@link #dataSize}.  The difference between it and dataSize() is the
357     * amount of room left until the parcel needs to re-allocate its
358     * data buffer.
359     */
360    public final int dataCapacity() {
361        return nativeDataCapacity(mNativePtr);
362    }
363
364    /**
365     * Change the amount of data in the parcel.  Can be either smaller or
366     * larger than the current size.  If larger than the current capacity,
367     * more memory will be allocated.
368     *
369     * @param size The new number of bytes in the Parcel.
370     */
371    public final void setDataSize(int size) {
372        nativeSetDataSize(mNativePtr, size);
373    }
374
375    /**
376     * Move the current read/write position in the parcel.
377     * @param pos New offset in the parcel; must be between 0 and
378     * {@link #dataSize}.
379     */
380    public final void setDataPosition(int pos) {
381        nativeSetDataPosition(mNativePtr, pos);
382    }
383
384    /**
385     * Change the capacity (current available space) of the parcel.
386     *
387     * @param size The new capacity of the parcel, in bytes.  Can not be
388     * less than {@link #dataSize} -- that is, you can not drop existing data
389     * with this method.
390     */
391    public final void setDataCapacity(int size) {
392        nativeSetDataCapacity(mNativePtr, size);
393    }
394
395    /** @hide */
396    public final boolean pushAllowFds(boolean allowFds) {
397        return nativePushAllowFds(mNativePtr, allowFds);
398    }
399
400    /** @hide */
401    public final void restoreAllowFds(boolean lastValue) {
402        nativeRestoreAllowFds(mNativePtr, lastValue);
403    }
404
405    /**
406     * Returns the raw bytes of the parcel.
407     *
408     * <p class="note">The data you retrieve here <strong>must not</strong>
409     * be placed in any kind of persistent storage (on local disk, across
410     * a network, etc).  For that, you should use standard serialization
411     * or another kind of general serialization mechanism.  The Parcel
412     * marshalled representation is highly optimized for local IPC, and as
413     * such does not attempt to maintain compatibility with data created
414     * in different versions of the platform.
415     */
416    public final byte[] marshall() {
417        return nativeMarshall(mNativePtr);
418    }
419
420    /**
421     * Set the bytes in data to be the raw bytes of this Parcel.
422     */
423    public final void unmarshall(byte[] data, int offest, int length) {
424        nativeUnmarshall(mNativePtr, data, offest, length);
425    }
426
427    public final void appendFrom(Parcel parcel, int offset, int length) {
428        nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length);
429    }
430
431    /**
432     * Report whether the parcel contains any marshalled file descriptors.
433     */
434    public final boolean hasFileDescriptors() {
435        return nativeHasFileDescriptors(mNativePtr);
436    }
437
438    /**
439     * Store or read an IBinder interface token in the parcel at the current
440     * {@link #dataPosition}.  This is used to validate that the marshalled
441     * transaction is intended for the target interface.
442     */
443    public final void writeInterfaceToken(String interfaceName) {
444        nativeWriteInterfaceToken(mNativePtr, interfaceName);
445    }
446
447    public final void enforceInterface(String interfaceName) {
448        nativeEnforceInterface(mNativePtr, interfaceName);
449    }
450
451    /**
452     * Write a byte array into the parcel at the current {@link #dataPosition},
453     * growing {@link #dataCapacity} if needed.
454     * @param b Bytes to place into the parcel.
455     */
456    public final void writeByteArray(byte[] b) {
457        writeByteArray(b, 0, (b != null) ? b.length : 0);
458    }
459
460    /**
461     * Write a byte array into the parcel at the current {@link #dataPosition},
462     * growing {@link #dataCapacity} if needed.
463     * @param b Bytes to place into the parcel.
464     * @param offset Index of first byte to be written.
465     * @param len Number of bytes to write.
466     */
467    public final void writeByteArray(byte[] b, int offset, int len) {
468        if (b == null) {
469            writeInt(-1);
470            return;
471        }
472        Arrays.checkOffsetAndCount(b.length, offset, len);
473        nativeWriteByteArray(mNativePtr, b, offset, len);
474    }
475
476    /**
477     * Write an integer value into the parcel at the current dataPosition(),
478     * growing dataCapacity() if needed.
479     */
480    public final void writeInt(int val) {
481        nativeWriteInt(mNativePtr, val);
482    }
483
484    /**
485     * Write a long integer value into the parcel at the current dataPosition(),
486     * growing dataCapacity() if needed.
487     */
488    public final void writeLong(long val) {
489        nativeWriteLong(mNativePtr, val);
490    }
491
492    /**
493     * Write a floating point value into the parcel at the current
494     * dataPosition(), growing dataCapacity() if needed.
495     */
496    public final void writeFloat(float val) {
497        nativeWriteFloat(mNativePtr, val);
498    }
499
500    /**
501     * Write a double precision floating point value into the parcel at the
502     * current dataPosition(), growing dataCapacity() if needed.
503     */
504    public final void writeDouble(double val) {
505        nativeWriteDouble(mNativePtr, val);
506    }
507
508    /**
509     * Write a string value into the parcel at the current dataPosition(),
510     * growing dataCapacity() if needed.
511     */
512    public final void writeString(String val) {
513        nativeWriteString(mNativePtr, val);
514    }
515
516    /**
517     * Write a CharSequence value into the parcel at the current dataPosition(),
518     * growing dataCapacity() if needed.
519     * @hide
520     */
521    public final void writeCharSequence(CharSequence val) {
522        TextUtils.writeToParcel(val, this, 0);
523    }
524
525    /**
526     * Write an object into the parcel at the current dataPosition(),
527     * growing dataCapacity() if needed.
528     */
529    public final void writeStrongBinder(IBinder val) {
530        nativeWriteStrongBinder(mNativePtr, val);
531    }
532
533    /**
534     * Write an object into the parcel at the current dataPosition(),
535     * growing dataCapacity() if needed.
536     */
537    public final void writeStrongInterface(IInterface val) {
538        writeStrongBinder(val == null ? null : val.asBinder());
539    }
540
541    /**
542     * Write a FileDescriptor into the parcel at the current dataPosition(),
543     * growing dataCapacity() if needed.
544     *
545     * <p class="caution">The file descriptor will not be closed, which may
546     * result in file descriptor leaks when objects are returned from Binder
547     * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
548     * accepts contextual flags and will close the original file descriptor
549     * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
550     */
551    public final void writeFileDescriptor(FileDescriptor val) {
552        nativeWriteFileDescriptor(mNativePtr, val);
553    }
554
555    /**
556     * Write a byte value into the parcel at the current dataPosition(),
557     * growing dataCapacity() if needed.
558     */
559    public final void writeByte(byte val) {
560        writeInt(val);
561    }
562
563    /**
564     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
565     * at the current dataPosition(),
566     * growing dataCapacity() if needed.  The Map keys must be String objects.
567     * The Map values are written using {@link #writeValue} and must follow
568     * the specification there.
569     *
570     * <p>It is strongly recommended to use {@link #writeBundle} instead of
571     * this method, since the Bundle class provides a type-safe API that
572     * allows you to avoid mysterious type errors at the point of marshalling.
573     */
574    public final void writeMap(Map val) {
575        writeMapInternal((Map<String,Object>) val);
576    }
577
578    /**
579     * Flatten a Map into the parcel at the current dataPosition(),
580     * growing dataCapacity() if needed.  The Map keys must be String objects.
581     */
582    /* package */ void writeMapInternal(Map<String,Object> val) {
583        if (val == null) {
584            writeInt(-1);
585            return;
586        }
587        Set<Map.Entry<String,Object>> entries = val.entrySet();
588        writeInt(entries.size());
589        for (Map.Entry<String,Object> e : entries) {
590            writeValue(e.getKey());
591            writeValue(e.getValue());
592        }
593    }
594
595    /**
596     * Flatten a Bundle into the parcel at the current dataPosition(),
597     * growing dataCapacity() if needed.
598     */
599    public final void writeBundle(Bundle val) {
600        if (val == null) {
601            writeInt(-1);
602            return;
603        }
604
605        val.writeToParcel(this, 0);
606    }
607
608    /**
609     * Flatten a List into the parcel at the current dataPosition(), growing
610     * dataCapacity() if needed.  The List values are written using
611     * {@link #writeValue} and must follow the specification there.
612     */
613    public final void writeList(List val) {
614        if (val == null) {
615            writeInt(-1);
616            return;
617        }
618        int N = val.size();
619        int i=0;
620        writeInt(N);
621        while (i < N) {
622            writeValue(val.get(i));
623            i++;
624        }
625    }
626
627    /**
628     * Flatten an Object array into the parcel at the current dataPosition(),
629     * growing dataCapacity() if needed.  The array values are written using
630     * {@link #writeValue} and must follow the specification there.
631     */
632    public final void writeArray(Object[] val) {
633        if (val == null) {
634            writeInt(-1);
635            return;
636        }
637        int N = val.length;
638        int i=0;
639        writeInt(N);
640        while (i < N) {
641            writeValue(val[i]);
642            i++;
643        }
644    }
645
646    /**
647     * Flatten a generic SparseArray into the parcel at the current
648     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
649     * values are written using {@link #writeValue} and must follow the
650     * specification there.
651     */
652    public final void writeSparseArray(SparseArray<Object> val) {
653        if (val == null) {
654            writeInt(-1);
655            return;
656        }
657        int N = val.size();
658        writeInt(N);
659        int i=0;
660        while (i < N) {
661            writeInt(val.keyAt(i));
662            writeValue(val.valueAt(i));
663            i++;
664        }
665    }
666
667    public final void writeSparseBooleanArray(SparseBooleanArray val) {
668        if (val == null) {
669            writeInt(-1);
670            return;
671        }
672        int N = val.size();
673        writeInt(N);
674        int i=0;
675        while (i < N) {
676            writeInt(val.keyAt(i));
677            writeByte((byte)(val.valueAt(i) ? 1 : 0));
678            i++;
679        }
680    }
681
682    public final void writeBooleanArray(boolean[] val) {
683        if (val != null) {
684            int N = val.length;
685            writeInt(N);
686            for (int i=0; i<N; i++) {
687                writeInt(val[i] ? 1 : 0);
688            }
689        } else {
690            writeInt(-1);
691        }
692    }
693
694    public final boolean[] createBooleanArray() {
695        int N = readInt();
696        // >>2 as a fast divide-by-4 works in the create*Array() functions
697        // because dataAvail() will never return a negative number.  4 is
698        // the size of a stored boolean in the stream.
699        if (N >= 0 && N <= (dataAvail() >> 2)) {
700            boolean[] val = new boolean[N];
701            for (int i=0; i<N; i++) {
702                val[i] = readInt() != 0;
703            }
704            return val;
705        } else {
706            return null;
707        }
708    }
709
710    public final void readBooleanArray(boolean[] val) {
711        int N = readInt();
712        if (N == val.length) {
713            for (int i=0; i<N; i++) {
714                val[i] = readInt() != 0;
715            }
716        } else {
717            throw new RuntimeException("bad array lengths");
718        }
719    }
720
721    public final void writeCharArray(char[] val) {
722        if (val != null) {
723            int N = val.length;
724            writeInt(N);
725            for (int i=0; i<N; i++) {
726                writeInt((int)val[i]);
727            }
728        } else {
729            writeInt(-1);
730        }
731    }
732
733    public final char[] createCharArray() {
734        int N = readInt();
735        if (N >= 0 && N <= (dataAvail() >> 2)) {
736            char[] val = new char[N];
737            for (int i=0; i<N; i++) {
738                val[i] = (char)readInt();
739            }
740            return val;
741        } else {
742            return null;
743        }
744    }
745
746    public final void readCharArray(char[] val) {
747        int N = readInt();
748        if (N == val.length) {
749            for (int i=0; i<N; i++) {
750                val[i] = (char)readInt();
751            }
752        } else {
753            throw new RuntimeException("bad array lengths");
754        }
755    }
756
757    public final void writeIntArray(int[] val) {
758        if (val != null) {
759            int N = val.length;
760            writeInt(N);
761            for (int i=0; i<N; i++) {
762                writeInt(val[i]);
763            }
764        } else {
765            writeInt(-1);
766        }
767    }
768
769    public final int[] createIntArray() {
770        int N = readInt();
771        if (N >= 0 && N <= (dataAvail() >> 2)) {
772            int[] val = new int[N];
773            for (int i=0; i<N; i++) {
774                val[i] = readInt();
775            }
776            return val;
777        } else {
778            return null;
779        }
780    }
781
782    public final void readIntArray(int[] val) {
783        int N = readInt();
784        if (N == val.length) {
785            for (int i=0; i<N; i++) {
786                val[i] = readInt();
787            }
788        } else {
789            throw new RuntimeException("bad array lengths");
790        }
791    }
792
793    public final void writeLongArray(long[] val) {
794        if (val != null) {
795            int N = val.length;
796            writeInt(N);
797            for (int i=0; i<N; i++) {
798                writeLong(val[i]);
799            }
800        } else {
801            writeInt(-1);
802        }
803    }
804
805    public final long[] createLongArray() {
806        int N = readInt();
807        // >>3 because stored longs are 64 bits
808        if (N >= 0 && N <= (dataAvail() >> 3)) {
809            long[] val = new long[N];
810            for (int i=0; i<N; i++) {
811                val[i] = readLong();
812            }
813            return val;
814        } else {
815            return null;
816        }
817    }
818
819    public final void readLongArray(long[] val) {
820        int N = readInt();
821        if (N == val.length) {
822            for (int i=0; i<N; i++) {
823                val[i] = readLong();
824            }
825        } else {
826            throw new RuntimeException("bad array lengths");
827        }
828    }
829
830    public final void writeFloatArray(float[] val) {
831        if (val != null) {
832            int N = val.length;
833            writeInt(N);
834            for (int i=0; i<N; i++) {
835                writeFloat(val[i]);
836            }
837        } else {
838            writeInt(-1);
839        }
840    }
841
842    public final float[] createFloatArray() {
843        int N = readInt();
844        // >>2 because stored floats are 4 bytes
845        if (N >= 0 && N <= (dataAvail() >> 2)) {
846            float[] val = new float[N];
847            for (int i=0; i<N; i++) {
848                val[i] = readFloat();
849            }
850            return val;
851        } else {
852            return null;
853        }
854    }
855
856    public final void readFloatArray(float[] val) {
857        int N = readInt();
858        if (N == val.length) {
859            for (int i=0; i<N; i++) {
860                val[i] = readFloat();
861            }
862        } else {
863            throw new RuntimeException("bad array lengths");
864        }
865    }
866
867    public final void writeDoubleArray(double[] val) {
868        if (val != null) {
869            int N = val.length;
870            writeInt(N);
871            for (int i=0; i<N; i++) {
872                writeDouble(val[i]);
873            }
874        } else {
875            writeInt(-1);
876        }
877    }
878
879    public final double[] createDoubleArray() {
880        int N = readInt();
881        // >>3 because stored doubles are 8 bytes
882        if (N >= 0 && N <= (dataAvail() >> 3)) {
883            double[] val = new double[N];
884            for (int i=0; i<N; i++) {
885                val[i] = readDouble();
886            }
887            return val;
888        } else {
889            return null;
890        }
891    }
892
893    public final void readDoubleArray(double[] val) {
894        int N = readInt();
895        if (N == val.length) {
896            for (int i=0; i<N; i++) {
897                val[i] = readDouble();
898            }
899        } else {
900            throw new RuntimeException("bad array lengths");
901        }
902    }
903
904    public final void writeStringArray(String[] val) {
905        if (val != null) {
906            int N = val.length;
907            writeInt(N);
908            for (int i=0; i<N; i++) {
909                writeString(val[i]);
910            }
911        } else {
912            writeInt(-1);
913        }
914    }
915
916    public final String[] createStringArray() {
917        int N = readInt();
918        if (N >= 0) {
919            String[] val = new String[N];
920            for (int i=0; i<N; i++) {
921                val[i] = readString();
922            }
923            return val;
924        } else {
925            return null;
926        }
927    }
928
929    public final void readStringArray(String[] val) {
930        int N = readInt();
931        if (N == val.length) {
932            for (int i=0; i<N; i++) {
933                val[i] = readString();
934            }
935        } else {
936            throw new RuntimeException("bad array lengths");
937        }
938    }
939
940    public final void writeBinderArray(IBinder[] val) {
941        if (val != null) {
942            int N = val.length;
943            writeInt(N);
944            for (int i=0; i<N; i++) {
945                writeStrongBinder(val[i]);
946            }
947        } else {
948            writeInt(-1);
949        }
950    }
951
952    /**
953     * @hide
954     */
955    public final void writeCharSequenceArray(CharSequence[] val) {
956        if (val != null) {
957            int N = val.length;
958            writeInt(N);
959            for (int i=0; i<N; i++) {
960                writeCharSequence(val[i]);
961            }
962        } else {
963            writeInt(-1);
964        }
965    }
966
967    public final IBinder[] createBinderArray() {
968        int N = readInt();
969        if (N >= 0) {
970            IBinder[] val = new IBinder[N];
971            for (int i=0; i<N; i++) {
972                val[i] = readStrongBinder();
973            }
974            return val;
975        } else {
976            return null;
977        }
978    }
979
980    public final void readBinderArray(IBinder[] val) {
981        int N = readInt();
982        if (N == val.length) {
983            for (int i=0; i<N; i++) {
984                val[i] = readStrongBinder();
985            }
986        } else {
987            throw new RuntimeException("bad array lengths");
988        }
989    }
990
991    /**
992     * Flatten a List containing a particular object type into the parcel, at
993     * the current dataPosition() and growing dataCapacity() if needed.  The
994     * type of the objects in the list must be one that implements Parcelable.
995     * Unlike the generic writeList() method, however, only the raw data of the
996     * objects is written and not their type, so you must use the corresponding
997     * readTypedList() to unmarshall them.
998     *
999     * @param val The list of objects to be written.
1000     *
1001     * @see #createTypedArrayList
1002     * @see #readTypedList
1003     * @see Parcelable
1004     */
1005    public final <T extends Parcelable> void writeTypedList(List<T> val) {
1006        if (val == null) {
1007            writeInt(-1);
1008            return;
1009        }
1010        int N = val.size();
1011        int i=0;
1012        writeInt(N);
1013        while (i < N) {
1014            T item = val.get(i);
1015            if (item != null) {
1016                writeInt(1);
1017                item.writeToParcel(this, 0);
1018            } else {
1019                writeInt(0);
1020            }
1021            i++;
1022        }
1023    }
1024
1025    /**
1026     * Flatten a List containing String objects into the parcel, at
1027     * the current dataPosition() and growing dataCapacity() if needed.  They
1028     * can later be retrieved with {@link #createStringArrayList} or
1029     * {@link #readStringList}.
1030     *
1031     * @param val The list of strings to be written.
1032     *
1033     * @see #createStringArrayList
1034     * @see #readStringList
1035     */
1036    public final void writeStringList(List<String> val) {
1037        if (val == null) {
1038            writeInt(-1);
1039            return;
1040        }
1041        int N = val.size();
1042        int i=0;
1043        writeInt(N);
1044        while (i < N) {
1045            writeString(val.get(i));
1046            i++;
1047        }
1048    }
1049
1050    /**
1051     * Flatten a List containing IBinder objects into the parcel, at
1052     * the current dataPosition() and growing dataCapacity() if needed.  They
1053     * can later be retrieved with {@link #createBinderArrayList} or
1054     * {@link #readBinderList}.
1055     *
1056     * @param val The list of strings to be written.
1057     *
1058     * @see #createBinderArrayList
1059     * @see #readBinderList
1060     */
1061    public final void writeBinderList(List<IBinder> val) {
1062        if (val == null) {
1063            writeInt(-1);
1064            return;
1065        }
1066        int N = val.size();
1067        int i=0;
1068        writeInt(N);
1069        while (i < N) {
1070            writeStrongBinder(val.get(i));
1071            i++;
1072        }
1073    }
1074
1075    /**
1076     * Flatten a heterogeneous array containing a particular object type into
1077     * the parcel, at
1078     * the current dataPosition() and growing dataCapacity() if needed.  The
1079     * type of the objects in the array must be one that implements Parcelable.
1080     * Unlike the {@link #writeParcelableArray} method, however, only the
1081     * raw data of the objects is written and not their type, so you must use
1082     * {@link #readTypedArray} with the correct corresponding
1083     * {@link Parcelable.Creator} implementation to unmarshall them.
1084     *
1085     * @param val The array of objects to be written.
1086     * @param parcelableFlags Contextual flags as per
1087     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1088     *
1089     * @see #readTypedArray
1090     * @see #writeParcelableArray
1091     * @see Parcelable.Creator
1092     */
1093    public final <T extends Parcelable> void writeTypedArray(T[] val,
1094            int parcelableFlags) {
1095        if (val != null) {
1096            int N = val.length;
1097            writeInt(N);
1098            for (int i=0; i<N; i++) {
1099                T item = val[i];
1100                if (item != null) {
1101                    writeInt(1);
1102                    item.writeToParcel(this, parcelableFlags);
1103                } else {
1104                    writeInt(0);
1105                }
1106            }
1107        } else {
1108            writeInt(-1);
1109        }
1110    }
1111
1112    /**
1113     * Flatten a generic object in to a parcel.  The given Object value may
1114     * currently be one of the following types:
1115     *
1116     * <ul>
1117     * <li> null
1118     * <li> String
1119     * <li> Byte
1120     * <li> Short
1121     * <li> Integer
1122     * <li> Long
1123     * <li> Float
1124     * <li> Double
1125     * <li> Boolean
1126     * <li> String[]
1127     * <li> boolean[]
1128     * <li> byte[]
1129     * <li> int[]
1130     * <li> long[]
1131     * <li> Object[] (supporting objects of the same type defined here).
1132     * <li> {@link Bundle}
1133     * <li> Map (as supported by {@link #writeMap}).
1134     * <li> Any object that implements the {@link Parcelable} protocol.
1135     * <li> Parcelable[]
1136     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1137     * <li> List (as supported by {@link #writeList}).
1138     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1139     * <li> {@link IBinder}
1140     * <li> Any object that implements Serializable (but see
1141     *      {@link #writeSerializable} for caveats).  Note that all of the
1142     *      previous types have relatively efficient implementations for
1143     *      writing to a Parcel; having to rely on the generic serialization
1144     *      approach is much less efficient and should be avoided whenever
1145     *      possible.
1146     * </ul>
1147     *
1148     * <p class="caution">{@link Parcelable} objects are written with
1149     * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1150     * serializing objects containing {@link ParcelFileDescriptor}s,
1151     * this may result in file descriptor leaks when they are returned from
1152     * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1153     * should be used).</p>
1154     */
1155    public final void writeValue(Object v) {
1156        if (v == null) {
1157            writeInt(VAL_NULL);
1158        } else if (v instanceof String) {
1159            writeInt(VAL_STRING);
1160            writeString((String) v);
1161        } else if (v instanceof Integer) {
1162            writeInt(VAL_INTEGER);
1163            writeInt((Integer) v);
1164        } else if (v instanceof Map) {
1165            writeInt(VAL_MAP);
1166            writeMap((Map) v);
1167        } else if (v instanceof Bundle) {
1168            // Must be before Parcelable
1169            writeInt(VAL_BUNDLE);
1170            writeBundle((Bundle) v);
1171        } else if (v instanceof Parcelable) {
1172            writeInt(VAL_PARCELABLE);
1173            writeParcelable((Parcelable) v, 0);
1174        } else if (v instanceof Short) {
1175            writeInt(VAL_SHORT);
1176            writeInt(((Short) v).intValue());
1177        } else if (v instanceof Long) {
1178            writeInt(VAL_LONG);
1179            writeLong((Long) v);
1180        } else if (v instanceof Float) {
1181            writeInt(VAL_FLOAT);
1182            writeFloat((Float) v);
1183        } else if (v instanceof Double) {
1184            writeInt(VAL_DOUBLE);
1185            writeDouble((Double) v);
1186        } else if (v instanceof Boolean) {
1187            writeInt(VAL_BOOLEAN);
1188            writeInt((Boolean) v ? 1 : 0);
1189        } else if (v instanceof CharSequence) {
1190            // Must be after String
1191            writeInt(VAL_CHARSEQUENCE);
1192            writeCharSequence((CharSequence) v);
1193        } else if (v instanceof List) {
1194            writeInt(VAL_LIST);
1195            writeList((List) v);
1196        } else if (v instanceof SparseArray) {
1197            writeInt(VAL_SPARSEARRAY);
1198            writeSparseArray((SparseArray) v);
1199        } else if (v instanceof boolean[]) {
1200            writeInt(VAL_BOOLEANARRAY);
1201            writeBooleanArray((boolean[]) v);
1202        } else if (v instanceof byte[]) {
1203            writeInt(VAL_BYTEARRAY);
1204            writeByteArray((byte[]) v);
1205        } else if (v instanceof String[]) {
1206            writeInt(VAL_STRINGARRAY);
1207            writeStringArray((String[]) v);
1208        } else if (v instanceof CharSequence[]) {
1209            // Must be after String[] and before Object[]
1210            writeInt(VAL_CHARSEQUENCEARRAY);
1211            writeCharSequenceArray((CharSequence[]) v);
1212        } else if (v instanceof IBinder) {
1213            writeInt(VAL_IBINDER);
1214            writeStrongBinder((IBinder) v);
1215        } else if (v instanceof Parcelable[]) {
1216            writeInt(VAL_PARCELABLEARRAY);
1217            writeParcelableArray((Parcelable[]) v, 0);
1218        } else if (v instanceof Object[]) {
1219            writeInt(VAL_OBJECTARRAY);
1220            writeArray((Object[]) v);
1221        } else if (v instanceof int[]) {
1222            writeInt(VAL_INTARRAY);
1223            writeIntArray((int[]) v);
1224        } else if (v instanceof long[]) {
1225            writeInt(VAL_LONGARRAY);
1226            writeLongArray((long[]) v);
1227        } else if (v instanceof Byte) {
1228            writeInt(VAL_BYTE);
1229            writeInt((Byte) v);
1230        } else if (v instanceof Serializable) {
1231            // Must be last
1232            writeInt(VAL_SERIALIZABLE);
1233            writeSerializable((Serializable) v);
1234        } else {
1235            throw new RuntimeException("Parcel: unable to marshal value " + v);
1236        }
1237    }
1238
1239    /**
1240     * Flatten the name of the class of the Parcelable and its contents
1241     * into the parcel.
1242     *
1243     * @param p The Parcelable object to be written.
1244     * @param parcelableFlags Contextual flags as per
1245     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1246     */
1247    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1248        if (p == null) {
1249            writeString(null);
1250            return;
1251        }
1252        String name = p.getClass().getName();
1253        writeString(name);
1254        p.writeToParcel(this, parcelableFlags);
1255    }
1256
1257    /** @hide */
1258    public final void writeParcelableCreator(Parcelable p) {
1259        String name = p.getClass().getName();
1260        writeString(name);
1261    }
1262
1263    /**
1264     * Write a generic serializable object in to a Parcel.  It is strongly
1265     * recommended that this method be avoided, since the serialization
1266     * overhead is extremely large, and this approach will be much slower than
1267     * using the other approaches to writing data in to a Parcel.
1268     */
1269    public final void writeSerializable(Serializable s) {
1270        if (s == null) {
1271            writeString(null);
1272            return;
1273        }
1274        String name = s.getClass().getName();
1275        writeString(name);
1276
1277        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1278        try {
1279            ObjectOutputStream oos = new ObjectOutputStream(baos);
1280            oos.writeObject(s);
1281            oos.close();
1282
1283            writeByteArray(baos.toByteArray());
1284        } catch (IOException ioe) {
1285            throw new RuntimeException("Parcelable encountered " +
1286                "IOException writing serializable object (name = " + name +
1287                ")", ioe);
1288        }
1289    }
1290
1291    /**
1292     * Special function for writing an exception result at the header of
1293     * a parcel, to be used when returning an exception from a transaction.
1294     * Note that this currently only supports a few exception types; any other
1295     * exception will be re-thrown by this function as a RuntimeException
1296     * (to be caught by the system's last-resort exception handling when
1297     * dispatching a transaction).
1298     *
1299     * <p>The supported exception types are:
1300     * <ul>
1301     * <li>{@link BadParcelableException}
1302     * <li>{@link IllegalArgumentException}
1303     * <li>{@link IllegalStateException}
1304     * <li>{@link NullPointerException}
1305     * <li>{@link SecurityException}
1306     * </ul>
1307     *
1308     * @param e The Exception to be written.
1309     *
1310     * @see #writeNoException
1311     * @see #readException
1312     */
1313    public final void writeException(Exception e) {
1314        int code = 0;
1315        if (e instanceof SecurityException) {
1316            code = EX_SECURITY;
1317        } else if (e instanceof BadParcelableException) {
1318            code = EX_BAD_PARCELABLE;
1319        } else if (e instanceof IllegalArgumentException) {
1320            code = EX_ILLEGAL_ARGUMENT;
1321        } else if (e instanceof NullPointerException) {
1322            code = EX_NULL_POINTER;
1323        } else if (e instanceof IllegalStateException) {
1324            code = EX_ILLEGAL_STATE;
1325        }
1326        writeInt(code);
1327        StrictMode.clearGatheredViolations();
1328        if (code == 0) {
1329            if (e instanceof RuntimeException) {
1330                throw (RuntimeException) e;
1331            }
1332            throw new RuntimeException(e);
1333        }
1334        writeString(e.getMessage());
1335    }
1336
1337    /**
1338     * Special function for writing information at the front of the Parcel
1339     * indicating that no exception occurred.
1340     *
1341     * @see #writeException
1342     * @see #readException
1343     */
1344    public final void writeNoException() {
1345        // Despite the name of this function ("write no exception"),
1346        // it should instead be thought of as "write the RPC response
1347        // header", but because this function name is written out by
1348        // the AIDL compiler, we're not going to rename it.
1349        //
1350        // The response header, in the non-exception case (see also
1351        // writeException above, also called by the AIDL compiler), is
1352        // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1353        // StrictMode has gathered up violations that have occurred
1354        // during a Binder call, in which case we write out the number
1355        // of violations and their details, serialized, before the
1356        // actual RPC respons data.  The receiving end of this is
1357        // readException(), below.
1358        if (StrictMode.hasGatheredViolations()) {
1359            writeInt(EX_HAS_REPLY_HEADER);
1360            final int sizePosition = dataPosition();
1361            writeInt(0);  // total size of fat header, to be filled in later
1362            StrictMode.writeGatheredViolationsToParcel(this);
1363            final int payloadPosition = dataPosition();
1364            setDataPosition(sizePosition);
1365            writeInt(payloadPosition - sizePosition);  // header size
1366            setDataPosition(payloadPosition);
1367        } else {
1368            writeInt(0);
1369        }
1370    }
1371
1372    /**
1373     * Special function for reading an exception result from the header of
1374     * a parcel, to be used after receiving the result of a transaction.  This
1375     * will throw the exception for you if it had been written to the Parcel,
1376     * otherwise return and let you read the normal result data from the Parcel.
1377     *
1378     * @see #writeException
1379     * @see #writeNoException
1380     */
1381    public final void readException() {
1382        int code = readExceptionCode();
1383        if (code != 0) {
1384            String msg = readString();
1385            readException(code, msg);
1386        }
1387    }
1388
1389    /**
1390     * Parses the header of a Binder call's response Parcel and
1391     * returns the exception code.  Deals with lite or fat headers.
1392     * In the common successful case, this header is generally zero.
1393     * In less common cases, it's a small negative number and will be
1394     * followed by an error string.
1395     *
1396     * This exists purely for android.database.DatabaseUtils and
1397     * insulating it from having to handle fat headers as returned by
1398     * e.g. StrictMode-induced RPC responses.
1399     *
1400     * @hide
1401     */
1402    public final int readExceptionCode() {
1403        int code = readInt();
1404        if (code == EX_HAS_REPLY_HEADER) {
1405            int headerSize = readInt();
1406            if (headerSize == 0) {
1407                Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1408            } else {
1409                // Currently the only thing in the header is StrictMode stacks,
1410                // but discussions around event/RPC tracing suggest we might
1411                // put that here too.  If so, switch on sub-header tags here.
1412                // But for now, just parse out the StrictMode stuff.
1413                StrictMode.readAndHandleBinderCallViolations(this);
1414            }
1415            // And fat response headers are currently only used when
1416            // there are no exceptions, so return no error:
1417            return 0;
1418        }
1419        return code;
1420    }
1421
1422    /**
1423     * Use this function for customized exception handling.
1424     * customized method call this method for all unknown case
1425     * @param code exception code
1426     * @param msg exception message
1427     */
1428    public final void readException(int code, String msg) {
1429        switch (code) {
1430            case EX_SECURITY:
1431                throw new SecurityException(msg);
1432            case EX_BAD_PARCELABLE:
1433                throw new BadParcelableException(msg);
1434            case EX_ILLEGAL_ARGUMENT:
1435                throw new IllegalArgumentException(msg);
1436            case EX_NULL_POINTER:
1437                throw new NullPointerException(msg);
1438            case EX_ILLEGAL_STATE:
1439                throw new IllegalStateException(msg);
1440        }
1441        throw new RuntimeException("Unknown exception code: " + code
1442                + " msg " + msg);
1443    }
1444
1445    /**
1446     * Read an integer value from the parcel at the current dataPosition().
1447     */
1448    public final int readInt() {
1449        return nativeReadInt(mNativePtr);
1450    }
1451
1452    /**
1453     * Read a long integer value from the parcel at the current dataPosition().
1454     */
1455    public final long readLong() {
1456        return nativeReadLong(mNativePtr);
1457    }
1458
1459    /**
1460     * Read a floating point value from the parcel at the current
1461     * dataPosition().
1462     */
1463    public final float readFloat() {
1464        return nativeReadFloat(mNativePtr);
1465    }
1466
1467    /**
1468     * Read a double precision floating point value from the parcel at the
1469     * current dataPosition().
1470     */
1471    public final double readDouble() {
1472        return nativeReadDouble(mNativePtr);
1473    }
1474
1475    /**
1476     * Read a string value from the parcel at the current dataPosition().
1477     */
1478    public final String readString() {
1479        return nativeReadString(mNativePtr);
1480    }
1481
1482    /**
1483     * Read a CharSequence value from the parcel at the current dataPosition().
1484     * @hide
1485     */
1486    public final CharSequence readCharSequence() {
1487        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1488    }
1489
1490    /**
1491     * Read an object from the parcel at the current dataPosition().
1492     */
1493    public final IBinder readStrongBinder() {
1494        return nativeReadStrongBinder(mNativePtr);
1495    }
1496
1497    /**
1498     * Read a FileDescriptor from the parcel at the current dataPosition().
1499     */
1500    public final ParcelFileDescriptor readFileDescriptor() {
1501        FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
1502        return fd != null ? new ParcelFileDescriptor(fd) : null;
1503    }
1504
1505    /*package*/ static native FileDescriptor openFileDescriptor(String file,
1506            int mode) throws FileNotFoundException;
1507    /*package*/ static native FileDescriptor dupFileDescriptor(FileDescriptor orig)
1508            throws IOException;
1509    /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1510            throws IOException;
1511    /*package*/ static native void clearFileDescriptor(FileDescriptor desc);
1512
1513    /**
1514     * Read a byte value from the parcel at the current dataPosition().
1515     */
1516    public final byte readByte() {
1517        return (byte)(readInt() & 0xff);
1518    }
1519
1520    /**
1521     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1522     * been written with {@link #writeBundle}.  Read into an existing Map object
1523     * from the parcel at the current dataPosition().
1524     */
1525    public final void readMap(Map outVal, ClassLoader loader) {
1526        int N = readInt();
1527        readMapInternal(outVal, N, loader);
1528    }
1529
1530    /**
1531     * Read into an existing List object from the parcel at the current
1532     * dataPosition(), using the given class loader to load any enclosed
1533     * Parcelables.  If it is null, the default class loader is used.
1534     */
1535    public final void readList(List outVal, ClassLoader loader) {
1536        int N = readInt();
1537        readListInternal(outVal, N, loader);
1538    }
1539
1540    /**
1541     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1542     * been written with {@link #writeBundle}.  Read and return a new HashMap
1543     * object from the parcel at the current dataPosition(), using the given
1544     * class loader to load any enclosed Parcelables.  Returns null if
1545     * the previously written map object was null.
1546     */
1547    public final HashMap readHashMap(ClassLoader loader)
1548    {
1549        int N = readInt();
1550        if (N < 0) {
1551            return null;
1552        }
1553        HashMap m = new HashMap(N);
1554        readMapInternal(m, N, loader);
1555        return m;
1556    }
1557
1558    /**
1559     * Read and return a new Bundle object from the parcel at the current
1560     * dataPosition().  Returns null if the previously written Bundle object was
1561     * null.
1562     */
1563    public final Bundle readBundle() {
1564        return readBundle(null);
1565    }
1566
1567    /**
1568     * Read and return a new Bundle object from the parcel at the current
1569     * dataPosition(), using the given class loader to initialize the class
1570     * loader of the Bundle for later retrieval of Parcelable objects.
1571     * Returns null if the previously written Bundle object was null.
1572     */
1573    public final Bundle readBundle(ClassLoader loader) {
1574        int length = readInt();
1575        if (length < 0) {
1576            return null;
1577        }
1578
1579        final Bundle bundle = new Bundle(this, length);
1580        if (loader != null) {
1581            bundle.setClassLoader(loader);
1582        }
1583        return bundle;
1584    }
1585
1586    /**
1587     * Read and return a byte[] object from the parcel.
1588     */
1589    public final byte[] createByteArray() {
1590        return nativeCreateByteArray(mNativePtr);
1591    }
1592
1593    /**
1594     * Read a byte[] object from the parcel and copy it into the
1595     * given byte array.
1596     */
1597    public final void readByteArray(byte[] val) {
1598        // TODO: make this a native method to avoid the extra copy.
1599        byte[] ba = createByteArray();
1600        if (ba.length == val.length) {
1601           System.arraycopy(ba, 0, val, 0, ba.length);
1602        } else {
1603            throw new RuntimeException("bad array lengths");
1604        }
1605    }
1606
1607    /**
1608     * Read and return a String[] object from the parcel.
1609     * {@hide}
1610     */
1611    public final String[] readStringArray() {
1612        String[] array = null;
1613
1614        int length = readInt();
1615        if (length >= 0)
1616        {
1617            array = new String[length];
1618
1619            for (int i = 0 ; i < length ; i++)
1620            {
1621                array[i] = readString();
1622            }
1623        }
1624
1625        return array;
1626    }
1627
1628    /**
1629     * Read and return a CharSequence[] object from the parcel.
1630     * {@hide}
1631     */
1632    public final CharSequence[] readCharSequenceArray() {
1633        CharSequence[] array = null;
1634
1635        int length = readInt();
1636        if (length >= 0)
1637        {
1638            array = new CharSequence[length];
1639
1640            for (int i = 0 ; i < length ; i++)
1641            {
1642                array[i] = readCharSequence();
1643            }
1644        }
1645
1646        return array;
1647    }
1648
1649    /**
1650     * Read and return a new ArrayList object from the parcel at the current
1651     * dataPosition().  Returns null if the previously written list object was
1652     * null.  The given class loader will be used to load any enclosed
1653     * Parcelables.
1654     */
1655    public final ArrayList readArrayList(ClassLoader loader) {
1656        int N = readInt();
1657        if (N < 0) {
1658            return null;
1659        }
1660        ArrayList l = new ArrayList(N);
1661        readListInternal(l, N, loader);
1662        return l;
1663    }
1664
1665    /**
1666     * Read and return a new Object array from the parcel at the current
1667     * dataPosition().  Returns null if the previously written array was
1668     * null.  The given class loader will be used to load any enclosed
1669     * Parcelables.
1670     */
1671    public final Object[] readArray(ClassLoader loader) {
1672        int N = readInt();
1673        if (N < 0) {
1674            return null;
1675        }
1676        Object[] l = new Object[N];
1677        readArrayInternal(l, N, loader);
1678        return l;
1679    }
1680
1681    /**
1682     * Read and return a new SparseArray object from the parcel at the current
1683     * dataPosition().  Returns null if the previously written list object was
1684     * null.  The given class loader will be used to load any enclosed
1685     * Parcelables.
1686     */
1687    public final SparseArray readSparseArray(ClassLoader loader) {
1688        int N = readInt();
1689        if (N < 0) {
1690            return null;
1691        }
1692        SparseArray sa = new SparseArray(N);
1693        readSparseArrayInternal(sa, N, loader);
1694        return sa;
1695    }
1696
1697    /**
1698     * Read and return a new SparseBooleanArray object from the parcel at the current
1699     * dataPosition().  Returns null if the previously written list object was
1700     * null.
1701     */
1702    public final SparseBooleanArray readSparseBooleanArray() {
1703        int N = readInt();
1704        if (N < 0) {
1705            return null;
1706        }
1707        SparseBooleanArray sa = new SparseBooleanArray(N);
1708        readSparseBooleanArrayInternal(sa, N);
1709        return sa;
1710    }
1711
1712    /**
1713     * Read and return a new ArrayList containing a particular object type from
1714     * the parcel that was written with {@link #writeTypedList} at the
1715     * current dataPosition().  Returns null if the
1716     * previously written list object was null.  The list <em>must</em> have
1717     * previously been written via {@link #writeTypedList} with the same object
1718     * type.
1719     *
1720     * @return A newly created ArrayList containing objects with the same data
1721     *         as those that were previously written.
1722     *
1723     * @see #writeTypedList
1724     */
1725    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
1726        int N = readInt();
1727        if (N < 0) {
1728            return null;
1729        }
1730        ArrayList<T> l = new ArrayList<T>(N);
1731        while (N > 0) {
1732            if (readInt() != 0) {
1733                l.add(c.createFromParcel(this));
1734            } else {
1735                l.add(null);
1736            }
1737            N--;
1738        }
1739        return l;
1740    }
1741
1742    /**
1743     * Read into the given List items containing a particular object type
1744     * that were written with {@link #writeTypedList} at the
1745     * current dataPosition().  The list <em>must</em> have
1746     * previously been written via {@link #writeTypedList} with the same object
1747     * type.
1748     *
1749     * @return A newly created ArrayList containing objects with the same data
1750     *         as those that were previously written.
1751     *
1752     * @see #writeTypedList
1753     */
1754    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
1755        int M = list.size();
1756        int N = readInt();
1757        int i = 0;
1758        for (; i < M && i < N; i++) {
1759            if (readInt() != 0) {
1760                list.set(i, c.createFromParcel(this));
1761            } else {
1762                list.set(i, null);
1763            }
1764        }
1765        for (; i<N; i++) {
1766            if (readInt() != 0) {
1767                list.add(c.createFromParcel(this));
1768            } else {
1769                list.add(null);
1770            }
1771        }
1772        for (; i<M; i++) {
1773            list.remove(N);
1774        }
1775    }
1776
1777    /**
1778     * Read and return a new ArrayList containing String objects from
1779     * the parcel that was written with {@link #writeStringList} at the
1780     * current dataPosition().  Returns null if the
1781     * previously written list object was null.
1782     *
1783     * @return A newly created ArrayList containing strings with the same data
1784     *         as those that were previously written.
1785     *
1786     * @see #writeStringList
1787     */
1788    public final ArrayList<String> createStringArrayList() {
1789        int N = readInt();
1790        if (N < 0) {
1791            return null;
1792        }
1793        ArrayList<String> l = new ArrayList<String>(N);
1794        while (N > 0) {
1795            l.add(readString());
1796            N--;
1797        }
1798        return l;
1799    }
1800
1801    /**
1802     * Read and return a new ArrayList containing IBinder objects from
1803     * the parcel that was written with {@link #writeBinderList} at the
1804     * current dataPosition().  Returns null if the
1805     * previously written list object was null.
1806     *
1807     * @return A newly created ArrayList containing strings with the same data
1808     *         as those that were previously written.
1809     *
1810     * @see #writeBinderList
1811     */
1812    public final ArrayList<IBinder> createBinderArrayList() {
1813        int N = readInt();
1814        if (N < 0) {
1815            return null;
1816        }
1817        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
1818        while (N > 0) {
1819            l.add(readStrongBinder());
1820            N--;
1821        }
1822        return l;
1823    }
1824
1825    /**
1826     * Read into the given List items String objects that were written with
1827     * {@link #writeStringList} at the current dataPosition().
1828     *
1829     * @return A newly created ArrayList containing strings with the same data
1830     *         as those that were previously written.
1831     *
1832     * @see #writeStringList
1833     */
1834    public final void readStringList(List<String> list) {
1835        int M = list.size();
1836        int N = readInt();
1837        int i = 0;
1838        for (; i < M && i < N; i++) {
1839            list.set(i, readString());
1840        }
1841        for (; i<N; i++) {
1842            list.add(readString());
1843        }
1844        for (; i<M; i++) {
1845            list.remove(N);
1846        }
1847    }
1848
1849    /**
1850     * Read into the given List items IBinder objects that were written with
1851     * {@link #writeBinderList} at the current dataPosition().
1852     *
1853     * @return A newly created ArrayList containing strings with the same data
1854     *         as those that were previously written.
1855     *
1856     * @see #writeBinderList
1857     */
1858    public final void readBinderList(List<IBinder> list) {
1859        int M = list.size();
1860        int N = readInt();
1861        int i = 0;
1862        for (; i < M && i < N; i++) {
1863            list.set(i, readStrongBinder());
1864        }
1865        for (; i<N; i++) {
1866            list.add(readStrongBinder());
1867        }
1868        for (; i<M; i++) {
1869            list.remove(N);
1870        }
1871    }
1872
1873    /**
1874     * Read and return a new array containing a particular object type from
1875     * the parcel at the current dataPosition().  Returns null if the
1876     * previously written array was null.  The array <em>must</em> have
1877     * previously been written via {@link #writeTypedArray} with the same
1878     * object type.
1879     *
1880     * @return A newly created array containing objects with the same data
1881     *         as those that were previously written.
1882     *
1883     * @see #writeTypedArray
1884     */
1885    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
1886        int N = readInt();
1887        if (N < 0) {
1888            return null;
1889        }
1890        T[] l = c.newArray(N);
1891        for (int i=0; i<N; i++) {
1892            if (readInt() != 0) {
1893                l[i] = c.createFromParcel(this);
1894            }
1895        }
1896        return l;
1897    }
1898
1899    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
1900        int N = readInt();
1901        if (N == val.length) {
1902            for (int i=0; i<N; i++) {
1903                if (readInt() != 0) {
1904                    val[i] = c.createFromParcel(this);
1905                } else {
1906                    val[i] = null;
1907                }
1908            }
1909        } else {
1910            throw new RuntimeException("bad array lengths");
1911        }
1912    }
1913
1914    /**
1915     * @deprecated
1916     * @hide
1917     */
1918    @Deprecated
1919    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
1920        return createTypedArray(c);
1921    }
1922
1923    /**
1924     * Write a heterogeneous array of Parcelable objects into the Parcel.
1925     * Each object in the array is written along with its class name, so
1926     * that the correct class can later be instantiated.  As a result, this
1927     * has significantly more overhead than {@link #writeTypedArray}, but will
1928     * correctly handle an array containing more than one type of object.
1929     *
1930     * @param value The array of objects to be written.
1931     * @param parcelableFlags Contextual flags as per
1932     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1933     *
1934     * @see #writeTypedArray
1935     */
1936    public final <T extends Parcelable> void writeParcelableArray(T[] value,
1937            int parcelableFlags) {
1938        if (value != null) {
1939            int N = value.length;
1940            writeInt(N);
1941            for (int i=0; i<N; i++) {
1942                writeParcelable(value[i], parcelableFlags);
1943            }
1944        } else {
1945            writeInt(-1);
1946        }
1947    }
1948
1949    /**
1950     * Read a typed object from a parcel.  The given class loader will be
1951     * used to load any enclosed Parcelables.  If it is null, the default class
1952     * loader will be used.
1953     */
1954    public final Object readValue(ClassLoader loader) {
1955        int type = readInt();
1956
1957        switch (type) {
1958        case VAL_NULL:
1959            return null;
1960
1961        case VAL_STRING:
1962            return readString();
1963
1964        case VAL_INTEGER:
1965            return readInt();
1966
1967        case VAL_MAP:
1968            return readHashMap(loader);
1969
1970        case VAL_PARCELABLE:
1971            return readParcelable(loader);
1972
1973        case VAL_SHORT:
1974            return (short) readInt();
1975
1976        case VAL_LONG:
1977            return readLong();
1978
1979        case VAL_FLOAT:
1980            return readFloat();
1981
1982        case VAL_DOUBLE:
1983            return readDouble();
1984
1985        case VAL_BOOLEAN:
1986            return readInt() == 1;
1987
1988        case VAL_CHARSEQUENCE:
1989            return readCharSequence();
1990
1991        case VAL_LIST:
1992            return readArrayList(loader);
1993
1994        case VAL_BOOLEANARRAY:
1995            return createBooleanArray();
1996
1997        case VAL_BYTEARRAY:
1998            return createByteArray();
1999
2000        case VAL_STRINGARRAY:
2001            return readStringArray();
2002
2003        case VAL_CHARSEQUENCEARRAY:
2004            return readCharSequenceArray();
2005
2006        case VAL_IBINDER:
2007            return readStrongBinder();
2008
2009        case VAL_OBJECTARRAY:
2010            return readArray(loader);
2011
2012        case VAL_INTARRAY:
2013            return createIntArray();
2014
2015        case VAL_LONGARRAY:
2016            return createLongArray();
2017
2018        case VAL_BYTE:
2019            return readByte();
2020
2021        case VAL_SERIALIZABLE:
2022            return readSerializable();
2023
2024        case VAL_PARCELABLEARRAY:
2025            return readParcelableArray(loader);
2026
2027        case VAL_SPARSEARRAY:
2028            return readSparseArray(loader);
2029
2030        case VAL_SPARSEBOOLEANARRAY:
2031            return readSparseBooleanArray();
2032
2033        case VAL_BUNDLE:
2034            return readBundle(loader); // loading will be deferred
2035
2036        default:
2037            int off = dataPosition() - 4;
2038            throw new RuntimeException(
2039                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
2040        }
2041    }
2042
2043    /**
2044     * Read and return a new Parcelable from the parcel.  The given class loader
2045     * will be used to load any enclosed Parcelables.  If it is null, the default
2046     * class loader will be used.
2047     * @param loader A ClassLoader from which to instantiate the Parcelable
2048     * object, or null for the default class loader.
2049     * @return Returns the newly created Parcelable, or null if a null
2050     * object has been written.
2051     * @throws BadParcelableException Throws BadParcelableException if there
2052     * was an error trying to instantiate the Parcelable.
2053     */
2054    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
2055        Parcelable.Creator<T> creator = readParcelableCreator(loader);
2056        if (creator == null) {
2057            return null;
2058        }
2059        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2060            return ((Parcelable.ClassLoaderCreator<T>)creator).createFromParcel(this, loader);
2061        }
2062        return creator.createFromParcel(this);
2063    }
2064
2065    /** @hide */
2066    public final <T extends Parcelable> T readCreator(Parcelable.Creator<T> creator,
2067            ClassLoader loader) {
2068        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2069            return ((Parcelable.ClassLoaderCreator<T>)creator).createFromParcel(this, loader);
2070        }
2071        return creator.createFromParcel(this);
2072    }
2073
2074    /** @hide */
2075    public final <T extends Parcelable> Parcelable.Creator<T> readParcelableCreator(
2076            ClassLoader loader) {
2077        String name = readString();
2078        if (name == null) {
2079            return null;
2080        }
2081        Parcelable.Creator<T> creator;
2082        synchronized (mCreators) {
2083            HashMap<String,Parcelable.Creator> map = mCreators.get(loader);
2084            if (map == null) {
2085                map = new HashMap<String,Parcelable.Creator>();
2086                mCreators.put(loader, map);
2087            }
2088            creator = map.get(name);
2089            if (creator == null) {
2090                try {
2091                    Class c = loader == null ?
2092                        Class.forName(name) : Class.forName(name, true, loader);
2093                    Field f = c.getField("CREATOR");
2094                    creator = (Parcelable.Creator)f.get(null);
2095                }
2096                catch (IllegalAccessException e) {
2097                    Log.e(TAG, "Class not found when unmarshalling: "
2098                                        + name + ", e: " + e);
2099                    throw new BadParcelableException(
2100                            "IllegalAccessException when unmarshalling: " + name);
2101                }
2102                catch (ClassNotFoundException e) {
2103                    Log.e(TAG, "Class not found when unmarshalling: "
2104                                        + name + ", e: " + e);
2105                    throw new BadParcelableException(
2106                            "ClassNotFoundException when unmarshalling: " + name);
2107                }
2108                catch (ClassCastException e) {
2109                    throw new BadParcelableException("Parcelable protocol requires a "
2110                                        + "Parcelable.Creator object called "
2111                                        + " CREATOR on class " + name);
2112                }
2113                catch (NoSuchFieldException e) {
2114                    throw new BadParcelableException("Parcelable protocol requires a "
2115                                        + "Parcelable.Creator object called "
2116                                        + " CREATOR on class " + name);
2117                }
2118                catch (NullPointerException e) {
2119                    throw new BadParcelableException("Parcelable protocol requires "
2120                            + "the CREATOR object to be static on class " + name);
2121                }
2122                if (creator == null) {
2123                    throw new BadParcelableException("Parcelable protocol requires a "
2124                                        + "Parcelable.Creator object called "
2125                                        + " CREATOR on class " + name);
2126                }
2127
2128                map.put(name, creator);
2129            }
2130        }
2131
2132        return creator;
2133    }
2134
2135    /**
2136     * Read and return a new Parcelable array from the parcel.
2137     * The given class loader will be used to load any enclosed
2138     * Parcelables.
2139     * @return the Parcelable array, or null if the array is null
2140     */
2141    public final Parcelable[] readParcelableArray(ClassLoader loader) {
2142        int N = readInt();
2143        if (N < 0) {
2144            return null;
2145        }
2146        Parcelable[] p = new Parcelable[N];
2147        for (int i = 0; i < N; i++) {
2148            p[i] = (Parcelable) readParcelable(loader);
2149        }
2150        return p;
2151    }
2152
2153    /**
2154     * Read and return a new Serializable object from the parcel.
2155     * @return the Serializable object, or null if the Serializable name
2156     * wasn't found in the parcel.
2157     */
2158    public final Serializable readSerializable() {
2159        String name = readString();
2160        if (name == null) {
2161            // For some reason we were unable to read the name of the Serializable (either there
2162            // is nothing left in the Parcel to read, or the next value wasn't a String), so
2163            // return null, which indicates that the name wasn't found in the parcel.
2164            return null;
2165        }
2166
2167        byte[] serializedData = createByteArray();
2168        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2169        try {
2170            ObjectInputStream ois = new ObjectInputStream(bais);
2171            return (Serializable) ois.readObject();
2172        } catch (IOException ioe) {
2173            throw new RuntimeException("Parcelable encountered " +
2174                "IOException reading a Serializable object (name = " + name +
2175                ")", ioe);
2176        } catch (ClassNotFoundException cnfe) {
2177            throw new RuntimeException("Parcelable encountered" +
2178                "ClassNotFoundException reading a Serializable object (name = "
2179                + name + ")", cnfe);
2180        }
2181    }
2182
2183    // Cache of previously looked up CREATOR.createFromParcel() methods for
2184    // particular classes.  Keys are the names of the classes, values are
2185    // Method objects.
2186    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>
2187        mCreators = new HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>();
2188
2189    static protected final Parcel obtain(int obj) {
2190        final Parcel[] pool = sHolderPool;
2191        synchronized (pool) {
2192            Parcel p;
2193            for (int i=0; i<POOL_SIZE; i++) {
2194                p = pool[i];
2195                if (p != null) {
2196                    pool[i] = null;
2197                    if (DEBUG_RECYCLE) {
2198                        p.mStack = new RuntimeException();
2199                    }
2200                    p.init(obj);
2201                    return p;
2202                }
2203            }
2204        }
2205        return new Parcel(obj);
2206    }
2207
2208    private Parcel(int nativePtr) {
2209        if (DEBUG_RECYCLE) {
2210            mStack = new RuntimeException();
2211        }
2212        //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2213        init(nativePtr);
2214    }
2215
2216    private void init(int nativePtr) {
2217        if (nativePtr != 0) {
2218            mNativePtr = nativePtr;
2219            mOwnsNativeParcelObject = false;
2220        } else {
2221            mNativePtr = nativeCreate();
2222            mOwnsNativeParcelObject = true;
2223        }
2224    }
2225
2226    private void freeBuffer() {
2227        if (mOwnsNativeParcelObject) {
2228            nativeFreeBuffer(mNativePtr);
2229        }
2230    }
2231
2232    private void destroy() {
2233        if (mNativePtr != 0) {
2234            if (mOwnsNativeParcelObject) {
2235                nativeDestroy(mNativePtr);
2236            }
2237            mNativePtr = 0;
2238        }
2239    }
2240
2241    @Override
2242    protected void finalize() throws Throwable {
2243        if (DEBUG_RECYCLE) {
2244            if (mStack != null) {
2245                Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
2246            }
2247        }
2248        destroy();
2249    }
2250
2251    /* package */ void readMapInternal(Map outVal, int N,
2252        ClassLoader loader) {
2253        while (N > 0) {
2254            Object key = readValue(loader);
2255            Object value = readValue(loader);
2256            outVal.put(key, value);
2257            N--;
2258        }
2259    }
2260
2261    private void readListInternal(List outVal, int N,
2262        ClassLoader loader) {
2263        while (N > 0) {
2264            Object value = readValue(loader);
2265            //Log.d(TAG, "Unmarshalling value=" + value);
2266            outVal.add(value);
2267            N--;
2268        }
2269    }
2270
2271    private void readArrayInternal(Object[] outVal, int N,
2272        ClassLoader loader) {
2273        for (int i = 0; i < N; i++) {
2274            Object value = readValue(loader);
2275            //Log.d(TAG, "Unmarshalling value=" + value);
2276            outVal[i] = value;
2277        }
2278    }
2279
2280    private void readSparseArrayInternal(SparseArray outVal, int N,
2281        ClassLoader loader) {
2282        while (N > 0) {
2283            int key = readInt();
2284            Object value = readValue(loader);
2285            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2286            outVal.append(key, value);
2287            N--;
2288        }
2289    }
2290
2291
2292    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2293        while (N > 0) {
2294            int key = readInt();
2295            boolean value = this.readByte() == 1;
2296            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2297            outVal.append(key, value);
2298            N--;
2299        }
2300    }
2301}
2302