RenderNode.cpp revision a447d29c65fb811cd184775a3476101a1cede929
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_VIEW
18#define LOG_TAG "RenderNode"
19
20#include "RenderNode.h"
21
22#include <algorithm>
23
24#include <SkCanvas.h>
25#include <algorithm>
26
27#include <utils/Trace.h>
28
29#include "DamageAccumulator.h"
30#include "Debug.h"
31#include "DisplayListOp.h"
32#include "DisplayListLogBuffer.h"
33#include "utils/MathUtils.h"
34
35namespace android {
36namespace uirenderer {
37
38void RenderNode::outputLogBuffer(int fd) {
39    DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
40    if (logBuffer.isEmpty()) {
41        return;
42    }
43
44    FILE *file = fdopen(fd, "a");
45
46    fprintf(file, "\nRecent DisplayList operations\n");
47    logBuffer.outputCommands(file);
48
49    String8 cachesLog;
50    Caches::getInstance().dumpMemoryUsage(cachesLog);
51    fprintf(file, "\nCaches:\n%s", cachesLog.string());
52    fprintf(file, "\n");
53
54    fflush(file);
55}
56
57RenderNode::RenderNode()
58        : mDirtyPropertyFields(0)
59        , mNeedsDisplayListDataSync(false)
60        , mDisplayListData(0)
61        , mStagingDisplayListData(0)
62        , mNeedsAnimatorsSync(false) {
63}
64
65RenderNode::~RenderNode() {
66    delete mDisplayListData;
67    delete mStagingDisplayListData;
68}
69
70void RenderNode::setStagingDisplayList(DisplayListData* data) {
71    mNeedsDisplayListDataSync = true;
72    delete mStagingDisplayListData;
73    mStagingDisplayListData = data;
74    if (mStagingDisplayListData) {
75        Caches::getInstance().registerFunctors(mStagingDisplayListData->functorCount);
76    }
77}
78
79/**
80 * This function is a simplified version of replay(), where we simply retrieve and log the
81 * display list. This function should remain in sync with the replay() function.
82 */
83void RenderNode::output(uint32_t level) {
84    ALOGD("%*sStart display list (%p, %s, render=%d)", (level - 1) * 2, "", this,
85            getName(), isRenderable());
86    ALOGD("%*s%s %d", level * 2, "", "Save",
87            SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
88
89    properties().debugOutputProperties(level);
90    int flags = DisplayListOp::kOpLogFlag_Recurse;
91    for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
92        mDisplayListData->displayListOps[i]->output(level, flags);
93    }
94
95    ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, getName());
96}
97
98int RenderNode::getDebugSize() {
99    int size = sizeof(RenderNode);
100    if (mStagingDisplayListData) {
101        size += mStagingDisplayListData->allocator.usedSize();
102    }
103    if (mDisplayListData && mDisplayListData != mStagingDisplayListData) {
104        size += mDisplayListData->allocator.usedSize();
105    }
106    return size;
107}
108
109void RenderNode::prepareTree(TreeInfo& info) {
110    ATRACE_CALL();
111
112    prepareTreeImpl(info);
113}
114
115void RenderNode::damageSelf(TreeInfo& info) {
116    if (isRenderable() && properties().getAlpha() > 0) {
117        if (properties().getClipToBounds()) {
118            info.damageAccumulator->dirty(0, 0, properties().getWidth(), properties().getHeight());
119        } else {
120            // Hope this is big enough?
121            // TODO: Get this from the display list ops or something
122            info.damageAccumulator->dirty(INT_MIN, INT_MIN, INT_MAX, INT_MAX);
123        }
124    }
125}
126
127void RenderNode::prepareTreeImpl(TreeInfo& info) {
128    info.damageAccumulator->pushTransform(this);
129    if (info.mode == TreeInfo::MODE_FULL) {
130        pushStagingChanges(info);
131        evaluateAnimations(info);
132    } else if (info.mode == TreeInfo::MODE_MAYBE_DETACHING) {
133        pushStagingChanges(info);
134    } else if (info.mode == TreeInfo::MODE_RT_ONLY) {
135        evaluateAnimations(info);
136    }
137    prepareSubTree(info, mDisplayListData);
138    info.damageAccumulator->popTransform();
139}
140
141class PushAnimatorsFunctor {
142public:
143    PushAnimatorsFunctor(RenderNode* target, TreeInfo& info)
144            : mTarget(target), mInfo(info) {}
145
146    bool operator() (const sp<BaseRenderNodeAnimator>& animator) {
147        animator->setupStartValueIfNecessary(mTarget, mInfo);
148        return animator->isFinished();
149    }
150private:
151    RenderNode* mTarget;
152    TreeInfo& mInfo;
153};
154
155void RenderNode::pushStagingChanges(TreeInfo& info) {
156    // Push the animators first so that setupStartValueIfNecessary() is called
157    // before properties() is trampled by stagingProperties(), as they are
158    // required by some animators.
159    if (mNeedsAnimatorsSync) {
160        mAnimators.resize(mStagingAnimators.size());
161        std::vector< sp<BaseRenderNodeAnimator> >::iterator it;
162        PushAnimatorsFunctor functor(this, info);
163        // hint: this means copy_if_not()
164        it = std::remove_copy_if(mStagingAnimators.begin(), mStagingAnimators.end(),
165                mAnimators.begin(), functor);
166        mAnimators.resize(std::distance(mAnimators.begin(), it));
167    }
168    if (mDirtyPropertyFields) {
169        mDirtyPropertyFields = 0;
170        damageSelf(info);
171        info.damageAccumulator->popTransform();
172        mProperties = mStagingProperties;
173        // We could try to be clever and only re-damage if the matrix changed.
174        // However, we don't need to worry about that. The cost of over-damaging
175        // here is only going to be a single additional map rect of this node
176        // plus a rect join(). The parent's transform (and up) will only be
177        // performed once.
178        info.damageAccumulator->pushTransform(this);
179        damageSelf(info);
180    }
181    if (mNeedsDisplayListDataSync) {
182        mNeedsDisplayListDataSync = false;
183        // Do a push pass on the old tree to handle freeing DisplayListData
184        // that are no longer used
185        TreeInfo oldTreeInfo(TreeInfo::MODE_MAYBE_DETACHING);
186        oldTreeInfo.damageAccumulator = info.damageAccumulator;
187        prepareSubTree(oldTreeInfo, mDisplayListData);
188        delete mDisplayListData;
189        mDisplayListData = mStagingDisplayListData;
190        mStagingDisplayListData = 0;
191        damageSelf(info);
192    }
193}
194
195class AnimateFunctor {
196public:
197    AnimateFunctor(RenderNode* target, TreeInfo& info)
198            : mTarget(target), mInfo(info) {}
199
200    bool operator() (const sp<BaseRenderNodeAnimator>& animator) {
201        return animator->animate(mTarget, mInfo);
202    }
203private:
204    RenderNode* mTarget;
205    TreeInfo& mInfo;
206};
207
208void RenderNode::evaluateAnimations(TreeInfo& info) {
209    if (!mAnimators.size()) return;
210
211    // TODO: Can we target this better? For now treat it like any other staging
212    // property push and just damage self before and after animators are run
213
214    damageSelf(info);
215    info.damageAccumulator->popTransform();
216
217    AnimateFunctor functor(this, info);
218    std::vector< sp<BaseRenderNodeAnimator> >::iterator newEnd;
219    newEnd = std::remove_if(mAnimators.begin(), mAnimators.end(), functor);
220    mAnimators.erase(newEnd, mAnimators.end());
221    mProperties.updateMatrix();
222    info.out.hasAnimations |= mAnimators.size();
223
224    info.damageAccumulator->pushTransform(this);
225    damageSelf(info);
226}
227
228void RenderNode::prepareSubTree(TreeInfo& info, DisplayListData* subtree) {
229    if (subtree) {
230        TextureCache& cache = Caches::getInstance().textureCache;
231        info.out.hasFunctors |= subtree->functorCount;
232        // TODO: Fix ownedBitmapResources to not require disabling prepareTextures
233        // and thus falling out of async drawing path.
234        if (subtree->ownedBitmapResources.size()) {
235            info.prepareTextures = false;
236        }
237        for (size_t i = 0; info.prepareTextures && i < subtree->bitmapResources.size(); i++) {
238            info.prepareTextures = cache.prefetchAndMarkInUse(subtree->bitmapResources[i]);
239        }
240        for (size_t i = 0; i < subtree->children().size(); i++) {
241            DrawDisplayListOp* op = subtree->children()[i];
242            RenderNode* childNode = op->mDisplayList;
243            info.damageAccumulator->pushTransform(&op->mTransformFromParent);
244            childNode->prepareTreeImpl(info);
245            info.damageAccumulator->popTransform();
246        }
247    }
248}
249
250/*
251 * For property operations, we pass a savecount of 0, since the operations aren't part of the
252 * displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in
253 * base saveCount (i.e., how RestoreToCount uses saveCount + properties().getCount())
254 */
255#define PROPERTY_SAVECOUNT 0
256
257template <class T>
258void RenderNode::setViewProperties(OpenGLRenderer& renderer, T& handler) {
259#if DEBUG_DISPLAY_LIST
260    properties().debugOutputProperties(handler.level() + 1);
261#endif
262    if (properties().getLeft() != 0 || properties().getTop() != 0) {
263        renderer.translate(properties().getLeft(), properties().getTop());
264    }
265    if (properties().getStaticMatrix()) {
266        renderer.concatMatrix(*properties().getStaticMatrix());
267    } else if (properties().getAnimationMatrix()) {
268        renderer.concatMatrix(*properties().getAnimationMatrix());
269    }
270    if (properties().hasTransformMatrix()) {
271        if (properties().isTransformTranslateOnly()) {
272            renderer.translate(properties().getTranslationX(), properties().getTranslationY());
273        } else {
274            renderer.concatMatrix(*properties().getTransformMatrix());
275        }
276    }
277    bool clipToBoundsNeeded = properties().getCaching() ? false : properties().getClipToBounds();
278    if (properties().getAlpha() < 1) {
279        if (properties().getCaching()) {
280            renderer.setOverrideLayerAlpha(properties().getAlpha());
281        } else if (!properties().getHasOverlappingRendering()) {
282            renderer.scaleAlpha(properties().getAlpha());
283        } else {
284            // TODO: should be able to store the size of a DL at record time and not
285            // have to pass it into this call. In fact, this information might be in the
286            // location/size info that we store with the new native transform data.
287            int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag;
288            if (clipToBoundsNeeded) {
289                saveFlags |= SkCanvas::kClipToLayer_SaveFlag;
290                clipToBoundsNeeded = false; // clipping done by saveLayer
291            }
292
293            SaveLayerOp* op = new (handler.allocator()) SaveLayerOp(
294                    0, 0, properties().getWidth(), properties().getHeight(),
295                    properties().getAlpha() * 255, saveFlags);
296            handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
297        }
298    }
299    if (clipToBoundsNeeded) {
300        ClipRectOp* op = new (handler.allocator()) ClipRectOp(
301                0, 0, properties().getWidth(), properties().getHeight(), SkRegion::kIntersect_Op);
302        handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
303    }
304
305    if (CC_UNLIKELY(properties().hasClippingPath())) {
306        ClipPathOp* op = new (handler.allocator()) ClipPathOp(
307                properties().getClippingPath(), properties().getClippingPathOp());
308        handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
309    }
310}
311
312/**
313 * Apply property-based transformations to input matrix
314 *
315 * If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4
316 * matrix computation instead of the Skia 3x3 matrix + camera hackery.
317 */
318void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) {
319    if (properties().getLeft() != 0 || properties().getTop() != 0) {
320        matrix.translate(properties().getLeft(), properties().getTop());
321    }
322    if (properties().getStaticMatrix()) {
323        mat4 stat(*properties().getStaticMatrix());
324        matrix.multiply(stat);
325    } else if (properties().getAnimationMatrix()) {
326        mat4 anim(*properties().getAnimationMatrix());
327        matrix.multiply(anim);
328    }
329
330    bool applyTranslationZ = true3dTransform && !MathUtils::isZero(properties().getZ());
331    if (properties().hasTransformMatrix() || applyTranslationZ) {
332        if (properties().isTransformTranslateOnly()) {
333            matrix.translate(properties().getTranslationX(), properties().getTranslationY(),
334                    true3dTransform ? properties().getZ() : 0.0f);
335        } else {
336            if (!true3dTransform) {
337                matrix.multiply(*properties().getTransformMatrix());
338            } else {
339                mat4 true3dMat;
340                true3dMat.loadTranslate(
341                        properties().getPivotX() + properties().getTranslationX(),
342                        properties().getPivotY() + properties().getTranslationY(),
343                        properties().getZ());
344                true3dMat.rotate(properties().getRotationX(), 1, 0, 0);
345                true3dMat.rotate(properties().getRotationY(), 0, 1, 0);
346                true3dMat.rotate(properties().getRotation(), 0, 0, 1);
347                true3dMat.scale(properties().getScaleX(), properties().getScaleY(), 1);
348                true3dMat.translate(-properties().getPivotX(), -properties().getPivotY());
349
350                matrix.multiply(true3dMat);
351            }
352        }
353    }
354}
355
356/**
357 * Organizes the DisplayList hierarchy to prepare for background projection reordering.
358 *
359 * This should be called before a call to defer() or drawDisplayList()
360 *
361 * Each DisplayList that serves as a 3d root builds its list of composited children,
362 * which are flagged to not draw in the standard draw loop.
363 */
364void RenderNode::computeOrdering() {
365    ATRACE_CALL();
366    mProjectedNodes.clear();
367
368    // TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that
369    // transform properties are applied correctly to top level children
370    if (mDisplayListData == NULL) return;
371    for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) {
372        DrawDisplayListOp* childOp = mDisplayListData->children()[i];
373        childOp->mDisplayList->computeOrderingImpl(childOp,
374                properties().getOutline().getPath(), &mProjectedNodes, &mat4::identity());
375    }
376}
377
378void RenderNode::computeOrderingImpl(
379        DrawDisplayListOp* opState,
380        const SkPath* outlineOfProjectionSurface,
381        Vector<DrawDisplayListOp*>* compositedChildrenOfProjectionSurface,
382        const mat4* transformFromProjectionSurface) {
383    mProjectedNodes.clear();
384    if (mDisplayListData == NULL || mDisplayListData->isEmpty()) return;
385
386    // TODO: should avoid this calculation in most cases
387    // TODO: just calculate single matrix, down to all leaf composited elements
388    Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface);
389    localTransformFromProjectionSurface.multiply(opState->mTransformFromParent);
390
391    if (properties().getProjectBackwards()) {
392        // composited projectee, flag for out of order draw, save matrix, and store in proj surface
393        opState->mSkipInOrderDraw = true;
394        opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface);
395        compositedChildrenOfProjectionSurface->add(opState);
396    } else {
397        // standard in order draw
398        opState->mSkipInOrderDraw = false;
399    }
400
401    if (mDisplayListData->children().size() > 0) {
402        const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0;
403        bool haveAppliedPropertiesToProjection = false;
404        for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) {
405            DrawDisplayListOp* childOp = mDisplayListData->children()[i];
406            RenderNode* child = childOp->mDisplayList;
407
408            const SkPath* projectionOutline = NULL;
409            Vector<DrawDisplayListOp*>* projectionChildren = NULL;
410            const mat4* projectionTransform = NULL;
411            if (isProjectionReceiver && !child->properties().getProjectBackwards()) {
412                // if receiving projections, collect projecting descendent
413
414                // Note that if a direct descendent is projecting backwards, we pass it's
415                // grandparent projection collection, since it shouldn't project onto it's
416                // parent, where it will already be drawing.
417                projectionOutline = properties().getOutline().getPath();
418                projectionChildren = &mProjectedNodes;
419                projectionTransform = &mat4::identity();
420            } else {
421                if (!haveAppliedPropertiesToProjection) {
422                    applyViewPropertyTransforms(localTransformFromProjectionSurface);
423                    haveAppliedPropertiesToProjection = true;
424                }
425                projectionOutline = outlineOfProjectionSurface;
426                projectionChildren = compositedChildrenOfProjectionSurface;
427                projectionTransform = &localTransformFromProjectionSurface;
428            }
429            child->computeOrderingImpl(childOp,
430                    projectionOutline, projectionChildren, projectionTransform);
431        }
432    }
433}
434
435class DeferOperationHandler {
436public:
437    DeferOperationHandler(DeferStateStruct& deferStruct, int level)
438        : mDeferStruct(deferStruct), mLevel(level) {}
439    inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
440        operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds);
441    }
442    inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); }
443    inline void startMark(const char* name) {} // do nothing
444    inline void endMark() {}
445    inline int level() { return mLevel; }
446    inline int replayFlags() { return mDeferStruct.mReplayFlags; }
447
448private:
449    DeferStateStruct& mDeferStruct;
450    const int mLevel;
451};
452
453void RenderNode::deferNodeTree(DeferStateStruct& deferStruct) {
454    DeferOperationHandler handler(deferStruct, 0);
455    if (MathUtils::isPositive(properties().getZ())) {
456        issueDrawShadowOperation(Matrix4::identity(), handler);
457    }
458    issueOperations<DeferOperationHandler>(deferStruct.mRenderer, handler);
459}
460
461void RenderNode::deferNodeInParent(DeferStateStruct& deferStruct, const int level) {
462    DeferOperationHandler handler(deferStruct, level);
463    issueOperations<DeferOperationHandler>(deferStruct.mRenderer, handler);
464}
465
466class ReplayOperationHandler {
467public:
468    ReplayOperationHandler(ReplayStateStruct& replayStruct, int level)
469        : mReplayStruct(replayStruct), mLevel(level) {}
470    inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
471#if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS
472        mReplayStruct.mRenderer.eventMark(operation->name());
473#endif
474        operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds);
475    }
476    inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); }
477    inline void startMark(const char* name) {
478        mReplayStruct.mRenderer.startMark(name);
479    }
480    inline void endMark() {
481        mReplayStruct.mRenderer.endMark();
482    }
483    inline int level() { return mLevel; }
484    inline int replayFlags() { return mReplayStruct.mReplayFlags; }
485
486private:
487    ReplayStateStruct& mReplayStruct;
488    const int mLevel;
489};
490
491void RenderNode::replayNodeTree(ReplayStateStruct& replayStruct) {
492    ReplayOperationHandler handler(replayStruct, 0);
493    if (MathUtils::isPositive(properties().getZ())) {
494        issueDrawShadowOperation(Matrix4::identity(), handler);
495    }
496    issueOperations<ReplayOperationHandler>(replayStruct.mRenderer, handler);
497}
498
499void RenderNode::replayNodeInParent(ReplayStateStruct& replayStruct, const int level) {
500    ReplayOperationHandler handler(replayStruct, level);
501    issueOperations<ReplayOperationHandler>(replayStruct.mRenderer, handler);
502}
503
504void RenderNode::buildZSortedChildList(Vector<ZDrawDisplayListOpPair>& zTranslatedNodes) {
505    if (mDisplayListData == NULL || mDisplayListData->children().size() == 0) return;
506
507    for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) {
508        DrawDisplayListOp* childOp = mDisplayListData->children()[i];
509        RenderNode* child = childOp->mDisplayList;
510        float childZ = child->properties().getZ();
511
512        if (!MathUtils::isZero(childZ)) {
513            zTranslatedNodes.add(ZDrawDisplayListOpPair(childZ, childOp));
514            childOp->mSkipInOrderDraw = true;
515        } else if (!child->properties().getProjectBackwards()) {
516            // regular, in order drawing DisplayList
517            childOp->mSkipInOrderDraw = false;
518        }
519    }
520
521    // Z sort 3d children (stable-ness makes z compare fall back to standard drawing order)
522    std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end());
523}
524
525template <class T>
526void RenderNode::issueDrawShadowOperation(const Matrix4& transformFromParent, T& handler) {
527    if (properties().getAlpha() <= 0.0f || properties().getOutline().isEmpty()) return;
528
529    mat4 shadowMatrixXY(transformFromParent);
530    applyViewPropertyTransforms(shadowMatrixXY);
531
532    // Z matrix needs actual 3d transformation, so mapped z values will be correct
533    mat4 shadowMatrixZ(transformFromParent);
534    applyViewPropertyTransforms(shadowMatrixZ, true);
535
536    const SkPath* outlinePath = properties().getOutline().getPath();
537    const RevealClip& revealClip = properties().getRevealClip();
538    const SkPath* revealClipPath = revealClip.hasConvexClip()
539            ?  revealClip.getPath() : NULL; // only pass the reveal clip's path if it's convex
540
541    if (revealClipPath && revealClipPath->isEmpty()) return;
542
543    /**
544     * The drawing area of the caster is always the same as the its perimeter (which
545     * the shadow system uses) *except* in the inverse clip case. Inform the shadow
546     * system that the caster's drawing area (as opposed to its perimeter) has been
547     * clipped, so that it knows the caster can't be opaque.
548     */
549    bool casterUnclipped = !revealClip.willClip() || revealClip.hasConvexClip();
550
551    DisplayListOp* shadowOp  = new (handler.allocator()) DrawShadowOp(
552            shadowMatrixXY, shadowMatrixZ,
553            properties().getAlpha(), casterUnclipped,
554            outlinePath, revealClipPath);
555    handler(shadowOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
556}
557
558#define SHADOW_DELTA 0.1f
559
560template <class T>
561void RenderNode::issueOperationsOf3dChildren(const Vector<ZDrawDisplayListOpPair>& zTranslatedNodes,
562        ChildrenSelectMode mode, OpenGLRenderer& renderer, T& handler) {
563    const int size = zTranslatedNodes.size();
564    if (size == 0
565            || (mode == kNegativeZChildren && zTranslatedNodes[0].key > 0.0f)
566            || (mode == kPositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) {
567        // no 3d children to draw
568        return;
569    }
570
571    /**
572     * Draw shadows and (potential) casters mostly in order, but allow the shadows of casters
573     * with very similar Z heights to draw together.
574     *
575     * This way, if Views A & B have the same Z height and are both casting shadows, the shadows are
576     * underneath both, and neither's shadow is drawn on top of the other.
577     */
578    const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes);
579    size_t drawIndex, shadowIndex, endIndex;
580    if (mode == kNegativeZChildren) {
581        drawIndex = 0;
582        endIndex = nonNegativeIndex;
583        shadowIndex = endIndex; // draw no shadows
584    } else {
585        drawIndex = nonNegativeIndex;
586        endIndex = size;
587        shadowIndex = drawIndex; // potentially draw shadow for each pos Z child
588    }
589
590    DISPLAY_LIST_LOGD("%*s%d %s 3d children:", (handler.level() + 1) * 2, "",
591            endIndex - drawIndex, mode == kNegativeZChildren ? "negative" : "positive");
592
593    float lastCasterZ = 0.0f;
594    while (shadowIndex < endIndex || drawIndex < endIndex) {
595        if (shadowIndex < endIndex) {
596            DrawDisplayListOp* casterOp = zTranslatedNodes[shadowIndex].value;
597            RenderNode* caster = casterOp->mDisplayList;
598            const float casterZ = zTranslatedNodes[shadowIndex].key;
599            // attempt to render the shadow if the caster about to be drawn is its caster,
600            // OR if its caster's Z value is similar to the previous potential caster
601            if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) {
602                caster->issueDrawShadowOperation(casterOp->mTransformFromParent, handler);
603
604                lastCasterZ = casterZ; // must do this even if current caster not casting a shadow
605                shadowIndex++;
606                continue;
607            }
608        }
609
610        // only the actual child DL draw needs to be in save/restore,
611        // since it modifies the renderer's matrix
612        int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
613
614        DrawDisplayListOp* childOp = zTranslatedNodes[drawIndex].value;
615        RenderNode* child = childOp->mDisplayList;
616
617        renderer.concatMatrix(childOp->mTransformFromParent);
618        childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
619        handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
620        childOp->mSkipInOrderDraw = true;
621
622        renderer.restoreToCount(restoreTo);
623        drawIndex++;
624    }
625}
626
627template <class T>
628void RenderNode::issueOperationsOfProjectedChildren(OpenGLRenderer& renderer, T& handler) {
629    DISPLAY_LIST_LOGD("%*s%d projected children:", (handler.level() + 1) * 2, "", mProjectedNodes.size());
630    const SkPath* projectionReceiverOutline = properties().getOutline().getPath();
631    bool maskProjecteesWithPath = projectionReceiverOutline != NULL
632            && !projectionReceiverOutline->isRect(NULL);
633    int restoreTo = renderer.getSaveCount();
634
635    // If the projection reciever has an outline, we mask each of the projected rendernodes to it
636    // Either with clipRect, or special saveLayer masking
637    LinearAllocator& alloc = handler.allocator();
638    if (projectionReceiverOutline != NULL) {
639        const SkRect& outlineBounds = projectionReceiverOutline->getBounds();
640        if (projectionReceiverOutline->isRect(NULL)) {
641            // mask to the rect outline simply with clipRect
642            handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
643                    PROPERTY_SAVECOUNT, properties().getClipToBounds());
644            ClipRectOp* clipOp = new (alloc) ClipRectOp(
645                    outlineBounds.left(), outlineBounds.top(),
646                    outlineBounds.right(), outlineBounds.bottom(), SkRegion::kIntersect_Op);
647            handler(clipOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
648        } else {
649            // wrap the projected RenderNodes with a SaveLayer that will mask to the outline
650            SaveLayerOp* op = new (alloc) SaveLayerOp(
651                    outlineBounds.left(), outlineBounds.top(),
652                    outlineBounds.right(), outlineBounds.bottom(),
653                    255, SkCanvas::kARGB_ClipLayer_SaveFlag);
654            op->setMask(projectionReceiverOutline);
655            handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
656
657            /* TODO: add optimizations here to take advantage of placement/size of projected
658             * children (which may shrink saveLayer area significantly). This is dependent on
659             * passing actual drawing/dirtying bounds of projected content down to native.
660             */
661        }
662    }
663
664    // draw projected nodes
665    for (size_t i = 0; i < mProjectedNodes.size(); i++) {
666        DrawDisplayListOp* childOp = mProjectedNodes[i];
667
668        // matrix save, concat, and restore can be done safely without allocating operations
669        int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
670        renderer.concatMatrix(childOp->mTransformFromCompositingAncestor);
671        childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
672        handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
673        childOp->mSkipInOrderDraw = true;
674        renderer.restoreToCount(restoreTo);
675    }
676
677    if (projectionReceiverOutline != NULL) {
678        handler(new (alloc) RestoreToCountOp(restoreTo),
679                PROPERTY_SAVECOUNT, properties().getClipToBounds());
680    }
681}
682
683/**
684 * This function serves both defer and replay modes, and will organize the displayList's component
685 * operations for a single frame:
686 *
687 * Every 'simple' state operation that affects just the matrix and alpha (or other factors of
688 * DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom
689 * defer logic) and operations in displayListOps are issued through the 'handler' which handles the
690 * defer vs replay logic, per operation
691 */
692template <class T>
693void RenderNode::issueOperations(OpenGLRenderer& renderer, T& handler) {
694    const int level = handler.level();
695    if (mDisplayListData->isEmpty() || properties().getAlpha() <= 0) {
696        DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, getName());
697        return;
698    }
699
700    handler.startMark(getName());
701
702#if DEBUG_DISPLAY_LIST
703    const Rect& clipRect = renderer.getLocalClipBounds();
704    DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), localClipBounds: %.0f, %.0f, %.0f, %.0f",
705            level * 2, "", this, getName(),
706            clipRect.left, clipRect.top, clipRect.right, clipRect.bottom);
707#endif
708
709    LinearAllocator& alloc = handler.allocator();
710    int restoreTo = renderer.getSaveCount();
711    handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
712            PROPERTY_SAVECOUNT, properties().getClipToBounds());
713
714    DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "",
715            SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo);
716
717    setViewProperties<T>(renderer, handler);
718
719    bool quickRejected = properties().getClipToBounds()
720            && renderer.quickRejectConservative(0, 0, properties().getWidth(), properties().getHeight());
721    if (!quickRejected) {
722        if (mProperties.getOutline().willClip()) {
723            renderer.setClippingOutline(alloc, &(mProperties.getOutline()));
724        }
725
726        Vector<ZDrawDisplayListOpPair> zTranslatedNodes;
727        buildZSortedChildList(zTranslatedNodes);
728
729        // for 3d root, draw children with negative z values
730        issueOperationsOf3dChildren(zTranslatedNodes, kNegativeZChildren, renderer, handler);
731
732        DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
733        const int saveCountOffset = renderer.getSaveCount() - 1;
734        const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex;
735        for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
736            DisplayListOp *op = mDisplayListData->displayListOps[i];
737
738#if DEBUG_DISPLAY_LIST
739            op->output(level + 1);
740#endif
741            logBuffer.writeCommand(level, op->name());
742            handler(op, saveCountOffset, properties().getClipToBounds());
743
744            if (CC_UNLIKELY(i == projectionReceiveIndex && mProjectedNodes.size() > 0)) {
745                issueOperationsOfProjectedChildren(renderer, handler);
746            }
747        }
748
749        // for 3d root, draw children with positive z values
750        issueOperationsOf3dChildren(zTranslatedNodes, kPositiveZChildren, renderer, handler);
751    }
752
753    DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo);
754    handler(new (alloc) RestoreToCountOp(restoreTo),
755            PROPERTY_SAVECOUNT, properties().getClipToBounds());
756    renderer.setOverrideLayerAlpha(1.0f);
757
758    DISPLAY_LIST_LOGD("%*sDone (%p, %s)", level * 2, "", this, getName());
759    handler.endMark();
760}
761
762} /* namespace uirenderer */
763} /* namespace android */
764