RenderNode.cpp revision e749bd2c72d14519f6ac24d5efc399b0dafc507d
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_VIEW
18#define LOG_TAG "OpenGLRenderer"
19
20#include "RenderNode.h"
21
22#include <algorithm>
23#include <string>
24
25#include <SkCanvas.h>
26#include <algorithm>
27
28
29#include "DamageAccumulator.h"
30#include "Debug.h"
31#include "DisplayListOp.h"
32#include "DisplayListLogBuffer.h"
33#include "LayerRenderer.h"
34#include "OpenGLRenderer.h"
35#include "TreeInfo.h"
36#include "utils/MathUtils.h"
37#include "utils/TraceUtils.h"
38#include "renderthread/CanvasContext.h"
39
40namespace android {
41namespace uirenderer {
42
43void RenderNode::outputLogBuffer(int fd) {
44    DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
45    if (logBuffer.isEmpty()) {
46        return;
47    }
48
49    FILE *file = fdopen(fd, "a");
50
51    fprintf(file, "\nRecent DisplayList operations\n");
52    logBuffer.outputCommands(file);
53
54    if (Caches::hasInstance()) {
55        String8 cachesLog;
56        Caches::getInstance().dumpMemoryUsage(cachesLog);
57        fprintf(file, "\nCaches:\n%s\n", cachesLog.string());
58    } else {
59        fprintf(file, "\nNo caches instance.\n");
60    }
61
62    fflush(file);
63}
64
65void RenderNode::debugDumpLayers(const char* prefix) {
66    if (mLayer) {
67        ALOGD("%sNode %p (%s) has layer %p (fbo = %u, wasBuildLayered = %s)",
68                prefix, this, getName(), mLayer, mLayer->getFbo(),
69                mLayer->wasBuildLayered ? "true" : "false");
70    }
71    if (mDisplayListData) {
72        for (size_t i = 0; i < mDisplayListData->children().size(); i++) {
73            mDisplayListData->children()[i]->mRenderNode->debugDumpLayers(prefix);
74        }
75    }
76}
77
78RenderNode::RenderNode()
79        : mDirtyPropertyFields(0)
80        , mNeedsDisplayListDataSync(false)
81        , mDisplayListData(0)
82        , mStagingDisplayListData(0)
83        , mAnimatorManager(*this)
84        , mLayer(0)
85        , mParentCount(0) {
86}
87
88RenderNode::~RenderNode() {
89    deleteDisplayListData();
90    delete mStagingDisplayListData;
91    if (mLayer) {
92        ALOGW("Memory Warning: Layer %p missed its detachment, held on to for far too long!", mLayer);
93        mLayer->postDecStrong();
94        mLayer = 0;
95    }
96}
97
98void RenderNode::setStagingDisplayList(DisplayListData* data) {
99    mNeedsDisplayListDataSync = true;
100    delete mStagingDisplayListData;
101    mStagingDisplayListData = data;
102}
103
104/**
105 * This function is a simplified version of replay(), where we simply retrieve and log the
106 * display list. This function should remain in sync with the replay() function.
107 */
108void RenderNode::output(uint32_t level) {
109    ALOGD("%*sStart display list (%p, %s%s%s%s)", (level - 1) * 2, "", this,
110            getName(),
111            (properties().hasShadow() ? ", casting shadow" : ""),
112            (isRenderable() ? "" : ", empty"),
113            (mLayer != NULL ? ", on HW Layer" : ""));
114    ALOGD("%*s%s %d", level * 2, "", "Save",
115            SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
116
117    properties().debugOutputProperties(level);
118    int flags = DisplayListOp::kOpLogFlag_Recurse;
119    if (mDisplayListData) {
120        // TODO: consider printing the chunk boundaries here
121        for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
122            mDisplayListData->displayListOps[i]->output(level, flags);
123        }
124    }
125
126    ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, getName());
127}
128
129int RenderNode::getDebugSize() {
130    int size = sizeof(RenderNode);
131    if (mStagingDisplayListData) {
132        size += mStagingDisplayListData->getUsedSize();
133    }
134    if (mDisplayListData && mDisplayListData != mStagingDisplayListData) {
135        size += mDisplayListData->getUsedSize();
136    }
137    return size;
138}
139
140void RenderNode::prepareTree(TreeInfo& info) {
141    ATRACE_CALL();
142    LOG_ALWAYS_FATAL_IF(!info.damageAccumulator, "DamageAccumulator missing");
143
144    prepareTreeImpl(info);
145}
146
147void RenderNode::addAnimator(const sp<BaseRenderNodeAnimator>& animator) {
148    mAnimatorManager.addAnimator(animator);
149}
150
151void RenderNode::damageSelf(TreeInfo& info) {
152    if (isRenderable()) {
153        if (properties().getClipDamageToBounds()) {
154            info.damageAccumulator->dirty(0, 0, properties().getWidth(), properties().getHeight());
155        } else {
156            // Hope this is big enough?
157            // TODO: Get this from the display list ops or something
158            info.damageAccumulator->dirty(INT_MIN, INT_MIN, INT_MAX, INT_MAX);
159        }
160    }
161}
162
163void RenderNode::prepareLayer(TreeInfo& info, uint32_t dirtyMask) {
164    LayerType layerType = properties().layerProperties().type();
165    if (CC_UNLIKELY(layerType == kLayerTypeRenderLayer)) {
166        // Damage applied so far needs to affect our parent, but does not require
167        // the layer to be updated. So we pop/push here to clear out the current
168        // damage and get a clean state for display list or children updates to
169        // affect, which will require the layer to be updated
170        info.damageAccumulator->popTransform();
171        info.damageAccumulator->pushTransform(this);
172        if (dirtyMask & DISPLAY_LIST) {
173            damageSelf(info);
174        }
175    }
176}
177
178void RenderNode::pushLayerUpdate(TreeInfo& info) {
179    LayerType layerType = properties().layerProperties().type();
180    // If we are not a layer OR we cannot be rendered (eg, view was detached)
181    // we need to destroy any Layers we may have had previously
182    if (CC_LIKELY(layerType != kLayerTypeRenderLayer) || CC_UNLIKELY(!isRenderable())) {
183        if (CC_UNLIKELY(mLayer)) {
184            LayerRenderer::destroyLayer(mLayer);
185            mLayer = NULL;
186        }
187        return;
188    }
189
190    bool transformUpdateNeeded = false;
191    if (!mLayer) {
192        mLayer = LayerRenderer::createRenderLayer(info.renderState, getWidth(), getHeight());
193        applyLayerPropertiesToLayer(info);
194        damageSelf(info);
195        transformUpdateNeeded = true;
196    } else if (mLayer->layer.getWidth() != getWidth() || mLayer->layer.getHeight() != getHeight()) {
197        if (!LayerRenderer::resizeLayer(mLayer, getWidth(), getHeight())) {
198            LayerRenderer::destroyLayer(mLayer);
199            mLayer = 0;
200        }
201        damageSelf(info);
202        transformUpdateNeeded = true;
203    }
204
205    SkRect dirty;
206    info.damageAccumulator->peekAtDirty(&dirty);
207
208    if (!mLayer) {
209        Caches::getInstance().dumpMemoryUsage();
210        if (info.errorHandler) {
211            std::string msg = "Unable to create layer for ";
212            msg += getName();
213            info.errorHandler->onError(msg);
214        }
215        return;
216    }
217
218    if (transformUpdateNeeded) {
219        // update the transform in window of the layer to reset its origin wrt light source position
220        Matrix4 windowTransform;
221        info.damageAccumulator->computeCurrentTransform(&windowTransform);
222        mLayer->setWindowTransform(windowTransform);
223    }
224
225    if (dirty.intersect(0, 0, getWidth(), getHeight())) {
226        dirty.roundOut();
227        mLayer->updateDeferred(this, dirty.fLeft, dirty.fTop, dirty.fRight, dirty.fBottom);
228    }
229    // This is not inside the above if because we may have called
230    // updateDeferred on a previous prepare pass that didn't have a renderer
231    if (info.renderer && mLayer->deferredUpdateScheduled) {
232        info.renderer->pushLayerUpdate(mLayer);
233    }
234
235    if (CC_UNLIKELY(info.canvasContext)) {
236        // If canvasContext is not null that means there are prefetched layers
237        // that need to be accounted for. That might be us, so tell CanvasContext
238        // that this layer is in the tree and should not be destroyed.
239        info.canvasContext->markLayerInUse(this);
240    }
241}
242
243void RenderNode::prepareTreeImpl(TreeInfo& info) {
244    info.damageAccumulator->pushTransform(this);
245
246    if (info.mode == TreeInfo::MODE_FULL) {
247        pushStagingPropertiesChanges(info);
248    }
249    uint32_t animatorDirtyMask = 0;
250    if (CC_LIKELY(info.runAnimations)) {
251        animatorDirtyMask = mAnimatorManager.animate(info);
252    }
253    prepareLayer(info, animatorDirtyMask);
254    if (info.mode == TreeInfo::MODE_FULL) {
255        pushStagingDisplayListChanges(info);
256    }
257    prepareSubTree(info, mDisplayListData);
258    pushLayerUpdate(info);
259
260    info.damageAccumulator->popTransform();
261}
262
263void RenderNode::pushStagingPropertiesChanges(TreeInfo& info) {
264    // Push the animators first so that setupStartValueIfNecessary() is called
265    // before properties() is trampled by stagingProperties(), as they are
266    // required by some animators.
267    if (CC_LIKELY(info.runAnimations)) {
268        mAnimatorManager.pushStaging();
269    }
270    if (mDirtyPropertyFields) {
271        mDirtyPropertyFields = 0;
272        damageSelf(info);
273        info.damageAccumulator->popTransform();
274        mProperties = mStagingProperties;
275        applyLayerPropertiesToLayer(info);
276        // We could try to be clever and only re-damage if the matrix changed.
277        // However, we don't need to worry about that. The cost of over-damaging
278        // here is only going to be a single additional map rect of this node
279        // plus a rect join(). The parent's transform (and up) will only be
280        // performed once.
281        info.damageAccumulator->pushTransform(this);
282        damageSelf(info);
283    }
284}
285
286void RenderNode::applyLayerPropertiesToLayer(TreeInfo& info) {
287    if (CC_LIKELY(!mLayer)) return;
288
289    const LayerProperties& props = properties().layerProperties();
290    mLayer->setAlpha(props.alpha(), props.xferMode());
291    mLayer->setColorFilter(props.colorFilter());
292    mLayer->setBlend(props.needsBlending());
293}
294
295void RenderNode::pushStagingDisplayListChanges(TreeInfo& info) {
296    if (mNeedsDisplayListDataSync) {
297        mNeedsDisplayListDataSync = false;
298        // Make sure we inc first so that we don't fluctuate between 0 and 1,
299        // which would thrash the layer cache
300        if (mStagingDisplayListData) {
301            for (size_t i = 0; i < mStagingDisplayListData->children().size(); i++) {
302                mStagingDisplayListData->children()[i]->mRenderNode->incParentRefCount();
303            }
304        }
305        // Damage with the old display list first then the new one to catch any
306        // changes in isRenderable or, in the future, bounds
307        damageSelf(info);
308        deleteDisplayListData();
309        // TODO: Remove this caches stuff
310        if (mStagingDisplayListData && mStagingDisplayListData->functors.size()) {
311            Caches::getInstance().registerFunctors(mStagingDisplayListData->functors.size());
312        }
313        mDisplayListData = mStagingDisplayListData;
314        mStagingDisplayListData = NULL;
315        if (mDisplayListData) {
316            for (size_t i = 0; i < mDisplayListData->functors.size(); i++) {
317                (*mDisplayListData->functors[i])(DrawGlInfo::kModeSync, NULL);
318            }
319        }
320        damageSelf(info);
321    }
322}
323
324void RenderNode::deleteDisplayListData() {
325    if (mDisplayListData) {
326        for (size_t i = 0; i < mDisplayListData->children().size(); i++) {
327            mDisplayListData->children()[i]->mRenderNode->decParentRefCount();
328        }
329        if (mDisplayListData->functors.size()) {
330            Caches::getInstance().unregisterFunctors(mDisplayListData->functors.size());
331        }
332    }
333    delete mDisplayListData;
334    mDisplayListData = NULL;
335}
336
337void RenderNode::prepareSubTree(TreeInfo& info, DisplayListData* subtree) {
338    if (subtree) {
339        TextureCache& cache = Caches::getInstance().textureCache;
340        info.out.hasFunctors |= subtree->functors.size();
341        // TODO: Fix ownedBitmapResources to not require disabling prepareTextures
342        // and thus falling out of async drawing path.
343        if (subtree->ownedBitmapResources.size()) {
344            info.prepareTextures = false;
345        }
346        for (size_t i = 0; info.prepareTextures && i < subtree->bitmapResources.size(); i++) {
347            info.prepareTextures = cache.prefetchAndMarkInUse(subtree->bitmapResources[i]);
348        }
349        for (size_t i = 0; i < subtree->children().size(); i++) {
350            DrawRenderNodeOp* op = subtree->children()[i];
351            RenderNode* childNode = op->mRenderNode;
352            info.damageAccumulator->pushTransform(&op->mTransformFromParent);
353            childNode->prepareTreeImpl(info);
354            info.damageAccumulator->popTransform();
355        }
356    }
357}
358
359void RenderNode::destroyHardwareResources() {
360    if (mLayer) {
361        LayerRenderer::destroyLayer(mLayer);
362        mLayer = NULL;
363    }
364    if (mDisplayListData) {
365        for (size_t i = 0; i < mDisplayListData->children().size(); i++) {
366            mDisplayListData->children()[i]->mRenderNode->destroyHardwareResources();
367        }
368        if (mNeedsDisplayListDataSync) {
369            // Next prepare tree we are going to push a new display list, so we can
370            // drop our current one now
371            deleteDisplayListData();
372        }
373    }
374}
375
376void RenderNode::decParentRefCount() {
377    LOG_ALWAYS_FATAL_IF(!mParentCount, "already 0!");
378    mParentCount--;
379    if (!mParentCount) {
380        // If a child of ours is being attached to our parent then this will incorrectly
381        // destroy its hardware resources. However, this situation is highly unlikely
382        // and the failure is "just" that the layer is re-created, so this should
383        // be safe enough
384        destroyHardwareResources();
385    }
386}
387
388/*
389 * For property operations, we pass a savecount of 0, since the operations aren't part of the
390 * displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in
391 * base saveCount (i.e., how RestoreToCount uses saveCount + properties().getCount())
392 */
393#define PROPERTY_SAVECOUNT 0
394
395template <class T>
396void RenderNode::setViewProperties(OpenGLRenderer& renderer, T& handler) {
397#if DEBUG_DISPLAY_LIST
398    properties().debugOutputProperties(handler.level() + 1);
399#endif
400    if (properties().getLeft() != 0 || properties().getTop() != 0) {
401        renderer.translate(properties().getLeft(), properties().getTop());
402    }
403    if (properties().getStaticMatrix()) {
404        renderer.concatMatrix(*properties().getStaticMatrix());
405    } else if (properties().getAnimationMatrix()) {
406        renderer.concatMatrix(*properties().getAnimationMatrix());
407    }
408    if (properties().hasTransformMatrix()) {
409        if (properties().isTransformTranslateOnly()) {
410            renderer.translate(properties().getTranslationX(), properties().getTranslationY());
411        } else {
412            renderer.concatMatrix(*properties().getTransformMatrix());
413        }
414    }
415    const bool isLayer = properties().layerProperties().type() != kLayerTypeNone;
416    int clipFlags = properties().getClippingFlags();
417    if (properties().getAlpha() < 1) {
418        if (isLayer) {
419            clipFlags &= ~CLIP_TO_BOUNDS; // bounds clipping done by layer
420
421            renderer.setOverrideLayerAlpha(properties().getAlpha());
422        } else if (!properties().getHasOverlappingRendering()) {
423            renderer.scaleAlpha(properties().getAlpha());
424        } else {
425            Rect layerBounds(0, 0, getWidth(), getHeight());
426            int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag;
427            if (clipFlags) {
428                saveFlags |= SkCanvas::kClipToLayer_SaveFlag;
429                properties().getClippingRectForFlags(clipFlags, &layerBounds);
430                clipFlags = 0; // all clipping done by saveLayer
431            }
432
433            ATRACE_FORMAT("%s alpha caused %ssaveLayer %ux%u",
434                    getName(), clipFlags ? "" : "unclipped ",
435                    layerBounds.getWidth(), layerBounds.getHeight());
436
437            SaveLayerOp* op = new (handler.allocator()) SaveLayerOp(
438                    layerBounds.left, layerBounds.top, layerBounds.right, layerBounds.bottom,
439                    properties().getAlpha() * 255, saveFlags);
440            handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
441        }
442    }
443    if (clipFlags) {
444        Rect clipRect;
445        properties().getClippingRectForFlags(clipFlags, &clipRect);
446        ClipRectOp* op = new (handler.allocator()) ClipRectOp(
447                clipRect.left, clipRect.top, clipRect.right, clipRect.bottom,
448                SkRegion::kIntersect_Op);
449        handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
450    }
451
452    // TODO: support nesting round rect clips
453    if (mProperties.getRevealClip().willClip()) {
454        Rect bounds;
455        mProperties.getRevealClip().getBounds(&bounds);
456        renderer.setClippingRoundRect(handler.allocator(), bounds, mProperties.getRevealClip().getRadius());
457    } else if (mProperties.getOutline().willClip()) {
458        renderer.setClippingOutline(handler.allocator(), &(mProperties.getOutline()));
459    }
460}
461
462/**
463 * Apply property-based transformations to input matrix
464 *
465 * If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4
466 * matrix computation instead of the Skia 3x3 matrix + camera hackery.
467 */
468void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) const {
469    if (properties().getLeft() != 0 || properties().getTop() != 0) {
470        matrix.translate(properties().getLeft(), properties().getTop());
471    }
472    if (properties().getStaticMatrix()) {
473        mat4 stat(*properties().getStaticMatrix());
474        matrix.multiply(stat);
475    } else if (properties().getAnimationMatrix()) {
476        mat4 anim(*properties().getAnimationMatrix());
477        matrix.multiply(anim);
478    }
479
480    bool applyTranslationZ = true3dTransform && !MathUtils::isZero(properties().getZ());
481    if (properties().hasTransformMatrix() || applyTranslationZ) {
482        if (properties().isTransformTranslateOnly()) {
483            matrix.translate(properties().getTranslationX(), properties().getTranslationY(),
484                    true3dTransform ? properties().getZ() : 0.0f);
485        } else {
486            if (!true3dTransform) {
487                matrix.multiply(*properties().getTransformMatrix());
488            } else {
489                mat4 true3dMat;
490                true3dMat.loadTranslate(
491                        properties().getPivotX() + properties().getTranslationX(),
492                        properties().getPivotY() + properties().getTranslationY(),
493                        properties().getZ());
494                true3dMat.rotate(properties().getRotationX(), 1, 0, 0);
495                true3dMat.rotate(properties().getRotationY(), 0, 1, 0);
496                true3dMat.rotate(properties().getRotation(), 0, 0, 1);
497                true3dMat.scale(properties().getScaleX(), properties().getScaleY(), 1);
498                true3dMat.translate(-properties().getPivotX(), -properties().getPivotY());
499
500                matrix.multiply(true3dMat);
501            }
502        }
503    }
504}
505
506/**
507 * Organizes the DisplayList hierarchy to prepare for background projection reordering.
508 *
509 * This should be called before a call to defer() or drawDisplayList()
510 *
511 * Each DisplayList that serves as a 3d root builds its list of composited children,
512 * which are flagged to not draw in the standard draw loop.
513 */
514void RenderNode::computeOrdering() {
515    ATRACE_CALL();
516    mProjectedNodes.clear();
517
518    // TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that
519    // transform properties are applied correctly to top level children
520    if (mDisplayListData == NULL) return;
521    for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) {
522        DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
523        childOp->mRenderNode->computeOrderingImpl(childOp,
524                properties().getOutline().getPath(), &mProjectedNodes, &mat4::identity());
525    }
526}
527
528void RenderNode::computeOrderingImpl(
529        DrawRenderNodeOp* opState,
530        const SkPath* outlineOfProjectionSurface,
531        Vector<DrawRenderNodeOp*>* compositedChildrenOfProjectionSurface,
532        const mat4* transformFromProjectionSurface) {
533    mProjectedNodes.clear();
534    if (mDisplayListData == NULL || mDisplayListData->isEmpty()) return;
535
536    // TODO: should avoid this calculation in most cases
537    // TODO: just calculate single matrix, down to all leaf composited elements
538    Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface);
539    localTransformFromProjectionSurface.multiply(opState->mTransformFromParent);
540
541    if (properties().getProjectBackwards()) {
542        // composited projectee, flag for out of order draw, save matrix, and store in proj surface
543        opState->mSkipInOrderDraw = true;
544        opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface);
545        compositedChildrenOfProjectionSurface->add(opState);
546    } else {
547        // standard in order draw
548        opState->mSkipInOrderDraw = false;
549    }
550
551    if (mDisplayListData->children().size() > 0) {
552        const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0;
553        bool haveAppliedPropertiesToProjection = false;
554        for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) {
555            DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
556            RenderNode* child = childOp->mRenderNode;
557
558            const SkPath* projectionOutline = NULL;
559            Vector<DrawRenderNodeOp*>* projectionChildren = NULL;
560            const mat4* projectionTransform = NULL;
561            if (isProjectionReceiver && !child->properties().getProjectBackwards()) {
562                // if receiving projections, collect projecting descendent
563
564                // Note that if a direct descendent is projecting backwards, we pass it's
565                // grandparent projection collection, since it shouldn't project onto it's
566                // parent, where it will already be drawing.
567                projectionOutline = properties().getOutline().getPath();
568                projectionChildren = &mProjectedNodes;
569                projectionTransform = &mat4::identity();
570            } else {
571                if (!haveAppliedPropertiesToProjection) {
572                    applyViewPropertyTransforms(localTransformFromProjectionSurface);
573                    haveAppliedPropertiesToProjection = true;
574                }
575                projectionOutline = outlineOfProjectionSurface;
576                projectionChildren = compositedChildrenOfProjectionSurface;
577                projectionTransform = &localTransformFromProjectionSurface;
578            }
579            child->computeOrderingImpl(childOp,
580                    projectionOutline, projectionChildren, projectionTransform);
581        }
582    }
583}
584
585class DeferOperationHandler {
586public:
587    DeferOperationHandler(DeferStateStruct& deferStruct, int level)
588        : mDeferStruct(deferStruct), mLevel(level) {}
589    inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
590        operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds);
591    }
592    inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); }
593    inline void startMark(const char* name) {} // do nothing
594    inline void endMark() {}
595    inline int level() { return mLevel; }
596    inline int replayFlags() { return mDeferStruct.mReplayFlags; }
597    inline SkPath* allocPathForFrame() { return mDeferStruct.allocPathForFrame(); }
598
599private:
600    DeferStateStruct& mDeferStruct;
601    const int mLevel;
602};
603
604void RenderNode::defer(DeferStateStruct& deferStruct, const int level) {
605    DeferOperationHandler handler(deferStruct, level);
606    issueOperations<DeferOperationHandler>(deferStruct.mRenderer, handler);
607}
608
609class ReplayOperationHandler {
610public:
611    ReplayOperationHandler(ReplayStateStruct& replayStruct, int level)
612        : mReplayStruct(replayStruct), mLevel(level) {}
613    inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
614#if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS
615        mReplayStruct.mRenderer.eventMark(operation->name());
616#endif
617        operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds);
618    }
619    inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); }
620    inline void startMark(const char* name) {
621        mReplayStruct.mRenderer.startMark(name);
622    }
623    inline void endMark() {
624        mReplayStruct.mRenderer.endMark();
625    }
626    inline int level() { return mLevel; }
627    inline int replayFlags() { return mReplayStruct.mReplayFlags; }
628    inline SkPath* allocPathForFrame() { return mReplayStruct.allocPathForFrame(); }
629
630private:
631    ReplayStateStruct& mReplayStruct;
632    const int mLevel;
633};
634
635void RenderNode::replay(ReplayStateStruct& replayStruct, const int level) {
636    ReplayOperationHandler handler(replayStruct, level);
637    issueOperations<ReplayOperationHandler>(replayStruct.mRenderer, handler);
638}
639
640void RenderNode::buildZSortedChildList(const DisplayListData::Chunk& chunk,
641        Vector<ZDrawRenderNodeOpPair>& zTranslatedNodes) {
642    if (chunk.beginChildIndex == chunk.endChildIndex) return;
643
644    for (unsigned int i = chunk.beginChildIndex; i < chunk.endChildIndex; i++) {
645        DrawRenderNodeOp* childOp = mDisplayListData->children()[i];
646        RenderNode* child = childOp->mRenderNode;
647        float childZ = child->properties().getZ();
648
649        if (!MathUtils::isZero(childZ) && chunk.reorderChildren) {
650            zTranslatedNodes.add(ZDrawRenderNodeOpPair(childZ, childOp));
651            childOp->mSkipInOrderDraw = true;
652        } else if (!child->properties().getProjectBackwards()) {
653            // regular, in order drawing DisplayList
654            childOp->mSkipInOrderDraw = false;
655        }
656    }
657
658    // Z sort any 3d children (stable-ness makes z compare fall back to standard drawing order)
659    std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end());
660}
661
662template <class T>
663void RenderNode::issueDrawShadowOperation(const Matrix4& transformFromParent, T& handler) {
664    if (properties().getAlpha() <= 0.0f
665            || properties().getOutline().getAlpha() <= 0.0f
666            || !properties().getOutline().getPath()) {
667        // no shadow to draw
668        return;
669    }
670
671    mat4 shadowMatrixXY(transformFromParent);
672    applyViewPropertyTransforms(shadowMatrixXY);
673
674    // Z matrix needs actual 3d transformation, so mapped z values will be correct
675    mat4 shadowMatrixZ(transformFromParent);
676    applyViewPropertyTransforms(shadowMatrixZ, true);
677
678    const SkPath* casterOutlinePath = properties().getOutline().getPath();
679    const SkPath* revealClipPath = properties().getRevealClip().getPath();
680    if (revealClipPath && revealClipPath->isEmpty()) return;
681
682    float casterAlpha = properties().getAlpha() * properties().getOutline().getAlpha();
683
684
685    // holds temporary SkPath to store the result of intersections
686    SkPath* frameAllocatedPath = NULL;
687    const SkPath* outlinePath = casterOutlinePath;
688
689    // intersect the outline with the reveal clip, if present
690    if (revealClipPath) {
691        frameAllocatedPath = handler.allocPathForFrame();
692
693        Op(*outlinePath, *revealClipPath, kIntersect_PathOp, frameAllocatedPath);
694        outlinePath = frameAllocatedPath;
695    }
696
697    // intersect the outline with the clipBounds, if present
698    if (properties().getClippingFlags() & CLIP_TO_CLIP_BOUNDS) {
699        if (!frameAllocatedPath) {
700            frameAllocatedPath = handler.allocPathForFrame();
701        }
702
703        Rect clipBounds;
704        properties().getClippingRectForFlags(CLIP_TO_CLIP_BOUNDS, &clipBounds);
705        SkPath clipBoundsPath;
706        clipBoundsPath.addRect(clipBounds.left, clipBounds.top,
707                clipBounds.right, clipBounds.bottom);
708
709        Op(*outlinePath, clipBoundsPath, kIntersect_PathOp, frameAllocatedPath);
710        outlinePath = frameAllocatedPath;
711    }
712
713    DisplayListOp* shadowOp  = new (handler.allocator()) DrawShadowOp(
714            shadowMatrixXY, shadowMatrixZ, casterAlpha, outlinePath);
715    handler(shadowOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
716}
717
718#define SHADOW_DELTA 0.1f
719
720template <class T>
721void RenderNode::issueOperationsOf3dChildren(ChildrenSelectMode mode,
722        const Matrix4& initialTransform, const Vector<ZDrawRenderNodeOpPair>& zTranslatedNodes,
723        OpenGLRenderer& renderer, T& handler) {
724    const int size = zTranslatedNodes.size();
725    if (size == 0
726            || (mode == kNegativeZChildren && zTranslatedNodes[0].key > 0.0f)
727            || (mode == kPositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) {
728        // no 3d children to draw
729        return;
730    }
731
732    // Apply the base transform of the parent of the 3d children. This isolates
733    // 3d children of the current chunk from transformations made in previous chunks.
734    int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
735    renderer.setMatrix(initialTransform);
736
737    /**
738     * Draw shadows and (potential) casters mostly in order, but allow the shadows of casters
739     * with very similar Z heights to draw together.
740     *
741     * This way, if Views A & B have the same Z height and are both casting shadows, the shadows are
742     * underneath both, and neither's shadow is drawn on top of the other.
743     */
744    const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes);
745    size_t drawIndex, shadowIndex, endIndex;
746    if (mode == kNegativeZChildren) {
747        drawIndex = 0;
748        endIndex = nonNegativeIndex;
749        shadowIndex = endIndex; // draw no shadows
750    } else {
751        drawIndex = nonNegativeIndex;
752        endIndex = size;
753        shadowIndex = drawIndex; // potentially draw shadow for each pos Z child
754    }
755
756    DISPLAY_LIST_LOGD("%*s%d %s 3d children:", (handler.level() + 1) * 2, "",
757            endIndex - drawIndex, mode == kNegativeZChildren ? "negative" : "positive");
758
759    float lastCasterZ = 0.0f;
760    while (shadowIndex < endIndex || drawIndex < endIndex) {
761        if (shadowIndex < endIndex) {
762            DrawRenderNodeOp* casterOp = zTranslatedNodes[shadowIndex].value;
763            RenderNode* caster = casterOp->mRenderNode;
764            const float casterZ = zTranslatedNodes[shadowIndex].key;
765            // attempt to render the shadow if the caster about to be drawn is its caster,
766            // OR if its caster's Z value is similar to the previous potential caster
767            if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) {
768                caster->issueDrawShadowOperation(casterOp->mTransformFromParent, handler);
769
770                lastCasterZ = casterZ; // must do this even if current caster not casting a shadow
771                shadowIndex++;
772                continue;
773            }
774        }
775
776        // only the actual child DL draw needs to be in save/restore,
777        // since it modifies the renderer's matrix
778        int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
779
780        DrawRenderNodeOp* childOp = zTranslatedNodes[drawIndex].value;
781
782        renderer.concatMatrix(childOp->mTransformFromParent);
783        childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
784        handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
785        childOp->mSkipInOrderDraw = true;
786
787        renderer.restoreToCount(restoreTo);
788        drawIndex++;
789    }
790    renderer.restoreToCount(rootRestoreTo);
791}
792
793template <class T>
794void RenderNode::issueOperationsOfProjectedChildren(OpenGLRenderer& renderer, T& handler) {
795    DISPLAY_LIST_LOGD("%*s%d projected children:", (handler.level() + 1) * 2, "", mProjectedNodes.size());
796    const SkPath* projectionReceiverOutline = properties().getOutline().getPath();
797    int restoreTo = renderer.getSaveCount();
798
799    LinearAllocator& alloc = handler.allocator();
800    handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
801            PROPERTY_SAVECOUNT, properties().getClipToBounds());
802
803    // Transform renderer to match background we're projecting onto
804    // (by offsetting canvas by translationX/Y of background rendernode, since only those are set)
805    const DisplayListOp* op =
806            (mDisplayListData->displayListOps[mDisplayListData->projectionReceiveIndex]);
807    const DrawRenderNodeOp* backgroundOp = reinterpret_cast<const DrawRenderNodeOp*>(op);
808    const RenderProperties& backgroundProps = backgroundOp->mRenderNode->properties();
809    renderer.translate(backgroundProps.getTranslationX(), backgroundProps.getTranslationY());
810
811    // If the projection reciever has an outline, we mask each of the projected rendernodes to it
812    // Either with clipRect, or special saveLayer masking
813    if (projectionReceiverOutline != NULL) {
814        const SkRect& outlineBounds = projectionReceiverOutline->getBounds();
815        if (projectionReceiverOutline->isRect(NULL)) {
816            // mask to the rect outline simply with clipRect
817            ClipRectOp* clipOp = new (alloc) ClipRectOp(
818                    outlineBounds.left(), outlineBounds.top(),
819                    outlineBounds.right(), outlineBounds.bottom(), SkRegion::kIntersect_Op);
820            handler(clipOp, PROPERTY_SAVECOUNT, properties().getClipToBounds());
821        } else {
822            // wrap the projected RenderNodes with a SaveLayer that will mask to the outline
823            SaveLayerOp* op = new (alloc) SaveLayerOp(
824                    outlineBounds.left(), outlineBounds.top(),
825                    outlineBounds.right(), outlineBounds.bottom(),
826                    255, SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag | SkCanvas::kARGB_ClipLayer_SaveFlag);
827            op->setMask(projectionReceiverOutline);
828            handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds());
829
830            /* TODO: add optimizations here to take advantage of placement/size of projected
831             * children (which may shrink saveLayer area significantly). This is dependent on
832             * passing actual drawing/dirtying bounds of projected content down to native.
833             */
834        }
835    }
836
837    // draw projected nodes
838    for (size_t i = 0; i < mProjectedNodes.size(); i++) {
839        DrawRenderNodeOp* childOp = mProjectedNodes[i];
840
841        // matrix save, concat, and restore can be done safely without allocating operations
842        int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
843        renderer.concatMatrix(childOp->mTransformFromCompositingAncestor);
844        childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
845        handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds());
846        childOp->mSkipInOrderDraw = true;
847        renderer.restoreToCount(restoreTo);
848    }
849
850    if (projectionReceiverOutline != NULL) {
851        handler(new (alloc) RestoreToCountOp(restoreTo),
852                PROPERTY_SAVECOUNT, properties().getClipToBounds());
853    }
854}
855
856/**
857 * This function serves both defer and replay modes, and will organize the displayList's component
858 * operations for a single frame:
859 *
860 * Every 'simple' state operation that affects just the matrix and alpha (or other factors of
861 * DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom
862 * defer logic) and operations in displayListOps are issued through the 'handler' which handles the
863 * defer vs replay logic, per operation
864 */
865template <class T>
866void RenderNode::issueOperations(OpenGLRenderer& renderer, T& handler) {
867    const int level = handler.level();
868    if (mDisplayListData->isEmpty()) {
869        DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, getName());
870        return;
871    }
872
873    const bool drawLayer = (mLayer && (&renderer != mLayer->renderer));
874    // If we are updating the contents of mLayer, we don't want to apply any of
875    // the RenderNode's properties to this issueOperations pass. Those will all
876    // be applied when the layer is drawn, aka when this is true.
877    const bool useViewProperties = (!mLayer || drawLayer);
878    if (useViewProperties) {
879        const Outline& outline = properties().getOutline();
880        if (properties().getAlpha() <= 0 || (outline.getShouldClip() && outline.isEmpty())) {
881            DISPLAY_LIST_LOGD("%*sRejected display list (%p, %s)", level * 2, "", this, getName());
882            return;
883        }
884    }
885
886    handler.startMark(getName());
887
888#if DEBUG_DISPLAY_LIST
889    const Rect& clipRect = renderer.getLocalClipBounds();
890    DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), localClipBounds: %.0f, %.0f, %.0f, %.0f",
891            level * 2, "", this, getName(),
892            clipRect.left, clipRect.top, clipRect.right, clipRect.bottom);
893#endif
894
895    LinearAllocator& alloc = handler.allocator();
896    int restoreTo = renderer.getSaveCount();
897    handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
898            PROPERTY_SAVECOUNT, properties().getClipToBounds());
899
900    DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "",
901            SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo);
902
903    if (useViewProperties) {
904        setViewProperties<T>(renderer, handler);
905    }
906
907    bool quickRejected = properties().getClipToBounds()
908            && renderer.quickRejectConservative(0, 0, properties().getWidth(), properties().getHeight());
909    if (!quickRejected) {
910        Matrix4 initialTransform(*(renderer.currentTransform()));
911
912        if (drawLayer) {
913            handler(new (alloc) DrawLayerOp(mLayer, 0, 0),
914                    renderer.getSaveCount() - 1, properties().getClipToBounds());
915        } else {
916            const int saveCountOffset = renderer.getSaveCount() - 1;
917            const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex;
918            DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
919            for (size_t chunkIndex = 0; chunkIndex < mDisplayListData->getChunks().size(); chunkIndex++) {
920                const DisplayListData::Chunk& chunk = mDisplayListData->getChunks()[chunkIndex];
921
922                Vector<ZDrawRenderNodeOpPair> zTranslatedNodes;
923                buildZSortedChildList(chunk, zTranslatedNodes);
924
925                issueOperationsOf3dChildren(kNegativeZChildren,
926                        initialTransform, zTranslatedNodes, renderer, handler);
927
928
929                for (size_t opIndex = chunk.beginOpIndex; opIndex < chunk.endOpIndex; opIndex++) {
930                    DisplayListOp *op = mDisplayListData->displayListOps[opIndex];
931#if DEBUG_DISPLAY_LIST
932                    op->output(level + 1);
933#endif
934                    logBuffer.writeCommand(level, op->name());
935                    handler(op, saveCountOffset, properties().getClipToBounds());
936
937                    if (CC_UNLIKELY(!mProjectedNodes.isEmpty() && projectionReceiveIndex >= 0 &&
938                        opIndex == static_cast<size_t>(projectionReceiveIndex))) {
939                        issueOperationsOfProjectedChildren(renderer, handler);
940                    }
941                }
942
943                issueOperationsOf3dChildren(kPositiveZChildren,
944                        initialTransform, zTranslatedNodes, renderer, handler);
945            }
946        }
947    }
948
949    DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo);
950    handler(new (alloc) RestoreToCountOp(restoreTo),
951            PROPERTY_SAVECOUNT, properties().getClipToBounds());
952    renderer.setOverrideLayerAlpha(1.0f);
953
954    DISPLAY_LIST_LOGD("%*sDone (%p, %s)", level * 2, "", this, getName());
955    handler.endMark();
956}
957
958} /* namespace uirenderer */
959} /* namespace android */
960