1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "OpenGLRenderer"
18
19// The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
20#define CASTER_Z_CAP_RATIO 0.95f
21
22// When there is no umbra, then just fake the umbra using
23// centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
24#define FAKE_UMBRA_SIZE_RATIO 0.05f
25
26// When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
27// That is consider pretty fine tessllated polygon so far.
28// This is just to prevent using too much some memory when edge slicing is not
29// needed any more.
30#define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
31/**
32 * Extra vertices for the corner for smoother corner.
33 * Only for outer loop.
34 * Note that we use such extra memory to avoid an extra loop.
35 */
36// For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
37// Set to 1 if we don't want to have any.
38#define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
39
40// For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
41// therefore, the maximum number of extra vertices will be twice bigger.
42#define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER  (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
43
44// For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
45#define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
46
47// For performance, we use (1 - alpha) value for the shader input.
48#define TRANSFORMED_PENUMBRA_ALPHA 1.0f
49#define TRANSFORMED_UMBRA_ALPHA 0.0f
50
51#include <algorithm>
52#include <math.h>
53#include <stdlib.h>
54#include <utils/Log.h>
55
56#include "ShadowTessellator.h"
57#include "SpotShadow.h"
58#include "Vertex.h"
59#include "VertexBuffer.h"
60#include "utils/MathUtils.h"
61
62// TODO: After we settle down the new algorithm, we can remove the old one and
63// its utility functions.
64// Right now, we still need to keep it for comparison purpose and future expansion.
65namespace android {
66namespace uirenderer {
67
68static const float EPSILON = 1e-7;
69
70/**
71 * For each polygon's vertex, the light center will project it to the receiver
72 * as one of the outline vertex.
73 * For each outline vertex, we need to store the position and normal.
74 * Normal here is defined against the edge by the current vertex and the next vertex.
75 */
76struct OutlineData {
77    Vector2 position;
78    Vector2 normal;
79    float radius;
80};
81
82/**
83 * For each vertex, we need to keep track of its angle, whether it is penumbra or
84 * umbra, and its corresponding vertex index.
85 */
86struct SpotShadow::VertexAngleData {
87    // The angle to the vertex from the centroid.
88    float mAngle;
89    // True is the vertex comes from penumbra, otherwise it comes from umbra.
90    bool mIsPenumbra;
91    // The index of the vertex described by this data.
92    int mVertexIndex;
93    void set(float angle, bool isPenumbra, int index) {
94        mAngle = angle;
95        mIsPenumbra = isPenumbra;
96        mVertexIndex = index;
97    }
98};
99
100/**
101 * Calculate the angle between and x and a y coordinate.
102 * The atan2 range from -PI to PI.
103 */
104static float angle(const Vector2& point, const Vector2& center) {
105    return atan2(point.y - center.y, point.x - center.x);
106}
107
108/**
109 * Calculate the intersection of a ray with the line segment defined by two points.
110 *
111 * Returns a negative value in error conditions.
112
113 * @param rayOrigin The start of the ray
114 * @param dx The x vector of the ray
115 * @param dy The y vector of the ray
116 * @param p1 The first point defining the line segment
117 * @param p2 The second point defining the line segment
118 * @return The distance along the ray if it intersects with the line segment, negative if otherwise
119 */
120static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
121        const Vector2& p1, const Vector2& p2) {
122    // The math below is derived from solving this formula, basically the
123    // intersection point should stay on both the ray and the edge of (p1, p2).
124    // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
125
126    float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
127    if (divisor == 0) return -1.0f; // error, invalid divisor
128
129#if DEBUG_SHADOW
130    float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
131    if (interpVal < 0 || interpVal > 1) {
132        ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
133    }
134#endif
135
136    float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
137            rayOrigin.x * (p2.y - p1.y)) / divisor;
138
139    return distance; // may be negative in error cases
140}
141
142/**
143 * Sort points by their X coordinates
144 *
145 * @param points the points as a Vector2 array.
146 * @param pointsLength the number of vertices of the polygon.
147 */
148void SpotShadow::xsort(Vector2* points, int pointsLength) {
149    auto cmp = [](const Vector2& a, const Vector2& b) -> bool {
150        return a.x < b.x;
151    };
152    std::sort(points, points + pointsLength, cmp);
153}
154
155/**
156 * compute the convex hull of a collection of Points
157 *
158 * @param points the points as a Vector2 array.
159 * @param pointsLength the number of vertices of the polygon.
160 * @param retPoly pre allocated array of floats to put the vertices
161 * @return the number of points in the polygon 0 if no intersection
162 */
163int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
164    xsort(points, pointsLength);
165    int n = pointsLength;
166    Vector2 lUpper[n];
167    lUpper[0] = points[0];
168    lUpper[1] = points[1];
169
170    int lUpperSize = 2;
171
172    for (int i = 2; i < n; i++) {
173        lUpper[lUpperSize] = points[i];
174        lUpperSize++;
175
176        while (lUpperSize > 2 && !ccw(
177                lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
178                lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
179                lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
180            // Remove the middle point of the three last
181            lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
182            lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
183            lUpperSize--;
184        }
185    }
186
187    Vector2 lLower[n];
188    lLower[0] = points[n - 1];
189    lLower[1] = points[n - 2];
190
191    int lLowerSize = 2;
192
193    for (int i = n - 3; i >= 0; i--) {
194        lLower[lLowerSize] = points[i];
195        lLowerSize++;
196
197        while (lLowerSize > 2 && !ccw(
198                lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
199                lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
200                lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
201            // Remove the middle point of the three last
202            lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
203            lLowerSize--;
204        }
205    }
206
207    // output points in CW ordering
208    const int total = lUpperSize + lLowerSize - 2;
209    int outIndex = total - 1;
210    for (int i = 0; i < lUpperSize; i++) {
211        retPoly[outIndex] = lUpper[i];
212        outIndex--;
213    }
214
215    for (int i = 1; i < lLowerSize - 1; i++) {
216        retPoly[outIndex] = lLower[i];
217        outIndex--;
218    }
219    // TODO: Add test harness which verify that all the points are inside the hull.
220    return total;
221}
222
223/**
224 * Test whether the 3 points form a counter clockwise turn.
225 *
226 * @return true if a right hand turn
227 */
228bool SpotShadow::ccw(float ax, float ay, float bx, float by,
229        float cx, float cy) {
230    return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
231}
232
233/**
234 * Sort points about a center point
235 *
236 * @param poly The in and out polyogon as a Vector2 array.
237 * @param polyLength The number of vertices of the polygon.
238 * @param center the center ctr[0] = x , ctr[1] = y to sort around.
239 */
240void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
241    quicksortCirc(poly, 0, polyLength - 1, center);
242}
243
244/**
245 * Swap points pointed to by i and j
246 */
247void SpotShadow::swap(Vector2* points, int i, int j) {
248    Vector2 temp = points[i];
249    points[i] = points[j];
250    points[j] = temp;
251}
252
253/**
254 * quick sort implementation about the center.
255 */
256void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
257        const Vector2& center) {
258    int i = low, j = high;
259    int p = low + (high - low) / 2;
260    float pivot = angle(points[p], center);
261    while (i <= j) {
262        while (angle(points[i], center) > pivot) {
263            i++;
264        }
265        while (angle(points[j], center) < pivot) {
266            j--;
267        }
268
269        if (i <= j) {
270            swap(points, i, j);
271            i++;
272            j--;
273        }
274    }
275    if (low < j) quicksortCirc(points, low, j, center);
276    if (i < high) quicksortCirc(points, i, high, center);
277}
278
279/**
280 * Test whether a point is inside the polygon.
281 *
282 * @param testPoint the point to test
283 * @param poly the polygon
284 * @return true if the testPoint is inside the poly.
285 */
286bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
287        const Vector2* poly, int len) {
288    bool c = false;
289    float testx = testPoint.x;
290    float testy = testPoint.y;
291    for (int i = 0, j = len - 1; i < len; j = i++) {
292        float startX = poly[j].x;
293        float startY = poly[j].y;
294        float endX = poly[i].x;
295        float endY = poly[i].y;
296
297        if (((endY > testy) != (startY > testy))
298            && (testx < (startX - endX) * (testy - endY)
299             / (startY - endY) + endX)) {
300            c = !c;
301        }
302    }
303    return c;
304}
305
306/**
307 * Make the polygon turn clockwise.
308 *
309 * @param polygon the polygon as a Vector2 array.
310 * @param len the number of points of the polygon
311 */
312void SpotShadow::makeClockwise(Vector2* polygon, int len) {
313    if (polygon == nullptr  || len == 0) {
314        return;
315    }
316    if (!ShadowTessellator::isClockwise(polygon, len)) {
317        reverse(polygon, len);
318    }
319}
320
321/**
322 * Reverse the polygon
323 *
324 * @param polygon the polygon as a Vector2 array
325 * @param len the number of points of the polygon
326 */
327void SpotShadow::reverse(Vector2* polygon, int len) {
328    int n = len / 2;
329    for (int i = 0; i < n; i++) {
330        Vector2 tmp = polygon[i];
331        int k = len - 1 - i;
332        polygon[i] = polygon[k];
333        polygon[k] = tmp;
334    }
335}
336
337/**
338 * Compute a horizontal circular polygon about point (x , y , height) of radius
339 * (size)
340 *
341 * @param points number of the points of the output polygon.
342 * @param lightCenter the center of the light.
343 * @param size the light size.
344 * @param ret result polygon.
345 */
346void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
347        float size, Vector3* ret) {
348    // TODO: Caching all the sin / cos values and store them in a look up table.
349    for (int i = 0; i < points; i++) {
350        float angle = 2 * i * M_PI / points;
351        ret[i].x = cosf(angle) * size + lightCenter.x;
352        ret[i].y = sinf(angle) * size + lightCenter.y;
353        ret[i].z = lightCenter.z;
354    }
355}
356
357/**
358 * From light center, project one vertex to the z=0 surface and get the outline.
359 *
360 * @param outline The result which is the outline position.
361 * @param lightCenter The center of light.
362 * @param polyVertex The input polygon's vertex.
363 *
364 * @return float The ratio of (polygon.z / light.z - polygon.z)
365 */
366float SpotShadow::projectCasterToOutline(Vector2& outline,
367        const Vector3& lightCenter, const Vector3& polyVertex) {
368    float lightToPolyZ = lightCenter.z - polyVertex.z;
369    float ratioZ = CASTER_Z_CAP_RATIO;
370    if (lightToPolyZ != 0) {
371        // If any caster's vertex is almost above the light, we just keep it as 95%
372        // of the height of the light.
373        ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
374    }
375
376    outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
377    outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
378    return ratioZ;
379}
380
381/**
382 * Generate the shadow spot light of shape lightPoly and a object poly
383 *
384 * @param isCasterOpaque whether the caster is opaque
385 * @param lightCenter the center of the light
386 * @param lightSize the radius of the light
387 * @param poly x,y,z vertexes of a convex polygon that occludes the light source
388 * @param polyLength number of vertexes of the occluding polygon
389 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
390 *                            empty strip if error.
391 */
392void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
393        float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
394        VertexBuffer& shadowTriangleStrip) {
395    if (CC_UNLIKELY(lightCenter.z <= 0)) {
396        ALOGW("Relative Light Z is not positive. No spot shadow!");
397        return;
398    }
399    if (CC_UNLIKELY(polyLength < 3)) {
400#if DEBUG_SHADOW
401        ALOGW("Invalid polygon length. No spot shadow!");
402#endif
403        return;
404    }
405    OutlineData outlineData[polyLength];
406    Vector2 outlineCentroid;
407    // Calculate the projected outline for each polygon's vertices from the light center.
408    //
409    //                       O     Light
410    //                      /
411    //                    /
412    //                   .     Polygon vertex
413    //                 /
414    //               /
415    //              O     Outline vertices
416    //
417    // Ratio = (Poly - Outline) / (Light - Poly)
418    // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
419    // Outline's radius / Light's radius = Ratio
420
421    // Compute the last outline vertex to make sure we can get the normal and outline
422    // in one single loop.
423    projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
424            poly[polyLength - 1]);
425
426    // Take the outline's polygon, calculate the normal for each outline edge.
427    int currentNormalIndex = polyLength - 1;
428    int nextNormalIndex = 0;
429
430    for (int i = 0; i < polyLength; i++) {
431        float ratioZ = projectCasterToOutline(outlineData[i].position,
432                lightCenter, poly[i]);
433        outlineData[i].radius = ratioZ * lightSize;
434
435        outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
436                outlineData[currentNormalIndex].position,
437                outlineData[nextNormalIndex].position);
438        currentNormalIndex = (currentNormalIndex + 1) % polyLength;
439        nextNormalIndex++;
440    }
441
442    projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
443
444    int penumbraIndex = 0;
445    // Then each polygon's vertex produce at minmal 2 penumbra vertices.
446    // Since the size can be dynamic here, we keep track of the size and update
447    // the real size at the end.
448    int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
449    Vector2 penumbra[allocatedPenumbraLength];
450    int totalExtraCornerSliceNumber = 0;
451
452    Vector2 umbra[polyLength];
453
454    // When centroid is covered by all circles from outline, then we consider
455    // the umbra is invalid, and we will tune down the shadow strength.
456    bool hasValidUmbra = true;
457    // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
458    float minRaitoVI = FLT_MAX;
459
460    for (int i = 0; i < polyLength; i++) {
461        // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
462        // There is no guarantee that the penumbra is still convex, but for
463        // each outline vertex, it will connect to all its corresponding penumbra vertices as
464        // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
465        //
466        // Penumbra Vertices marked as Pi
467        // Outline Vertices marked as Vi
468        //                                            (P3)
469        //          (P2)                               |     ' (P4)
470        //   (P1)'   |                                 |   '
471        //         ' |                                 | '
472        // (P0)  ------------------------------------------------(P5)
473        //           | (V0)                            |(V1)
474        //           |                                 |
475        //           |                                 |
476        //           |                                 |
477        //           |                                 |
478        //           |                                 |
479        //           |                                 |
480        //           |                                 |
481        //           |                                 |
482        //       (V3)-----------------------------------(V2)
483        int preNormalIndex = (i + polyLength - 1) % polyLength;
484
485        const Vector2& previousNormal = outlineData[preNormalIndex].normal;
486        const Vector2& currentNormal = outlineData[i].normal;
487
488        // Depending on how roundness we want for each corner, we can subdivide
489        // further here and/or introduce some heuristic to decide how much the
490        // subdivision should be.
491        int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
492                previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
493
494        int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
495        totalExtraCornerSliceNumber += currentExtraSliceNumber;
496#if DEBUG_SHADOW
497        ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
498        ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
499        ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
500#endif
501        if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
502            currentCornerSliceNumber = 1;
503        }
504        for (int k = 0; k <= currentCornerSliceNumber; k++) {
505            Vector2 avgNormal =
506                    (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
507                    currentCornerSliceNumber;
508            avgNormal.normalize();
509            penumbra[penumbraIndex++] = outlineData[i].position +
510                    avgNormal * outlineData[i].radius;
511        }
512
513
514        // Compute the umbra by the intersection from the outline's centroid!
515        //
516        //       (V) ------------------------------------
517        //           |          '                       |
518        //           |         '                        |
519        //           |       ' (I)                      |
520        //           |    '                             |
521        //           | '             (C)                |
522        //           |                                  |
523        //           |                                  |
524        //           |                                  |
525        //           |                                  |
526        //           ------------------------------------
527        //
528        // Connect a line b/t the outline vertex (V) and the centroid (C), it will
529        // intersect with the outline vertex's circle at point (I).
530        // Now, ratioVI = VI / VC, ratioIC = IC / VC
531        // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
532        //
533        // When all of the outline circles cover the the outline centroid, (like I is
534        // on the other side of C), there is no real umbra any more, so we just fake
535        // a small area around the centroid as the umbra, and tune down the spot
536        // shadow's umbra strength to simulate the effect the whole shadow will
537        // become lighter in this case.
538        // The ratio can be simulated by using the inverse of maximum of ratioVI for
539        // all (V).
540        float distOutline = (outlineData[i].position - outlineCentroid).length();
541        if (CC_UNLIKELY(distOutline == 0)) {
542            // If the outline has 0 area, then there is no spot shadow anyway.
543            ALOGW("Outline has 0 area, no spot shadow!");
544            return;
545        }
546
547        float ratioVI = outlineData[i].radius / distOutline;
548        minRaitoVI = MathUtils::min(minRaitoVI, ratioVI);
549        if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
550            ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
551        }
552        // When we know we don't have valid umbra, don't bother to compute the
553        // values below. But we can't skip the loop yet since we want to know the
554        // maximum ratio.
555        float ratioIC = 1 - ratioVI;
556        umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
557    }
558
559    hasValidUmbra = (minRaitoVI <= 1.0);
560    float shadowStrengthScale = 1.0;
561    if (!hasValidUmbra) {
562#if DEBUG_SHADOW
563        ALOGW("The object is too close to the light or too small, no real umbra!");
564#endif
565        for (int i = 0; i < polyLength; i++) {
566            umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
567                    outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
568        }
569        shadowStrengthScale = 1.0 / minRaitoVI;
570    }
571
572    int penumbraLength = penumbraIndex;
573    int umbraLength = polyLength;
574
575#if DEBUG_SHADOW
576    ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
577    dumpPolygon(poly, polyLength, "input poly");
578    dumpPolygon(penumbra, penumbraLength, "penumbra");
579    dumpPolygon(umbra, umbraLength, "umbra");
580    ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
581#endif
582
583    // The penumbra and umbra needs to be in convex shape to keep consistency
584    // and quality.
585    // Since we are still shooting rays to penumbra, it needs to be convex.
586    // Umbra can be represented as a fan from the centroid, but visually umbra
587    // looks nicer when it is convex.
588    Vector2 finalUmbra[umbraLength];
589    Vector2 finalPenumbra[penumbraLength];
590    int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
591    int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
592
593    generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
594            finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
595            shadowTriangleStrip, outlineCentroid);
596
597}
598
599/**
600 * This is only for experimental purpose.
601 * After intersections are calculated, we could smooth the polygon if needed.
602 * So far, we don't think it is more appealing yet.
603 *
604 * @param level The level of smoothness.
605 * @param rays The total number of rays.
606 * @param rayDist (In and Out) The distance for each ray.
607 *
608 */
609void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
610    for (int k = 0; k < level; k++) {
611        for (int i = 0; i < rays; i++) {
612            float p1 = rayDist[(rays - 1 + i) % rays];
613            float p2 = rayDist[i];
614            float p3 = rayDist[(i + 1) % rays];
615            rayDist[i] = (p1 + p2 * 2 + p3) / 4;
616        }
617    }
618}
619
620// Index pair is meant for storing the tessellation information for the penumbra
621// area. One index must come from exterior tangent of the circles, the other one
622// must come from the interior tangent of the circles.
623struct IndexPair {
624    int outerIndex;
625    int innerIndex;
626};
627
628// For one penumbra vertex, find the cloest umbra vertex and return its index.
629inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) {
630    float minLengthSquared = FLT_MAX;
631    int resultIndex = -1;
632    bool hasDecreased = false;
633    // Starting with some negative offset, assuming both umbra and penumbra are starting
634    // at the same angle, this can help to find the result faster.
635    // Normally, loop 3 times, we can find the closest point.
636    int offset = polygonLength - 2;
637    for (int i = 0; i < polygonLength; i++) {
638        int currentIndex = (i + offset) % polygonLength;
639        float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared();
640        if (currentLengthSquared < minLengthSquared) {
641            if (minLengthSquared != FLT_MAX) {
642                hasDecreased = true;
643            }
644            minLengthSquared = currentLengthSquared;
645            resultIndex = currentIndex;
646        } else if (currentLengthSquared > minLengthSquared && hasDecreased) {
647            // Early break b/c we have found the closet one and now the length
648            // is increasing again.
649            break;
650        }
651    }
652    if(resultIndex == -1) {
653        ALOGE("resultIndex is -1, the polygon must be invalid!");
654        resultIndex = 0;
655    }
656    return resultIndex;
657}
658
659// Allow some epsilon here since the later ray intersection did allow for some small
660// floating point error, when the intersection point is slightly outside the segment.
661inline bool sameDirections(bool isPositiveCross, float a, float b) {
662    if (isPositiveCross) {
663        return a >= -EPSILON && b >= -EPSILON;
664    } else {
665        return a <= EPSILON && b <= EPSILON;
666    }
667}
668
669// Find the right polygon edge to shoot the ray at.
670inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir,
671        const Vector2* polyToCentroid, int polyLength) {
672    // Make sure we loop with a bound.
673    for (int i = 0; i < polyLength; i++) {
674        int currentIndex = (i + startPolyIndex) % polyLength;
675        const Vector2& currentToCentroid = polyToCentroid[currentIndex];
676        const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength];
677
678        float currentCrossUmbra = currentToCentroid.cross(umbraDir);
679        float umbraCrossNext = umbraDir.cross(nextToCentroid);
680        if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) {
681#if DEBUG_SHADOW
682            ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex );
683#endif
684            return currentIndex;
685        }
686    }
687    LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex);
688    return -1;
689}
690
691// Generate the index pair for penumbra / umbra vertices, and more penumbra vertices
692// if needed.
693inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength,
694        const Vector2* umbra, int umbraLength, Vector2* newPenumbra, int& newPenumbraIndex,
695        IndexPair* verticesPair, int& verticesPairIndex) {
696    // In order to keep everything in just one loop, we need to pre-compute the
697    // closest umbra vertex for the last penumbra vertex.
698    int previousClosestUmbraIndex = getClosestUmbraIndex(penumbra[penumbraLength - 1],
699            umbra, umbraLength);
700    for (int i = 0; i < penumbraLength; i++) {
701        const Vector2& currentPenumbraVertex = penumbra[i];
702        // For current penumbra vertex, starting from previousClosestUmbraIndex,
703        // then check the next one until the distance increase.
704        // The last one before the increase is the umbra vertex we need to pair with.
705        float currentLengthSquared =
706                (currentPenumbraVertex - umbra[previousClosestUmbraIndex]).lengthSquared();
707        int currentClosestUmbraIndex = previousClosestUmbraIndex;
708        int indexDelta = 0;
709        for (int j = 1; j < umbraLength; j++) {
710            int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength;
711            float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared();
712            if (newLengthSquared > currentLengthSquared) {
713                // currentClosestUmbraIndex is the umbra vertex's index which has
714                // currently found smallest distance, so we can simply break here.
715                break;
716            } else {
717                currentLengthSquared = newLengthSquared;
718                indexDelta++;
719                currentClosestUmbraIndex = newUmbraIndex;
720            }
721        }
722
723        if (indexDelta > 1) {
724            // For those umbra don't have  penumbra, generate new penumbra vertices by interpolation.
725            //
726            // Assuming Pi for penumbra vertices, and Ui for umbra vertices.
727            // In the case like below P1 paired with U1 and P2 paired with  U5.
728            // U2 to U4 are unpaired umbra vertices.
729            //
730            // P1                                        P2
731            // |                                          |
732            // U1     U2                   U3     U4     U5
733            //
734            // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3
735            // to pair with U2 to U4.
736            //
737            // P1     P1.1                P1.2   P1.3    P2
738            // |       |                   |      |      |
739            // U1     U2                   U3     U4     U5
740            //
741            // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra
742            // vertex's location.
743            int newPenumbraNumber = indexDelta - 1;
744
745            float accumulatedDeltaLength[newPenumbraNumber];
746            float totalDeltaLength = 0;
747
748            // To save time, cache the previous umbra vertex info outside the loop
749            // and update each loop.
750            Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex];
751            Vector2 skippedUmbra;
752            // Use umbra data to precompute the length b/t unpaired umbra vertices,
753            // and its ratio against the total length.
754            for (int k = 0; k < indexDelta; k++) {
755                int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
756                skippedUmbra = umbra[skippedUmbraIndex];
757                float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length();
758
759                totalDeltaLength += currentDeltaLength;
760                accumulatedDeltaLength[k] = totalDeltaLength;
761
762                previousClosestUmbra = skippedUmbra;
763            }
764
765            const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength];
766            // Then for each unpaired umbra vertex, create a new penumbra by the ratio,
767            // and pair them togehter.
768            for (int k = 0; k < newPenumbraNumber; k++) {
769                float weightForCurrentPenumbra = 1.0f;
770                if (totalDeltaLength != 0.0f) {
771                    weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength;
772                }
773                float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra;
774
775                Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra +
776                    previousPenumbra * weightForPreviousPenumbra;
777
778                int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
779                verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
780                verticesPair[verticesPairIndex].innerIndex = skippedUmbraIndex;
781                verticesPairIndex++;
782                newPenumbra[newPenumbraIndex++] = interpolatedPenumbra;
783            }
784        }
785        verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
786        verticesPair[verticesPairIndex].innerIndex = currentClosestUmbraIndex;
787        verticesPairIndex++;
788        newPenumbra[newPenumbraIndex++] = currentPenumbraVertex;
789
790        previousClosestUmbraIndex = currentClosestUmbraIndex;
791    }
792}
793
794// Precompute all the polygon's vector, return true if the reference cross product is positive.
795inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength,
796        const Vector2& centroid, Vector2* polyToCentroid) {
797    for (int j = 0; j < polyLength; j++) {
798        polyToCentroid[j] = poly2d[j] - centroid;
799        // Normalize these vectors such that we can use epsilon comparison after
800        // computing their cross products with another normalized vector.
801        polyToCentroid[j].normalize();
802    }
803    float refCrossProduct = 0;
804    for (int j = 0; j < polyLength; j++) {
805        refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]);
806        if (refCrossProduct != 0) {
807            break;
808        }
809    }
810
811    return refCrossProduct > 0;
812}
813
814// For one umbra vertex, shoot an ray from centroid to it.
815// If the ray hit the polygon first, then return the intersection point as the
816// closer vertex.
817inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid,
818        const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid,
819        bool isPositiveCross, int& previousPolyIndex) {
820    Vector2 umbraToCentroid = umbraVertex - centroid;
821    float distanceToUmbra = umbraToCentroid.length();
822    umbraToCentroid = umbraToCentroid / distanceToUmbra;
823
824    // previousPolyIndex is updated for each item such that we can minimize the
825    // looping inside findPolyIndex();
826    previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex,
827            umbraToCentroid, polyToCentroid, polyLength);
828
829    float dx = umbraToCentroid.x;
830    float dy = umbraToCentroid.y;
831    float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
832            poly2d[previousPolyIndex], poly2d[(previousPolyIndex + 1) % polyLength]);
833    if (distanceToIntersectPoly < 0) {
834        distanceToIntersectPoly = 0;
835    }
836
837    // Pick the closer one as the occluded area vertex.
838    Vector2 closerVertex;
839    if (distanceToIntersectPoly < distanceToUmbra) {
840        closerVertex.x = centroid.x + dx * distanceToIntersectPoly;
841        closerVertex.y = centroid.y + dy * distanceToIntersectPoly;
842    } else {
843        closerVertex = umbraVertex;
844    }
845
846    return closerVertex;
847}
848
849/**
850 * Generate a triangle strip given two convex polygon
851**/
852void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
853        Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
854        const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
855        const Vector2& centroid) {
856    bool hasOccludedUmbraArea = false;
857    Vector2 poly2d[polyLength];
858
859    if (isCasterOpaque) {
860        for (int i = 0; i < polyLength; i++) {
861            poly2d[i].x = poly[i].x;
862            poly2d[i].y = poly[i].y;
863        }
864        // Make sure the centroid is inside the umbra, otherwise, fall back to the
865        // approach as if there is no occluded umbra area.
866        if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
867            hasOccludedUmbraArea = true;
868        }
869    }
870
871    // For each penumbra vertex, find its corresponding closest umbra vertex index.
872    //
873    // Penumbra Vertices marked as Pi
874    // Umbra Vertices marked as Ui
875    //                                            (P3)
876    //          (P2)                               |     ' (P4)
877    //   (P1)'   |                                 |   '
878    //         ' |                                 | '
879    // (P0)  ------------------------------------------------(P5)
880    //           | (U0)                            |(U1)
881    //           |                                 |
882    //           |                                 |(U2)     (P5.1)
883    //           |                                 |
884    //           |                                 |
885    //           |                                 |
886    //           |                                 |
887    //           |                                 |
888    //           |                                 |
889    //       (U4)-----------------------------------(U3)      (P6)
890    //
891    // At least, like P0, P1, P2, they will find the matching umbra as U0.
892    // If we jump over some umbra vertex without matching penumbra vertex, then
893    // we will generate some new penumbra vertex by interpolation. Like P6 is
894    // matching U3, but U2 is not matched with any penumbra vertex.
895    // So interpolate P5.1 out and match U2.
896    // In this way, every umbra vertex will have a matching penumbra vertex.
897    //
898    // The total pair number can be as high as umbraLength + penumbraLength.
899    const int maxNewPenumbraLength = umbraLength + penumbraLength;
900    IndexPair verticesPair[maxNewPenumbraLength];
901    int verticesPairIndex = 0;
902
903    // Cache all the existing penumbra vertices and newly interpolated vertices into a
904    // a new array.
905    Vector2 newPenumbra[maxNewPenumbraLength];
906    int newPenumbraIndex = 0;
907
908    // For each penumbra vertex, find its closet umbra vertex by comparing the
909    // neighbor umbra vertices.
910    genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra,
911            newPenumbraIndex, verticesPair, verticesPairIndex);
912    ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair");
913    ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra");
914#if DEBUG_SHADOW
915    for (int i = 0; i < umbraLength; i++) {
916        ALOGD("umbra i %d,  [%f, %f]", i, umbra[i].x, umbra[i].y);
917    }
918    for (int i = 0; i < newPenumbraIndex; i++) {
919        ALOGD("new penumbra i %d,  [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y);
920    }
921    for (int i = 0; i < verticesPairIndex; i++) {
922        ALOGD("index i %d,  [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex);
923    }
924#endif
925
926    // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize,
927    // one has umbraLength, the last one has at most umbraLength.
928    //
929    // For the size of index buffer, the umbra area needs (2 * umbraLength + 2).
930    // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2).
931    // And 2 more for jumping between penumbra to umbra.
932    const int newPenumbraLength = newPenumbraIndex;
933    const int totalVertexCount = newPenumbraLength + umbraLength * 2;
934    const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6;
935    AlphaVertex* shadowVertices =
936            shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
937    uint16_t* indexBuffer =
938            shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
939    int vertexBufferIndex = 0;
940    int indexBufferIndex = 0;
941
942    // Fill the IB and VB for the penumbra area.
943    for (int i = 0; i < newPenumbraLength; i++) {
944        AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x,
945                newPenumbra[i].y, TRANSFORMED_PENUMBRA_ALPHA);
946    }
947    for (int i = 0; i < umbraLength; i++) {
948        AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y,
949                TRANSFORMED_UMBRA_ALPHA);
950    }
951
952    for (int i = 0; i < verticesPairIndex; i++) {
953        indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex;
954        // All umbra index need to be offseted by newPenumbraSize.
955        indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength;
956    }
957    indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex;
958    indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength;
959
960    // Now fill the IB and VB for the umbra area.
961    // First duplicated the index from previous strip and the first one for the
962    // degenerated triangles.
963    indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1];
964    indexBufferIndex++;
965    indexBuffer[indexBufferIndex++] = newPenumbraLength + 0;
966    // Save the first VB index for umbra area in order to close the loop.
967    int savedStartIndex = vertexBufferIndex;
968
969    if (hasOccludedUmbraArea) {
970        // Precompute all the polygon's vector, and the reference cross product,
971        // in order to find the right polygon edge for the ray to intersect.
972        Vector2 polyToCentroid[polyLength];
973        bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid);
974
975        // Because both the umbra and polygon are going in the same direction,
976        // we can save the previous polygon index to make sure we have less polygon
977        // vertex to compute for each ray.
978        int previousPolyIndex = 0;
979        for (int i = 0; i < umbraLength; i++) {
980            // Shoot a ray from centroid to each umbra vertices and pick the one with
981            // shorter distance to the centroid, b/t the umbra vertex or the intersection point.
982            Vector2 closerVertex = getCloserVertex(umbra[i], centroid, poly2d, polyLength,
983                    polyToCentroid, isPositiveCross, previousPolyIndex);
984
985            // We already stored the umbra vertices, just need to add the occlued umbra's ones.
986            indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
987            indexBuffer[indexBufferIndex++] = vertexBufferIndex;
988            AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
989                    closerVertex.x, closerVertex.y, TRANSFORMED_UMBRA_ALPHA);
990        }
991    } else {
992        // If there is no occluded umbra at all, then draw the triangle fan
993        // starting from the centroid to all umbra vertices.
994        int lastCentroidIndex = vertexBufferIndex;
995        AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
996                centroid.y, TRANSFORMED_UMBRA_ALPHA);
997        for (int i = 0; i < umbraLength; i++) {
998            indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
999            indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1000        }
1001    }
1002    // Closing the umbra area triangle's loop here.
1003    indexBuffer[indexBufferIndex++] = newPenumbraLength;
1004    indexBuffer[indexBufferIndex++] = savedStartIndex;
1005
1006    // At the end, update the real index and vertex buffer size.
1007    shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
1008    shadowTriangleStrip.updateIndexCount(indexBufferIndex);
1009    ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
1010    ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
1011
1012    shadowTriangleStrip.setMeshFeatureFlags(VertexBuffer::kAlpha | VertexBuffer::kIndices);
1013    shadowTriangleStrip.computeBounds<AlphaVertex>();
1014}
1015
1016#if DEBUG_SHADOW
1017
1018#define TEST_POINT_NUMBER 128
1019/**
1020 * Calculate the bounds for generating random test points.
1021 */
1022void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
1023        Vector2& upperBound) {
1024    if (inVector.x < lowerBound.x) {
1025        lowerBound.x = inVector.x;
1026    }
1027
1028    if (inVector.y < lowerBound.y) {
1029        lowerBound.y = inVector.y;
1030    }
1031
1032    if (inVector.x > upperBound.x) {
1033        upperBound.x = inVector.x;
1034    }
1035
1036    if (inVector.y > upperBound.y) {
1037        upperBound.y = inVector.y;
1038    }
1039}
1040
1041/**
1042 * For debug purpose, when things go wrong, dump the whole polygon data.
1043 */
1044void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1045    for (int i = 0; i < polyLength; i++) {
1046        ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1047    }
1048}
1049
1050/**
1051 * For debug purpose, when things go wrong, dump the whole polygon data.
1052 */
1053void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
1054    for (int i = 0; i < polyLength; i++) {
1055        ALOGD("polygon %s i %d x %f y %f z %f", polyName, i, poly[i].x, poly[i].y, poly[i].z);
1056    }
1057}
1058
1059/**
1060 * Test whether the polygon is convex.
1061 */
1062bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
1063        const char* name) {
1064    bool isConvex = true;
1065    for (int i = 0; i < polygonLength; i++) {
1066        Vector2 start = polygon[i];
1067        Vector2 middle = polygon[(i + 1) % polygonLength];
1068        Vector2 end = polygon[(i + 2) % polygonLength];
1069
1070        float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
1071                (float(middle.y) - start.y) * (float(end.x) - start.x);
1072        bool isCCWOrCoLinear = (delta >= EPSILON);
1073
1074        if (isCCWOrCoLinear) {
1075            ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
1076                    "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1077                    name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1078            isConvex = false;
1079            break;
1080        }
1081    }
1082    return isConvex;
1083}
1084
1085/**
1086 * Test whether or not the polygon (intersection) is within the 2 input polygons.
1087 * Using Marte Carlo method, we generate a random point, and if it is inside the
1088 * intersection, then it must be inside both source polygons.
1089 */
1090void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
1091        const Vector2* poly2, int poly2Length,
1092        const Vector2* intersection, int intersectionLength) {
1093    // Find the min and max of x and y.
1094    Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1095    Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
1096    for (int i = 0; i < poly1Length; i++) {
1097        updateBound(poly1[i], lowerBound, upperBound);
1098    }
1099    for (int i = 0; i < poly2Length; i++) {
1100        updateBound(poly2[i], lowerBound, upperBound);
1101    }
1102
1103    bool dumpPoly = false;
1104    for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1105        // Generate a random point between minX, minY and maxX, maxY.
1106        float randomX = rand() / float(RAND_MAX);
1107        float randomY = rand() / float(RAND_MAX);
1108
1109        Vector2 testPoint;
1110        testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1111        testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1112
1113        // If the random point is in both poly 1 and 2, then it must be intersection.
1114        if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1115            if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1116                dumpPoly = true;
1117                ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1118                        " not in the poly1",
1119                        testPoint.x, testPoint.y);
1120            }
1121
1122            if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1123                dumpPoly = true;
1124                ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1125                        " not in the poly2",
1126                        testPoint.x, testPoint.y);
1127            }
1128        }
1129    }
1130
1131    if (dumpPoly) {
1132        dumpPolygon(intersection, intersectionLength, "intersection");
1133        for (int i = 1; i < intersectionLength; i++) {
1134            Vector2 delta = intersection[i] - intersection[i - 1];
1135            ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1136        }
1137
1138        dumpPolygon(poly1, poly1Length, "poly 1");
1139        dumpPolygon(poly2, poly2Length, "poly 2");
1140    }
1141}
1142#endif
1143
1144}; // namespace uirenderer
1145}; // namespace android
1146