1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.util.AbstractQueue;
10import java.util.Collection;
11import java.util.Iterator;
12import java.util.NoSuchElementException;
13import java.util.Queue;
14import java.util.concurrent.locks.LockSupport;
15
16// BEGIN android-note
17// removed link to collections framework docs
18// END android-note
19
20/**
21 * An unbounded {@link TransferQueue} based on linked nodes.
22 * This queue orders elements FIFO (first-in-first-out) with respect
23 * to any given producer.  The <em>head</em> of the queue is that
24 * element that has been on the queue the longest time for some
25 * producer.  The <em>tail</em> of the queue is that element that has
26 * been on the queue the shortest time for some producer.
27 *
28 * <p>Beware that, unlike in most collections, the {@code size} method
29 * is <em>NOT</em> a constant-time operation. Because of the
30 * asynchronous nature of these queues, determining the current number
31 * of elements requires a traversal of the elements, and so may report
32 * inaccurate results if this collection is modified during traversal.
33 * Additionally, the bulk operations {@code addAll},
34 * {@code removeAll}, {@code retainAll}, {@code containsAll},
35 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
36 * to be performed atomically. For example, an iterator operating
37 * concurrently with an {@code addAll} operation might view only some
38 * of the added elements.
39 *
40 * <p>This class and its iterator implement all of the
41 * <em>optional</em> methods of the {@link Collection} and {@link
42 * Iterator} interfaces.
43 *
44 * <p>Memory consistency effects: As with other concurrent
45 * collections, actions in a thread prior to placing an object into a
46 * {@code LinkedTransferQueue}
47 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
48 * actions subsequent to the access or removal of that element from
49 * the {@code LinkedTransferQueue} in another thread.
50 *
51 * @since 1.7
52 * @author Doug Lea
53 * @param <E> the type of elements held in this collection
54 */
55public class LinkedTransferQueue<E> extends AbstractQueue<E>
56    implements TransferQueue<E>, java.io.Serializable {
57    private static final long serialVersionUID = -3223113410248163686L;
58
59    /*
60     * *** Overview of Dual Queues with Slack ***
61     *
62     * Dual Queues, introduced by Scherer and Scott
63     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
64     * (linked) queues in which nodes may represent either data or
65     * requests.  When a thread tries to enqueue a data node, but
66     * encounters a request node, it instead "matches" and removes it;
67     * and vice versa for enqueuing requests. Blocking Dual Queues
68     * arrange that threads enqueuing unmatched requests block until
69     * other threads provide the match. Dual Synchronous Queues (see
70     * Scherer, Lea, & Scott
71     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
72     * additionally arrange that threads enqueuing unmatched data also
73     * block.  Dual Transfer Queues support all of these modes, as
74     * dictated by callers.
75     *
76     * A FIFO dual queue may be implemented using a variation of the
77     * Michael & Scott (M&S) lock-free queue algorithm
78     * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
79     * It maintains two pointer fields, "head", pointing to a
80     * (matched) node that in turn points to the first actual
81     * (unmatched) queue node (or null if empty); and "tail" that
82     * points to the last node on the queue (or again null if
83     * empty). For example, here is a possible queue with four data
84     * elements:
85     *
86     *  head                tail
87     *    |                   |
88     *    v                   v
89     *    M -> U -> U -> U -> U
90     *
91     * The M&S queue algorithm is known to be prone to scalability and
92     * overhead limitations when maintaining (via CAS) these head and
93     * tail pointers. This has led to the development of
94     * contention-reducing variants such as elimination arrays (see
95     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
96     * optimistic back pointers (see Ladan-Mozes & Shavit
97     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
98     * However, the nature of dual queues enables a simpler tactic for
99     * improving M&S-style implementations when dual-ness is needed.
100     *
101     * In a dual queue, each node must atomically maintain its match
102     * status. While there are other possible variants, we implement
103     * this here as: for a data-mode node, matching entails CASing an
104     * "item" field from a non-null data value to null upon match, and
105     * vice-versa for request nodes, CASing from null to a data
106     * value. (Note that the linearization properties of this style of
107     * queue are easy to verify -- elements are made available by
108     * linking, and unavailable by matching.) Compared to plain M&S
109     * queues, this property of dual queues requires one additional
110     * successful atomic operation per enq/deq pair. But it also
111     * enables lower cost variants of queue maintenance mechanics. (A
112     * variation of this idea applies even for non-dual queues that
113     * support deletion of interior elements, such as
114     * j.u.c.ConcurrentLinkedQueue.)
115     *
116     * Once a node is matched, its match status can never again
117     * change.  We may thus arrange that the linked list of them
118     * contain a prefix of zero or more matched nodes, followed by a
119     * suffix of zero or more unmatched nodes. (Note that we allow
120     * both the prefix and suffix to be zero length, which in turn
121     * means that we do not use a dummy header.)  If we were not
122     * concerned with either time or space efficiency, we could
123     * correctly perform enqueue and dequeue operations by traversing
124     * from a pointer to the initial node; CASing the item of the
125     * first unmatched node on match and CASing the next field of the
126     * trailing node on appends. (Plus some special-casing when
127     * initially empty).  While this would be a terrible idea in
128     * itself, it does have the benefit of not requiring ANY atomic
129     * updates on head/tail fields.
130     *
131     * We introduce here an approach that lies between the extremes of
132     * never versus always updating queue (head and tail) pointers.
133     * This offers a tradeoff between sometimes requiring extra
134     * traversal steps to locate the first and/or last unmatched
135     * nodes, versus the reduced overhead and contention of fewer
136     * updates to queue pointers. For example, a possible snapshot of
137     * a queue is:
138     *
139     *  head           tail
140     *    |              |
141     *    v              v
142     *    M -> M -> U -> U -> U -> U
143     *
144     * The best value for this "slack" (the targeted maximum distance
145     * between the value of "head" and the first unmatched node, and
146     * similarly for "tail") is an empirical matter. We have found
147     * that using very small constants in the range of 1-3 work best
148     * over a range of platforms. Larger values introduce increasing
149     * costs of cache misses and risks of long traversal chains, while
150     * smaller values increase CAS contention and overhead.
151     *
152     * Dual queues with slack differ from plain M&S dual queues by
153     * virtue of only sometimes updating head or tail pointers when
154     * matching, appending, or even traversing nodes; in order to
155     * maintain a targeted slack.  The idea of "sometimes" may be
156     * operationalized in several ways. The simplest is to use a
157     * per-operation counter incremented on each traversal step, and
158     * to try (via CAS) to update the associated queue pointer
159     * whenever the count exceeds a threshold. Another, that requires
160     * more overhead, is to use random number generators to update
161     * with a given probability per traversal step.
162     *
163     * In any strategy along these lines, because CASes updating
164     * fields may fail, the actual slack may exceed targeted
165     * slack. However, they may be retried at any time to maintain
166     * targets.  Even when using very small slack values, this
167     * approach works well for dual queues because it allows all
168     * operations up to the point of matching or appending an item
169     * (hence potentially allowing progress by another thread) to be
170     * read-only, thus not introducing any further contention. As
171     * described below, we implement this by performing slack
172     * maintenance retries only after these points.
173     *
174     * As an accompaniment to such techniques, traversal overhead can
175     * be further reduced without increasing contention of head
176     * pointer updates: Threads may sometimes shortcut the "next" link
177     * path from the current "head" node to be closer to the currently
178     * known first unmatched node, and similarly for tail. Again, this
179     * may be triggered with using thresholds or randomization.
180     *
181     * These ideas must be further extended to avoid unbounded amounts
182     * of costly-to-reclaim garbage caused by the sequential "next"
183     * links of nodes starting at old forgotten head nodes: As first
184     * described in detail by Boehm
185     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
186     * delays noticing that any arbitrarily old node has become
187     * garbage, all newer dead nodes will also be unreclaimed.
188     * (Similar issues arise in non-GC environments.)  To cope with
189     * this in our implementation, upon CASing to advance the head
190     * pointer, we set the "next" link of the previous head to point
191     * only to itself; thus limiting the length of connected dead lists.
192     * (We also take similar care to wipe out possibly garbage
193     * retaining values held in other Node fields.)  However, doing so
194     * adds some further complexity to traversal: If any "next"
195     * pointer links to itself, it indicates that the current thread
196     * has lagged behind a head-update, and so the traversal must
197     * continue from the "head".  Traversals trying to find the
198     * current tail starting from "tail" may also encounter
199     * self-links, in which case they also continue at "head".
200     *
201     * It is tempting in slack-based scheme to not even use CAS for
202     * updates (similarly to Ladan-Mozes & Shavit). However, this
203     * cannot be done for head updates under the above link-forgetting
204     * mechanics because an update may leave head at a detached node.
205     * And while direct writes are possible for tail updates, they
206     * increase the risk of long retraversals, and hence long garbage
207     * chains, which can be much more costly than is worthwhile
208     * considering that the cost difference of performing a CAS vs
209     * write is smaller when they are not triggered on each operation
210     * (especially considering that writes and CASes equally require
211     * additional GC bookkeeping ("write barriers") that are sometimes
212     * more costly than the writes themselves because of contention).
213     *
214     * *** Overview of implementation ***
215     *
216     * We use a threshold-based approach to updates, with a slack
217     * threshold of two -- that is, we update head/tail when the
218     * current pointer appears to be two or more steps away from the
219     * first/last node. The slack value is hard-wired: a path greater
220     * than one is naturally implemented by checking equality of
221     * traversal pointers except when the list has only one element,
222     * in which case we keep slack threshold at one. Avoiding tracking
223     * explicit counts across method calls slightly simplifies an
224     * already-messy implementation. Using randomization would
225     * probably work better if there were a low-quality dirt-cheap
226     * per-thread one available, but even ThreadLocalRandom is too
227     * heavy for these purposes.
228     *
229     * With such a small slack threshold value, it is not worthwhile
230     * to augment this with path short-circuiting (i.e., unsplicing
231     * interior nodes) except in the case of cancellation/removal (see
232     * below).
233     *
234     * We allow both the head and tail fields to be null before any
235     * nodes are enqueued; initializing upon first append.  This
236     * simplifies some other logic, as well as providing more
237     * efficient explicit control paths instead of letting JVMs insert
238     * implicit NullPointerExceptions when they are null.  While not
239     * currently fully implemented, we also leave open the possibility
240     * of re-nulling these fields when empty (which is complicated to
241     * arrange, for little benefit.)
242     *
243     * All enqueue/dequeue operations are handled by the single method
244     * "xfer" with parameters indicating whether to act as some form
245     * of offer, put, poll, take, or transfer (each possibly with
246     * timeout). The relative complexity of using one monolithic
247     * method outweighs the code bulk and maintenance problems of
248     * using separate methods for each case.
249     *
250     * Operation consists of up to three phases. The first is
251     * implemented within method xfer, the second in tryAppend, and
252     * the third in method awaitMatch.
253     *
254     * 1. Try to match an existing node
255     *
256     *    Starting at head, skip already-matched nodes until finding
257     *    an unmatched node of opposite mode, if one exists, in which
258     *    case matching it and returning, also if necessary updating
259     *    head to one past the matched node (or the node itself if the
260     *    list has no other unmatched nodes). If the CAS misses, then
261     *    a loop retries advancing head by two steps until either
262     *    success or the slack is at most two. By requiring that each
263     *    attempt advances head by two (if applicable), we ensure that
264     *    the slack does not grow without bound. Traversals also check
265     *    if the initial head is now off-list, in which case they
266     *    start at the new head.
267     *
268     *    If no candidates are found and the call was untimed
269     *    poll/offer, (argument "how" is NOW) return.
270     *
271     * 2. Try to append a new node (method tryAppend)
272     *
273     *    Starting at current tail pointer, find the actual last node
274     *    and try to append a new node (or if head was null, establish
275     *    the first node). Nodes can be appended only if their
276     *    predecessors are either already matched or are of the same
277     *    mode. If we detect otherwise, then a new node with opposite
278     *    mode must have been appended during traversal, so we must
279     *    restart at phase 1. The traversal and update steps are
280     *    otherwise similar to phase 1: Retrying upon CAS misses and
281     *    checking for staleness.  In particular, if a self-link is
282     *    encountered, then we can safely jump to a node on the list
283     *    by continuing the traversal at current head.
284     *
285     *    On successful append, if the call was ASYNC, return.
286     *
287     * 3. Await match or cancellation (method awaitMatch)
288     *
289     *    Wait for another thread to match node; instead cancelling if
290     *    the current thread was interrupted or the wait timed out. On
291     *    multiprocessors, we use front-of-queue spinning: If a node
292     *    appears to be the first unmatched node in the queue, it
293     *    spins a bit before blocking. In either case, before blocking
294     *    it tries to unsplice any nodes between the current "head"
295     *    and the first unmatched node.
296     *
297     *    Front-of-queue spinning vastly improves performance of
298     *    heavily contended queues. And so long as it is relatively
299     *    brief and "quiet", spinning does not much impact performance
300     *    of less-contended queues.  During spins threads check their
301     *    interrupt status and generate a thread-local random number
302     *    to decide to occasionally perform a Thread.yield. While
303     *    yield has underdefined specs, we assume that it might help,
304     *    and will not hurt, in limiting impact of spinning on busy
305     *    systems.  We also use smaller (1/2) spins for nodes that are
306     *    not known to be front but whose predecessors have not
307     *    blocked -- these "chained" spins avoid artifacts of
308     *    front-of-queue rules which otherwise lead to alternating
309     *    nodes spinning vs blocking. Further, front threads that
310     *    represent phase changes (from data to request node or vice
311     *    versa) compared to their predecessors receive additional
312     *    chained spins, reflecting longer paths typically required to
313     *    unblock threads during phase changes.
314     *
315     *
316     * ** Unlinking removed interior nodes **
317     *
318     * In addition to minimizing garbage retention via self-linking
319     * described above, we also unlink removed interior nodes. These
320     * may arise due to timed out or interrupted waits, or calls to
321     * remove(x) or Iterator.remove.  Normally, given a node that was
322     * at one time known to be the predecessor of some node s that is
323     * to be removed, we can unsplice s by CASing the next field of
324     * its predecessor if it still points to s (otherwise s must
325     * already have been removed or is now offlist). But there are two
326     * situations in which we cannot guarantee to make node s
327     * unreachable in this way: (1) If s is the trailing node of list
328     * (i.e., with null next), then it is pinned as the target node
329     * for appends, so can only be removed later after other nodes are
330     * appended. (2) We cannot necessarily unlink s given a
331     * predecessor node that is matched (including the case of being
332     * cancelled): the predecessor may already be unspliced, in which
333     * case some previous reachable node may still point to s.
334     * (For further explanation see Herlihy & Shavit "The Art of
335     * Multiprocessor Programming" chapter 9).  Although, in both
336     * cases, we can rule out the need for further action if either s
337     * or its predecessor are (or can be made to be) at, or fall off
338     * from, the head of list.
339     *
340     * Without taking these into account, it would be possible for an
341     * unbounded number of supposedly removed nodes to remain
342     * reachable.  Situations leading to such buildup are uncommon but
343     * can occur in practice; for example when a series of short timed
344     * calls to poll repeatedly time out but never otherwise fall off
345     * the list because of an untimed call to take at the front of the
346     * queue.
347     *
348     * When these cases arise, rather than always retraversing the
349     * entire list to find an actual predecessor to unlink (which
350     * won't help for case (1) anyway), we record a conservative
351     * estimate of possible unsplice failures (in "sweepVotes").
352     * We trigger a full sweep when the estimate exceeds a threshold
353     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
354     * removal failures to tolerate before sweeping through, unlinking
355     * cancelled nodes that were not unlinked upon initial removal.
356     * We perform sweeps by the thread hitting threshold (rather than
357     * background threads or by spreading work to other threads)
358     * because in the main contexts in which removal occurs, the
359     * caller is already timed-out, cancelled, or performing a
360     * potentially O(n) operation (e.g. remove(x)), none of which are
361     * time-critical enough to warrant the overhead that alternatives
362     * would impose on other threads.
363     *
364     * Because the sweepVotes estimate is conservative, and because
365     * nodes become unlinked "naturally" as they fall off the head of
366     * the queue, and because we allow votes to accumulate even while
367     * sweeps are in progress, there are typically significantly fewer
368     * such nodes than estimated.  Choice of a threshold value
369     * balances the likelihood of wasted effort and contention, versus
370     * providing a worst-case bound on retention of interior nodes in
371     * quiescent queues. The value defined below was chosen
372     * empirically to balance these under various timeout scenarios.
373     *
374     * Note that we cannot self-link unlinked interior nodes during
375     * sweeps. However, the associated garbage chains terminate when
376     * some successor ultimately falls off the head of the list and is
377     * self-linked.
378     */
379
380    /** True if on multiprocessor */
381    private static final boolean MP =
382        Runtime.getRuntime().availableProcessors() > 1;
383
384    /**
385     * The number of times to spin (with randomly interspersed calls
386     * to Thread.yield) on multiprocessor before blocking when a node
387     * is apparently the first waiter in the queue.  See above for
388     * explanation. Must be a power of two. The value is empirically
389     * derived -- it works pretty well across a variety of processors,
390     * numbers of CPUs, and OSes.
391     */
392    private static final int FRONT_SPINS   = 1 << 7;
393
394    /**
395     * The number of times to spin before blocking when a node is
396     * preceded by another node that is apparently spinning.  Also
397     * serves as an increment to FRONT_SPINS on phase changes, and as
398     * base average frequency for yielding during spins. Must be a
399     * power of two.
400     */
401    private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
402
403    /**
404     * The maximum number of estimated removal failures (sweepVotes)
405     * to tolerate before sweeping through the queue unlinking
406     * cancelled nodes that were not unlinked upon initial
407     * removal. See above for explanation. The value must be at least
408     * two to avoid useless sweeps when removing trailing nodes.
409     */
410    static final int SWEEP_THRESHOLD = 32;
411
412    /**
413     * Queue nodes. Uses Object, not E, for items to allow forgetting
414     * them after use.  Relies heavily on Unsafe mechanics to minimize
415     * unnecessary ordering constraints: Writes that are intrinsically
416     * ordered wrt other accesses or CASes use simple relaxed forms.
417     */
418    static final class Node {
419        final boolean isData;   // false if this is a request node
420        volatile Object item;   // initially non-null if isData; CASed to match
421        volatile Node next;
422        volatile Thread waiter; // null until waiting
423
424        // CAS methods for fields
425        final boolean casNext(Node cmp, Node val) {
426            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
427        }
428
429        final boolean casItem(Object cmp, Object val) {
430            // assert cmp == null || cmp.getClass() != Node.class;
431            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
432        }
433
434        /**
435         * Constructs a new node.  Uses relaxed write because item can
436         * only be seen after publication via casNext.
437         */
438        Node(Object item, boolean isData) {
439            UNSAFE.putObject(this, itemOffset, item); // relaxed write
440            this.isData = isData;
441        }
442
443        /**
444         * Links node to itself to avoid garbage retention.  Called
445         * only after CASing head field, so uses relaxed write.
446         */
447        final void forgetNext() {
448            UNSAFE.putObject(this, nextOffset, this);
449        }
450
451        /**
452         * Sets item to self and waiter to null, to avoid garbage
453         * retention after matching or cancelling. Uses relaxed writes
454         * because order is already constrained in the only calling
455         * contexts: item is forgotten only after volatile/atomic
456         * mechanics that extract items.  Similarly, clearing waiter
457         * follows either CAS or return from park (if ever parked;
458         * else we don't care).
459         */
460        final void forgetContents() {
461            UNSAFE.putObject(this, itemOffset, this);
462            UNSAFE.putObject(this, waiterOffset, null);
463        }
464
465        /**
466         * Returns true if this node has been matched, including the
467         * case of artificial matches due to cancellation.
468         */
469        final boolean isMatched() {
470            Object x = item;
471            return (x == this) || ((x == null) == isData);
472        }
473
474        /**
475         * Returns true if this is an unmatched request node.
476         */
477        final boolean isUnmatchedRequest() {
478            return !isData && item == null;
479        }
480
481        /**
482         * Returns true if a node with the given mode cannot be
483         * appended to this node because this node is unmatched and
484         * has opposite data mode.
485         */
486        final boolean cannotPrecede(boolean haveData) {
487            boolean d = isData;
488            Object x;
489            return d != haveData && (x = item) != this && (x != null) == d;
490        }
491
492        /**
493         * Tries to artificially match a data node -- used by remove.
494         */
495        final boolean tryMatchData() {
496            // assert isData;
497            Object x = item;
498            if (x != null && x != this && casItem(x, null)) {
499                LockSupport.unpark(waiter);
500                return true;
501            }
502            return false;
503        }
504
505        private static final long serialVersionUID = -3375979862319811754L;
506
507        // Unsafe mechanics
508        private static final sun.misc.Unsafe UNSAFE;
509        private static final long itemOffset;
510        private static final long nextOffset;
511        private static final long waiterOffset;
512        static {
513            try {
514                UNSAFE = sun.misc.Unsafe.getUnsafe();
515                Class<?> k = Node.class;
516                itemOffset = UNSAFE.objectFieldOffset
517                    (k.getDeclaredField("item"));
518                nextOffset = UNSAFE.objectFieldOffset
519                    (k.getDeclaredField("next"));
520                waiterOffset = UNSAFE.objectFieldOffset
521                    (k.getDeclaredField("waiter"));
522            } catch (Exception e) {
523                throw new Error(e);
524            }
525        }
526    }
527
528    /** head of the queue; null until first enqueue */
529    transient volatile Node head;
530
531    /** tail of the queue; null until first append */
532    private transient volatile Node tail;
533
534    /** The number of apparent failures to unsplice removed nodes */
535    private transient volatile int sweepVotes;
536
537    // CAS methods for fields
538    private boolean casTail(Node cmp, Node val) {
539        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
540    }
541
542    private boolean casHead(Node cmp, Node val) {
543        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
544    }
545
546    private boolean casSweepVotes(int cmp, int val) {
547        return UNSAFE.compareAndSwapInt(this, sweepVotesOffset, cmp, val);
548    }
549
550    /*
551     * Possible values for "how" argument in xfer method.
552     */
553    private static final int NOW   = 0; // for untimed poll, tryTransfer
554    private static final int ASYNC = 1; // for offer, put, add
555    private static final int SYNC  = 2; // for transfer, take
556    private static final int TIMED = 3; // for timed poll, tryTransfer
557
558    @SuppressWarnings("unchecked")
559    static <E> E cast(Object item) {
560        // assert item == null || item.getClass() != Node.class;
561        return (E) item;
562    }
563
564    /**
565     * Implements all queuing methods. See above for explanation.
566     *
567     * @param e the item or null for take
568     * @param haveData true if this is a put, else a take
569     * @param how NOW, ASYNC, SYNC, or TIMED
570     * @param nanos timeout in nanosecs, used only if mode is TIMED
571     * @return an item if matched, else e
572     * @throws NullPointerException if haveData mode but e is null
573     */
574    private E xfer(E e, boolean haveData, int how, long nanos) {
575        if (haveData && (e == null))
576            throw new NullPointerException();
577        Node s = null;                        // the node to append, if needed
578
579        retry:
580        for (;;) {                            // restart on append race
581
582            for (Node h = head, p = h; p != null;) { // find & match first node
583                boolean isData = p.isData;
584                Object item = p.item;
585                if (item != p && (item != null) == isData) { // unmatched
586                    if (isData == haveData)   // can't match
587                        break;
588                    if (p.casItem(item, e)) { // match
589                        for (Node q = p; q != h;) {
590                            Node n = q.next;  // update by 2 unless singleton
591                            if (head == h && casHead(h, n == null ? q : n)) {
592                                h.forgetNext();
593                                break;
594                            }                 // advance and retry
595                            if ((h = head)   == null ||
596                                (q = h.next) == null || !q.isMatched())
597                                break;        // unless slack < 2
598                        }
599                        LockSupport.unpark(p.waiter);
600                        return LinkedTransferQueue.<E>cast(item);
601                    }
602                }
603                Node n = p.next;
604                p = (p != n) ? n : (h = head); // Use head if p offlist
605            }
606
607            if (how != NOW) {                 // No matches available
608                if (s == null)
609                    s = new Node(e, haveData);
610                Node pred = tryAppend(s, haveData);
611                if (pred == null)
612                    continue retry;           // lost race vs opposite mode
613                if (how != ASYNC)
614                    return awaitMatch(s, pred, e, (how == TIMED), nanos);
615            }
616            return e; // not waiting
617        }
618    }
619
620    /**
621     * Tries to append node s as tail.
622     *
623     * @param s the node to append
624     * @param haveData true if appending in data mode
625     * @return null on failure due to losing race with append in
626     * different mode, else s's predecessor, or s itself if no
627     * predecessor
628     */
629    private Node tryAppend(Node s, boolean haveData) {
630        for (Node t = tail, p = t;;) {        // move p to last node and append
631            Node n, u;                        // temps for reads of next & tail
632            if (p == null && (p = head) == null) {
633                if (casHead(null, s))
634                    return s;                 // initialize
635            }
636            else if (p.cannotPrecede(haveData))
637                return null;                  // lost race vs opposite mode
638            else if ((n = p.next) != null)    // not last; keep traversing
639                p = p != t && t != (u = tail) ? (t = u) : // stale tail
640                    (p != n) ? n : null;      // restart if off list
641            else if (!p.casNext(null, s))
642                p = p.next;                   // re-read on CAS failure
643            else {
644                if (p != t) {                 // update if slack now >= 2
645                    while ((tail != t || !casTail(t, s)) &&
646                           (t = tail)   != null &&
647                           (s = t.next) != null && // advance and retry
648                           (s = s.next) != null && s != t);
649                }
650                return p;
651            }
652        }
653    }
654
655    /**
656     * Spins/yields/blocks until node s is matched or caller gives up.
657     *
658     * @param s the waiting node
659     * @param pred the predecessor of s, or s itself if it has no
660     * predecessor, or null if unknown (the null case does not occur
661     * in any current calls but may in possible future extensions)
662     * @param e the comparison value for checking match
663     * @param timed if true, wait only until timeout elapses
664     * @param nanos timeout in nanosecs, used only if timed is true
665     * @return matched item, or e if unmatched on interrupt or timeout
666     */
667    private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
668        final long deadline = timed ? System.nanoTime() + nanos : 0L;
669        Thread w = Thread.currentThread();
670        int spins = -1; // initialized after first item and cancel checks
671        ThreadLocalRandom randomYields = null; // bound if needed
672
673        for (;;) {
674            Object item = s.item;
675            if (item != e) {                  // matched
676                // assert item != s;
677                s.forgetContents();           // avoid garbage
678                return LinkedTransferQueue.<E>cast(item);
679            }
680            if ((w.isInterrupted() || (timed && nanos <= 0)) &&
681                    s.casItem(e, s)) {        // cancel
682                unsplice(pred, s);
683                return e;
684            }
685
686            if (spins < 0) {                  // establish spins at/near front
687                if ((spins = spinsFor(pred, s.isData)) > 0)
688                    randomYields = ThreadLocalRandom.current();
689            }
690            else if (spins > 0) {             // spin
691                --spins;
692                if (randomYields.nextInt(CHAINED_SPINS) == 0)
693                    Thread.yield();           // occasionally yield
694            }
695            else if (s.waiter == null) {
696                s.waiter = w;                 // request unpark then recheck
697            }
698            else if (timed) {
699                nanos = deadline - System.nanoTime();
700                if (nanos > 0L)
701                    LockSupport.parkNanos(this, nanos);
702            }
703            else {
704                LockSupport.park(this);
705            }
706        }
707    }
708
709    /**
710     * Returns spin/yield value for a node with given predecessor and
711     * data mode. See above for explanation.
712     */
713    private static int spinsFor(Node pred, boolean haveData) {
714        if (MP && pred != null) {
715            if (pred.isData != haveData)      // phase change
716                return FRONT_SPINS + CHAINED_SPINS;
717            if (pred.isMatched())             // probably at front
718                return FRONT_SPINS;
719            if (pred.waiter == null)          // pred apparently spinning
720                return CHAINED_SPINS;
721        }
722        return 0;
723    }
724
725    /* -------------- Traversal methods -------------- */
726
727    /**
728     * Returns the successor of p, or the head node if p.next has been
729     * linked to self, which will only be true if traversing with a
730     * stale pointer that is now off the list.
731     */
732    final Node succ(Node p) {
733        Node next = p.next;
734        return (p == next) ? head : next;
735    }
736
737    /**
738     * Returns the first unmatched node of the given mode, or null if
739     * none.  Used by methods isEmpty, hasWaitingConsumer.
740     */
741    private Node firstOfMode(boolean isData) {
742        for (Node p = head; p != null; p = succ(p)) {
743            if (!p.isMatched())
744                return (p.isData == isData) ? p : null;
745        }
746        return null;
747    }
748
749    /**
750     * Returns the item in the first unmatched node with isData; or
751     * null if none.  Used by peek.
752     */
753    private E firstDataItem() {
754        for (Node p = head; p != null; p = succ(p)) {
755            Object item = p.item;
756            if (p.isData) {
757                if (item != null && item != p)
758                    return LinkedTransferQueue.<E>cast(item);
759            }
760            else if (item == null)
761                return null;
762        }
763        return null;
764    }
765
766    /**
767     * Traverses and counts unmatched nodes of the given mode.
768     * Used by methods size and getWaitingConsumerCount.
769     */
770    private int countOfMode(boolean data) {
771        int count = 0;
772        for (Node p = head; p != null; ) {
773            if (!p.isMatched()) {
774                if (p.isData != data)
775                    return 0;
776                if (++count == Integer.MAX_VALUE) // saturated
777                    break;
778            }
779            Node n = p.next;
780            if (n != p)
781                p = n;
782            else {
783                count = 0;
784                p = head;
785            }
786        }
787        return count;
788    }
789
790    final class Itr implements Iterator<E> {
791        private Node nextNode;   // next node to return item for
792        private E nextItem;      // the corresponding item
793        private Node lastRet;    // last returned node, to support remove
794        private Node lastPred;   // predecessor to unlink lastRet
795
796        /**
797         * Moves to next node after prev, or first node if prev null.
798         */
799        private void advance(Node prev) {
800            /*
801             * To track and avoid buildup of deleted nodes in the face
802             * of calls to both Queue.remove and Itr.remove, we must
803             * include variants of unsplice and sweep upon each
804             * advance: Upon Itr.remove, we may need to catch up links
805             * from lastPred, and upon other removes, we might need to
806             * skip ahead from stale nodes and unsplice deleted ones
807             * found while advancing.
808             */
809
810            Node r, b; // reset lastPred upon possible deletion of lastRet
811            if ((r = lastRet) != null && !r.isMatched())
812                lastPred = r;    // next lastPred is old lastRet
813            else if ((b = lastPred) == null || b.isMatched())
814                lastPred = null; // at start of list
815            else {
816                Node s, n;       // help with removal of lastPred.next
817                while ((s = b.next) != null &&
818                       s != b && s.isMatched() &&
819                       (n = s.next) != null && n != s)
820                    b.casNext(s, n);
821            }
822
823            this.lastRet = prev;
824
825            for (Node p = prev, s, n;;) {
826                s = (p == null) ? head : p.next;
827                if (s == null)
828                    break;
829                else if (s == p) {
830                    p = null;
831                    continue;
832                }
833                Object item = s.item;
834                if (s.isData) {
835                    if (item != null && item != s) {
836                        nextItem = LinkedTransferQueue.<E>cast(item);
837                        nextNode = s;
838                        return;
839                    }
840                }
841                else if (item == null)
842                    break;
843                // assert s.isMatched();
844                if (p == null)
845                    p = s;
846                else if ((n = s.next) == null)
847                    break;
848                else if (s == n)
849                    p = null;
850                else
851                    p.casNext(s, n);
852            }
853            nextNode = null;
854            nextItem = null;
855        }
856
857        Itr() {
858            advance(null);
859        }
860
861        public final boolean hasNext() {
862            return nextNode != null;
863        }
864
865        public final E next() {
866            Node p = nextNode;
867            if (p == null) throw new NoSuchElementException();
868            E e = nextItem;
869            advance(p);
870            return e;
871        }
872
873        public final void remove() {
874            final Node lastRet = this.lastRet;
875            if (lastRet == null)
876                throw new IllegalStateException();
877            this.lastRet = null;
878            if (lastRet.tryMatchData())
879                unsplice(lastPred, lastRet);
880        }
881    }
882
883    /* -------------- Removal methods -------------- */
884
885    /**
886     * Unsplices (now or later) the given deleted/cancelled node with
887     * the given predecessor.
888     *
889     * @param pred a node that was at one time known to be the
890     * predecessor of s, or null or s itself if s is/was at head
891     * @param s the node to be unspliced
892     */
893    final void unsplice(Node pred, Node s) {
894        s.forgetContents(); // forget unneeded fields
895        /*
896         * See above for rationale. Briefly: if pred still points to
897         * s, try to unlink s.  If s cannot be unlinked, because it is
898         * trailing node or pred might be unlinked, and neither pred
899         * nor s are head or offlist, add to sweepVotes, and if enough
900         * votes have accumulated, sweep.
901         */
902        if (pred != null && pred != s && pred.next == s) {
903            Node n = s.next;
904            if (n == null ||
905                (n != s && pred.casNext(s, n) && pred.isMatched())) {
906                for (;;) {               // check if at, or could be, head
907                    Node h = head;
908                    if (h == pred || h == s || h == null)
909                        return;          // at head or list empty
910                    if (!h.isMatched())
911                        break;
912                    Node hn = h.next;
913                    if (hn == null)
914                        return;          // now empty
915                    if (hn != h && casHead(h, hn))
916                        h.forgetNext();  // advance head
917                }
918                if (pred.next != pred && s.next != s) { // recheck if offlist
919                    for (;;) {           // sweep now if enough votes
920                        int v = sweepVotes;
921                        if (v < SWEEP_THRESHOLD) {
922                            if (casSweepVotes(v, v + 1))
923                                break;
924                        }
925                        else if (casSweepVotes(v, 0)) {
926                            sweep();
927                            break;
928                        }
929                    }
930                }
931            }
932        }
933    }
934
935    /**
936     * Unlinks matched (typically cancelled) nodes encountered in a
937     * traversal from head.
938     */
939    private void sweep() {
940        for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
941            if (!s.isMatched())
942                // Unmatched nodes are never self-linked
943                p = s;
944            else if ((n = s.next) == null) // trailing node is pinned
945                break;
946            else if (s == n)    // stale
947                // No need to also check for p == s, since that implies s == n
948                p = head;
949            else
950                p.casNext(s, n);
951        }
952    }
953
954    /**
955     * Main implementation of remove(Object)
956     */
957    private boolean findAndRemove(Object e) {
958        if (e != null) {
959            for (Node pred = null, p = head; p != null; ) {
960                Object item = p.item;
961                if (p.isData) {
962                    if (item != null && item != p && e.equals(item) &&
963                        p.tryMatchData()) {
964                        unsplice(pred, p);
965                        return true;
966                    }
967                }
968                else if (item == null)
969                    break;
970                pred = p;
971                if ((p = p.next) == pred) { // stale
972                    pred = null;
973                    p = head;
974                }
975            }
976        }
977        return false;
978    }
979
980    /**
981     * Creates an initially empty {@code LinkedTransferQueue}.
982     */
983    public LinkedTransferQueue() {
984    }
985
986    /**
987     * Creates a {@code LinkedTransferQueue}
988     * initially containing the elements of the given collection,
989     * added in traversal order of the collection's iterator.
990     *
991     * @param c the collection of elements to initially contain
992     * @throws NullPointerException if the specified collection or any
993     *         of its elements are null
994     */
995    public LinkedTransferQueue(Collection<? extends E> c) {
996        this();
997        addAll(c);
998    }
999
1000    /**
1001     * Inserts the specified element at the tail of this queue.
1002     * As the queue is unbounded, this method will never block.
1003     *
1004     * @throws NullPointerException if the specified element is null
1005     */
1006    public void put(E e) {
1007        xfer(e, true, ASYNC, 0);
1008    }
1009
1010    /**
1011     * Inserts the specified element at the tail of this queue.
1012     * As the queue is unbounded, this method will never block or
1013     * return {@code false}.
1014     *
1015     * @return {@code true} (as specified by
1016     *  {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1017     *  BlockingQueue.offer})
1018     * @throws NullPointerException if the specified element is null
1019     */
1020    public boolean offer(E e, long timeout, TimeUnit unit) {
1021        xfer(e, true, ASYNC, 0);
1022        return true;
1023    }
1024
1025    /**
1026     * Inserts the specified element at the tail of this queue.
1027     * As the queue is unbounded, this method will never return {@code false}.
1028     *
1029     * @return {@code true} (as specified by {@link Queue#offer})
1030     * @throws NullPointerException if the specified element is null
1031     */
1032    public boolean offer(E e) {
1033        xfer(e, true, ASYNC, 0);
1034        return true;
1035    }
1036
1037    /**
1038     * Inserts the specified element at the tail of this queue.
1039     * As the queue is unbounded, this method will never throw
1040     * {@link IllegalStateException} or return {@code false}.
1041     *
1042     * @return {@code true} (as specified by {@link Collection#add})
1043     * @throws NullPointerException if the specified element is null
1044     */
1045    public boolean add(E e) {
1046        xfer(e, true, ASYNC, 0);
1047        return true;
1048    }
1049
1050    /**
1051     * Transfers the element to a waiting consumer immediately, if possible.
1052     *
1053     * <p>More precisely, transfers the specified element immediately
1054     * if there exists a consumer already waiting to receive it (in
1055     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1056     * otherwise returning {@code false} without enqueuing the element.
1057     *
1058     * @throws NullPointerException if the specified element is null
1059     */
1060    public boolean tryTransfer(E e) {
1061        return xfer(e, true, NOW, 0) == null;
1062    }
1063
1064    /**
1065     * Transfers the element to a consumer, waiting if necessary to do so.
1066     *
1067     * <p>More precisely, transfers the specified element immediately
1068     * if there exists a consumer already waiting to receive it (in
1069     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1070     * else inserts the specified element at the tail of this queue
1071     * and waits until the element is received by a consumer.
1072     *
1073     * @throws NullPointerException if the specified element is null
1074     */
1075    public void transfer(E e) throws InterruptedException {
1076        if (xfer(e, true, SYNC, 0) != null) {
1077            Thread.interrupted(); // failure possible only due to interrupt
1078            throw new InterruptedException();
1079        }
1080    }
1081
1082    /**
1083     * Transfers the element to a consumer if it is possible to do so
1084     * before the timeout elapses.
1085     *
1086     * <p>More precisely, transfers the specified element immediately
1087     * if there exists a consumer already waiting to receive it (in
1088     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1089     * else inserts the specified element at the tail of this queue
1090     * and waits until the element is received by a consumer,
1091     * returning {@code false} if the specified wait time elapses
1092     * before the element can be transferred.
1093     *
1094     * @throws NullPointerException if the specified element is null
1095     */
1096    public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1097        throws InterruptedException {
1098        if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1099            return true;
1100        if (!Thread.interrupted())
1101            return false;
1102        throw new InterruptedException();
1103    }
1104
1105    public E take() throws InterruptedException {
1106        E e = xfer(null, false, SYNC, 0);
1107        if (e != null)
1108            return e;
1109        Thread.interrupted();
1110        throw new InterruptedException();
1111    }
1112
1113    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1114        E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1115        if (e != null || !Thread.interrupted())
1116            return e;
1117        throw new InterruptedException();
1118    }
1119
1120    public E poll() {
1121        return xfer(null, false, NOW, 0);
1122    }
1123
1124    /**
1125     * @throws NullPointerException     {@inheritDoc}
1126     * @throws IllegalArgumentException {@inheritDoc}
1127     */
1128    public int drainTo(Collection<? super E> c) {
1129        if (c == null)
1130            throw new NullPointerException();
1131        if (c == this)
1132            throw new IllegalArgumentException();
1133        int n = 0;
1134        for (E e; (e = poll()) != null;) {
1135            c.add(e);
1136            ++n;
1137        }
1138        return n;
1139    }
1140
1141    /**
1142     * @throws NullPointerException     {@inheritDoc}
1143     * @throws IllegalArgumentException {@inheritDoc}
1144     */
1145    public int drainTo(Collection<? super E> c, int maxElements) {
1146        if (c == null)
1147            throw new NullPointerException();
1148        if (c == this)
1149            throw new IllegalArgumentException();
1150        int n = 0;
1151        for (E e; n < maxElements && (e = poll()) != null;) {
1152            c.add(e);
1153            ++n;
1154        }
1155        return n;
1156    }
1157
1158    /**
1159     * Returns an iterator over the elements in this queue in proper sequence.
1160     * The elements will be returned in order from first (head) to last (tail).
1161     *
1162     * <p>The returned iterator is a "weakly consistent" iterator that
1163     * will never throw {@link java.util.ConcurrentModificationException
1164     * ConcurrentModificationException}, and guarantees to traverse
1165     * elements as they existed upon construction of the iterator, and
1166     * may (but is not guaranteed to) reflect any modifications
1167     * subsequent to construction.
1168     *
1169     * @return an iterator over the elements in this queue in proper sequence
1170     */
1171    public Iterator<E> iterator() {
1172        return new Itr();
1173    }
1174
1175    public E peek() {
1176        return firstDataItem();
1177    }
1178
1179    /**
1180     * Returns {@code true} if this queue contains no elements.
1181     *
1182     * @return {@code true} if this queue contains no elements
1183     */
1184    public boolean isEmpty() {
1185        for (Node p = head; p != null; p = succ(p)) {
1186            if (!p.isMatched())
1187                return !p.isData;
1188        }
1189        return true;
1190    }
1191
1192    public boolean hasWaitingConsumer() {
1193        return firstOfMode(false) != null;
1194    }
1195
1196    /**
1197     * Returns the number of elements in this queue.  If this queue
1198     * contains more than {@code Integer.MAX_VALUE} elements, returns
1199     * {@code Integer.MAX_VALUE}.
1200     *
1201     * <p>Beware that, unlike in most collections, this method is
1202     * <em>NOT</em> a constant-time operation. Because of the
1203     * asynchronous nature of these queues, determining the current
1204     * number of elements requires an O(n) traversal.
1205     *
1206     * @return the number of elements in this queue
1207     */
1208    public int size() {
1209        return countOfMode(true);
1210    }
1211
1212    public int getWaitingConsumerCount() {
1213        return countOfMode(false);
1214    }
1215
1216    /**
1217     * Removes a single instance of the specified element from this queue,
1218     * if it is present.  More formally, removes an element {@code e} such
1219     * that {@code o.equals(e)}, if this queue contains one or more such
1220     * elements.
1221     * Returns {@code true} if this queue contained the specified element
1222     * (or equivalently, if this queue changed as a result of the call).
1223     *
1224     * @param o element to be removed from this queue, if present
1225     * @return {@code true} if this queue changed as a result of the call
1226     */
1227    public boolean remove(Object o) {
1228        return findAndRemove(o);
1229    }
1230
1231    /**
1232     * Returns {@code true} if this queue contains the specified element.
1233     * More formally, returns {@code true} if and only if this queue contains
1234     * at least one element {@code e} such that {@code o.equals(e)}.
1235     *
1236     * @param o object to be checked for containment in this queue
1237     * @return {@code true} if this queue contains the specified element
1238     */
1239    public boolean contains(Object o) {
1240        if (o == null) return false;
1241        for (Node p = head; p != null; p = succ(p)) {
1242            Object item = p.item;
1243            if (p.isData) {
1244                if (item != null && item != p && o.equals(item))
1245                    return true;
1246            }
1247            else if (item == null)
1248                break;
1249        }
1250        return false;
1251    }
1252
1253    /**
1254     * Always returns {@code Integer.MAX_VALUE} because a
1255     * {@code LinkedTransferQueue} is not capacity constrained.
1256     *
1257     * @return {@code Integer.MAX_VALUE} (as specified by
1258     *         {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1259     *         BlockingQueue.remainingCapacity})
1260     */
1261    public int remainingCapacity() {
1262        return Integer.MAX_VALUE;
1263    }
1264
1265    /**
1266     * Saves this queue to a stream (that is, serializes it).
1267     *
1268     * @serialData All of the elements (each an {@code E}) in
1269     * the proper order, followed by a null
1270     */
1271    private void writeObject(java.io.ObjectOutputStream s)
1272        throws java.io.IOException {
1273        s.defaultWriteObject();
1274        for (E e : this)
1275            s.writeObject(e);
1276        // Use trailing null as sentinel
1277        s.writeObject(null);
1278    }
1279
1280    /**
1281     * Reconstitutes this queue from a stream (that is, deserializes it).
1282     */
1283    private void readObject(java.io.ObjectInputStream s)
1284        throws java.io.IOException, ClassNotFoundException {
1285        s.defaultReadObject();
1286        for (;;) {
1287            @SuppressWarnings("unchecked")
1288            E item = (E) s.readObject();
1289            if (item == null)
1290                break;
1291            else
1292                offer(item);
1293        }
1294    }
1295
1296    // Unsafe mechanics
1297
1298    private static final sun.misc.Unsafe UNSAFE;
1299    private static final long headOffset;
1300    private static final long tailOffset;
1301    private static final long sweepVotesOffset;
1302    static {
1303        try {
1304            UNSAFE = sun.misc.Unsafe.getUnsafe();
1305            Class<?> k = LinkedTransferQueue.class;
1306            headOffset = UNSAFE.objectFieldOffset
1307                (k.getDeclaredField("head"));
1308            tailOffset = UNSAFE.objectFieldOffset
1309                (k.getDeclaredField("tail"));
1310            sweepVotesOffset = UNSAFE.objectFieldOffset
1311                (k.getDeclaredField("sweepVotes"));
1312        } catch (Exception e) {
1313            throw new Error(e);
1314        }
1315
1316        // Reduce the risk of rare disastrous classloading in first call to
1317        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1318        Class<?> ensureLoaded = LockSupport.class;
1319    }
1320}
1321