cpu-features.c revision 4933fadc341c3452d4d2360e890697c37dcfeaa5
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *  * Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *    the documentation and/or other materials provided with the
13 *    distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/* ChangeLog for this library:
30 *
31 * NDK r9?: Support for 64-bit CPUs (Intel, ARM & MIPS).
32 *
33 * NDK r8d: Add android_setCpu().
34 *
35 * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16,
36 *          VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt.
37 *
38 *          Rewrite the code to parse /proc/self/auxv instead of
39 *          the "Features" field in /proc/cpuinfo.
40 *
41 *          Dynamically allocate the buffer that hold the content
42 *          of /proc/cpuinfo to deal with newer hardware.
43 *
44 * NDK r7c: Fix CPU count computation. The old method only reported the
45 *           number of _active_ CPUs when the library was initialized,
46 *           which could be less than the real total.
47 *
48 * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7
49 *         for an ARMv6 CPU (see below).
50 *
51 *         Handle kernels that only report 'neon', and not 'vfpv3'
52 *         (VFPv3 is mandated by the ARM architecture is Neon is implemented)
53 *
54 *         Handle kernels that only report 'vfpv3d16', and not 'vfpv3'
55 *
56 *         Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in
57 *         android_getCpuFamily().
58 *
59 * NDK r4: Initial release
60 */
61
62#if defined(__le32__) || defined(__le64__)
63
64// When users enter this, we should only provide interface and
65// libportable will give the implementations.
66
67#else // !__le32__ && !__le64__
68
69#include "cpu-features.h"
70
71#include <dlfcn.h>
72#include <errno.h>
73#include <fcntl.h>
74#include <pthread.h>
75#include <stdio.h>
76#include <stdlib.h>
77#include <sys/system_properties.h>
78
79static  pthread_once_t     g_once;
80static  int                g_inited;
81static  AndroidCpuFamily   g_cpuFamily;
82static  uint64_t           g_cpuFeatures;
83static  int                g_cpuCount;
84
85#ifdef __arm__
86static  uint32_t           g_cpuIdArm;
87#endif
88
89static const int android_cpufeatures_debug = 0;
90
91#define  D(...) \
92    do { \
93        if (android_cpufeatures_debug) { \
94            printf(__VA_ARGS__); fflush(stdout); \
95        } \
96    } while (0)
97
98#ifdef __i386__
99static __inline__ void x86_cpuid(int func, int values[4])
100{
101    int a, b, c, d;
102    /* We need to preserve ebx since we're compiling PIC code */
103    /* this means we can't use "=b" for the second output register */
104    __asm__ __volatile__ ( \
105      "push %%ebx\n"
106      "cpuid\n" \
107      "mov %%ebx, %1\n"
108      "pop %%ebx\n"
109      : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
110      : "a" (func) \
111    );
112    values[0] = a;
113    values[1] = b;
114    values[2] = c;
115    values[3] = d;
116}
117#endif
118
119/* Get the size of a file by reading it until the end. This is needed
120 * because files under /proc do not always return a valid size when
121 * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed.
122 */
123static int
124get_file_size(const char* pathname)
125{
126    int fd, ret, result = 0;
127    char buffer[256];
128
129    fd = open(pathname, O_RDONLY);
130    if (fd < 0) {
131        D("Can't open %s: %s\n", pathname, strerror(errno));
132        return -1;
133    }
134
135    for (;;) {
136        int ret = read(fd, buffer, sizeof buffer);
137        if (ret < 0) {
138            if (errno == EINTR)
139                continue;
140            D("Error while reading %s: %s\n", pathname, strerror(errno));
141            break;
142        }
143        if (ret == 0)
144            break;
145
146        result += ret;
147    }
148    close(fd);
149    return result;
150}
151
152/* Read the content of /proc/cpuinfo into a user-provided buffer.
153 * Return the length of the data, or -1 on error. Does *not*
154 * zero-terminate the content. Will not read more
155 * than 'buffsize' bytes.
156 */
157static int
158read_file(const char*  pathname, char*  buffer, size_t  buffsize)
159{
160    int  fd, count;
161
162    fd = open(pathname, O_RDONLY);
163    if (fd < 0) {
164        D("Could not open %s: %s\n", pathname, strerror(errno));
165        return -1;
166    }
167    count = 0;
168    while (count < (int)buffsize) {
169        int ret = read(fd, buffer + count, buffsize - count);
170        if (ret < 0) {
171            if (errno == EINTR)
172                continue;
173            D("Error while reading from %s: %s\n", pathname, strerror(errno));
174            if (count == 0)
175                count = -1;
176            break;
177        }
178        if (ret == 0)
179            break;
180        count += ret;
181    }
182    close(fd);
183    return count;
184}
185
186/* Extract the content of a the first occurence of a given field in
187 * the content of /proc/cpuinfo and return it as a heap-allocated
188 * string that must be freed by the caller.
189 *
190 * Return NULL if not found
191 */
192static char*
193extract_cpuinfo_field(const char* buffer, int buflen, const char* field)
194{
195    int  fieldlen = strlen(field);
196    const char* bufend = buffer + buflen;
197    char* result = NULL;
198    int len, ignore;
199    const char *p, *q;
200
201    /* Look for first field occurence, and ensures it starts the line. */
202    p = buffer;
203    for (;;) {
204        p = memmem(p, bufend-p, field, fieldlen);
205        if (p == NULL)
206            goto EXIT;
207
208        if (p == buffer || p[-1] == '\n')
209            break;
210
211        p += fieldlen;
212    }
213
214    /* Skip to the first column followed by a space */
215    p += fieldlen;
216    p  = memchr(p, ':', bufend-p);
217    if (p == NULL || p[1] != ' ')
218        goto EXIT;
219
220    /* Find the end of the line */
221    p += 2;
222    q = memchr(p, '\n', bufend-p);
223    if (q == NULL)
224        q = bufend;
225
226    /* Copy the line into a heap-allocated buffer */
227    len = q-p;
228    result = malloc(len+1);
229    if (result == NULL)
230        goto EXIT;
231
232    memcpy(result, p, len);
233    result[len] = '\0';
234
235EXIT:
236    return result;
237}
238
239/* Checks that a space-separated list of items contains one given 'item'.
240 * Returns 1 if found, 0 otherwise.
241 */
242static int
243has_list_item(const char* list, const char* item)
244{
245    const char*  p = list;
246    int itemlen = strlen(item);
247
248    if (list == NULL)
249        return 0;
250
251    while (*p) {
252        const char*  q;
253
254        /* skip spaces */
255        while (*p == ' ' || *p == '\t')
256            p++;
257
258        /* find end of current list item */
259        q = p;
260        while (*q && *q != ' ' && *q != '\t')
261            q++;
262
263        if (itemlen == q-p && !memcmp(p, item, itemlen))
264            return 1;
265
266        /* skip to next item */
267        p = q;
268    }
269    return 0;
270}
271
272/* Parse a number starting from 'input', but not going further
273 * than 'limit'. Return the value into '*result'.
274 *
275 * NOTE: Does not skip over leading spaces, or deal with sign characters.
276 * NOTE: Ignores overflows.
277 *
278 * The function returns NULL in case of error (bad format), or the new
279 * position after the decimal number in case of success (which will always
280 * be <= 'limit').
281 */
282static const char*
283parse_number(const char* input, const char* limit, int base, int* result)
284{
285    const char* p = input;
286    int val = 0;
287    while (p < limit) {
288        int d = (*p - '0');
289        if ((unsigned)d >= 10U) {
290            d = (*p - 'a');
291            if ((unsigned)d >= 6U)
292              d = (*p - 'A');
293            if ((unsigned)d >= 6U)
294              break;
295            d += 10;
296        }
297        if (d >= base)
298          break;
299        val = val*base + d;
300        p++;
301    }
302    if (p == input)
303        return NULL;
304
305    *result = val;
306    return p;
307}
308
309static const char*
310parse_decimal(const char* input, const char* limit, int* result)
311{
312    return parse_number(input, limit, 10, result);
313}
314
315static const char*
316parse_hexadecimal(const char* input, const char* limit, int* result)
317{
318    return parse_number(input, limit, 16, result);
319}
320
321/* This small data type is used to represent a CPU list / mask, as read
322 * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt
323 *
324 * For now, we don't expect more than 32 cores on mobile devices, so keep
325 * everything simple.
326 */
327typedef struct {
328    uint32_t mask;
329} CpuList;
330
331static __inline__ void
332cpulist_init(CpuList* list) {
333    list->mask = 0;
334}
335
336static __inline__ void
337cpulist_and(CpuList* list1, CpuList* list2) {
338    list1->mask &= list2->mask;
339}
340
341static __inline__ void
342cpulist_set(CpuList* list, int index) {
343    if ((unsigned)index < 32) {
344        list->mask |= (uint32_t)(1U << index);
345    }
346}
347
348static __inline__ int
349cpulist_count(CpuList* list) {
350    return __builtin_popcount(list->mask);
351}
352
353/* Parse a textual list of cpus and store the result inside a CpuList object.
354 * Input format is the following:
355 * - comma-separated list of items (no spaces)
356 * - each item is either a single decimal number (cpu index), or a range made
357 *   of two numbers separated by a single dash (-). Ranges are inclusive.
358 *
359 * Examples:   0
360 *             2,4-127,128-143
361 *             0-1
362 */
363static void
364cpulist_parse(CpuList* list, const char* line, int line_len)
365{
366    const char* p = line;
367    const char* end = p + line_len;
368    const char* q;
369
370    /* NOTE: the input line coming from sysfs typically contains a
371     * trailing newline, so take care of it in the code below
372     */
373    while (p < end && *p != '\n')
374    {
375        int val, start_value, end_value;
376
377        /* Find the end of current item, and put it into 'q' */
378        q = memchr(p, ',', end-p);
379        if (q == NULL) {
380            q = end;
381        }
382
383        /* Get first value */
384        p = parse_decimal(p, q, &start_value);
385        if (p == NULL)
386            goto BAD_FORMAT;
387
388        end_value = start_value;
389
390        /* If we're not at the end of the item, expect a dash and
391         * and integer; extract end value.
392         */
393        if (p < q && *p == '-') {
394            p = parse_decimal(p+1, q, &end_value);
395            if (p == NULL)
396                goto BAD_FORMAT;
397        }
398
399        /* Set bits CPU list bits */
400        for (val = start_value; val <= end_value; val++) {
401            cpulist_set(list, val);
402        }
403
404        /* Jump to next item */
405        p = q;
406        if (p < end)
407            p++;
408    }
409
410BAD_FORMAT:
411    ;
412}
413
414/* Read a CPU list from one sysfs file */
415static void
416cpulist_read_from(CpuList* list, const char* filename)
417{
418    char   file[64];
419    int    filelen;
420
421    cpulist_init(list);
422
423    filelen = read_file(filename, file, sizeof file);
424    if (filelen < 0) {
425        D("Could not read %s: %s\n", filename, strerror(errno));
426        return;
427    }
428
429    cpulist_parse(list, file, filelen);
430}
431
432#if defined(__arm__)
433
434// See <asm/hwcap.h> kernel header.
435#define HWCAP_VFP       (1 << 6)
436#define HWCAP_IWMMXT    (1 << 9)
437#define HWCAP_NEON      (1 << 12)
438#define HWCAP_VFPv3     (1 << 13)
439#define HWCAP_VFPv3D16  (1 << 14)
440#define HWCAP_VFPv4     (1 << 16)
441#define HWCAP_IDIVA     (1 << 17)
442#define HWCAP_IDIVT     (1 << 18)
443
444// This is the list of 32-bit ARMv7 optional features that are _always_
445// supported by ARMv8 CPUs, as mandated by the ARM Architecture Reference
446// Manual.
447#define HWCAP_SET_FOR_ARMV8  \
448  ( HWCAP_VFP | \
449    HWCAP_NEON | \
450    HWCAP_VFPv3 | \
451    HWCAP_VFPv4 | \
452    HWCAP_IDIVA | \
453    HWCAP_IDIVT )
454
455#define AT_HWCAP 16
456
457// Probe the system's C library for a 'getauxval' function and call it if
458// it exits, or return 0 for failure. This function is available since API
459// level 20.
460//
461// This code does *NOT* check for '__ANDROID_API__ >= 20' to support the
462// edge case where some NDK developers use headers for a platform that is
463// newer than the one really targetted by their application.
464// This is typically done to use newer native APIs only when running on more
465// recent Android versions, and requires careful symbol management.
466//
467// Note that getauxval() can't really be re-implemented here, because
468// its implementation does not parse /proc/self/auxv. Instead it depends
469// on values  that are passed by the kernel at process-init time to the
470// C runtime initialization layer.
471static uint32_t
472get_elf_hwcap_from_getauxval(void) {
473    typedef unsigned long getauxval_func_t(unsigned long);
474
475    dlerror();
476    void* libc_handle = dlopen("libc.so", RTLD_NOW);
477    if (!libc_handle) {
478        D("Could not dlopen() C library: %s\n", dlerror());
479        return 0;
480    }
481
482    uint32_t ret = 0;
483    getauxval_func_t* func = (getauxval_func_t*)
484            dlsym(libc_handle, "getauxval");
485    if (!func) {
486        D("Could not find getauxval() in C library\n");
487    } else {
488        // Note: getauxval() returns 0 on failure. Doesn't touch errno.
489        ret = (uint32_t)(*func)(AT_HWCAP);
490    }
491    dlclose(libc_handle);
492    return ret;
493}
494
495// Parse /proc/self/auxv to extract the ELF HW capabilities bitmap for the
496// current CPU. Note that this file is not accessible from regular
497// application processes on some Android platform releases.
498// On success, return new ELF hwcaps, or 0 on failure.
499static uint32_t
500get_elf_hwcap_from_proc_self_auxv(void) {
501    const char filepath[] = "/proc/self/auxv";
502    int fd = TEMP_FAILURE_RETRY(open(filepath, O_RDONLY));
503    if (fd < 0) {
504        D("Could not open %s: %s\n", filepath, strerror(errno));
505        return 0;
506    }
507
508    struct { uint32_t tag; uint32_t value; } entry;
509
510    uint32_t result = 0;
511    for (;;) {
512        int ret = TEMP_FAILURE_RETRY(read(fd, (char*)&entry, sizeof entry));
513        if (ret < 0) {
514            D("Error while reading %s: %s\n", filepath, strerror(errno));
515            break;
516        }
517        // Detect end of list.
518        if (ret == 0 || (entry.tag == 0 && entry.value == 0))
519          break;
520        if (entry.tag == AT_HWCAP) {
521          result = entry.value;
522          break;
523        }
524    }
525    close(fd);
526    return result;
527}
528
529/* Compute the ELF HWCAP flags from the content of /proc/cpuinfo.
530 * This works by parsing the 'Features' line, which lists which optional
531 * features the device's CPU supports, on top of its reference
532 * architecture.
533 */
534static uint32_t
535get_elf_hwcap_from_proc_cpuinfo(const char* cpuinfo, int cpuinfo_len) {
536    uint32_t hwcaps = 0;
537    long architecture = 0;
538    char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
539    if (cpuArch) {
540        architecture = strtol(cpuArch, NULL, 10);
541        free(cpuArch);
542
543        if (architecture >= 8L) {
544            // This is a 32-bit ARM binary running on a 64-bit ARM64 kernel.
545            // The 'Features' line only lists the optional features that the
546            // device's CPU supports, compared to its reference architecture
547            // which are of no use for this process.
548            D("Faking 32-bit ARM HWCaps on ARMv%ld CPU\n", architecture);
549            return HWCAP_SET_FOR_ARMV8;
550        }
551    }
552
553    char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features");
554    if (cpuFeatures != NULL) {
555        D("Found cpuFeatures = '%s'\n", cpuFeatures);
556
557        if (has_list_item(cpuFeatures, "vfp"))
558            hwcaps |= HWCAP_VFP;
559        if (has_list_item(cpuFeatures, "vfpv3"))
560            hwcaps |= HWCAP_VFPv3;
561        if (has_list_item(cpuFeatures, "vfpv3d16"))
562            hwcaps |= HWCAP_VFPv3D16;
563        if (has_list_item(cpuFeatures, "vfpv4"))
564            hwcaps |= HWCAP_VFPv4;
565        if (has_list_item(cpuFeatures, "neon"))
566            hwcaps |= HWCAP_NEON;
567        if (has_list_item(cpuFeatures, "idiva"))
568            hwcaps |= HWCAP_IDIVA;
569        if (has_list_item(cpuFeatures, "idivt"))
570            hwcaps |= HWCAP_IDIVT;
571        if (has_list_item(cpuFeatures, "idiv"))
572            hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT;
573        if (has_list_item(cpuFeatures, "iwmmxt"))
574            hwcaps |= HWCAP_IWMMXT;
575
576        free(cpuFeatures);
577    }
578    return hwcaps;
579}
580#endif  /* __arm__ */
581
582/* Return the number of cpus present on a given device.
583 *
584 * To handle all weird kernel configurations, we need to compute the
585 * intersection of the 'present' and 'possible' CPU lists and count
586 * the result.
587 */
588static int
589get_cpu_count(void)
590{
591    CpuList cpus_present[1];
592    CpuList cpus_possible[1];
593
594    cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present");
595    cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible");
596
597    /* Compute the intersection of both sets to get the actual number of
598     * CPU cores that can be used on this device by the kernel.
599     */
600    cpulist_and(cpus_present, cpus_possible);
601
602    return cpulist_count(cpus_present);
603}
604
605static void
606android_cpuInitFamily(void)
607{
608#if defined(__arm__)
609    g_cpuFamily = ANDROID_CPU_FAMILY_ARM;
610#elif defined(__i386__)
611    g_cpuFamily = ANDROID_CPU_FAMILY_X86;
612#elif defined(__mips64)
613/* Needs to be before __mips__ since the compiler defines both */
614    g_cpuFamily = ANDROID_CPU_FAMILY_MIPS64;
615#elif defined(__mips__)
616    g_cpuFamily = ANDROID_CPU_FAMILY_MIPS;
617#elif defined(__aarch64__)
618    g_cpuFamily = ANDROID_CPU_FAMILY_ARM64;
619#elif defined(__x86_64__)
620    g_cpuFamily = ANDROID_CPU_FAMILY_X86_64;
621#else
622    g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN;
623#endif
624}
625
626static void
627android_cpuInit(void)
628{
629    char* cpuinfo = NULL;
630    int   cpuinfo_len;
631
632    android_cpuInitFamily();
633
634    g_cpuFeatures = 0;
635    g_cpuCount    = 1;
636    g_inited      = 1;
637
638    cpuinfo_len = get_file_size("/proc/cpuinfo");
639    if (cpuinfo_len < 0) {
640      D("cpuinfo_len cannot be computed!");
641      return;
642    }
643    cpuinfo = malloc(cpuinfo_len);
644    if (cpuinfo == NULL) {
645      D("cpuinfo buffer could not be allocated");
646      return;
647    }
648    cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len);
649    D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len,
650      cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo);
651
652    if (cpuinfo_len < 0)  /* should not happen */ {
653        free(cpuinfo);
654        return;
655    }
656
657    /* Count the CPU cores, the value may be 0 for single-core CPUs */
658    g_cpuCount = get_cpu_count();
659    if (g_cpuCount == 0) {
660        g_cpuCount = 1;
661    }
662
663    D("found cpuCount = %d\n", g_cpuCount);
664
665#ifdef __arm__
666    {
667        /* Extract architecture from the "CPU Architecture" field.
668         * The list is well-known, unlike the the output of
669         * the 'Processor' field which can vary greatly.
670         *
671         * See the definition of the 'proc_arch' array in
672         * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
673         * same file.
674         */
675        char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
676
677        if (cpuArch != NULL) {
678            char*  end;
679            long   archNumber;
680            int    hasARMv7 = 0;
681
682            D("found cpuArch = '%s'\n", cpuArch);
683
684            /* read the initial decimal number, ignore the rest */
685            archNumber = strtol(cpuArch, &end, 10);
686
687            /* Note that ARMv8 is upwards compatible with ARMv7. */
688            if (end > cpuArch && archNumber >= 7) {
689                hasARMv7 = 1;
690            }
691
692            /* Unfortunately, it seems that certain ARMv6-based CPUs
693             * report an incorrect architecture number of 7!
694             *
695             * See http://code.google.com/p/android/issues/detail?id=10812
696             *
697             * We try to correct this by looking at the 'elf_format'
698             * field reported by the 'Processor' field, which is of the
699             * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
700             * an ARMv6-one.
701             */
702            if (hasARMv7) {
703                char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len,
704                                                      "Processor");
705                if (cpuProc != NULL) {
706                    D("found cpuProc = '%s'\n", cpuProc);
707                    if (has_list_item(cpuProc, "(v6l)")) {
708                        D("CPU processor and architecture mismatch!!\n");
709                        hasARMv7 = 0;
710                    }
711                    free(cpuProc);
712                }
713            }
714
715            if (hasARMv7) {
716                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7;
717            }
718
719            /* The LDREX / STREX instructions are available from ARMv6 */
720            if (archNumber >= 6) {
721                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX;
722            }
723
724            free(cpuArch);
725        }
726
727        /* Extract the list of CPU features from ELF hwcaps */
728        uint32_t hwcaps = 0;
729        hwcaps = get_elf_hwcap_from_getauxval();
730        if (!hwcaps) {
731            D("Parsing /proc/self/auxv to extract ELF hwcaps!\n");
732            hwcaps = get_elf_hwcap_from_proc_self_auxv();
733        }
734        if (!hwcaps) {
735            // Parsing /proc/self/auxv will fail from regular application
736            // processes on some Android platform versions, when this happens
737            // parse proc/cpuinfo instead.
738            D("Parsing /proc/cpuinfo to extract ELF hwcaps!\n");
739            hwcaps = get_elf_hwcap_from_proc_cpuinfo(cpuinfo, cpuinfo_len);
740        }
741
742        if (hwcaps != 0) {
743            int has_vfp = (hwcaps & HWCAP_VFP);
744            int has_vfpv3 = (hwcaps & HWCAP_VFPv3);
745            int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16);
746            int has_vfpv4 = (hwcaps & HWCAP_VFPv4);
747            int has_neon = (hwcaps & HWCAP_NEON);
748            int has_idiva = (hwcaps & HWCAP_IDIVA);
749            int has_idivt = (hwcaps & HWCAP_IDIVT);
750            int has_iwmmxt = (hwcaps & HWCAP_IWMMXT);
751
752            // The kernel does a poor job at ensuring consistency when
753            // describing CPU features. So lots of guessing is needed.
754
755            // 'vfpv4' implies VFPv3|VFP_FMA|FP16
756            if (has_vfpv4)
757                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3    |
758                                 ANDROID_CPU_ARM_FEATURE_VFP_FP16 |
759                                 ANDROID_CPU_ARM_FEATURE_VFP_FMA;
760
761            // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC,
762            // a value of 'vfpv3' doesn't necessarily mean that the D32
763            // feature is present, so be conservative. All CPUs in the
764            // field that support D32 also support NEON, so this should
765            // not be a problem in practice.
766            if (has_vfpv3 || has_vfpv3d16)
767                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
768
769            // 'vfp' is super ambiguous. Depending on the kernel, it can
770            // either mean VFPv2 or VFPv3. Make it depend on ARMv7.
771            if (has_vfp) {
772              if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7)
773                  g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
774              else
775                  g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2;
776            }
777
778            // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA
779            if (has_neon) {
780                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 |
781                                 ANDROID_CPU_ARM_FEATURE_NEON |
782                                 ANDROID_CPU_ARM_FEATURE_VFP_D32;
783              if (has_vfpv4)
784                  g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA;
785            }
786
787            // VFPv3 implies VFPv2 and ARMv7
788            if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3)
789                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 |
790                                 ANDROID_CPU_ARM_FEATURE_ARMv7;
791
792            if (has_idiva)
793                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
794            if (has_idivt)
795                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2;
796
797            if (has_iwmmxt)
798                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt;
799        }
800
801        /* Extract the cpuid value from various fields */
802        // The CPUID value is broken up in several entries in /proc/cpuinfo.
803        // This table is used to rebuild it from the entries.
804        static const struct CpuIdEntry {
805            const char* field;
806            char        format;
807            char        bit_lshift;
808            char        bit_length;
809        } cpu_id_entries[] = {
810            { "CPU implementer", 'x', 24, 8 },
811            { "CPU variant", 'x', 20, 4 },
812            { "CPU part", 'x', 4, 12 },
813            { "CPU revision", 'd', 0, 4 },
814        };
815        size_t i;
816        D("Parsing /proc/cpuinfo to recover CPUID\n");
817        for (i = 0;
818             i < sizeof(cpu_id_entries)/sizeof(cpu_id_entries[0]);
819             ++i) {
820            const struct CpuIdEntry* entry = &cpu_id_entries[i];
821            char* value = extract_cpuinfo_field(cpuinfo,
822                                                cpuinfo_len,
823                                                entry->field);
824            if (value == NULL)
825                continue;
826
827            D("field=%s value='%s'\n", entry->field, value);
828            char* value_end = value + strlen(value);
829            int val = 0;
830            const char* start = value;
831            const char* p;
832            if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X')) {
833              start += 2;
834              p = parse_hexadecimal(start, value_end, &val);
835            } else if (entry->format == 'x')
836              p = parse_hexadecimal(value, value_end, &val);
837            else
838              p = parse_decimal(value, value_end, &val);
839
840            if (p > (const char*)start) {
841              val &= ((1 << entry->bit_length)-1);
842              val <<= entry->bit_lshift;
843              g_cpuIdArm |= (uint32_t) val;
844            }
845
846            free(value);
847        }
848
849        // Handle kernel configuration bugs that prevent the correct
850        // reporting of CPU features.
851        static const struct CpuFix {
852            uint32_t  cpuid;
853            uint64_t  or_flags;
854        } cpu_fixes[] = {
855            /* The Nexus 4 (Qualcomm Krait) kernel configuration
856             * forgets to report IDIV support. */
857            { 0x510006f2, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
858                          ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
859            };
860        size_t n;
861        for (n = 0; n < sizeof(cpu_fixes)/sizeof(cpu_fixes[0]); ++n) {
862            const struct CpuFix* entry = &cpu_fixes[n];
863
864            if (g_cpuIdArm == entry->cpuid)
865                g_cpuFeatures |= entry->or_flags;
866        }
867
868        // Special case: The emulator-specific Android 4.2 kernel fails
869        // to report support for the 32-bit ARM IDIV instruction.
870        // Technically, this is a feature of the virtual CPU implemented
871        // by the emulator. Note that it could also support Thumb IDIV
872        // in the future, and this will have to be slightly updated.
873        char* hardware = extract_cpuinfo_field(cpuinfo,
874                                               cpuinfo_len,
875                                               "Hardware");
876        if (hardware) {
877            if (!strcmp(hardware, "Goldfish") &&
878                g_cpuIdArm == 0x4100c080 &&
879                (g_cpuFamily & ANDROID_CPU_ARM_FEATURE_ARMv7) != 0) {
880                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
881            }
882            free(hardware);
883        }
884    }
885#endif /* __arm__ */
886
887#ifdef __i386__
888    int regs[4];
889
890/* According to http://en.wikipedia.org/wiki/CPUID */
891#define VENDOR_INTEL_b  0x756e6547
892#define VENDOR_INTEL_c  0x6c65746e
893#define VENDOR_INTEL_d  0x49656e69
894
895    x86_cpuid(0, regs);
896    int vendorIsIntel = (regs[1] == VENDOR_INTEL_b &&
897                         regs[2] == VENDOR_INTEL_c &&
898                         regs[3] == VENDOR_INTEL_d);
899
900    x86_cpuid(1, regs);
901    if ((regs[2] & (1 << 9)) != 0) {
902        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3;
903    }
904    if ((regs[2] & (1 << 23)) != 0) {
905        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT;
906    }
907    if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) {
908        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE;
909    }
910#endif
911
912    free(cpuinfo);
913}
914
915
916AndroidCpuFamily
917android_getCpuFamily(void)
918{
919    pthread_once(&g_once, android_cpuInit);
920    return g_cpuFamily;
921}
922
923
924uint64_t
925android_getCpuFeatures(void)
926{
927    pthread_once(&g_once, android_cpuInit);
928    return g_cpuFeatures;
929}
930
931
932int
933android_getCpuCount(void)
934{
935    pthread_once(&g_once, android_cpuInit);
936    return g_cpuCount;
937}
938
939static void
940android_cpuInitDummy(void)
941{
942    g_inited = 1;
943}
944
945int
946android_setCpu(int cpu_count, uint64_t cpu_features)
947{
948    /* Fail if the library was already initialized. */
949    if (g_inited)
950        return 0;
951
952    android_cpuInitFamily();
953    g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count);
954    g_cpuFeatures = cpu_features;
955    pthread_once(&g_once, android_cpuInitDummy);
956
957    return 1;
958}
959
960#ifdef __arm__
961uint32_t
962android_getCpuIdArm(void)
963{
964    pthread_once(&g_once, android_cpuInit);
965    return g_cpuIdArm;
966}
967
968int
969android_setCpuArm(int cpu_count, uint64_t cpu_features, uint32_t cpu_id)
970{
971    if (!android_setCpu(cpu_count, cpu_features))
972        return 0;
973
974    g_cpuIdArm = cpu_id;
975    return 1;
976}
977#endif  /* __arm__ */
978
979/*
980 * Technical note: Making sense of ARM's FPU architecture versions.
981 *
982 * FPA was ARM's first attempt at an FPU architecture. There is no Android
983 * device that actually uses it since this technology was already obsolete
984 * when the project started. If you see references to FPA instructions
985 * somewhere, you can be sure that this doesn't apply to Android at all.
986 *
987 * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of
988 * new versions / additions to it. ARM considers this obsolete right now,
989 * and no known Android device implements it either.
990 *
991 * VFPv2 added a few instructions to VFPv1, and is an *optional* extension
992 * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device
993 * supporting the 'armeabi' ABI doesn't necessarily support these.
994 *
995 * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used
996 * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated
997 * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means
998 * that it provides 16 double-precision FPU registers (d0-d15) and 32
999 * single-precision ones (s0-s31) which happen to be mapped to the same
1000 * register banks.
1001 *
1002 * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16
1003 * additional double precision registers (d16-d31). Note that there are
1004 * still only 32 single precision registers.
1005 *
1006 * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision
1007 * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which
1008 * are not supported by Android. Note that it is not compatible with VFPv2.
1009 *
1010 * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32
1011 *       depending on context. For example GCC uses it for VFPv3-D32, but
1012 *       the Linux kernel code uses it for VFPv3-D16 (especially in
1013 *       /proc/cpuinfo). Always try to use the full designation when
1014 *       possible.
1015 *
1016 * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides
1017 * instructions to perform parallel computations on vectors of 8, 16,
1018 * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all
1019 * NEON registers are also mapped to the same register banks.
1020 *
1021 * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to
1022 * perform fused multiply-accumulate on VFP registers, as well as
1023 * half-precision (16-bit) conversion operations.
1024 *
1025 * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision
1026 * registers.
1027 *
1028 * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused
1029 * multiply-accumulate instructions that work on the NEON registers.
1030 *
1031 * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32
1032 *       depending on context.
1033 *
1034 * The following information was determined by scanning the binutils-2.22
1035 * sources:
1036 *
1037 * Basic VFP instruction subsets:
1038 *
1039 * #define FPU_VFP_EXT_V1xD 0x08000000     // Base VFP instruction set.
1040 * #define FPU_VFP_EXT_V1   0x04000000     // Double-precision insns.
1041 * #define FPU_VFP_EXT_V2   0x02000000     // ARM10E VFPr1.
1042 * #define FPU_VFP_EXT_V3xD 0x01000000     // VFPv3 single-precision.
1043 * #define FPU_VFP_EXT_V3   0x00800000     // VFPv3 double-precision.
1044 * #define FPU_NEON_EXT_V1  0x00400000     // Neon (SIMD) insns.
1045 * #define FPU_VFP_EXT_D32  0x00200000     // Registers D16-D31.
1046 * #define FPU_VFP_EXT_FP16 0x00100000     // Half-precision extensions.
1047 * #define FPU_NEON_EXT_FMA 0x00080000     // Neon fused multiply-add
1048 * #define FPU_VFP_EXT_FMA  0x00040000     // VFP fused multiply-add
1049 *
1050 * FPU types (excluding NEON)
1051 *
1052 * FPU_VFP_V1xD (EXT_V1xD)
1053 *    |
1054 *    +--------------------------+
1055 *    |                          |
1056 * FPU_VFP_V1 (+EXT_V1)       FPU_VFP_V3xD (+EXT_V2+EXT_V3xD)
1057 *    |                          |
1058 *    |                          |
1059 * FPU_VFP_V2 (+EXT_V2)       FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA)
1060 *    |
1061 * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3)
1062 *    |
1063 *    +--------------------------+
1064 *    |                          |
1065 * FPU_VFP_V3 (+EXT_D32)     FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA)
1066 *    |                          |
1067 *    |                      FPU_VFP_V4 (+EXT_D32)
1068 *    |
1069 * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA)
1070 *
1071 * VFP architectures:
1072 *
1073 * ARCH_VFP_V1xD  (EXT_V1xD)
1074 *   |
1075 *   +------------------+
1076 *   |                  |
1077 *   |             ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD)
1078 *   |                  |
1079 *   |             ARCH_VFP_V3xD_FP16 (+EXT_FP16)
1080 *   |                  |
1081 *   |             ARCH_VFP_V4_SP_D16 (+EXT_FMA)
1082 *   |
1083 * ARCH_VFP_V1 (+EXT_V1)
1084 *   |
1085 * ARCH_VFP_V2 (+EXT_V2)
1086 *   |
1087 * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3)
1088 *   |
1089 *   +-------------------+
1090 *   |                   |
1091 *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1092 *   |
1093 *   +-------------------+
1094 *   |                   |
1095 *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1096 *   |                   |
1097 *   |         ARCH_VFP_V4 (+EXT_D32)
1098 *   |                   |
1099 *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1100 *   |
1101 * ARCH_VFP_V3 (+EXT_D32)
1102 *   |
1103 *   +-------------------+
1104 *   |                   |
1105 *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1106 *   |
1107 * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1108 *   |
1109 * ARCH_NEON_FP16 (+EXT_FP16)
1110 *
1111 * -fpu=<name> values and their correspondance with FPU architectures above:
1112 *
1113 *   {"vfp",               FPU_ARCH_VFP_V2},
1114 *   {"vfp9",              FPU_ARCH_VFP_V2},
1115 *   {"vfp3",              FPU_ARCH_VFP_V3}, // For backwards compatbility.
1116 *   {"vfp10",             FPU_ARCH_VFP_V2},
1117 *   {"vfp10-r0",          FPU_ARCH_VFP_V1},
1118 *   {"vfpxd",             FPU_ARCH_VFP_V1xD},
1119 *   {"vfpv2",             FPU_ARCH_VFP_V2},
1120 *   {"vfpv3",             FPU_ARCH_VFP_V3},
1121 *   {"vfpv3-fp16",        FPU_ARCH_VFP_V3_FP16},
1122 *   {"vfpv3-d16",         FPU_ARCH_VFP_V3D16},
1123 *   {"vfpv3-d16-fp16",    FPU_ARCH_VFP_V3D16_FP16},
1124 *   {"vfpv3xd",           FPU_ARCH_VFP_V3xD},
1125 *   {"vfpv3xd-fp16",      FPU_ARCH_VFP_V3xD_FP16},
1126 *   {"neon",              FPU_ARCH_VFP_V3_PLUS_NEON_V1},
1127 *   {"neon-fp16",         FPU_ARCH_NEON_FP16},
1128 *   {"vfpv4",             FPU_ARCH_VFP_V4},
1129 *   {"vfpv4-d16",         FPU_ARCH_VFP_V4D16},
1130 *   {"fpv4-sp-d16",       FPU_ARCH_VFP_V4_SP_D16},
1131 *   {"neon-vfpv4",        FPU_ARCH_NEON_VFP_V4},
1132 *
1133 *
1134 * Simplified diagram that only includes FPUs supported by Android:
1135 * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI,
1136 * all others are optional and must be probed at runtime.
1137 *
1138 * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3)
1139 *   |
1140 *   +-------------------+
1141 *   |                   |
1142 *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1143 *   |
1144 *   +-------------------+
1145 *   |                   |
1146 *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1147 *   |                   |
1148 *   |         ARCH_VFP_V4 (+EXT_D32)
1149 *   |                   |
1150 *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1151 *   |
1152 * ARCH_VFP_V3 (+EXT_D32)
1153 *   |
1154 *   +-------------------+
1155 *   |                   |
1156 *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1157 *   |
1158 * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1159 *   |
1160 * ARCH_NEON_FP16 (+EXT_FP16)
1161 *
1162 */
1163
1164#endif // defined(__le32__) || defined(__le64__)
1165