cpu-features.c revision 7f26cc56c2345217c63b88283be03aa549dd71a6
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *  * Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *    the documentation and/or other materials provided with the
13 *    distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/* ChangeLog for this library:
30 *
31 * NDK r8d: Add android_setCpu().
32 *
33 * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16,
34 *          VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt.
35 *
36 *          Rewrite the code to parse /proc/self/auxv instead of
37 *          the "Features" field in /proc/cpuinfo.
38 *
39 *          Dynamically allocate the buffer that hold the content
40 *          of /proc/cpuinfo to deal with newer hardware.
41 *
42 * NDK r7c: Fix CPU count computation. The old method only reported the
43 *           number of _active_ CPUs when the library was initialized,
44 *           which could be less than the real total.
45 *
46 * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7
47 *         for an ARMv6 CPU (see below).
48 *
49 *         Handle kernels that only report 'neon', and not 'vfpv3'
50 *         (VFPv3 is mandated by the ARM architecture is Neon is implemented)
51 *
52 *         Handle kernels that only report 'vfpv3d16', and not 'vfpv3'
53 *
54 *         Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in
55 *         android_getCpuFamily().
56 *
57 * NDK r4: Initial release
58 */
59#include <sys/system_properties.h>
60#ifdef __arm__
61#include <machine/cpu-features.h>
62#endif
63#include <pthread.h>
64#include "cpu-features.h"
65#include <stdio.h>
66#include <stdlib.h>
67#include <fcntl.h>
68#include <errno.h>
69
70static  pthread_once_t     g_once;
71static  int                g_inited;
72static  AndroidCpuFamily   g_cpuFamily;
73static  uint64_t           g_cpuFeatures;
74static  int                g_cpuCount;
75
76#ifdef __arm__
77static  uint32_t           g_cpuIdArm;
78#endif
79
80static const int  android_cpufeatures_debug = 0;
81
82#ifdef __arm__
83#  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_ARM
84#elif defined __i386__
85#  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_X86
86#else
87#  define DEFAULT_CPU_FAMILY  ANDROID_CPU_FAMILY_UNKNOWN
88#endif
89
90#define  D(...) \
91    do { \
92        if (android_cpufeatures_debug) { \
93            printf(__VA_ARGS__); fflush(stdout); \
94        } \
95    } while (0)
96
97#ifdef __i386__
98static __inline__ void x86_cpuid(int func, int values[4])
99{
100    int a, b, c, d;
101    /* We need to preserve ebx since we're compiling PIC code */
102    /* this means we can't use "=b" for the second output register */
103    __asm__ __volatile__ ( \
104      "push %%ebx\n"
105      "cpuid\n" \
106      "mov %%ebx, %1\n"
107      "pop %%ebx\n"
108      : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
109      : "a" (func) \
110    );
111    values[0] = a;
112    values[1] = b;
113    values[2] = c;
114    values[3] = d;
115}
116#endif
117
118/* Get the size of a file by reading it until the end. This is needed
119 * because files under /proc do not always return a valid size when
120 * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed.
121 */
122static int
123get_file_size(const char* pathname)
124{
125    int fd, ret, result = 0;
126    char buffer[256];
127
128    fd = open(pathname, O_RDONLY);
129    if (fd < 0) {
130        D("Can't open %s: %s\n", pathname, strerror(errno));
131        return -1;
132    }
133
134    for (;;) {
135        int ret = read(fd, buffer, sizeof buffer);
136        if (ret < 0) {
137            if (errno == EINTR)
138                continue;
139            D("Error while reading %s: %s\n", pathname, strerror(errno));
140            break;
141        }
142        if (ret == 0)
143            break;
144
145        result += ret;
146    }
147    close(fd);
148    return result;
149}
150
151/* Read the content of /proc/cpuinfo into a user-provided buffer.
152 * Return the length of the data, or -1 on error. Does *not*
153 * zero-terminate the content. Will not read more
154 * than 'buffsize' bytes.
155 */
156static int
157read_file(const char*  pathname, char*  buffer, size_t  buffsize)
158{
159    int  fd, count;
160
161    fd = open(pathname, O_RDONLY);
162    if (fd < 0) {
163        D("Could not open %s: %s\n", pathname, strerror(errno));
164        return -1;
165    }
166    count = 0;
167    while (count < (int)buffsize) {
168        int ret = read(fd, buffer + count, buffsize - count);
169        if (ret < 0) {
170            if (errno == EINTR)
171                continue;
172            D("Error while reading from %s: %s\n", pathname, strerror(errno));
173            if (count == 0)
174                count = -1;
175            break;
176        }
177        if (ret == 0)
178            break;
179        count += ret;
180    }
181    close(fd);
182    return count;
183}
184
185/* Extract the content of a the first occurence of a given field in
186 * the content of /proc/cpuinfo and return it as a heap-allocated
187 * string that must be freed by the caller.
188 *
189 * Return NULL if not found
190 */
191static char*
192extract_cpuinfo_field(const char* buffer, int buflen, const char* field)
193{
194    int  fieldlen = strlen(field);
195    const char* bufend = buffer + buflen;
196    char* result = NULL;
197    int len, ignore;
198    const char *p, *q;
199
200    /* Look for first field occurence, and ensures it starts the line. */
201    p = buffer;
202    for (;;) {
203        p = memmem(p, bufend-p, field, fieldlen);
204        if (p == NULL)
205            goto EXIT;
206
207        if (p == buffer || p[-1] == '\n')
208            break;
209
210        p += fieldlen;
211    }
212
213    /* Skip to the first column followed by a space */
214    p += fieldlen;
215    p  = memchr(p, ':', bufend-p);
216    if (p == NULL || p[1] != ' ')
217        goto EXIT;
218
219    /* Find the end of the line */
220    p += 2;
221    q = memchr(p, '\n', bufend-p);
222    if (q == NULL)
223        q = bufend;
224
225    /* Copy the line into a heap-allocated buffer */
226    len = q-p;
227    result = malloc(len+1);
228    if (result == NULL)
229        goto EXIT;
230
231    memcpy(result, p, len);
232    result[len] = '\0';
233
234EXIT:
235    return result;
236}
237
238/* Like strlen(), but for constant string literals */
239#define STRLEN_CONST(x)  ((sizeof(x)-1)
240
241
242/* Checks that a space-separated list of items contains one given 'item'.
243 * Returns 1 if found, 0 otherwise.
244 */
245static int
246has_list_item(const char* list, const char* item)
247{
248    const char*  p = list;
249    int itemlen = strlen(item);
250
251    if (list == NULL)
252        return 0;
253
254    while (*p) {
255        const char*  q;
256
257        /* skip spaces */
258        while (*p == ' ' || *p == '\t')
259            p++;
260
261        /* find end of current list item */
262        q = p;
263        while (*q && *q != ' ' && *q != '\t')
264            q++;
265
266        if (itemlen == q-p && !memcmp(p, item, itemlen))
267            return 1;
268
269        /* skip to next item */
270        p = q;
271    }
272    return 0;
273}
274
275/* Parse a number starting from 'input', but not going further
276 * than 'limit'. Return the value into '*result'.
277 *
278 * NOTE: Does not skip over leading spaces, or deal with sign characters.
279 * NOTE: Ignores overflows.
280 *
281 * The function returns NULL in case of error (bad format), or the new
282 * position after the decimal number in case of success (which will always
283 * be <= 'limit').
284 */
285static const char*
286parse_number(const char* input, const char* limit, int base, int* result)
287{
288    const char* p = input;
289    int val = 0;
290    while (p < limit) {
291        int d = (*p - '0');
292        if ((unsigned)d >= 10U) {
293            d = (*p - 'a');
294            if ((unsigned)d >= 6U)
295              d = (*p - 'A');
296            if ((unsigned)d >= 6U)
297              break;
298            d += 10;
299        }
300        if (d >= base)
301          break;
302        val = val*base + d;
303        p++;
304    }
305    if (p == input)
306        return NULL;
307
308    *result = val;
309    return p;
310}
311
312static const char*
313parse_decimal(const char* input, const char* limit, int* result)
314{
315    return parse_number(input, limit, 10, result);
316}
317
318static const char*
319parse_hexadecimal(const char* input, const char* limit, int* result)
320{
321    return parse_number(input, limit, 16, result);
322}
323
324/* This small data type is used to represent a CPU list / mask, as read
325 * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt
326 *
327 * For now, we don't expect more than 32 cores on mobile devices, so keep
328 * everything simple.
329 */
330typedef struct {
331    uint32_t mask;
332} CpuList;
333
334static __inline__ void
335cpulist_init(CpuList* list) {
336    list->mask = 0;
337}
338
339static __inline__ void
340cpulist_and(CpuList* list1, CpuList* list2) {
341    list1->mask &= list2->mask;
342}
343
344static __inline__ void
345cpulist_set(CpuList* list, int index) {
346    if ((unsigned)index < 32) {
347        list->mask |= (uint32_t)(1U << index);
348    }
349}
350
351static __inline__ int
352cpulist_count(CpuList* list) {
353    return __builtin_popcount(list->mask);
354}
355
356/* Parse a textual list of cpus and store the result inside a CpuList object.
357 * Input format is the following:
358 * - comma-separated list of items (no spaces)
359 * - each item is either a single decimal number (cpu index), or a range made
360 *   of two numbers separated by a single dash (-). Ranges are inclusive.
361 *
362 * Examples:   0
363 *             2,4-127,128-143
364 *             0-1
365 */
366static void
367cpulist_parse(CpuList* list, const char* line, int line_len)
368{
369    const char* p = line;
370    const char* end = p + line_len;
371    const char* q;
372
373    /* NOTE: the input line coming from sysfs typically contains a
374     * trailing newline, so take care of it in the code below
375     */
376    while (p < end && *p != '\n')
377    {
378        int val, start_value, end_value;
379
380        /* Find the end of current item, and put it into 'q' */
381        q = memchr(p, ',', end-p);
382        if (q == NULL) {
383            q = end;
384        }
385
386        /* Get first value */
387        p = parse_decimal(p, q, &start_value);
388        if (p == NULL)
389            goto BAD_FORMAT;
390
391        end_value = start_value;
392
393        /* If we're not at the end of the item, expect a dash and
394         * and integer; extract end value.
395         */
396        if (p < q && *p == '-') {
397            p = parse_decimal(p+1, q, &end_value);
398            if (p == NULL)
399                goto BAD_FORMAT;
400        }
401
402        /* Set bits CPU list bits */
403        for (val = start_value; val <= end_value; val++) {
404            cpulist_set(list, val);
405        }
406
407        /* Jump to next item */
408        p = q;
409        if (p < end)
410            p++;
411    }
412
413BAD_FORMAT:
414    ;
415}
416
417/* Read a CPU list from one sysfs file */
418static void
419cpulist_read_from(CpuList* list, const char* filename)
420{
421    char   file[64];
422    int    filelen;
423
424    cpulist_init(list);
425
426    filelen = read_file(filename, file, sizeof file);
427    if (filelen < 0) {
428        D("Could not read %s: %s\n", filename, strerror(errno));
429        return;
430    }
431
432    cpulist_parse(list, file, filelen);
433}
434
435// See <asm/hwcap.h> kernel header.
436#define HWCAP_VFP       (1 << 6)
437#define HWCAP_IWMMXT    (1 << 9)
438#define HWCAP_NEON      (1 << 12)
439#define HWCAP_VFPv3     (1 << 13)
440#define HWCAP_VFPv3D16  (1 << 14)
441#define HWCAP_VFPv4     (1 << 16)
442#define HWCAP_IDIVA     (1 << 17)
443#define HWCAP_IDIVT     (1 << 18)
444
445#define AT_HWCAP 16
446
447#if defined(__arm__)
448/* Compute the ELF HWCAP flags.
449 */
450static uint32_t
451get_elf_hwcap(const char* cpuinfo, int cpuinfo_len)
452{
453  /* IMPORTANT:
454   *   Accessing /proc/self/auxv doesn't work anymore on all
455   *   platform versions. More specifically, when running inside
456   *   a regular application process, most of /proc/self/ will be
457   *   non-readable, including /proc/self/auxv. This doesn't
458   *   happen however if the application is debuggable, or when
459   *   running under the "shell" UID, which is why this was not
460   *   detected appropriately.
461   */
462#if 0
463    uint32_t result = 0;
464    const char filepath[] = "/proc/self/auxv";
465    int fd = open(filepath, O_RDONLY);
466    if (fd < 0) {
467        D("Could not open %s: %s\n", filepath, strerror(errno));
468        return 0;
469    }
470
471    struct { uint32_t tag; uint32_t value; } entry;
472
473    for (;;) {
474        int ret = read(fd, (char*)&entry, sizeof entry);
475        if (ret < 0) {
476            if (errno == EINTR)
477                continue;
478            D("Error while reading %s: %s\n", filepath, strerror(errno));
479            break;
480        }
481        // Detect end of list.
482        if (ret == 0 || (entry.tag == 0 && entry.value == 0))
483          break;
484        if (entry.tag == AT_HWCAP) {
485          result = entry.value;
486          break;
487        }
488    }
489    close(fd);
490    return result;
491#else
492    // Recreate ELF hwcaps by parsing /proc/cpuinfo Features tag.
493    uint32_t hwcaps = 0;
494
495    char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features");
496
497    if (cpuFeatures != NULL) {
498        D("Found cpuFeatures = '%s'\n", cpuFeatures);
499
500        if (has_list_item(cpuFeatures, "vfp"))
501            hwcaps |= HWCAP_VFP;
502        if (has_list_item(cpuFeatures, "vfpv3"))
503            hwcaps |= HWCAP_VFPv3;
504        if (has_list_item(cpuFeatures, "vfpv3d16"))
505            hwcaps |= HWCAP_VFPv3D16;
506        if (has_list_item(cpuFeatures, "vfpv4"))
507            hwcaps |= HWCAP_VFPv4;
508        if (has_list_item(cpuFeatures, "neon"))
509            hwcaps |= HWCAP_NEON;
510        if (has_list_item(cpuFeatures, "idiva"))
511            hwcaps |= HWCAP_IDIVA;
512        if (has_list_item(cpuFeatures, "idivt"))
513            hwcaps |= HWCAP_IDIVT;
514        if (has_list_item(cpuFeatures, "idiv"))
515            hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT;
516        if (has_list_item(cpuFeatures, "iwmmxt"))
517            hwcaps |= HWCAP_IWMMXT;
518
519        free(cpuFeatures);
520    }
521    return hwcaps;
522#endif
523}
524#endif  /* __arm__ */
525
526/* Return the number of cpus present on a given device.
527 *
528 * To handle all weird kernel configurations, we need to compute the
529 * intersection of the 'present' and 'possible' CPU lists and count
530 * the result.
531 */
532static int
533get_cpu_count(void)
534{
535    CpuList cpus_present[1];
536    CpuList cpus_possible[1];
537
538    cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present");
539    cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible");
540
541    /* Compute the intersection of both sets to get the actual number of
542     * CPU cores that can be used on this device by the kernel.
543     */
544    cpulist_and(cpus_present, cpus_possible);
545
546    return cpulist_count(cpus_present);
547}
548
549static void
550android_cpuInitFamily(void)
551{
552#if defined(__ARM_ARCH__)
553    g_cpuFamily = ANDROID_CPU_FAMILY_ARM;
554#elif defined(__i386__)
555    g_cpuFamily = ANDROID_CPU_FAMILY_X86;
556#elif defined(_MIPS_ARCH)
557    g_cpuFamily = ANDROID_CPU_FAMILY_MIPS;
558#else
559    g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN;
560#endif
561}
562
563static void
564android_cpuInit(void)
565{
566    char* cpuinfo = NULL;
567    int   cpuinfo_len;
568
569    android_cpuInitFamily();
570
571    g_cpuFeatures = 0;
572    g_cpuCount    = 1;
573    g_inited      = 1;
574
575    cpuinfo_len = get_file_size("/proc/cpuinfo");
576    if (cpuinfo_len < 0) {
577      D("cpuinfo_len cannot be computed!");
578      return;
579    }
580    cpuinfo = malloc(cpuinfo_len);
581    if (cpuinfo == NULL) {
582      D("cpuinfo buffer could not be allocated");
583      return;
584    }
585    cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len);
586    D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len,
587      cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo);
588
589    if (cpuinfo_len < 0)  /* should not happen */ {
590        free(cpuinfo);
591        return;
592    }
593
594    /* Count the CPU cores, the value may be 0 for single-core CPUs */
595    g_cpuCount = get_cpu_count();
596    if (g_cpuCount == 0) {
597        g_cpuCount = 1;
598    }
599
600    D("found cpuCount = %d\n", g_cpuCount);
601
602#ifdef __ARM_ARCH__
603    {
604        char*  features = NULL;
605        char*  architecture = NULL;
606
607        /* Extract architecture from the "CPU Architecture" field.
608         * The list is well-known, unlike the the output of
609         * the 'Processor' field which can vary greatly.
610         *
611         * See the definition of the 'proc_arch' array in
612         * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
613         * same file.
614         */
615        char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
616
617        if (cpuArch != NULL) {
618            char*  end;
619            long   archNumber;
620            int    hasARMv7 = 0;
621
622            D("found cpuArch = '%s'\n", cpuArch);
623
624            /* read the initial decimal number, ignore the rest */
625            archNumber = strtol(cpuArch, &end, 10);
626
627            /* Here we assume that ARMv8 will be upwards compatible with v7
628             * in the future. Unfortunately, there is no 'Features' field to
629             * indicate that Thumb-2 is supported.
630             */
631            if (end > cpuArch && archNumber >= 7) {
632                hasARMv7 = 1;
633            }
634
635            /* Unfortunately, it seems that certain ARMv6-based CPUs
636             * report an incorrect architecture number of 7!
637             *
638             * See http://code.google.com/p/android/issues/detail?id=10812
639             *
640             * We try to correct this by looking at the 'elf_format'
641             * field reported by the 'Processor' field, which is of the
642             * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
643             * an ARMv6-one.
644             */
645            if (hasARMv7) {
646                char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len,
647                                                      "Processor");
648                if (cpuProc != NULL) {
649                    D("found cpuProc = '%s'\n", cpuProc);
650                    if (has_list_item(cpuProc, "(v6l)")) {
651                        D("CPU processor and architecture mismatch!!\n");
652                        hasARMv7 = 0;
653                    }
654                    free(cpuProc);
655                }
656            }
657
658            if (hasARMv7) {
659                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7;
660            }
661
662            /* The LDREX / STREX instructions are available from ARMv6 */
663            if (archNumber >= 6) {
664                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX;
665            }
666
667            free(cpuArch);
668        }
669
670        /* Extract the list of CPU features from ELF hwcaps */
671        uint32_t hwcaps = get_elf_hwcap(cpuinfo, cpuinfo_len);
672
673        if (hwcaps != 0) {
674            int has_vfp = (hwcaps & HWCAP_VFP);
675            int has_vfpv3 = (hwcaps & HWCAP_VFPv3);
676            int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16);
677            int has_vfpv4 = (hwcaps & HWCAP_VFPv4);
678            int has_neon = (hwcaps & HWCAP_NEON);
679            int has_idiva = (hwcaps & HWCAP_IDIVA);
680            int has_idivt = (hwcaps & HWCAP_IDIVT);
681            int has_iwmmxt = (hwcaps & HWCAP_IWMMXT);
682
683            // The kernel does a poor job at ensuring consistency when
684            // describing CPU features. So lots of guessing is needed.
685
686            // 'vfpv4' implies VFPv3|VFP_FMA|FP16
687            if (has_vfpv4)
688                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3    |
689                                 ANDROID_CPU_ARM_FEATURE_VFP_FP16 |
690                                 ANDROID_CPU_ARM_FEATURE_VFP_FMA;
691
692            // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC,
693            // a value of 'vfpv3' doesn't necessarily mean that the D32
694            // feature is present, so be conservative. All CPUs in the
695            // field that support D32 also support NEON, so this should
696            // not be a problem in practice.
697            if (has_vfpv3 || has_vfpv3d16)
698                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
699
700            // 'vfp' is super ambiguous. Depending on the kernel, it can
701            // either mean VFPv2 or VFPv3. Make it depend on ARMv7.
702            if (has_vfp) {
703              if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7)
704                  g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
705              else
706                  g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2;
707            }
708
709            // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA
710            if (has_neon) {
711                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 |
712                                 ANDROID_CPU_ARM_FEATURE_NEON |
713                                 ANDROID_CPU_ARM_FEATURE_VFP_D32;
714              if (has_vfpv4)
715                  g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA;
716            }
717
718            // VFPv3 implies VFPv2 and ARMv7
719            if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3)
720                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 |
721                                 ANDROID_CPU_ARM_FEATURE_ARMv7;
722
723            // Note that some buggy kernels do not report these even when
724            // the CPU actually support the division instructions. However,
725            // assume that if 'vfpv4' is detected, then the CPU supports
726            // sdiv/udiv properly.
727            if (has_idiva || has_vfpv4)
728                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
729            if (has_idivt || has_vfpv4)
730                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2;
731
732            if (has_iwmmxt)
733                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt;
734        }
735
736        /* Extract the cpuid value from various fields */
737        // The CPUID value is broken up in several entries in /proc/cpuinfo.
738        // This table is used to rebuild it from the entries.
739        const struct CpuIdEntry {
740            const char* field;
741            char        format;
742            char        bit_lshift;
743            char        bit_length;
744        } cpu_id_entries[] = {
745            { "CPU implementer", 'x', 24, 8 },
746            { "CPU variant", 'x', 20, 4 },
747            { "CPU part", 'x', 4, 12 },
748            { "CPU revision", 'd', 0, 4 },
749        };
750        size_t i;
751        for (i = 0;
752             i < sizeof(cpu_id_entries)/sizeof(cpu_id_entries[0]);
753             ++i) {
754            const struct CpuIdEntry* entry = &cpu_id_entries[i];
755            char* value = extract_cpuinfo_field(cpuinfo,
756                                                cpuinfo_len,
757                                                entry->field);
758            if (value == NULL)
759                continue;
760
761            printf("field=%s value='%s'\n", entry->field, value);
762            char* value_end = value + strlen(value);
763            int val = 0;
764            const char* start = value;
765            const char* p;
766            if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X')) {
767              start += 2;
768              p = parse_hexadecimal(start, value_end, &val);
769            } else if (entry->format == 'x')
770              p = parse_hexadecimal(value, value_end, &val);
771            else
772              p = parse_decimal(value, value_end, &val);
773
774            if (p > (const char*)start) {
775              val &= ((1 << entry->bit_length)-1);
776              val <<= entry->bit_lshift;
777              g_cpuIdArm |= (uint32_t) val;
778            }
779
780            free(value);
781        }
782    }
783#endif /* __ARM_ARCH__ */
784
785#ifdef __i386__
786    int regs[4];
787
788/* According to http://en.wikipedia.org/wiki/CPUID */
789#define VENDOR_INTEL_b  0x756e6547
790#define VENDOR_INTEL_c  0x6c65746e
791#define VENDOR_INTEL_d  0x49656e69
792
793    x86_cpuid(0, regs);
794    int vendorIsIntel = (regs[1] == VENDOR_INTEL_b &&
795                         regs[2] == VENDOR_INTEL_c &&
796                         regs[3] == VENDOR_INTEL_d);
797
798    x86_cpuid(1, regs);
799    if ((regs[2] & (1 << 9)) != 0) {
800        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3;
801    }
802    if ((regs[2] & (1 << 23)) != 0) {
803        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT;
804    }
805    if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) {
806        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE;
807    }
808#endif
809
810    free(cpuinfo);
811}
812
813
814AndroidCpuFamily
815android_getCpuFamily(void)
816{
817    pthread_once(&g_once, android_cpuInit);
818    return g_cpuFamily;
819}
820
821
822uint64_t
823android_getCpuFeatures(void)
824{
825    pthread_once(&g_once, android_cpuInit);
826    return g_cpuFeatures;
827}
828
829
830int
831android_getCpuCount(void)
832{
833    pthread_once(&g_once, android_cpuInit);
834    return g_cpuCount;
835}
836
837static void
838android_cpuInitDummy(void)
839{
840    g_inited = 1;
841}
842
843int
844android_setCpu(int cpu_count, uint64_t cpu_features)
845{
846    /* Fail if the library was already initialized. */
847    if (g_inited)
848        return 0;
849
850    android_cpuInitFamily();
851    g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count);
852    g_cpuFeatures = cpu_features;
853    pthread_once(&g_once, android_cpuInitDummy);
854
855    return 1;
856}
857
858#ifdef __arm__
859uint32_t
860android_getCpuIdArm(void)
861{
862    pthread_once(&g_once, android_cpuInit);
863    return g_cpuIdArm;
864}
865
866int
867android_setCpuArm(int cpu_count, uint64_t cpu_features, uint32_t cpu_id)
868{
869    if (!android_setCpu(cpu_count, cpu_features))
870        return 0;
871
872    g_cpuIdArm = cpu_id;
873    return 1;
874}
875#endif  /* __arm__ */
876
877/*
878 * Technical note: Making sense of ARM's FPU architecture versions.
879 *
880 * FPA was ARM's first attempt at an FPU architecture. There is no Android
881 * device that actually uses it since this technology was already obsolete
882 * when the project started. If you see references to FPA instructions
883 * somewhere, you can be sure that this doesn't apply to Android at all.
884 *
885 * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of
886 * new versions / additions to it. ARM considers this obsolete right now,
887 * and no known Android device implements it either.
888 *
889 * VFPv2 added a few instructions to VFPv1, and is an *optional* extension
890 * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device
891 * supporting the 'armeabi' ABI doesn't necessarily support these.
892 *
893 * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used
894 * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated
895 * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means
896 * that it provides 16 double-precision FPU registers (d0-d15) and 32
897 * single-precision ones (s0-s31) which happen to be mapped to the same
898 * register banks.
899 *
900 * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16
901 * additional double precision registers (d16-d31). Note that there are
902 * still only 32 single precision registers.
903 *
904 * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision
905 * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which
906 * are not supported by Android. Note that it is not compatible with VFPv2.
907 *
908 * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32
909 *       depending on context. For example GCC uses it for VFPv3-D32, but
910 *       the Linux kernel code uses it for VFPv3-D16 (especially in
911 *       /proc/cpuinfo). Always try to use the full designation when
912 *       possible.
913 *
914 * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides
915 * instructions to perform parallel computations on vectors of 8, 16,
916 * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all
917 * NEON registers are also mapped to the same register banks.
918 *
919 * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to
920 * perform fused multiply-accumulate on VFP registers, as well as
921 * half-precision (16-bit) conversion operations.
922 *
923 * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision
924 * registers.
925 *
926 * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused
927 * multiply-accumulate instructions that work on the NEON registers.
928 *
929 * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32
930 *       depending on context.
931 *
932 * The following information was determined by scanning the binutils-2.22
933 * sources:
934 *
935 * Basic VFP instruction subsets:
936 *
937 * #define FPU_VFP_EXT_V1xD 0x08000000     // Base VFP instruction set.
938 * #define FPU_VFP_EXT_V1   0x04000000     // Double-precision insns.
939 * #define FPU_VFP_EXT_V2   0x02000000     // ARM10E VFPr1.
940 * #define FPU_VFP_EXT_V3xD 0x01000000     // VFPv3 single-precision.
941 * #define FPU_VFP_EXT_V3   0x00800000     // VFPv3 double-precision.
942 * #define FPU_NEON_EXT_V1  0x00400000     // Neon (SIMD) insns.
943 * #define FPU_VFP_EXT_D32  0x00200000     // Registers D16-D31.
944 * #define FPU_VFP_EXT_FP16 0x00100000     // Half-precision extensions.
945 * #define FPU_NEON_EXT_FMA 0x00080000     // Neon fused multiply-add
946 * #define FPU_VFP_EXT_FMA  0x00040000     // VFP fused multiply-add
947 *
948 * FPU types (excluding NEON)
949 *
950 * FPU_VFP_V1xD (EXT_V1xD)
951 *    |
952 *    +--------------------------+
953 *    |                          |
954 * FPU_VFP_V1 (+EXT_V1)       FPU_VFP_V3xD (+EXT_V2+EXT_V3xD)
955 *    |                          |
956 *    |                          |
957 * FPU_VFP_V2 (+EXT_V2)       FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA)
958 *    |
959 * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3)
960 *    |
961 *    +--------------------------+
962 *    |                          |
963 * FPU_VFP_V3 (+EXT_D32)     FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA)
964 *    |                          |
965 *    |                      FPU_VFP_V4 (+EXT_D32)
966 *    |
967 * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA)
968 *
969 * VFP architectures:
970 *
971 * ARCH_VFP_V1xD  (EXT_V1xD)
972 *   |
973 *   +------------------+
974 *   |                  |
975 *   |             ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD)
976 *   |                  |
977 *   |             ARCH_VFP_V3xD_FP16 (+EXT_FP16)
978 *   |                  |
979 *   |             ARCH_VFP_V4_SP_D16 (+EXT_FMA)
980 *   |
981 * ARCH_VFP_V1 (+EXT_V1)
982 *   |
983 * ARCH_VFP_V2 (+EXT_V2)
984 *   |
985 * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3)
986 *   |
987 *   +-------------------+
988 *   |                   |
989 *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
990 *   |
991 *   +-------------------+
992 *   |                   |
993 *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
994 *   |                   |
995 *   |         ARCH_VFP_V4 (+EXT_D32)
996 *   |                   |
997 *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
998 *   |
999 * ARCH_VFP_V3 (+EXT_D32)
1000 *   |
1001 *   +-------------------+
1002 *   |                   |
1003 *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1004 *   |
1005 * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1006 *   |
1007 * ARCH_NEON_FP16 (+EXT_FP16)
1008 *
1009 * -fpu=<name> values and their correspondance with FPU architectures above:
1010 *
1011 *   {"vfp",               FPU_ARCH_VFP_V2},
1012 *   {"vfp9",              FPU_ARCH_VFP_V2},
1013 *   {"vfp3",              FPU_ARCH_VFP_V3}, // For backwards compatbility.
1014 *   {"vfp10",             FPU_ARCH_VFP_V2},
1015 *   {"vfp10-r0",          FPU_ARCH_VFP_V1},
1016 *   {"vfpxd",             FPU_ARCH_VFP_V1xD},
1017 *   {"vfpv2",             FPU_ARCH_VFP_V2},
1018 *   {"vfpv3",             FPU_ARCH_VFP_V3},
1019 *   {"vfpv3-fp16",        FPU_ARCH_VFP_V3_FP16},
1020 *   {"vfpv3-d16",         FPU_ARCH_VFP_V3D16},
1021 *   {"vfpv3-d16-fp16",    FPU_ARCH_VFP_V3D16_FP16},
1022 *   {"vfpv3xd",           FPU_ARCH_VFP_V3xD},
1023 *   {"vfpv3xd-fp16",      FPU_ARCH_VFP_V3xD_FP16},
1024 *   {"neon",              FPU_ARCH_VFP_V3_PLUS_NEON_V1},
1025 *   {"neon-fp16",         FPU_ARCH_NEON_FP16},
1026 *   {"vfpv4",             FPU_ARCH_VFP_V4},
1027 *   {"vfpv4-d16",         FPU_ARCH_VFP_V4D16},
1028 *   {"fpv4-sp-d16",       FPU_ARCH_VFP_V4_SP_D16},
1029 *   {"neon-vfpv4",        FPU_ARCH_NEON_VFP_V4},
1030 *
1031 *
1032 * Simplified diagram that only includes FPUs supported by Android:
1033 * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI,
1034 * all others are optional and must be probed at runtime.
1035 *
1036 * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3)
1037 *   |
1038 *   +-------------------+
1039 *   |                   |
1040 *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1041 *   |
1042 *   +-------------------+
1043 *   |                   |
1044 *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1045 *   |                   |
1046 *   |         ARCH_VFP_V4 (+EXT_D32)
1047 *   |                   |
1048 *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1049 *   |
1050 * ARCH_VFP_V3 (+EXT_D32)
1051 *   |
1052 *   +-------------------+
1053 *   |                   |
1054 *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1055 *   |
1056 * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1057 *   |
1058 * ARCH_NEON_FP16 (+EXT_FP16)
1059 *
1060 */
1061