cpu-features.c revision e4f17c1301d2499c578b311eb9539cb42cc5af16
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *  * Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *    the documentation and/or other materials provided with the
13 *    distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29/* ChangeLog for this library:
30 *
31 * NDK r10e?: Add MIPS MSA feature.
32 *
33 * NDK r10: Support for 64-bit CPUs (Intel, ARM & MIPS).
34 *
35 * NDK r8d: Add android_setCpu().
36 *
37 * NDK r8c: Add new ARM CPU features: VFPv2, VFP_D32, VFP_FP16,
38 *          VFP_FMA, NEON_FMA, IDIV_ARM, IDIV_THUMB2 and iWMMXt.
39 *
40 *          Rewrite the code to parse /proc/self/auxv instead of
41 *          the "Features" field in /proc/cpuinfo.
42 *
43 *          Dynamically allocate the buffer that hold the content
44 *          of /proc/cpuinfo to deal with newer hardware.
45 *
46 * NDK r7c: Fix CPU count computation. The old method only reported the
47 *           number of _active_ CPUs when the library was initialized,
48 *           which could be less than the real total.
49 *
50 * NDK r5: Handle buggy kernels which report a CPU Architecture number of 7
51 *         for an ARMv6 CPU (see below).
52 *
53 *         Handle kernels that only report 'neon', and not 'vfpv3'
54 *         (VFPv3 is mandated by the ARM architecture is Neon is implemented)
55 *
56 *         Handle kernels that only report 'vfpv3d16', and not 'vfpv3'
57 *
58 *         Fix x86 compilation. Report ANDROID_CPU_FAMILY_X86 in
59 *         android_getCpuFamily().
60 *
61 * NDK r4: Initial release
62 */
63
64#if defined(__le32__) || defined(__le64__)
65
66// When users enter this, we should only provide interface and
67// libportable will give the implementations.
68
69#else // !__le32__ && !__le64__
70
71#include "cpu-features.h"
72
73#include <dlfcn.h>
74#include <errno.h>
75#include <fcntl.h>
76#include <pthread.h>
77#include <stdio.h>
78#include <stdlib.h>
79#include <sys/system_properties.h>
80
81static  pthread_once_t     g_once;
82static  int                g_inited;
83static  AndroidCpuFamily   g_cpuFamily;
84static  uint64_t           g_cpuFeatures;
85static  int                g_cpuCount;
86
87#ifdef __arm__
88static  uint32_t           g_cpuIdArm;
89#endif
90
91static const int android_cpufeatures_debug = 0;
92
93#define  D(...) \
94    do { \
95        if (android_cpufeatures_debug) { \
96            printf(__VA_ARGS__); fflush(stdout); \
97        } \
98    } while (0)
99
100#ifdef __i386__
101static __inline__ void x86_cpuid(int func, int values[4])
102{
103    int a, b, c, d;
104    /* We need to preserve ebx since we're compiling PIC code */
105    /* this means we can't use "=b" for the second output register */
106    __asm__ __volatile__ ( \
107      "push %%ebx\n"
108      "cpuid\n" \
109      "mov %%ebx, %1\n"
110      "pop %%ebx\n"
111      : "=a" (a), "=r" (b), "=c" (c), "=d" (d) \
112      : "a" (func) \
113    );
114    values[0] = a;
115    values[1] = b;
116    values[2] = c;
117    values[3] = d;
118}
119#endif
120
121/* Get the size of a file by reading it until the end. This is needed
122 * because files under /proc do not always return a valid size when
123 * using fseek(0, SEEK_END) + ftell(). Nor can they be mmap()-ed.
124 */
125static int
126get_file_size(const char* pathname)
127{
128
129   int fd, result = 0;
130    char buffer[256];
131
132    fd = open(pathname, O_RDONLY);
133    if (fd < 0) {
134        D("Can't open %s: %s\n", pathname, strerror(errno));
135        return -1;
136    }
137
138    for (;;) {
139        int ret = read(fd, buffer, sizeof buffer);
140        if (ret < 0) {
141            if (errno == EINTR)
142                continue;
143            D("Error while reading %s: %s\n", pathname, strerror(errno));
144            break;
145        }
146        if (ret == 0)
147            break;
148
149        result += ret;
150    }
151    close(fd);
152    return result;
153}
154
155/* Read the content of /proc/cpuinfo into a user-provided buffer.
156 * Return the length of the data, or -1 on error. Does *not*
157 * zero-terminate the content. Will not read more
158 * than 'buffsize' bytes.
159 */
160static int
161read_file(const char*  pathname, char*  buffer, size_t  buffsize)
162{
163    int  fd, count;
164
165    fd = open(pathname, O_RDONLY);
166    if (fd < 0) {
167        D("Could not open %s: %s\n", pathname, strerror(errno));
168        return -1;
169    }
170    count = 0;
171    while (count < (int)buffsize) {
172        int ret = read(fd, buffer + count, buffsize - count);
173        if (ret < 0) {
174            if (errno == EINTR)
175                continue;
176            D("Error while reading from %s: %s\n", pathname, strerror(errno));
177            if (count == 0)
178                count = -1;
179            break;
180        }
181        if (ret == 0)
182            break;
183        count += ret;
184    }
185    close(fd);
186    return count;
187}
188
189/* Extract the content of a the first occurence of a given field in
190 * the content of /proc/cpuinfo and return it as a heap-allocated
191 * string that must be freed by the caller.
192 *
193 * Return NULL if not found
194 */
195static char*
196extract_cpuinfo_field(const char* buffer, int buflen, const char* field)
197{
198    int  fieldlen = strlen(field);
199    const char* bufend = buffer + buflen;
200    char* result = NULL;
201    int len;
202    const char *p, *q;
203
204    /* Look for first field occurence, and ensures it starts the line. */
205    p = buffer;
206    for (;;) {
207        p = memmem(p, bufend-p, field, fieldlen);
208        if (p == NULL)
209            goto EXIT;
210
211        if (p == buffer || p[-1] == '\n')
212            break;
213
214        p += fieldlen;
215    }
216
217    /* Skip to the first column followed by a space */
218    p += fieldlen;
219    p  = memchr(p, ':', bufend-p);
220    if (p == NULL || p[1] != ' ')
221        goto EXIT;
222
223    /* Find the end of the line */
224    p += 2;
225    q = memchr(p, '\n', bufend-p);
226    if (q == NULL)
227        q = bufend;
228
229    /* Copy the line into a heap-allocated buffer */
230    len = q-p;
231    result = malloc(len+1);
232    if (result == NULL)
233        goto EXIT;
234
235    memcpy(result, p, len);
236    result[len] = '\0';
237
238EXIT:
239    return result;
240}
241
242/* Checks that a space-separated list of items contains one given 'item'.
243 * Returns 1 if found, 0 otherwise.
244 */
245static int
246has_list_item(const char* list, const char* item)
247{
248    const char*  p = list;
249    int itemlen = strlen(item);
250
251    if (list == NULL)
252        return 0;
253
254    while (*p) {
255        const char*  q;
256
257        /* skip spaces */
258        while (*p == ' ' || *p == '\t')
259            p++;
260
261        /* find end of current list item */
262        q = p;
263        while (*q && *q != ' ' && *q != '\t')
264            q++;
265
266        if (itemlen == q-p && !memcmp(p, item, itemlen))
267            return 1;
268
269        /* skip to next item */
270        p = q;
271    }
272    return 0;
273}
274
275/* Parse a number starting from 'input', but not going further
276 * than 'limit'. Return the value into '*result'.
277 *
278 * NOTE: Does not skip over leading spaces, or deal with sign characters.
279 * NOTE: Ignores overflows.
280 *
281 * The function returns NULL in case of error (bad format), or the new
282 * position after the decimal number in case of success (which will always
283 * be <= 'limit').
284 */
285static const char*
286parse_number(const char* input, const char* limit, int base, int* result)
287{
288    const char* p = input;
289    int val = 0;
290    while (p < limit) {
291        int d = (*p - '0');
292        if ((unsigned)d >= 10U) {
293            d = (*p - 'a');
294            if ((unsigned)d >= 6U)
295              d = (*p - 'A');
296            if ((unsigned)d >= 6U)
297              break;
298            d += 10;
299        }
300        if (d >= base)
301          break;
302        val = val*base + d;
303        p++;
304    }
305    if (p == input)
306        return NULL;
307
308    *result = val;
309    return p;
310}
311
312static const char*
313parse_decimal(const char* input, const char* limit, int* result)
314{
315    return parse_number(input, limit, 10, result);
316}
317
318static const char*
319parse_hexadecimal(const char* input, const char* limit, int* result)
320{
321    return parse_number(input, limit, 16, result);
322}
323
324/* This small data type is used to represent a CPU list / mask, as read
325 * from sysfs on Linux. See http://www.kernel.org/doc/Documentation/cputopology.txt
326 *
327 * For now, we don't expect more than 32 cores on mobile devices, so keep
328 * everything simple.
329 */
330typedef struct {
331    uint32_t mask;
332} CpuList;
333
334static __inline__ void
335cpulist_init(CpuList* list) {
336    list->mask = 0;
337}
338
339static __inline__ void
340cpulist_and(CpuList* list1, CpuList* list2) {
341    list1->mask &= list2->mask;
342}
343
344static __inline__ void
345cpulist_set(CpuList* list, int index) {
346    if ((unsigned)index < 32) {
347        list->mask |= (uint32_t)(1U << index);
348    }
349}
350
351static __inline__ int
352cpulist_count(CpuList* list) {
353    return __builtin_popcount(list->mask);
354}
355
356/* Parse a textual list of cpus and store the result inside a CpuList object.
357 * Input format is the following:
358 * - comma-separated list of items (no spaces)
359 * - each item is either a single decimal number (cpu index), or a range made
360 *   of two numbers separated by a single dash (-). Ranges are inclusive.
361 *
362 * Examples:   0
363 *             2,4-127,128-143
364 *             0-1
365 */
366static void
367cpulist_parse(CpuList* list, const char* line, int line_len)
368{
369    const char* p = line;
370    const char* end = p + line_len;
371    const char* q;
372
373    /* NOTE: the input line coming from sysfs typically contains a
374     * trailing newline, so take care of it in the code below
375     */
376    while (p < end && *p != '\n')
377    {
378        int val, start_value, end_value;
379
380        /* Find the end of current item, and put it into 'q' */
381        q = memchr(p, ',', end-p);
382        if (q == NULL) {
383            q = end;
384        }
385
386        /* Get first value */
387        p = parse_decimal(p, q, &start_value);
388        if (p == NULL)
389            goto BAD_FORMAT;
390
391        end_value = start_value;
392
393        /* If we're not at the end of the item, expect a dash and
394         * and integer; extract end value.
395         */
396        if (p < q && *p == '-') {
397            p = parse_decimal(p+1, q, &end_value);
398            if (p == NULL)
399                goto BAD_FORMAT;
400        }
401
402        /* Set bits CPU list bits */
403        for (val = start_value; val <= end_value; val++) {
404            cpulist_set(list, val);
405        }
406
407        /* Jump to next item */
408        p = q;
409        if (p < end)
410            p++;
411    }
412
413BAD_FORMAT:
414    ;
415}
416
417/* Read a CPU list from one sysfs file */
418static void
419cpulist_read_from(CpuList* list, const char* filename)
420{
421    char   file[64];
422    int    filelen;
423
424    cpulist_init(list);
425
426    filelen = read_file(filename, file, sizeof file);
427    if (filelen < 0) {
428        D("Could not read %s: %s\n", filename, strerror(errno));
429        return;
430    }
431
432    cpulist_parse(list, file, filelen);
433}
434#if defined(__aarch64__)
435// see <uapi/asm/hwcap.h> kernel header
436#define HWCAP_FP                (1 << 0)
437#define HWCAP_ASIMD             (1 << 1)
438#define HWCAP_AES               (1 << 3)
439#define HWCAP_PMULL             (1 << 4)
440#define HWCAP_SHA1              (1 << 5)
441#define HWCAP_SHA2              (1 << 6)
442#define HWCAP_CRC32             (1 << 7)
443#endif
444
445#if defined(__arm__)
446
447// See <asm/hwcap.h> kernel header.
448#define HWCAP_VFP       (1 << 6)
449#define HWCAP_IWMMXT    (1 << 9)
450#define HWCAP_NEON      (1 << 12)
451#define HWCAP_VFPv3     (1 << 13)
452#define HWCAP_VFPv3D16  (1 << 14)
453#define HWCAP_VFPv4     (1 << 16)
454#define HWCAP_IDIVA     (1 << 17)
455#define HWCAP_IDIVT     (1 << 18)
456
457// see <uapi/asm/hwcap.h> kernel header
458#define HWCAP2_AES     (1 << 0)
459#define HWCAP2_PMULL   (1 << 1)
460#define HWCAP2_SHA1    (1 << 2)
461#define HWCAP2_SHA2    (1 << 3)
462#define HWCAP2_CRC32   (1 << 4)
463
464// This is the list of 32-bit ARMv7 optional features that are _always_
465// supported by ARMv8 CPUs, as mandated by the ARM Architecture Reference
466// Manual.
467#define HWCAP_SET_FOR_ARMV8  \
468  ( HWCAP_VFP | \
469    HWCAP_NEON | \
470    HWCAP_VFPv3 | \
471    HWCAP_VFPv4 | \
472    HWCAP_IDIVA | \
473    HWCAP_IDIVT )
474#endif
475
476#if defined(__mips__)
477// see <uapi/asm/hwcap.h> kernel header
478#define HWCAP_MIPS_R6           (1 << 0)
479#define HWCAP_MIPS_MSA          (1 << 1)
480#endif
481
482#if defined(__arm__) || defined(__aarch64__) || defined(__mips__)
483
484#define AT_HWCAP 16
485#define AT_HWCAP2 26
486
487// Probe the system's C library for a 'getauxval' function and call it if
488// it exits, or return 0 for failure. This function is available since API
489// level 20.
490//
491// This code does *NOT* check for '__ANDROID_API__ >= 20' to support the
492// edge case where some NDK developers use headers for a platform that is
493// newer than the one really targetted by their application.
494// This is typically done to use newer native APIs only when running on more
495// recent Android versions, and requires careful symbol management.
496//
497// Note that getauxval() can't really be re-implemented here, because
498// its implementation does not parse /proc/self/auxv. Instead it depends
499// on values  that are passed by the kernel at process-init time to the
500// C runtime initialization layer.
501static uint32_t
502get_elf_hwcap_from_getauxval(int hwcap_type) {
503    typedef unsigned long getauxval_func_t(unsigned long);
504
505    dlerror();
506    void* libc_handle = dlopen("libc.so", RTLD_NOW);
507    if (!libc_handle) {
508        D("Could not dlopen() C library: %s\n", dlerror());
509        return 0;
510    }
511
512    uint32_t ret = 0;
513    getauxval_func_t* func = (getauxval_func_t*)
514            dlsym(libc_handle, "getauxval");
515    if (!func) {
516        D("Could not find getauxval() in C library\n");
517    } else {
518        // Note: getauxval() returns 0 on failure. Doesn't touch errno.
519        ret = (uint32_t)(*func)(hwcap_type);
520    }
521    dlclose(libc_handle);
522    return ret;
523}
524#endif
525
526#if defined(__arm__)
527// Parse /proc/self/auxv to extract the ELF HW capabilities bitmap for the
528// current CPU. Note that this file is not accessible from regular
529// application processes on some Android platform releases.
530// On success, return new ELF hwcaps, or 0 on failure.
531static uint32_t
532get_elf_hwcap_from_proc_self_auxv(void) {
533    const char filepath[] = "/proc/self/auxv";
534    int fd = TEMP_FAILURE_RETRY(open(filepath, O_RDONLY));
535    if (fd < 0) {
536        D("Could not open %s: %s\n", filepath, strerror(errno));
537        return 0;
538    }
539
540    struct { uint32_t tag; uint32_t value; } entry;
541
542    uint32_t result = 0;
543    for (;;) {
544        int ret = TEMP_FAILURE_RETRY(read(fd, (char*)&entry, sizeof entry));
545        if (ret < 0) {
546            D("Error while reading %s: %s\n", filepath, strerror(errno));
547            break;
548        }
549        // Detect end of list.
550        if (ret == 0 || (entry.tag == 0 && entry.value == 0))
551          break;
552        if (entry.tag == AT_HWCAP) {
553          result = entry.value;
554          break;
555        }
556    }
557    close(fd);
558    return result;
559}
560
561/* Compute the ELF HWCAP flags from the content of /proc/cpuinfo.
562 * This works by parsing the 'Features' line, which lists which optional
563 * features the device's CPU supports, on top of its reference
564 * architecture.
565 */
566static uint32_t
567get_elf_hwcap_from_proc_cpuinfo(const char* cpuinfo, int cpuinfo_len) {
568    uint32_t hwcaps = 0;
569    long architecture = 0;
570    char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
571    if (cpuArch) {
572        architecture = strtol(cpuArch, NULL, 10);
573        free(cpuArch);
574
575        if (architecture >= 8L) {
576            // This is a 32-bit ARM binary running on a 64-bit ARM64 kernel.
577            // The 'Features' line only lists the optional features that the
578            // device's CPU supports, compared to its reference architecture
579            // which are of no use for this process.
580            D("Faking 32-bit ARM HWCaps on ARMv%ld CPU\n", architecture);
581            return HWCAP_SET_FOR_ARMV8;
582        }
583    }
584
585    char* cpuFeatures = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "Features");
586    if (cpuFeatures != NULL) {
587        D("Found cpuFeatures = '%s'\n", cpuFeatures);
588
589        if (has_list_item(cpuFeatures, "vfp"))
590            hwcaps |= HWCAP_VFP;
591        if (has_list_item(cpuFeatures, "vfpv3"))
592            hwcaps |= HWCAP_VFPv3;
593        if (has_list_item(cpuFeatures, "vfpv3d16"))
594            hwcaps |= HWCAP_VFPv3D16;
595        if (has_list_item(cpuFeatures, "vfpv4"))
596            hwcaps |= HWCAP_VFPv4;
597        if (has_list_item(cpuFeatures, "neon"))
598            hwcaps |= HWCAP_NEON;
599        if (has_list_item(cpuFeatures, "idiva"))
600            hwcaps |= HWCAP_IDIVA;
601        if (has_list_item(cpuFeatures, "idivt"))
602            hwcaps |= HWCAP_IDIVT;
603        if (has_list_item(cpuFeatures, "idiv"))
604            hwcaps |= HWCAP_IDIVA | HWCAP_IDIVT;
605        if (has_list_item(cpuFeatures, "iwmmxt"))
606            hwcaps |= HWCAP_IWMMXT;
607
608        free(cpuFeatures);
609    }
610    return hwcaps;
611}
612#endif  /* __arm__ */
613
614/* Return the number of cpus present on a given device.
615 *
616 * To handle all weird kernel configurations, we need to compute the
617 * intersection of the 'present' and 'possible' CPU lists and count
618 * the result.
619 */
620static int
621get_cpu_count(void)
622{
623    CpuList cpus_present[1];
624    CpuList cpus_possible[1];
625
626    cpulist_read_from(cpus_present, "/sys/devices/system/cpu/present");
627    cpulist_read_from(cpus_possible, "/sys/devices/system/cpu/possible");
628
629    /* Compute the intersection of both sets to get the actual number of
630     * CPU cores that can be used on this device by the kernel.
631     */
632    cpulist_and(cpus_present, cpus_possible);
633
634    return cpulist_count(cpus_present);
635}
636
637static void
638android_cpuInitFamily(void)
639{
640#if defined(__arm__)
641    g_cpuFamily = ANDROID_CPU_FAMILY_ARM;
642#elif defined(__i386__)
643    g_cpuFamily = ANDROID_CPU_FAMILY_X86;
644#elif defined(__mips64)
645/* Needs to be before __mips__ since the compiler defines both */
646    g_cpuFamily = ANDROID_CPU_FAMILY_MIPS64;
647#elif defined(__mips__)
648    g_cpuFamily = ANDROID_CPU_FAMILY_MIPS;
649#elif defined(__aarch64__)
650    g_cpuFamily = ANDROID_CPU_FAMILY_ARM64;
651#elif defined(__x86_64__)
652    g_cpuFamily = ANDROID_CPU_FAMILY_X86_64;
653#else
654    g_cpuFamily = ANDROID_CPU_FAMILY_UNKNOWN;
655#endif
656}
657
658static void
659android_cpuInit(void)
660{
661    char* cpuinfo = NULL;
662    int   cpuinfo_len;
663
664    android_cpuInitFamily();
665
666    g_cpuFeatures = 0;
667    g_cpuCount    = 1;
668    g_inited      = 1;
669
670    cpuinfo_len = get_file_size("/proc/cpuinfo");
671    if (cpuinfo_len < 0) {
672      D("cpuinfo_len cannot be computed!");
673      return;
674    }
675    cpuinfo = malloc(cpuinfo_len);
676    if (cpuinfo == NULL) {
677      D("cpuinfo buffer could not be allocated");
678      return;
679    }
680    cpuinfo_len = read_file("/proc/cpuinfo", cpuinfo, cpuinfo_len);
681    D("cpuinfo_len is (%d):\n%.*s\n", cpuinfo_len,
682      cpuinfo_len >= 0 ? cpuinfo_len : 0, cpuinfo);
683
684    if (cpuinfo_len < 0)  /* should not happen */ {
685        free(cpuinfo);
686        return;
687    }
688
689    /* Count the CPU cores, the value may be 0 for single-core CPUs */
690    g_cpuCount = get_cpu_count();
691    if (g_cpuCount == 0) {
692        g_cpuCount = 1;
693    }
694
695    D("found cpuCount = %d\n", g_cpuCount);
696
697#ifdef __arm__
698    {
699        /* Extract architecture from the "CPU Architecture" field.
700         * The list is well-known, unlike the the output of
701         * the 'Processor' field which can vary greatly.
702         *
703         * See the definition of the 'proc_arch' array in
704         * $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
705         * same file.
706         */
707        char* cpuArch = extract_cpuinfo_field(cpuinfo, cpuinfo_len, "CPU architecture");
708
709        if (cpuArch != NULL) {
710            char*  end;
711            long   archNumber;
712            int    hasARMv7 = 0;
713
714            D("found cpuArch = '%s'\n", cpuArch);
715
716            /* read the initial decimal number, ignore the rest */
717            archNumber = strtol(cpuArch, &end, 10);
718
719            /* Note that ARMv8 is upwards compatible with ARMv7. */
720            if (end > cpuArch && archNumber >= 7) {
721                hasARMv7 = 1;
722            }
723
724            /* Unfortunately, it seems that certain ARMv6-based CPUs
725             * report an incorrect architecture number of 7!
726             *
727             * See http://code.google.com/p/android/issues/detail?id=10812
728             *
729             * We try to correct this by looking at the 'elf_format'
730             * field reported by the 'Processor' field, which is of the
731             * form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
732             * an ARMv6-one.
733             */
734            if (hasARMv7) {
735                char* cpuProc = extract_cpuinfo_field(cpuinfo, cpuinfo_len,
736                                                      "Processor");
737                if (cpuProc != NULL) {
738                    D("found cpuProc = '%s'\n", cpuProc);
739                    if (has_list_item(cpuProc, "(v6l)")) {
740                        D("CPU processor and architecture mismatch!!\n");
741                        hasARMv7 = 0;
742                    }
743                    free(cpuProc);
744                }
745            }
746
747            if (hasARMv7) {
748                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_ARMv7;
749            }
750
751            /* The LDREX / STREX instructions are available from ARMv6 */
752            if (archNumber >= 6) {
753                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_LDREX_STREX;
754            }
755
756            free(cpuArch);
757        }
758
759        /* Extract the list of CPU features from ELF hwcaps */
760        uint32_t hwcaps = 0;
761        hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
762        if (!hwcaps) {
763            D("Parsing /proc/self/auxv to extract ELF hwcaps!\n");
764            hwcaps = get_elf_hwcap_from_proc_self_auxv();
765        }
766        if (!hwcaps) {
767            // Parsing /proc/self/auxv will fail from regular application
768            // processes on some Android platform versions, when this happens
769            // parse proc/cpuinfo instead.
770            D("Parsing /proc/cpuinfo to extract ELF hwcaps!\n");
771            hwcaps = get_elf_hwcap_from_proc_cpuinfo(cpuinfo, cpuinfo_len);
772        }
773
774        if (hwcaps != 0) {
775            int has_vfp = (hwcaps & HWCAP_VFP);
776            int has_vfpv3 = (hwcaps & HWCAP_VFPv3);
777            int has_vfpv3d16 = (hwcaps & HWCAP_VFPv3D16);
778            int has_vfpv4 = (hwcaps & HWCAP_VFPv4);
779            int has_neon = (hwcaps & HWCAP_NEON);
780            int has_idiva = (hwcaps & HWCAP_IDIVA);
781            int has_idivt = (hwcaps & HWCAP_IDIVT);
782            int has_iwmmxt = (hwcaps & HWCAP_IWMMXT);
783
784            // The kernel does a poor job at ensuring consistency when
785            // describing CPU features. So lots of guessing is needed.
786
787            // 'vfpv4' implies VFPv3|VFP_FMA|FP16
788            if (has_vfpv4)
789                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3    |
790                                 ANDROID_CPU_ARM_FEATURE_VFP_FP16 |
791                                 ANDROID_CPU_ARM_FEATURE_VFP_FMA;
792
793            // 'vfpv3' or 'vfpv3d16' imply VFPv3. Note that unlike GCC,
794            // a value of 'vfpv3' doesn't necessarily mean that the D32
795            // feature is present, so be conservative. All CPUs in the
796            // field that support D32 also support NEON, so this should
797            // not be a problem in practice.
798            if (has_vfpv3 || has_vfpv3d16)
799                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
800
801            // 'vfp' is super ambiguous. Depending on the kernel, it can
802            // either mean VFPv2 or VFPv3. Make it depend on ARMv7.
803            if (has_vfp) {
804              if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_ARMv7)
805                  g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3;
806              else
807                  g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2;
808            }
809
810            // Neon implies VFPv3|D32, and if vfpv4 is detected, NEON_FMA
811            if (has_neon) {
812                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv3 |
813                                 ANDROID_CPU_ARM_FEATURE_NEON |
814                                 ANDROID_CPU_ARM_FEATURE_VFP_D32;
815              if (has_vfpv4)
816                  g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_NEON_FMA;
817            }
818
819            // VFPv3 implies VFPv2 and ARMv7
820            if (g_cpuFeatures & ANDROID_CPU_ARM_FEATURE_VFPv3)
821                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_VFPv2 |
822                                 ANDROID_CPU_ARM_FEATURE_ARMv7;
823
824            if (has_idiva)
825                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
826            if (has_idivt)
827                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2;
828
829            if (has_iwmmxt)
830                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_iWMMXt;
831        }
832
833        /* Extract the list of CPU features from ELF hwcaps2 */
834        uint32_t hwcaps2 = 0;
835        hwcaps2 = get_elf_hwcap_from_getauxval(AT_HWCAP2);
836        if (hwcaps2 != 0) {
837            int has_aes     = (hwcaps2 & HWCAP2_AES);
838            int has_pmull   = (hwcaps2 & HWCAP2_PMULL);
839            int has_sha1    = (hwcaps2 & HWCAP2_SHA1);
840            int has_sha2    = (hwcaps2 & HWCAP2_SHA2);
841            int has_crc32   = (hwcaps2 & HWCAP2_CRC32);
842
843            if (has_aes)
844                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_AES;
845            if (has_pmull)
846                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_PMULL;
847            if (has_sha1)
848                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA1;
849            if (has_sha2)
850                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_SHA2;
851            if (has_crc32)
852                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_CRC32;
853        }
854        /* Extract the cpuid value from various fields */
855        // The CPUID value is broken up in several entries in /proc/cpuinfo.
856        // This table is used to rebuild it from the entries.
857        static const struct CpuIdEntry {
858            const char* field;
859            char        format;
860            char        bit_lshift;
861            char        bit_length;
862        } cpu_id_entries[] = {
863            { "CPU implementer", 'x', 24, 8 },
864            { "CPU variant", 'x', 20, 4 },
865            { "CPU part", 'x', 4, 12 },
866            { "CPU revision", 'd', 0, 4 },
867        };
868        size_t i;
869        D("Parsing /proc/cpuinfo to recover CPUID\n");
870        for (i = 0;
871             i < sizeof(cpu_id_entries)/sizeof(cpu_id_entries[0]);
872             ++i) {
873            const struct CpuIdEntry* entry = &cpu_id_entries[i];
874            char* value = extract_cpuinfo_field(cpuinfo,
875                                                cpuinfo_len,
876                                                entry->field);
877            if (value == NULL)
878                continue;
879
880            D("field=%s value='%s'\n", entry->field, value);
881            char* value_end = value + strlen(value);
882            int val = 0;
883            const char* start = value;
884            const char* p;
885            if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X')) {
886              start += 2;
887              p = parse_hexadecimal(start, value_end, &val);
888            } else if (entry->format == 'x')
889              p = parse_hexadecimal(value, value_end, &val);
890            else
891              p = parse_decimal(value, value_end, &val);
892
893            if (p > (const char*)start) {
894              val &= ((1 << entry->bit_length)-1);
895              val <<= entry->bit_lshift;
896              g_cpuIdArm |= (uint32_t) val;
897            }
898
899            free(value);
900        }
901
902        // Handle kernel configuration bugs that prevent the correct
903        // reporting of CPU features.
904        static const struct CpuFix {
905            uint32_t  cpuid;
906            uint64_t  or_flags;
907        } cpu_fixes[] = {
908            /* The Nexus 4 (Qualcomm Krait) kernel configuration
909             * forgets to report IDIV support. */
910            { 0x510006f2, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
911                          ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
912            { 0x510006f3, ANDROID_CPU_ARM_FEATURE_IDIV_ARM |
913                          ANDROID_CPU_ARM_FEATURE_IDIV_THUMB2 },
914        };
915        size_t n;
916        for (n = 0; n < sizeof(cpu_fixes)/sizeof(cpu_fixes[0]); ++n) {
917            const struct CpuFix* entry = &cpu_fixes[n];
918
919            if (g_cpuIdArm == entry->cpuid)
920                g_cpuFeatures |= entry->or_flags;
921        }
922
923        // Special case: The emulator-specific Android 4.2 kernel fails
924        // to report support for the 32-bit ARM IDIV instruction.
925        // Technically, this is a feature of the virtual CPU implemented
926        // by the emulator. Note that it could also support Thumb IDIV
927        // in the future, and this will have to be slightly updated.
928        char* hardware = extract_cpuinfo_field(cpuinfo,
929                                               cpuinfo_len,
930                                               "Hardware");
931        if (hardware) {
932            if (!strcmp(hardware, "Goldfish") &&
933                g_cpuIdArm == 0x4100c080 &&
934                (g_cpuFamily & ANDROID_CPU_ARM_FEATURE_ARMv7) != 0) {
935                g_cpuFeatures |= ANDROID_CPU_ARM_FEATURE_IDIV_ARM;
936            }
937            free(hardware);
938        }
939    }
940#endif /* __arm__ */
941#ifdef __aarch64__
942    {
943        /* Extract the list of CPU features from ELF hwcaps */
944        uint32_t hwcaps = 0;
945        hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
946        if (hwcaps != 0) {
947            int has_fp      = (hwcaps & HWCAP_FP);
948            int has_asimd   = (hwcaps & HWCAP_ASIMD);
949            int has_aes     = (hwcaps & HWCAP_AES);
950            int has_pmull   = (hwcaps & HWCAP_PMULL);
951            int has_sha1    = (hwcaps & HWCAP_SHA1);
952            int has_sha2    = (hwcaps & HWCAP_SHA2);
953            int has_crc32   = (hwcaps & HWCAP_CRC32);
954
955            if(has_fp == 0) {
956                D("ERROR: Floating-point unit missing, but is required by Android on AArch64 CPUs\n");
957            }
958            if(has_asimd == 0) {
959                D("ERROR: ASIMD unit missing, but is required by Android on AArch64 CPUs\n");
960            }
961
962            if (has_fp)
963                g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_FP;
964            if (has_asimd)
965                g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_ASIMD;
966            if (has_aes)
967                g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_AES;
968            if (has_pmull)
969                g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_PMULL;
970            if (has_sha1)
971                g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA1;
972            if (has_sha2)
973                g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_SHA2;
974            if (has_crc32)
975                g_cpuFeatures |= ANDROID_CPU_ARM64_FEATURE_CRC32;
976        }
977    }
978#endif /* __aarch64__ */
979
980#ifdef __i386__
981    int regs[4];
982
983/* According to http://en.wikipedia.org/wiki/CPUID */
984#define VENDOR_INTEL_b  0x756e6547
985#define VENDOR_INTEL_c  0x6c65746e
986#define VENDOR_INTEL_d  0x49656e69
987
988    x86_cpuid(0, regs);
989    int vendorIsIntel = (regs[1] == VENDOR_INTEL_b &&
990                         regs[2] == VENDOR_INTEL_c &&
991                         regs[3] == VENDOR_INTEL_d);
992
993    x86_cpuid(1, regs);
994    if ((regs[2] & (1 << 9)) != 0) {
995        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_SSSE3;
996    }
997    if ((regs[2] & (1 << 23)) != 0) {
998        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_POPCNT;
999    }
1000    if (vendorIsIntel && (regs[2] & (1 << 22)) != 0) {
1001        g_cpuFeatures |= ANDROID_CPU_X86_FEATURE_MOVBE;
1002    }
1003#endif
1004#if defined( __mips__)
1005    {   /* MIPS and MIPS64 */
1006        /* Extract the list of CPU features from ELF hwcaps */
1007        uint32_t hwcaps = 0;
1008        hwcaps = get_elf_hwcap_from_getauxval(AT_HWCAP);
1009        if (hwcaps != 0) {
1010            int has_r6      = (hwcaps & HWCAP_MIPS_R6);
1011            int has_msa     = (hwcaps & HWCAP_MIPS_MSA);
1012            if (has_r6)
1013                g_cpuFeatures |= ANDROID_CPU_MIPS_FEATURE_R6;
1014            if (has_msa)
1015                g_cpuFeatures |= ANDROID_CPU_MIPS_FEATURE_MSA;
1016        }
1017    }
1018#endif /* __mips__ */
1019
1020    free(cpuinfo);
1021}
1022
1023
1024AndroidCpuFamily
1025android_getCpuFamily(void)
1026{
1027    pthread_once(&g_once, android_cpuInit);
1028    return g_cpuFamily;
1029}
1030
1031
1032uint64_t
1033android_getCpuFeatures(void)
1034{
1035    pthread_once(&g_once, android_cpuInit);
1036    return g_cpuFeatures;
1037}
1038
1039
1040int
1041android_getCpuCount(void)
1042{
1043    pthread_once(&g_once, android_cpuInit);
1044    return g_cpuCount;
1045}
1046
1047static void
1048android_cpuInitDummy(void)
1049{
1050    g_inited = 1;
1051}
1052
1053int
1054android_setCpu(int cpu_count, uint64_t cpu_features)
1055{
1056    /* Fail if the library was already initialized. */
1057    if (g_inited)
1058        return 0;
1059
1060    android_cpuInitFamily();
1061    g_cpuCount = (cpu_count <= 0 ? 1 : cpu_count);
1062    g_cpuFeatures = cpu_features;
1063    pthread_once(&g_once, android_cpuInitDummy);
1064
1065    return 1;
1066}
1067
1068#ifdef __arm__
1069uint32_t
1070android_getCpuIdArm(void)
1071{
1072    pthread_once(&g_once, android_cpuInit);
1073    return g_cpuIdArm;
1074}
1075
1076int
1077android_setCpuArm(int cpu_count, uint64_t cpu_features, uint32_t cpu_id)
1078{
1079    if (!android_setCpu(cpu_count, cpu_features))
1080        return 0;
1081
1082    g_cpuIdArm = cpu_id;
1083    return 1;
1084}
1085#endif  /* __arm__ */
1086
1087/*
1088 * Technical note: Making sense of ARM's FPU architecture versions.
1089 *
1090 * FPA was ARM's first attempt at an FPU architecture. There is no Android
1091 * device that actually uses it since this technology was already obsolete
1092 * when the project started. If you see references to FPA instructions
1093 * somewhere, you can be sure that this doesn't apply to Android at all.
1094 *
1095 * FPA was followed by "VFP", soon renamed "VFPv1" due to the emergence of
1096 * new versions / additions to it. ARM considers this obsolete right now,
1097 * and no known Android device implements it either.
1098 *
1099 * VFPv2 added a few instructions to VFPv1, and is an *optional* extension
1100 * supported by some ARMv5TE, ARMv6 and ARMv6T2 CPUs. Note that a device
1101 * supporting the 'armeabi' ABI doesn't necessarily support these.
1102 *
1103 * VFPv3-D16 adds a few instructions on top of VFPv2 and is typically used
1104 * on ARMv7-A CPUs which implement a FPU. Note that it is also mandated
1105 * by the Android 'armeabi-v7a' ABI. The -D16 suffix in its name means
1106 * that it provides 16 double-precision FPU registers (d0-d15) and 32
1107 * single-precision ones (s0-s31) which happen to be mapped to the same
1108 * register banks.
1109 *
1110 * VFPv3-D32 is the name of an extension to VFPv3-D16 that provides 16
1111 * additional double precision registers (d16-d31). Note that there are
1112 * still only 32 single precision registers.
1113 *
1114 * VFPv3xD is a *subset* of VFPv3-D16 that only provides single-precision
1115 * registers. It is only used on ARMv7-M (i.e. on micro-controllers) which
1116 * are not supported by Android. Note that it is not compatible with VFPv2.
1117 *
1118 * NOTE: The term 'VFPv3' usually designate either VFPv3-D16 or VFPv3-D32
1119 *       depending on context. For example GCC uses it for VFPv3-D32, but
1120 *       the Linux kernel code uses it for VFPv3-D16 (especially in
1121 *       /proc/cpuinfo). Always try to use the full designation when
1122 *       possible.
1123 *
1124 * NEON, a.k.a. "ARM Advanced SIMD" is an extension that provides
1125 * instructions to perform parallel computations on vectors of 8, 16,
1126 * 32, 64 and 128 bit quantities. NEON requires VFPv32-D32 since all
1127 * NEON registers are also mapped to the same register banks.
1128 *
1129 * VFPv4-D16, adds a few instructions on top of VFPv3-D16 in order to
1130 * perform fused multiply-accumulate on VFP registers, as well as
1131 * half-precision (16-bit) conversion operations.
1132 *
1133 * VFPv4-D32 is VFPv4-D16 with 32, instead of 16, FPU double precision
1134 * registers.
1135 *
1136 * VPFv4-NEON is VFPv4-D32 with NEON instructions. It also adds fused
1137 * multiply-accumulate instructions that work on the NEON registers.
1138 *
1139 * NOTE: Similarly, "VFPv4" might either reference VFPv4-D16 or VFPv4-D32
1140 *       depending on context.
1141 *
1142 * The following information was determined by scanning the binutils-2.22
1143 * sources:
1144 *
1145 * Basic VFP instruction subsets:
1146 *
1147 * #define FPU_VFP_EXT_V1xD 0x08000000     // Base VFP instruction set.
1148 * #define FPU_VFP_EXT_V1   0x04000000     // Double-precision insns.
1149 * #define FPU_VFP_EXT_V2   0x02000000     // ARM10E VFPr1.
1150 * #define FPU_VFP_EXT_V3xD 0x01000000     // VFPv3 single-precision.
1151 * #define FPU_VFP_EXT_V3   0x00800000     // VFPv3 double-precision.
1152 * #define FPU_NEON_EXT_V1  0x00400000     // Neon (SIMD) insns.
1153 * #define FPU_VFP_EXT_D32  0x00200000     // Registers D16-D31.
1154 * #define FPU_VFP_EXT_FP16 0x00100000     // Half-precision extensions.
1155 * #define FPU_NEON_EXT_FMA 0x00080000     // Neon fused multiply-add
1156 * #define FPU_VFP_EXT_FMA  0x00040000     // VFP fused multiply-add
1157 *
1158 * FPU types (excluding NEON)
1159 *
1160 * FPU_VFP_V1xD (EXT_V1xD)
1161 *    |
1162 *    +--------------------------+
1163 *    |                          |
1164 * FPU_VFP_V1 (+EXT_V1)       FPU_VFP_V3xD (+EXT_V2+EXT_V3xD)
1165 *    |                          |
1166 *    |                          |
1167 * FPU_VFP_V2 (+EXT_V2)       FPU_VFP_V4_SP_D16 (+EXT_FP16+EXT_FMA)
1168 *    |
1169 * FPU_VFP_V3D16 (+EXT_Vx3D+EXT_V3)
1170 *    |
1171 *    +--------------------------+
1172 *    |                          |
1173 * FPU_VFP_V3 (+EXT_D32)     FPU_VFP_V4D16 (+EXT_FP16+EXT_FMA)
1174 *    |                          |
1175 *    |                      FPU_VFP_V4 (+EXT_D32)
1176 *    |
1177 * FPU_VFP_HARD (+EXT_FMA+NEON_EXT_FMA)
1178 *
1179 * VFP architectures:
1180 *
1181 * ARCH_VFP_V1xD  (EXT_V1xD)
1182 *   |
1183 *   +------------------+
1184 *   |                  |
1185 *   |             ARCH_VFP_V3xD (+EXT_V2+EXT_V3xD)
1186 *   |                  |
1187 *   |             ARCH_VFP_V3xD_FP16 (+EXT_FP16)
1188 *   |                  |
1189 *   |             ARCH_VFP_V4_SP_D16 (+EXT_FMA)
1190 *   |
1191 * ARCH_VFP_V1 (+EXT_V1)
1192 *   |
1193 * ARCH_VFP_V2 (+EXT_V2)
1194 *   |
1195 * ARCH_VFP_V3D16 (+EXT_V3xD+EXT_V3)
1196 *   |
1197 *   +-------------------+
1198 *   |                   |
1199 *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1200 *   |
1201 *   +-------------------+
1202 *   |                   |
1203 *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1204 *   |                   |
1205 *   |         ARCH_VFP_V4 (+EXT_D32)
1206 *   |                   |
1207 *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1208 *   |
1209 * ARCH_VFP_V3 (+EXT_D32)
1210 *   |
1211 *   +-------------------+
1212 *   |                   |
1213 *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1214 *   |
1215 * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1216 *   |
1217 * ARCH_NEON_FP16 (+EXT_FP16)
1218 *
1219 * -fpu=<name> values and their correspondance with FPU architectures above:
1220 *
1221 *   {"vfp",               FPU_ARCH_VFP_V2},
1222 *   {"vfp9",              FPU_ARCH_VFP_V2},
1223 *   {"vfp3",              FPU_ARCH_VFP_V3}, // For backwards compatbility.
1224 *   {"vfp10",             FPU_ARCH_VFP_V2},
1225 *   {"vfp10-r0",          FPU_ARCH_VFP_V1},
1226 *   {"vfpxd",             FPU_ARCH_VFP_V1xD},
1227 *   {"vfpv2",             FPU_ARCH_VFP_V2},
1228 *   {"vfpv3",             FPU_ARCH_VFP_V3},
1229 *   {"vfpv3-fp16",        FPU_ARCH_VFP_V3_FP16},
1230 *   {"vfpv3-d16",         FPU_ARCH_VFP_V3D16},
1231 *   {"vfpv3-d16-fp16",    FPU_ARCH_VFP_V3D16_FP16},
1232 *   {"vfpv3xd",           FPU_ARCH_VFP_V3xD},
1233 *   {"vfpv3xd-fp16",      FPU_ARCH_VFP_V3xD_FP16},
1234 *   {"neon",              FPU_ARCH_VFP_V3_PLUS_NEON_V1},
1235 *   {"neon-fp16",         FPU_ARCH_NEON_FP16},
1236 *   {"vfpv4",             FPU_ARCH_VFP_V4},
1237 *   {"vfpv4-d16",         FPU_ARCH_VFP_V4D16},
1238 *   {"fpv4-sp-d16",       FPU_ARCH_VFP_V4_SP_D16},
1239 *   {"neon-vfpv4",        FPU_ARCH_NEON_VFP_V4},
1240 *
1241 *
1242 * Simplified diagram that only includes FPUs supported by Android:
1243 * Only ARCH_VFP_V3D16 is actually mandated by the armeabi-v7a ABI,
1244 * all others are optional and must be probed at runtime.
1245 *
1246 * ARCH_VFP_V3D16 (EXT_V1xD+EXT_V1+EXT_V2+EXT_V3xD+EXT_V3)
1247 *   |
1248 *   +-------------------+
1249 *   |                   |
1250 *   |         ARCH_VFP_V3D16_FP16  (+EXT_FP16)
1251 *   |
1252 *   +-------------------+
1253 *   |                   |
1254 *   |         ARCH_VFP_V4_D16 (+EXT_FP16+EXT_FMA)
1255 *   |                   |
1256 *   |         ARCH_VFP_V4 (+EXT_D32)
1257 *   |                   |
1258 *   |         ARCH_NEON_VFP_V4 (+EXT_NEON+EXT_NEON_FMA)
1259 *   |
1260 * ARCH_VFP_V3 (+EXT_D32)
1261 *   |
1262 *   +-------------------+
1263 *   |                   |
1264 *   |         ARCH_VFP_V3_FP16 (+EXT_FP16)
1265 *   |
1266 * ARCH_VFP_V3_PLUS_NEON_V1 (+EXT_NEON)
1267 *   |
1268 * ARCH_NEON_FP16 (+EXT_FP16)
1269 *
1270 */
1271
1272#endif // defined(__le32__) || defined(__le64__)
1273