• Home
  • History
  • Annotate
  • only in /packages/apps/Messaging/src/com/android/messaging/ui/mediapicker/camerafocus/
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17
18#include "fault_handler.h"
19
20#include <sys/ucontext.h>
21
22#include "art_method-inl.h"
23#include "base/macros.h"
24#include "globals.h"
25#include "base/logging.h"
26#include "base/hex_dump.h"
27#include "thread.h"
28#include "thread-inl.h"
29
30#if defined(__APPLE__)
31#define ucontext __darwin_ucontext
32
33#if defined(__x86_64__)
34// 64 bit mac build.
35#define CTX_ESP uc_mcontext->__ss.__rsp
36#define CTX_EIP uc_mcontext->__ss.__rip
37#define CTX_EAX uc_mcontext->__ss.__rax
38#define CTX_METHOD uc_mcontext->__ss.__rdi
39#define CTX_JMP_BUF uc_mcontext->__ss.__rdi
40#else
41// 32 bit mac build.
42#define CTX_ESP uc_mcontext->__ss.__esp
43#define CTX_EIP uc_mcontext->__ss.__eip
44#define CTX_EAX uc_mcontext->__ss.__eax
45#define CTX_METHOD uc_mcontext->__ss.__eax
46#define CTX_JMP_BUF uc_mcontext->__ss.__eax
47#endif
48
49#elif defined(__x86_64__)
50// 64 bit linux build.
51#define CTX_ESP uc_mcontext.gregs[REG_RSP]
52#define CTX_EIP uc_mcontext.gregs[REG_RIP]
53#define CTX_EAX uc_mcontext.gregs[REG_RAX]
54#define CTX_METHOD uc_mcontext.gregs[REG_RDI]
55#define CTX_RDI uc_mcontext.gregs[REG_RDI]
56#define CTX_JMP_BUF uc_mcontext.gregs[REG_RDI]
57#else
58// 32 bit linux build.
59#define CTX_ESP uc_mcontext.gregs[REG_ESP]
60#define CTX_EIP uc_mcontext.gregs[REG_EIP]
61#define CTX_EAX uc_mcontext.gregs[REG_EAX]
62#define CTX_METHOD uc_mcontext.gregs[REG_EAX]
63#define CTX_JMP_BUF uc_mcontext.gregs[REG_EAX]
64#endif
65
66//
67// X86 (and X86_64) specific fault handler functions.
68//
69
70namespace art {
71
72#if defined(__APPLE__) && defined(__x86_64__)
73// mac symbols have a prefix of _ on x86_64
74extern "C" void _art_quick_throw_null_pointer_exception();
75extern "C" void _art_quick_throw_stack_overflow();
76extern "C" void _art_quick_test_suspend();
77#define EXT_SYM(sym) _ ## sym
78#else
79extern "C" void art_quick_throw_null_pointer_exception();
80extern "C" void art_quick_throw_stack_overflow();
81extern "C" void art_quick_test_suspend();
82#define EXT_SYM(sym) sym
83#endif
84
85// Note this is different from the others (no underscore on 64 bit mac) due to
86// the way the symbol is defined in the .S file.
87// TODO: fix the symbols for 64 bit mac - there is a double underscore prefix for some
88// of them.
89extern "C" void art_nested_signal_return();
90
91// Get the size of an instruction in bytes.
92// Return 0 if the instruction is not handled.
93static uint32_t GetInstructionSize(const uint8_t* pc) {
94#if defined(__x86_64)
95  const bool x86_64 = true;
96#else
97  const bool x86_64 = false;
98#endif
99
100  const uint8_t* startpc = pc;
101
102  uint8_t opcode = *pc++;
103  uint8_t modrm;
104  bool has_modrm = false;
105  bool two_byte = false;
106  uint32_t displacement_size = 0;
107  uint32_t immediate_size = 0;
108  bool operand_size_prefix = false;
109
110  // Prefixes.
111  while (true) {
112    bool prefix_present = false;
113    switch (opcode) {
114      // Group 3
115      case 0x66:
116        operand_size_prefix = true;
117        FALLTHROUGH_INTENDED;
118
119      // Group 1
120      case 0xf0:
121      case 0xf2:
122      case 0xf3:
123
124      // Group 2
125      case 0x2e:
126      case 0x36:
127      case 0x3e:
128      case 0x26:
129      case 0x64:
130      case 0x65:
131
132      // Group 4
133      case 0x67:
134        opcode = *pc++;
135        prefix_present = true;
136        break;
137    }
138    if (!prefix_present) {
139      break;
140    }
141  }
142
143  if (x86_64 && opcode >= 0x40 && opcode <= 0x4f) {
144    opcode = *pc++;
145  }
146
147  if (opcode == 0x0f) {
148    // Two byte opcode
149    two_byte = true;
150    opcode = *pc++;
151  }
152
153  bool unhandled_instruction = false;
154
155  if (two_byte) {
156    switch (opcode) {
157      case 0x10:        // vmovsd/ss
158      case 0x11:        // vmovsd/ss
159      case 0xb6:        // movzx
160      case 0xb7:
161      case 0xbe:        // movsx
162      case 0xbf:
163        modrm = *pc++;
164        has_modrm = true;
165        break;
166      default:
167        unhandled_instruction = true;
168        break;
169    }
170  } else {
171    switch (opcode) {
172      case 0x88:        // mov byte
173      case 0x89:        // mov
174      case 0x8b:
175      case 0x38:        // cmp with memory.
176      case 0x39:
177      case 0x3a:
178      case 0x3b:
179      case 0x3c:
180      case 0x3d:
181      case 0x85:        // test.
182        modrm = *pc++;
183        has_modrm = true;
184        break;
185
186      case 0x80:        // group 1, byte immediate.
187      case 0x83:
188      case 0xc6:
189        modrm = *pc++;
190        has_modrm = true;
191        immediate_size = 1;
192        break;
193
194      case 0x81:        // group 1, word immediate.
195      case 0xc7:        // mov
196        modrm = *pc++;
197        has_modrm = true;
198        immediate_size = operand_size_prefix ? 2 : 4;
199        break;
200
201      default:
202        unhandled_instruction = true;
203        break;
204    }
205  }
206
207  if (unhandled_instruction) {
208    VLOG(signals) << "Unhandled x86 instruction with opcode " << static_cast<int>(opcode);
209    return 0;
210  }
211
212  if (has_modrm) {
213    uint8_t mod = (modrm >> 6) & 3U /* 0b11 */;
214
215    // Check for SIB.
216    if (mod != 3U /* 0b11 */ && (modrm & 7U /* 0b111 */) == 4) {
217      ++pc;     // SIB
218    }
219
220    switch (mod) {
221      case 0U /* 0b00 */: break;
222      case 1U /* 0b01 */: displacement_size = 1; break;
223      case 2U /* 0b10 */: displacement_size = 4; break;
224      case 3U /* 0b11 */:
225        break;
226    }
227  }
228
229  // Skip displacement and immediate.
230  pc += displacement_size + immediate_size;
231
232  VLOG(signals) << "x86 instruction length calculated as " << (pc - startpc);
233  return pc - startpc;
234}
235
236void FaultManager::HandleNestedSignal(int, siginfo_t*, void* context) {
237  // For the Intel architectures we need to go to an assembly language
238  // stub.  This is because the 32 bit call to longjmp is much different
239  // from the 64 bit ABI call and pushing things onto the stack inside this
240  // handler was unwieldy and ugly.  The use of the stub means we can keep
241  // this code the same for both 32 and 64 bit.
242
243  Thread* self = Thread::Current();
244  CHECK(self != nullptr);  // This will cause a SIGABRT if self is null.
245
246  struct ucontext* uc = reinterpret_cast<struct ucontext*>(context);
247  uc->CTX_JMP_BUF = reinterpret_cast<uintptr_t>(*self->GetNestedSignalState());
248  uc->CTX_EIP = reinterpret_cast<uintptr_t>(art_nested_signal_return);
249}
250
251void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo, void* context,
252                                             ArtMethod** out_method,
253                                             uintptr_t* out_return_pc, uintptr_t* out_sp) {
254  struct ucontext* uc = reinterpret_cast<struct ucontext*>(context);
255  *out_sp = static_cast<uintptr_t>(uc->CTX_ESP);
256  VLOG(signals) << "sp: " << std::hex << *out_sp;
257  if (*out_sp == 0) {
258    return;
259  }
260
261  // In the case of a stack overflow, the stack is not valid and we can't
262  // get the method from the top of the stack.  However it's in EAX(x86)/RDI(x86_64).
263  uintptr_t* fault_addr = reinterpret_cast<uintptr_t*>(siginfo->si_addr);
264  uintptr_t* overflow_addr = reinterpret_cast<uintptr_t*>(
265#if defined(__x86_64__)
266      reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(kX86_64));
267#else
268      reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(kX86));
269#endif
270  if (overflow_addr == fault_addr) {
271    *out_method = reinterpret_cast<ArtMethod*>(uc->CTX_METHOD);
272  } else {
273    // The method is at the top of the stack.
274    *out_method = *reinterpret_cast<ArtMethod**>(*out_sp);
275  }
276
277  uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
278  VLOG(signals) << HexDump(pc, 32, true, "PC ");
279
280  if (pc == nullptr) {
281    // Somebody jumped to 0x0. Definitely not ours, and will definitely segfault below.
282    *out_method = nullptr;
283    return;
284  }
285
286  uint32_t instr_size = GetInstructionSize(pc);
287  if (instr_size == 0) {
288    // Unknown instruction, tell caller it's not ours.
289    *out_method = nullptr;
290    return;
291  }
292  *out_return_pc = reinterpret_cast<uintptr_t>(pc + instr_size);
293}
294
295bool NullPointerHandler::Action(int, siginfo_t*, void* context) {
296  struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
297  uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
298  uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP);
299
300  uint32_t instr_size = GetInstructionSize(pc);
301  if (instr_size == 0) {
302    // Unknown instruction, can't really happen.
303    return false;
304  }
305
306  // We need to arrange for the signal handler to return to the null pointer
307  // exception generator.  The return address must be the address of the
308  // next instruction (this instruction + instruction size).  The return address
309  // is on the stack at the top address of the current frame.
310
311  // Push the return address onto the stack.
312  uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + instr_size);
313  uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - sizeof(uintptr_t));
314  *next_sp = retaddr;
315  uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp);
316
317  uc->CTX_EIP = reinterpret_cast<uintptr_t>(EXT_SYM(art_quick_throw_null_pointer_exception));
318  VLOG(signals) << "Generating null pointer exception";
319  return true;
320}
321
322// A suspend check is done using the following instruction sequence:
323// (x86)
324// 0xf720f1df:         648B058C000000      mov     eax, fs:[0x8c]  ; suspend_trigger
325// .. some intervening instructions.
326// 0xf720f1e6:                   8500      test    eax, [eax]
327// (x86_64)
328// 0x7f579de45d9e: 65488B0425A8000000      movq    rax, gs:[0xa8]  ; suspend_trigger
329// .. some intervening instructions.
330// 0x7f579de45da7:               8500      test    eax, [eax]
331
332// The offset from fs is Thread::ThreadSuspendTriggerOffset().
333// To check for a suspend check, we examine the instructions that caused
334// the fault.
335bool SuspensionHandler::Action(int, siginfo_t*, void* context) {
336  // These are the instructions to check for.  The first one is the mov eax, fs:[xxx]
337  // where xxx is the offset of the suspend trigger.
338#if defined(__x86_64__)
339  uint32_t trigger = Thread::ThreadSuspendTriggerOffset<8>().Int32Value();
340#else
341  uint32_t trigger = Thread::ThreadSuspendTriggerOffset<4>().Int32Value();
342#endif
343
344  VLOG(signals) << "Checking for suspension point";
345#if defined(__x86_64__)
346  uint8_t checkinst1[] = {0x65, 0x48, 0x8b, 0x04, 0x25, static_cast<uint8_t>(trigger & 0xff),
347      static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
348#else
349  uint8_t checkinst1[] = {0x64, 0x8b, 0x05, static_cast<uint8_t>(trigger & 0xff),
350      static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
351#endif
352  uint8_t checkinst2[] = {0x85, 0x00};
353
354  struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
355  uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
356  uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP);
357
358  if (pc[0] != checkinst2[0] || pc[1] != checkinst2[1]) {
359    // Second instruction is not correct (test eax,[eax]).
360    VLOG(signals) << "Not a suspension point";
361    return false;
362  }
363
364  // The first instruction can a little bit up the stream due to load hoisting
365  // in the compiler.
366  uint8_t* limit = pc - 100;   // Compiler will hoist to a max of 20 instructions.
367  uint8_t* ptr = pc - sizeof(checkinst1);
368  bool found = false;
369  while (ptr > limit) {
370    if (memcmp(ptr, checkinst1, sizeof(checkinst1)) == 0) {
371      found = true;
372      break;
373    }
374    ptr -= 1;
375  }
376
377  if (found) {
378    VLOG(signals) << "suspend check match";
379
380    // We need to arrange for the signal handler to return to the null pointer
381    // exception generator.  The return address must be the address of the
382    // next instruction (this instruction + 2).  The return address
383    // is on the stack at the top address of the current frame.
384
385    // Push the return address onto the stack.
386    uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + 2);
387    uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - sizeof(uintptr_t));
388    *next_sp = retaddr;
389    uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp);
390
391    uc->CTX_EIP = reinterpret_cast<uintptr_t>(EXT_SYM(art_quick_test_suspend));
392
393    // Now remove the suspend trigger that caused this fault.
394    Thread::Current()->RemoveSuspendTrigger();
395    VLOG(signals) << "removed suspend trigger invoking test suspend";
396    return true;
397  }
398  VLOG(signals) << "Not a suspend check match, first instruction mismatch";
399  return false;
400}
401
402// The stack overflow check is done using the following instruction:
403// test eax, [esp+ -xxx]
404// where 'xxx' is the size of the overflow area.
405//
406// This is done before any frame is established in the method.  The return
407// address for the previous method is on the stack at ESP.
408
409bool StackOverflowHandler::Action(int, siginfo_t* info, void* context) {
410  struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
411  uintptr_t sp = static_cast<uintptr_t>(uc->CTX_ESP);
412
413  uintptr_t fault_addr = reinterpret_cast<uintptr_t>(info->si_addr);
414  VLOG(signals) << "fault_addr: " << std::hex << fault_addr;
415  VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp <<
416    ", fault_addr: " << fault_addr;
417
418#if defined(__x86_64__)
419  uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(kX86_64);
420#else
421  uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(kX86);
422#endif
423
424  // Check that the fault address is the value expected for a stack overflow.
425  if (fault_addr != overflow_addr) {
426    VLOG(signals) << "Not a stack overflow";
427    return false;
428  }
429
430  VLOG(signals) << "Stack overflow found";
431
432  // Since the compiler puts the implicit overflow
433  // check before the callee save instructions, the SP is already pointing to
434  // the previous frame.
435
436  // Now arrange for the signal handler to return to art_quick_throw_stack_overflow.
437  uc->CTX_EIP = reinterpret_cast<uintptr_t>(EXT_SYM(art_quick_throw_stack_overflow));
438
439  return true;
440}
441}       // namespace art
442