ordering = builder.ordering();
this.minHeap = new Heap(ordering);
this.maxHeap = new Heap(ordering.reverse());
minHeap.otherHeap = maxHeap;
maxHeap.otherHeap = minHeap;
this.maximumSize = builder.maximumSize;
// TODO(kevinb): pad?
this.queue = new Object[queueSize];
}
@Override public int size() {
return size;
}
/**
* Adds the given element to this queue. If this queue has a maximum size,
* after adding {@code element} the queue will automatically evict its
* greatest element (according to its comparator), which may be {@code
* element} itself.
*
* @return {@code true} always
*/
@Override public boolean add(E element) {
offer(element);
return true;
}
@Override public boolean addAll(Collection extends E> newElements) {
boolean modified = false;
for (E element : newElements) {
offer(element);
modified = true;
}
return modified;
}
/**
* Adds the given element to this queue. If this queue has a maximum size,
* after adding {@code element} the queue will automatically evict its
* greatest element (according to its comparator), which may be {@code
* element} itself.
*/
@Override public boolean offer(E element) {
checkNotNull(element);
modCount++;
int insertIndex = size++;
growIfNeeded();
// Adds the element to the end of the heap and bubbles it up to the correct
// position.
heapForIndex(insertIndex).bubbleUp(insertIndex, element);
return size <= maximumSize || pollLast() != element;
}
@Override public E poll() {
return isEmpty() ? null : removeAndGet(0);
}
@SuppressWarnings("unchecked") // we must carefully only allow Es to get in
E elementData(int index) {
return (E) queue[index];
}
@Override public E peek() {
return isEmpty() ? null : elementData(0);
}
/**
* Returns the index of the max element.
*/
private int getMaxElementIndex() {
switch (size) {
case 1:
return 0; // The lone element in the queue is the maximum.
case 2:
return 1; // The lone element in the maxHeap is the maximum.
default:
// The max element must sit on the first level of the maxHeap. It is
// actually the *lesser* of the two from the maxHeap's perspective.
return (maxHeap.compareElements(1, 2) <= 0) ? 1 : 2;
}
}
/**
* Removes and returns the least element of this queue, or returns {@code
* null} if the queue is empty.
*/
public E pollFirst() {
return poll();
}
/**
* Removes and returns the least element of this queue.
*
* @throws NoSuchElementException if the queue is empty
*/
public E removeFirst() {
return remove();
}
/**
* Retrieves, but does not remove, the least element of this queue, or returns
* {@code null} if the queue is empty.
*/
public E peekFirst() {
return peek();
}
/**
* Removes and returns the greatest element of this queue, or returns {@code
* null} if the queue is empty.
*/
public E pollLast() {
return isEmpty() ? null : removeAndGet(getMaxElementIndex());
}
/**
* Removes and returns the greatest element of this queue.
*
* @throws NoSuchElementException if the queue is empty
*/
public E removeLast() {
if (isEmpty()) {
throw new NoSuchElementException();
}
return removeAndGet(getMaxElementIndex());
}
/**
* Retrieves, but does not remove, the greatest element of this queue, or
* returns {@code null} if the queue is empty.
*/
public E peekLast() {
return isEmpty() ? null : elementData(getMaxElementIndex());
}
/**
* Removes the element at position {@code index}.
*
* Normally this method leaves the elements at up to {@code index - 1},
* inclusive, untouched. Under these circumstances, it returns {@code null}.
*
*
Occasionally, in order to maintain the heap invariant, it must swap a
* later element of the list with one before {@code index}. Under these
* circumstances it returns a pair of elements as a {@link MoveDesc}. The
* first one is the element that was previously at the end of the heap and is
* now at some position before {@code index}. The second element is the one
* that was swapped down to replace the element at {@code index}. This fact is
* used by iterator.remove so as to visit elements during a traversal once and
* only once.
*/
@VisibleForTesting MoveDesc removeAt(int index) {
checkPositionIndex(index, size);
modCount++;
size--;
if (size == index) {
queue[size] = null;
return null;
}
E actualLastElement = elementData(size);
int lastElementAt = heapForIndex(size)
.getCorrectLastElement(actualLastElement);
E toTrickle = elementData(size);
queue[size] = null;
MoveDesc changes = fillHole(index, toTrickle);
if (lastElementAt < index) {
// Last element is moved to before index, swapped with trickled element.
if (changes == null) {
// The trickled element is still after index.
return new MoveDesc(actualLastElement, toTrickle);
} else {
// The trickled element is back before index, but the replaced element
// has now been moved after index.
return new MoveDesc(actualLastElement, changes.replaced);
}
}
// Trickled element was after index to begin with, no adjustment needed.
return changes;
}
private MoveDesc fillHole(int index, E toTrickle) {
Heap heap = heapForIndex(index);
// We consider elementData(index) a "hole", and we want to fill it
// with the last element of the heap, toTrickle.
// Since the last element of the heap is from the bottom level, we
// optimistically fill index position with elements from lower levels,
// moving the hole down. In most cases this reduces the number of
// comparisons with toTrickle, but in some cases we will need to bubble it
// all the way up again.
int vacated = heap.fillHoleAt(index);
// Try to see if toTrickle can be bubbled up min levels.
int bubbledTo = heap.bubbleUpAlternatingLevels(vacated, toTrickle);
if (bubbledTo == vacated) {
// Could not bubble toTrickle up min levels, try moving
// it from min level to max level (or max to min level) and bubble up
// there.
return heap.tryCrossOverAndBubbleUp(index, vacated, toTrickle);
} else {
return (bubbledTo < index)
? new MoveDesc(toTrickle, elementData(index))
: null;
}
}
// Returned from removeAt() to iterator.remove()
static class MoveDesc {
final E toTrickle;
final E replaced;
MoveDesc(E toTrickle, E replaced) {
this.toTrickle = toTrickle;
this.replaced = replaced;
}
}
/**
* Removes and returns the value at {@code index}.
*/
private E removeAndGet(int index) {
E value = elementData(index);
removeAt(index);
return value;
}
private Heap heapForIndex(int i) {
return isEvenLevel(i) ? minHeap : maxHeap;
}
private static final int EVEN_POWERS_OF_TWO = 0x55555555;
private static final int ODD_POWERS_OF_TWO = 0xaaaaaaaa;
@VisibleForTesting static boolean isEvenLevel(int index) {
int oneBased = index + 1;
checkState(oneBased > 0, "negative index");
return (oneBased & EVEN_POWERS_OF_TWO) > (oneBased & ODD_POWERS_OF_TWO);
}
/**
* Returns {@code true} if the MinMax heap structure holds. This is only used
* in testing.
*
* TODO(kevinb): move to the test class?
*/
@VisibleForTesting boolean isIntact() {
for (int i = 1; i < size; i++) {
if (!heapForIndex(i).verifyIndex(i)) {
return false;
}
}
return true;
}
/**
* Each instance of MinMaxPriortyQueue encapsulates two instances of Heap:
* a min-heap and a max-heap. Conceptually, these might each have their own
* array for storage, but for efficiency's sake they are stored interleaved on
* alternate heap levels in the same array (MMPQ.queue).
*/
private class Heap {
final Ordering ordering;
Heap otherHeap;
Heap(Ordering ordering) {
this.ordering = ordering;
}
int compareElements(int a, int b) {
return ordering.compare(elementData(a), elementData(b));
}
/**
* Tries to move {@code toTrickle} from a min to a max level and
* bubble up there. If it moved before {@code removeIndex} this method
* returns a pair as described in {@link #removeAt}.
*/
MoveDesc tryCrossOverAndBubbleUp(
int removeIndex, int vacated, E toTrickle) {
int crossOver = crossOver(vacated, toTrickle);
if (crossOver == vacated) {
return null;
}
// Successfully crossed over from min to max.
// Bubble up max levels.
E parent;
// If toTrickle is moved up to a parent of removeIndex, the parent is
// placed in removeIndex position. We must return that to the iterator so
// that it knows to skip it.
if (crossOver < removeIndex) {
// We crossed over to the parent level in crossOver, so the parent
// has already been moved.
parent = elementData(removeIndex);
} else {
parent = elementData(getParentIndex(removeIndex));
}
// bubble it up the opposite heap
if (otherHeap.bubbleUpAlternatingLevels(crossOver, toTrickle)
< removeIndex) {
return new MoveDesc(toTrickle, parent);
} else {
return null;
}
}
/**
* Bubbles a value from {@code index} up the appropriate heap if required.
*/
void bubbleUp(int index, E x) {
int crossOver = crossOverUp(index, x);
Heap heap;
if (crossOver == index) {
heap = this;
} else {
index = crossOver;
heap = otherHeap;
}
heap.bubbleUpAlternatingLevels(index, x);
}
/**
* Bubbles a value from {@code index} up the levels of this heap, and
* returns the index the element ended up at.
*/
int bubbleUpAlternatingLevels(int index, E x) {
while (index > 2) {
int grandParentIndex = getGrandparentIndex(index);
E e = elementData(grandParentIndex);
if (ordering.compare(e, x) <= 0) {
break;
}
queue[index] = e;
index = grandParentIndex;
}
queue[index] = x;
return index;
}
/**
* Returns the index of minimum value between {@code index} and
* {@code index + len}, or {@code -1} if {@code index} is greater than
* {@code size}.
*/
int findMin(int index, int len) {
if (index >= size) {
return -1;
}
checkState(index > 0);
int limit = Math.min(index, size - len) + len;
int minIndex = index;
for (int i = index + 1; i < limit; i++) {
if (compareElements(i, minIndex) < 0) {
minIndex = i;
}
}
return minIndex;
}
/**
* Returns the minimum child or {@code -1} if no child exists.
*/
int findMinChild(int index) {
return findMin(getLeftChildIndex(index), 2);
}
/**
* Returns the minimum grand child or -1 if no grand child exists.
*/
int findMinGrandChild(int index) {
int leftChildIndex = getLeftChildIndex(index);
if (leftChildIndex < 0) {
return -1;
}
return findMin(getLeftChildIndex(leftChildIndex), 4);
}
/**
* Moves an element one level up from a min level to a max level
* (or vice versa).
* Returns the new position of the element.
*/
int crossOverUp(int index, E x) {
if (index == 0) {
queue[0] = x;
return 0;
}
int parentIndex = getParentIndex(index);
E parentElement = elementData(parentIndex);
if (parentIndex != 0) {
// This is a guard for the case of the childless uncle.
// Since the end of the array is actually the middle of the heap,
// a smaller childless uncle can become a child of x when we
// bubble up alternate levels, violating the invariant.
int grandparentIndex = getParentIndex(parentIndex);
int uncleIndex = getRightChildIndex(grandparentIndex);
if (uncleIndex != parentIndex
&& getLeftChildIndex(uncleIndex) >= size) {
E uncleElement = elementData(uncleIndex);
if (ordering.compare(uncleElement, parentElement) < 0) {
parentIndex = uncleIndex;
parentElement = uncleElement;
}
}
}
if (ordering.compare(parentElement, x) < 0) {
queue[index] = parentElement;
queue[parentIndex] = x;
return parentIndex;
}
queue[index] = x;
return index;
}
/**
* Returns the conceptually correct last element of the heap.
*
* Since the last element of the array is actually in the
* middle of the sorted structure, a childless uncle node could be
* smaller, which would corrupt the invariant if this element
* becomes the new parent of the uncle. In that case, we first
* switch the last element with its uncle, before returning.
*/
int getCorrectLastElement(E actualLastElement) {
int parentIndex = getParentIndex(size);
if (parentIndex != 0) {
int grandparentIndex = getParentIndex(parentIndex);
int uncleIndex = getRightChildIndex(grandparentIndex);
if (uncleIndex != parentIndex
&& getLeftChildIndex(uncleIndex) >= size) {
E uncleElement = elementData(uncleIndex);
if (ordering.compare(uncleElement, actualLastElement) < 0) {
queue[uncleIndex] = actualLastElement;
queue[size] = uncleElement;
return uncleIndex;
}
}
}
return size;
}
/**
* Crosses an element over to the opposite heap by moving it one level down
* (or up if there are no elements below it).
*
* Returns the new position of the element.
*/
int crossOver(int index, E x) {
int minChildIndex = findMinChild(index);
// TODO(kevinb): split the && into two if's and move crossOverUp so it's
// only called when there's no child.
if ((minChildIndex > 0)
&& (ordering.compare(elementData(minChildIndex), x) < 0)) {
queue[index] = elementData(minChildIndex);
queue[minChildIndex] = x;
return minChildIndex;
}
return crossOverUp(index, x);
}
/**
* Fills the hole at {@code index} by moving in the least of its
* grandchildren to this position, then recursively filling the new hole
* created.
*
* @return the position of the new hole (where the lowest grandchild moved
* from, that had no grandchild to replace it)
*/
int fillHoleAt(int index) {
int minGrandchildIndex;
while ((minGrandchildIndex = findMinGrandChild(index)) > 0) {
queue[index] = elementData(minGrandchildIndex);
index = minGrandchildIndex;
}
return index;
}
private boolean verifyIndex(int i) {
if ((getLeftChildIndex(i) < size)
&& (compareElements(i, getLeftChildIndex(i)) > 0)) {
return false;
}
if ((getRightChildIndex(i) < size)
&& (compareElements(i, getRightChildIndex(i)) > 0)) {
return false;
}
if ((i > 0) && (compareElements(i, getParentIndex(i)) > 0)) {
return false;
}
if ((i > 2) && (compareElements(getGrandparentIndex(i), i) > 0)) {
return false;
}
return true;
}
// These would be static if inner classes could have static members.
private int getLeftChildIndex(int i) {
return i * 2 + 1;
}
private int getRightChildIndex(int i) {
return i * 2 + 2;
}
private int getParentIndex(int i) {
return (i - 1) / 2;
}
private int getGrandparentIndex(int i) {
return getParentIndex(getParentIndex(i)); // (i - 3) / 4
}
}
/**
* Iterates the elements of the queue in no particular order.
*
* If the underlying queue is modified during iteration an exception will be
* thrown.
*/
private class QueueIterator implements Iterator {
private int cursor = -1;
private int expectedModCount = modCount;
private Queue forgetMeNot;
private List skipMe;
private E lastFromForgetMeNot;
private boolean canRemove;
@Override public boolean hasNext() {
checkModCount();
return (nextNotInSkipMe(cursor + 1) < size())
|| ((forgetMeNot != null) && !forgetMeNot.isEmpty());
}
@Override public E next() {
checkModCount();
int tempCursor = nextNotInSkipMe(cursor + 1);
if (tempCursor < size()) {
cursor = tempCursor;
canRemove = true;
return elementData(cursor);
} else if (forgetMeNot != null) {
cursor = size();
lastFromForgetMeNot = forgetMeNot.poll();
if (lastFromForgetMeNot != null) {
canRemove = true;
return lastFromForgetMeNot;
}
}
throw new NoSuchElementException(
"iterator moved past last element in queue.");
}
@Override public void remove() {
checkRemove(canRemove);
checkModCount();
canRemove = false;
expectedModCount++;
if (cursor < size()) {
MoveDesc moved = removeAt(cursor);
if (moved != null) {
if (forgetMeNot == null) {
forgetMeNot = new ArrayDeque();
skipMe = new ArrayList(3);
}
forgetMeNot.add(moved.toTrickle);
skipMe.add(moved.replaced);
}
cursor--;
} else { // we must have set lastFromForgetMeNot in next()
checkState(removeExact(lastFromForgetMeNot));
lastFromForgetMeNot = null;
}
}
// Finds only this exact instance, not others that are equals()
private boolean containsExact(Iterable elements, E target) {
for (E element : elements) {
if (element == target) {
return true;
}
}
return false;
}
// Removes only this exact instance, not others that are equals()
boolean removeExact(Object target) {
for (int i = 0; i < size; i++) {
if (queue[i] == target) {
removeAt(i);
return true;
}
}
return false;
}
void checkModCount() {
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
/**
* Returns the index of the first element after {@code c} that is not in
* {@code skipMe} and returns {@code size()} if there is no such element.
*/
private int nextNotInSkipMe(int c) {
if (skipMe != null) {
while (c < size() && containsExact(skipMe, elementData(c))) {
c++;
}
}
return c;
}
}
/**
* Returns an iterator over the elements contained in this collection,
* in no particular order.
*
* The iterator is fail-fast: If the MinMaxPriorityQueue is modified
* at any time after the iterator is created, in any way except through the
* iterator's own remove method, the iterator will generally throw a
* {@link ConcurrentModificationException}. Thus, in the face of concurrent
* modification, the iterator fails quickly and cleanly, rather than risking
* arbitrary, non-deterministic behavior at an undetermined time in the
* future.
*
*
Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw {@code ConcurrentModificationException} on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: the fail-fast behavior of iterators
* should be used only to detect bugs.
*
* @return an iterator over the elements contained in this collection
*/
@Override public Iterator iterator() {
return new QueueIterator();
}
@Override public void clear() {
for (int i = 0; i < size; i++) {
queue[i] = null;
}
size = 0;
}
@Override public Object[] toArray() {
Object[] copyTo = new Object[size];
System.arraycopy(queue, 0, copyTo, 0, size);
return copyTo;
}
/**
* Returns the comparator used to order the elements in this queue. Obeys the
* general contract of {@link PriorityQueue#comparator}, but returns {@link
* Ordering#natural} instead of {@code null} to indicate natural ordering.
*/
public Comparator super E> comparator() {
return minHeap.ordering;
}
@VisibleForTesting int capacity() {
return queue.length;
}
// Size/capacity-related methods
private static final int DEFAULT_CAPACITY = 11;
@VisibleForTesting static int initialQueueSize(int configuredExpectedSize,
int maximumSize, Iterable> initialContents) {
// Start with what they said, if they said it, otherwise DEFAULT_CAPACITY
int result = (configuredExpectedSize == Builder.UNSET_EXPECTED_SIZE)
? DEFAULT_CAPACITY
: configuredExpectedSize;
// Enlarge to contain initial contents
if (initialContents instanceof Collection) {
int initialSize = ((Collection>) initialContents).size();
result = Math.max(result, initialSize);
}
// Now cap it at maxSize + 1
return capAtMaximumSize(result, maximumSize);
}
private void growIfNeeded() {
if (size > queue.length) {
int newCapacity = calculateNewCapacity();
Object[] newQueue = new Object[newCapacity];
System.arraycopy(queue, 0, newQueue, 0, queue.length);
queue = newQueue;
}
}
/** Returns ~2x the old capacity if small; ~1.5x otherwise. */
private int calculateNewCapacity() {
int oldCapacity = queue.length;
int newCapacity = (oldCapacity < 64)
? (oldCapacity + 1) * 2
: IntMath.checkedMultiply(oldCapacity / 2, 3);
return capAtMaximumSize(newCapacity, maximumSize);
}
/** There's no reason for the queueSize to ever be more than maxSize + 1 */
private static int capAtMaximumSize(int queueSize, int maximumSize) {
return Math.min(queueSize - 1, maximumSize) + 1; // don't overflow
}
}