builder.cc revision d9dc6f45c3f5fb0e5d279e6c038692258b27192b
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "builder.h"
18
19#include "art_field-inl.h"
20#include "base/logging.h"
21#include "class_linker.h"
22#include "dex/verified_method.h"
23#include "dex_file-inl.h"
24#include "dex_instruction-inl.h"
25#include "dex/verified_method.h"
26#include "driver/compiler_driver-inl.h"
27#include "driver/compiler_options.h"
28#include "mirror/class_loader.h"
29#include "mirror/dex_cache.h"
30#include "nodes.h"
31#include "primitive.h"
32#include "scoped_thread_state_change.h"
33#include "thread.h"
34#include "utils/dex_cache_arrays_layout-inl.h"
35
36namespace art {
37
38/**
39 * Helper class to add HTemporary instructions. This class is used when
40 * converting a DEX instruction to multiple HInstruction, and where those
41 * instructions do not die at the following instruction, but instead spans
42 * multiple instructions.
43 */
44class Temporaries : public ValueObject {
45 public:
46  explicit Temporaries(HGraph* graph) : graph_(graph), index_(0) {}
47
48  void Add(HInstruction* instruction) {
49    HInstruction* temp = new (graph_->GetArena()) HTemporary(index_, instruction->GetDexPc());
50    instruction->GetBlock()->AddInstruction(temp);
51
52    DCHECK(temp->GetPrevious() == instruction);
53
54    size_t offset;
55    if (instruction->GetType() == Primitive::kPrimLong
56        || instruction->GetType() == Primitive::kPrimDouble) {
57      offset = 2;
58    } else {
59      offset = 1;
60    }
61    index_ += offset;
62
63    graph_->UpdateTemporariesVRegSlots(index_);
64  }
65
66 private:
67  HGraph* const graph_;
68
69  // Current index in the temporary stack, updated by `Add`.
70  size_t index_;
71};
72
73class SwitchTable : public ValueObject {
74 public:
75  SwitchTable(const Instruction& instruction, uint32_t dex_pc, bool sparse)
76      : instruction_(instruction), dex_pc_(dex_pc), sparse_(sparse) {
77    int32_t table_offset = instruction.VRegB_31t();
78    const uint16_t* table = reinterpret_cast<const uint16_t*>(&instruction) + table_offset;
79    if (sparse) {
80      CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature));
81    } else {
82      CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature));
83    }
84    num_entries_ = table[1];
85    values_ = reinterpret_cast<const int32_t*>(&table[2]);
86  }
87
88  uint16_t GetNumEntries() const {
89    return num_entries_;
90  }
91
92  void CheckIndex(size_t index) const {
93    if (sparse_) {
94      // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
95      DCHECK_LT(index, 2 * static_cast<size_t>(num_entries_));
96    } else {
97      // In a packed table, we have the starting key and num_entries_ values.
98      DCHECK_LT(index, 1 + static_cast<size_t>(num_entries_));
99    }
100  }
101
102  int32_t GetEntryAt(size_t index) const {
103    CheckIndex(index);
104    return values_[index];
105  }
106
107  uint32_t GetDexPcForIndex(size_t index) const {
108    CheckIndex(index);
109    return dex_pc_ +
110        (reinterpret_cast<const int16_t*>(values_ + index) -
111         reinterpret_cast<const int16_t*>(&instruction_));
112  }
113
114  // Index of the first value in the table.
115  size_t GetFirstValueIndex() const {
116    if (sparse_) {
117      // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
118      return num_entries_;
119    } else {
120      // In a packed table, we have the starting key and num_entries_ values.
121      return 1;
122    }
123  }
124
125 private:
126  const Instruction& instruction_;
127  const uint32_t dex_pc_;
128
129  // Whether this is a sparse-switch table (or a packed-switch one).
130  const bool sparse_;
131
132  // This can't be const as it needs to be computed off of the given instruction, and complicated
133  // expressions in the initializer list seemed very ugly.
134  uint16_t num_entries_;
135
136  const int32_t* values_;
137
138  DISALLOW_COPY_AND_ASSIGN(SwitchTable);
139};
140
141void HGraphBuilder::InitializeLocals(uint16_t count) {
142  graph_->SetNumberOfVRegs(count);
143  locals_.resize(count);
144  for (int i = 0; i < count; i++) {
145    HLocal* local = new (arena_) HLocal(i);
146    entry_block_->AddInstruction(local);
147    locals_[i] = local;
148  }
149}
150
151void HGraphBuilder::InitializeParameters(uint16_t number_of_parameters) {
152  // dex_compilation_unit_ is null only when unit testing.
153  if (dex_compilation_unit_ == nullptr) {
154    return;
155  }
156
157  graph_->SetNumberOfInVRegs(number_of_parameters);
158  const char* shorty = dex_compilation_unit_->GetShorty();
159  int locals_index = locals_.size() - number_of_parameters;
160  int parameter_index = 0;
161
162  const DexFile::MethodId& referrer_method_id =
163      dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
164  if (!dex_compilation_unit_->IsStatic()) {
165    // Add the implicit 'this' argument, not expressed in the signature.
166    HParameterValue* parameter = new (arena_) HParameterValue(*dex_file_,
167                                                              referrer_method_id.class_idx_,
168                                                              parameter_index++,
169                                                              Primitive::kPrimNot,
170                                                              true);
171    entry_block_->AddInstruction(parameter);
172    HLocal* local = GetLocalAt(locals_index++);
173    entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter, local->GetDexPc()));
174    number_of_parameters--;
175  }
176
177  const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
178  const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
179  for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
180    HParameterValue* parameter = new (arena_) HParameterValue(
181        *dex_file_,
182        arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
183        parameter_index++,
184        Primitive::GetType(shorty[shorty_pos]),
185        false);
186    ++shorty_pos;
187    entry_block_->AddInstruction(parameter);
188    HLocal* local = GetLocalAt(locals_index++);
189    // Store the parameter value in the local that the dex code will use
190    // to reference that parameter.
191    entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter, local->GetDexPc()));
192    bool is_wide = (parameter->GetType() == Primitive::kPrimLong)
193        || (parameter->GetType() == Primitive::kPrimDouble);
194    if (is_wide) {
195      i++;
196      locals_index++;
197      parameter_index++;
198    }
199  }
200}
201
202template<typename T>
203void HGraphBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
204  int32_t target_offset = instruction.GetTargetOffset();
205  HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset);
206  HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
207  DCHECK(branch_target != nullptr);
208  DCHECK(fallthrough_target != nullptr);
209  PotentiallyAddSuspendCheck(branch_target, dex_pc);
210  HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
211  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
212  T* comparison = new (arena_) T(first, second, dex_pc);
213  current_block_->AddInstruction(comparison);
214  HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc);
215  current_block_->AddInstruction(ifinst);
216  current_block_->AddSuccessor(branch_target);
217  current_block_->AddSuccessor(fallthrough_target);
218  current_block_ = nullptr;
219}
220
221template<typename T>
222void HGraphBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
223  int32_t target_offset = instruction.GetTargetOffset();
224  HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset);
225  HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
226  DCHECK(branch_target != nullptr);
227  DCHECK(fallthrough_target != nullptr);
228  PotentiallyAddSuspendCheck(branch_target, dex_pc);
229  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
230  T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
231  current_block_->AddInstruction(comparison);
232  HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc);
233  current_block_->AddInstruction(ifinst);
234  current_block_->AddSuccessor(branch_target);
235  current_block_->AddSuccessor(fallthrough_target);
236  current_block_ = nullptr;
237}
238
239void HGraphBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) {
240  if (compilation_stats_ != nullptr) {
241    compilation_stats_->RecordStat(compilation_stat);
242  }
243}
244
245bool HGraphBuilder::SkipCompilation(const DexFile::CodeItem& code_item,
246                                    size_t number_of_branches) {
247  const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions();
248  CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter();
249  if (compiler_filter == CompilerOptions::kEverything) {
250    return false;
251  }
252
253  if (compiler_options.IsHugeMethod(code_item.insns_size_in_code_units_)) {
254    VLOG(compiler) << "Skip compilation of huge method "
255                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
256                   << ": " << code_item.insns_size_in_code_units_ << " code units";
257    MaybeRecordStat(MethodCompilationStat::kNotCompiledHugeMethod);
258    return true;
259  }
260
261  // If it's large and contains no branches, it's likely to be machine generated initialization.
262  if (compiler_options.IsLargeMethod(code_item.insns_size_in_code_units_)
263      && (number_of_branches == 0)) {
264    VLOG(compiler) << "Skip compilation of large method with no branch "
265                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
266                   << ": " << code_item.insns_size_in_code_units_ << " code units";
267    MaybeRecordStat(MethodCompilationStat::kNotCompiledLargeMethodNoBranches);
268    return true;
269  }
270
271  return false;
272}
273
274void HGraphBuilder::CreateBlocksForTryCatch(const DexFile::CodeItem& code_item) {
275  if (code_item.tries_size_ == 0) {
276    return;
277  }
278
279  // Create branch targets at the start/end of the TryItem range. These are
280  // places where the program might fall through into/out of the a block and
281  // where TryBoundary instructions will be inserted later. Other edges which
282  // enter/exit the try blocks are a result of branches/switches.
283  for (size_t idx = 0; idx < code_item.tries_size_; ++idx) {
284    const DexFile::TryItem* try_item = DexFile::GetTryItems(code_item, idx);
285    uint32_t dex_pc_start = try_item->start_addr_;
286    uint32_t dex_pc_end = dex_pc_start + try_item->insn_count_;
287    FindOrCreateBlockStartingAt(dex_pc_start);
288    if (dex_pc_end < code_item.insns_size_in_code_units_) {
289      // TODO: Do not create block if the last instruction cannot fall through.
290      FindOrCreateBlockStartingAt(dex_pc_end);
291    } else {
292      // The TryItem spans until the very end of the CodeItem (or beyond if
293      // invalid) and therefore cannot have any code afterwards.
294    }
295  }
296
297  // Create branch targets for exception handlers.
298  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(code_item, 0);
299  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
300  for (uint32_t idx = 0; idx < handlers_size; ++idx) {
301    CatchHandlerIterator iterator(handlers_ptr);
302    for (; iterator.HasNext(); iterator.Next()) {
303      uint32_t address = iterator.GetHandlerAddress();
304      HBasicBlock* block = FindOrCreateBlockStartingAt(address);
305      block->SetTryCatchInformation(
306        new (arena_) TryCatchInformation(iterator.GetHandlerTypeIndex(), *dex_file_));
307    }
308    handlers_ptr = iterator.EndDataPointer();
309  }
310}
311
312// Returns the TryItem stored for `block` or nullptr if there is no info for it.
313static const DexFile::TryItem* GetTryItem(
314    HBasicBlock* block,
315    const ArenaSafeMap<uint32_t, const DexFile::TryItem*>& try_block_info) {
316  auto iterator = try_block_info.find(block->GetBlockId());
317  return (iterator == try_block_info.end()) ? nullptr : iterator->second;
318}
319
320void HGraphBuilder::LinkToCatchBlocks(HTryBoundary* try_boundary,
321                                      const DexFile::CodeItem& code_item,
322                                      const DexFile::TryItem* try_item) {
323  for (CatchHandlerIterator it(code_item, *try_item); it.HasNext(); it.Next()) {
324    try_boundary->AddExceptionHandler(FindBlockStartingAt(it.GetHandlerAddress()));
325  }
326}
327
328void HGraphBuilder::InsertTryBoundaryBlocks(const DexFile::CodeItem& code_item) {
329  if (code_item.tries_size_ == 0) {
330    return;
331  }
332
333  // Keep a map of all try blocks and their respective TryItems. We do not use
334  // the block's pointer but rather its id to ensure deterministic iteration.
335  ArenaSafeMap<uint32_t, const DexFile::TryItem*> try_block_info(
336      std::less<uint32_t>(), arena_->Adapter(kArenaAllocGraphBuilder));
337
338  // Obtain TryItem information for blocks with throwing instructions, and split
339  // blocks which are both try & catch to simplify the graph.
340  // NOTE: We are appending new blocks inside the loop, so we need to use index
341  // because iterators can be invalidated. We remember the initial size to avoid
342  // iterating over the new blocks which cannot throw.
343  for (size_t i = 0, e = graph_->GetBlocks().size(); i < e; ++i) {
344    HBasicBlock* block = graph_->GetBlocks()[i];
345
346    // Do not bother creating exceptional edges for try blocks which have no
347    // throwing instructions. In that case we simply assume that the block is
348    // not covered by a TryItem. This prevents us from creating a throw-catch
349    // loop for synchronized blocks.
350    if (block->HasThrowingInstructions()) {
351      // Try to find a TryItem covering the block.
352      DCHECK_NE(block->GetDexPc(), kNoDexPc) << "Block must have a dec_pc to find its TryItem.";
353      const int32_t try_item_idx = DexFile::FindTryItem(code_item, block->GetDexPc());
354      if (try_item_idx != -1) {
355        // Block throwing and in a TryItem. Store the try block information.
356        HBasicBlock* throwing_block = block;
357        if (block->IsCatchBlock()) {
358          // Simplify blocks which are both try and catch, otherwise we would
359          // need a strategy for splitting exceptional edges. We split the block
360          // after the move-exception (if present) and mark the first part not
361          // throwing. The normal-flow edge between them will be split later.
362          throwing_block = block->SplitCatchBlockAfterMoveException();
363          // Move-exception does not throw and the block has throwing insructions
364          // so it must have been possible to split it.
365          DCHECK(throwing_block != nullptr);
366        }
367
368        try_block_info.Put(throwing_block->GetBlockId(),
369                           DexFile::GetTryItems(code_item, try_item_idx));
370      }
371    }
372  }
373
374  // Do a pass over the try blocks and insert entering TryBoundaries where at
375  // least one predecessor is not covered by the same TryItem as the try block.
376  // We do not split each edge separately, but rather create one boundary block
377  // that all predecessors are relinked to. This preserves loop headers (b/23895756).
378  for (auto entry : try_block_info) {
379    HBasicBlock* try_block = graph_->GetBlocks()[entry.first];
380    for (HBasicBlock* predecessor : try_block->GetPredecessors()) {
381      if (GetTryItem(predecessor, try_block_info) != entry.second) {
382        // Found a predecessor not covered by the same TryItem. Insert entering
383        // boundary block.
384        HTryBoundary* try_entry =
385            new (arena_) HTryBoundary(HTryBoundary::kEntry, try_block->GetDexPc());
386        try_block->CreateImmediateDominator()->AddInstruction(try_entry);
387        LinkToCatchBlocks(try_entry, code_item, entry.second);
388        break;
389      }
390    }
391  }
392
393  // Do a second pass over the try blocks and insert exit TryBoundaries where
394  // the successor is not in the same TryItem.
395  for (auto entry : try_block_info) {
396    HBasicBlock* try_block = graph_->GetBlocks()[entry.first];
397    // NOTE: Do not use iterators because SplitEdge would invalidate them.
398    for (size_t i = 0, e = try_block->GetSuccessors().size(); i < e; ++i) {
399      HBasicBlock* successor = try_block->GetSuccessors()[i];
400
401      // If the successor is a try block, all of its predecessors must be
402      // covered by the same TryItem. Otherwise the previous pass would have
403      // created a non-throwing boundary block.
404      if (GetTryItem(successor, try_block_info) != nullptr) {
405        DCHECK_EQ(entry.second, GetTryItem(successor, try_block_info));
406        continue;
407      }
408
409      // Preserve the invariant that Return(Void) always jumps to Exit by moving
410      // it outside the try block if necessary.
411      HInstruction* last_instruction = try_block->GetLastInstruction();
412      if (last_instruction->IsReturn() || last_instruction->IsReturnVoid()) {
413        DCHECK_EQ(successor, exit_block_);
414        successor = try_block->SplitBefore(last_instruction);
415      }
416
417      // Insert TryBoundary and link to catch blocks.
418      HTryBoundary* try_exit =
419          new (arena_) HTryBoundary(HTryBoundary::kExit, successor->GetDexPc());
420      graph_->SplitEdge(try_block, successor)->AddInstruction(try_exit);
421      LinkToCatchBlocks(try_exit, code_item, entry.second);
422    }
423  }
424}
425
426bool HGraphBuilder::BuildGraph(const DexFile::CodeItem& code_item) {
427  DCHECK(graph_->GetBlocks().empty());
428
429  const uint16_t* code_ptr = code_item.insns_;
430  const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_;
431  code_start_ = code_ptr;
432
433  // Setup the graph with the entry block and exit block.
434  entry_block_ = new (arena_) HBasicBlock(graph_, 0);
435  graph_->AddBlock(entry_block_);
436  exit_block_ = new (arena_) HBasicBlock(graph_, kNoDexPc);
437  graph_->SetEntryBlock(entry_block_);
438  graph_->SetExitBlock(exit_block_);
439
440  graph_->SetHasTryCatch(code_item.tries_size_ != 0);
441
442  InitializeLocals(code_item.registers_size_);
443  graph_->SetMaximumNumberOfOutVRegs(code_item.outs_size_);
444
445  // Compute the number of dex instructions, blocks, and branches. We will
446  // check these values against limits given to the compiler.
447  size_t number_of_branches = 0;
448
449  // To avoid splitting blocks, we compute ahead of time the instructions that
450  // start a new block, and create these blocks.
451  if (!ComputeBranchTargets(code_ptr, code_end, &number_of_branches)) {
452    MaybeRecordStat(MethodCompilationStat::kNotCompiledBranchOutsideMethodCode);
453    return false;
454  }
455
456  // Note that the compiler driver is null when unit testing.
457  if ((compiler_driver_ != nullptr) && SkipCompilation(code_item, number_of_branches)) {
458    return false;
459  }
460
461  CreateBlocksForTryCatch(code_item);
462
463  InitializeParameters(code_item.ins_size_);
464
465  size_t dex_pc = 0;
466  while (code_ptr < code_end) {
467    // Update the current block if dex_pc starts a new block.
468    MaybeUpdateCurrentBlock(dex_pc);
469    const Instruction& instruction = *Instruction::At(code_ptr);
470    if (!AnalyzeDexInstruction(instruction, dex_pc)) {
471      return false;
472    }
473    dex_pc += instruction.SizeInCodeUnits();
474    code_ptr += instruction.SizeInCodeUnits();
475  }
476
477  // Add Exit to the exit block.
478  exit_block_->AddInstruction(new (arena_) HExit());
479  // Add the suspend check to the entry block.
480  entry_block_->AddInstruction(new (arena_) HSuspendCheck(0));
481  entry_block_->AddInstruction(new (arena_) HGoto());
482  // Add the exit block at the end.
483  graph_->AddBlock(exit_block_);
484
485  // Iterate over blocks covered by TryItems and insert TryBoundaries at entry
486  // and exit points. This requires all control-flow instructions and
487  // non-exceptional edges to have been created.
488  InsertTryBoundaryBlocks(code_item);
489
490  return true;
491}
492
493void HGraphBuilder::MaybeUpdateCurrentBlock(size_t dex_pc) {
494  HBasicBlock* block = FindBlockStartingAt(dex_pc);
495  if (block == nullptr) {
496    return;
497  }
498
499  if (current_block_ != nullptr) {
500    // Branching instructions clear current_block, so we know
501    // the last instruction of the current block is not a branching
502    // instruction. We add an unconditional goto to the found block.
503    current_block_->AddInstruction(new (arena_) HGoto(dex_pc));
504    current_block_->AddSuccessor(block);
505  }
506  graph_->AddBlock(block);
507  current_block_ = block;
508}
509
510bool HGraphBuilder::ComputeBranchTargets(const uint16_t* code_ptr,
511                                         const uint16_t* code_end,
512                                         size_t* number_of_branches) {
513  branch_targets_.resize(code_end - code_ptr, nullptr);
514
515  // Create the first block for the dex instructions, single successor of the entry block.
516  HBasicBlock* block = new (arena_) HBasicBlock(graph_, 0);
517  branch_targets_[0] = block;
518  entry_block_->AddSuccessor(block);
519
520  // Iterate over all instructions and find branching instructions. Create blocks for
521  // the locations these instructions branch to.
522  uint32_t dex_pc = 0;
523  while (code_ptr < code_end) {
524    const Instruction& instruction = *Instruction::At(code_ptr);
525    if (instruction.IsBranch()) {
526      (*number_of_branches)++;
527      int32_t target = instruction.GetTargetOffset() + dex_pc;
528      // Create a block for the target instruction.
529      FindOrCreateBlockStartingAt(target);
530
531      dex_pc += instruction.SizeInCodeUnits();
532      code_ptr += instruction.SizeInCodeUnits();
533
534      if (instruction.CanFlowThrough()) {
535        if (code_ptr >= code_end) {
536          // In the normal case we should never hit this but someone can artificially forge a dex
537          // file to fall-through out the method code. In this case we bail out compilation.
538          return false;
539        } else {
540          FindOrCreateBlockStartingAt(dex_pc);
541        }
542      }
543    } else if (instruction.IsSwitch()) {
544      SwitchTable table(instruction, dex_pc, instruction.Opcode() == Instruction::SPARSE_SWITCH);
545
546      uint16_t num_entries = table.GetNumEntries();
547
548      // In a packed-switch, the entry at index 0 is the starting key. In a sparse-switch, the
549      // entry at index 0 is the first key, and values are after *all* keys.
550      size_t offset = table.GetFirstValueIndex();
551
552      // Use a larger loop counter type to avoid overflow issues.
553      for (size_t i = 0; i < num_entries; ++i) {
554        // The target of the case.
555        uint32_t target = dex_pc + table.GetEntryAt(i + offset);
556        FindOrCreateBlockStartingAt(target);
557
558        // Create a block for the switch-case logic. The block gets the dex_pc
559        // of the SWITCH instruction because it is part of its semantics.
560        block = new (arena_) HBasicBlock(graph_, dex_pc);
561        branch_targets_[table.GetDexPcForIndex(i)] = block;
562      }
563
564      // Fall-through. Add a block if there is more code afterwards.
565      dex_pc += instruction.SizeInCodeUnits();
566      code_ptr += instruction.SizeInCodeUnits();
567      if (code_ptr >= code_end) {
568        // In the normal case we should never hit this but someone can artificially forge a dex
569        // file to fall-through out the method code. In this case we bail out compilation.
570        // (A switch can fall-through so we don't need to check CanFlowThrough().)
571        return false;
572      } else {
573        FindOrCreateBlockStartingAt(dex_pc);
574      }
575    } else {
576      code_ptr += instruction.SizeInCodeUnits();
577      dex_pc += instruction.SizeInCodeUnits();
578    }
579  }
580  return true;
581}
582
583HBasicBlock* HGraphBuilder::FindBlockStartingAt(int32_t dex_pc) const {
584  DCHECK_GE(dex_pc, 0);
585  return branch_targets_[dex_pc];
586}
587
588HBasicBlock* HGraphBuilder::FindOrCreateBlockStartingAt(int32_t dex_pc) {
589  HBasicBlock* block = FindBlockStartingAt(dex_pc);
590  if (block == nullptr) {
591    block = new (arena_) HBasicBlock(graph_, dex_pc);
592    branch_targets_[dex_pc] = block;
593  }
594  return block;
595}
596
597template<typename T>
598void HGraphBuilder::Unop_12x(const Instruction& instruction,
599                             Primitive::Type type,
600                             uint32_t dex_pc) {
601  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
602  current_block_->AddInstruction(new (arena_) T(type, first, dex_pc));
603  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
604}
605
606void HGraphBuilder::Conversion_12x(const Instruction& instruction,
607                                   Primitive::Type input_type,
608                                   Primitive::Type result_type,
609                                   uint32_t dex_pc) {
610  HInstruction* first = LoadLocal(instruction.VRegB(), input_type, dex_pc);
611  current_block_->AddInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc));
612  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
613}
614
615template<typename T>
616void HGraphBuilder::Binop_23x(const Instruction& instruction,
617                              Primitive::Type type,
618                              uint32_t dex_pc) {
619  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
620  HInstruction* second = LoadLocal(instruction.VRegC(), type, dex_pc);
621  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
622  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
623}
624
625template<typename T>
626void HGraphBuilder::Binop_23x_shift(const Instruction& instruction,
627                                    Primitive::Type type,
628                                    uint32_t dex_pc) {
629  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
630  HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt, dex_pc);
631  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
632  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
633}
634
635void HGraphBuilder::Binop_23x_cmp(const Instruction& instruction,
636                                  Primitive::Type type,
637                                  ComparisonBias bias,
638                                  uint32_t dex_pc) {
639  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
640  HInstruction* second = LoadLocal(instruction.VRegC(), type, dex_pc);
641  current_block_->AddInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc));
642  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
643}
644
645template<typename T>
646void HGraphBuilder::Binop_12x_shift(const Instruction& instruction, Primitive::Type type,
647                                    uint32_t dex_pc) {
648  HInstruction* first = LoadLocal(instruction.VRegA(), type, dex_pc);
649  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
650  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
651  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
652}
653
654template<typename T>
655void HGraphBuilder::Binop_12x(const Instruction& instruction,
656                              Primitive::Type type,
657                              uint32_t dex_pc) {
658  HInstruction* first = LoadLocal(instruction.VRegA(), type, dex_pc);
659  HInstruction* second = LoadLocal(instruction.VRegB(), type, dex_pc);
660  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
661  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
662}
663
664template<typename T>
665void HGraphBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
666  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
667  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
668  if (reverse) {
669    std::swap(first, second);
670  }
671  current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
672  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
673}
674
675template<typename T>
676void HGraphBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
677  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
678  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
679  if (reverse) {
680    std::swap(first, second);
681  }
682  current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
683  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
684}
685
686static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, const CompilerDriver& driver) {
687  Thread* self = Thread::Current();
688  return cu->IsConstructor()
689      && driver.RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex());
690}
691
692void HGraphBuilder::BuildReturn(const Instruction& instruction,
693                                Primitive::Type type,
694                                uint32_t dex_pc) {
695  if (type == Primitive::kPrimVoid) {
696    if (graph_->ShouldGenerateConstructorBarrier()) {
697      // The compilation unit is null during testing.
698      if (dex_compilation_unit_ != nullptr) {
699        DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, *compiler_driver_))
700          << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier.";
701      }
702      current_block_->AddInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc));
703    }
704    current_block_->AddInstruction(new (arena_) HReturnVoid(dex_pc));
705  } else {
706    HInstruction* value = LoadLocal(instruction.VRegA(), type, dex_pc);
707    current_block_->AddInstruction(new (arena_) HReturn(value, dex_pc));
708  }
709  current_block_->AddSuccessor(exit_block_);
710  current_block_ = nullptr;
711}
712
713static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
714  switch (opcode) {
715    case Instruction::INVOKE_STATIC:
716    case Instruction::INVOKE_STATIC_RANGE:
717      return kStatic;
718    case Instruction::INVOKE_DIRECT:
719    case Instruction::INVOKE_DIRECT_RANGE:
720      return kDirect;
721    case Instruction::INVOKE_VIRTUAL:
722    case Instruction::INVOKE_VIRTUAL_QUICK:
723    case Instruction::INVOKE_VIRTUAL_RANGE:
724    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
725      return kVirtual;
726    case Instruction::INVOKE_INTERFACE:
727    case Instruction::INVOKE_INTERFACE_RANGE:
728      return kInterface;
729    case Instruction::INVOKE_SUPER_RANGE:
730    case Instruction::INVOKE_SUPER:
731      return kSuper;
732    default:
733      LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
734      UNREACHABLE();
735  }
736}
737
738bool HGraphBuilder::BuildInvoke(const Instruction& instruction,
739                                uint32_t dex_pc,
740                                uint32_t method_idx,
741                                uint32_t number_of_vreg_arguments,
742                                bool is_range,
743                                uint32_t* args,
744                                uint32_t register_index) {
745  InvokeType original_invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
746  InvokeType optimized_invoke_type = original_invoke_type;
747  const char* descriptor = dex_file_->GetMethodShorty(method_idx);
748  Primitive::Type return_type = Primitive::GetType(descriptor[0]);
749
750  // Remove the return type from the 'proto'.
751  size_t number_of_arguments = strlen(descriptor) - 1;
752  if (original_invoke_type != kStatic) {  // instance call
753    // One extra argument for 'this'.
754    number_of_arguments++;
755  }
756
757  MethodReference target_method(dex_file_, method_idx);
758  int32_t table_index = 0;
759  uintptr_t direct_code = 0;
760  uintptr_t direct_method = 0;
761
762  // Special handling for string init.
763  int32_t string_init_offset = 0;
764  bool is_string_init = compiler_driver_->IsStringInit(method_idx,
765                                                       dex_file_,
766                                                       &string_init_offset);
767  // Replace calls to String.<init> with StringFactory.
768  if (is_string_init) {
769    HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
770        HInvokeStaticOrDirect::MethodLoadKind::kStringInit,
771        HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
772        dchecked_integral_cast<uint64_t>(string_init_offset),
773        0U
774    };
775    HInvoke* invoke = new (arena_) HInvokeStaticOrDirect(
776        arena_,
777        number_of_arguments - 1,
778        Primitive::kPrimNot /*return_type */,
779        dex_pc,
780        method_idx,
781        target_method,
782        dispatch_info,
783        original_invoke_type,
784        kStatic /* optimized_invoke_type */,
785        HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
786    return HandleStringInit(invoke,
787                            number_of_vreg_arguments,
788                            args,
789                            register_index,
790                            is_range,
791                            descriptor);
792  }
793
794  // Handle unresolved methods.
795  if (!compiler_driver_->ComputeInvokeInfo(dex_compilation_unit_,
796                                           dex_pc,
797                                           true /* update_stats */,
798                                           true /* enable_devirtualization */,
799                                           &optimized_invoke_type,
800                                           &target_method,
801                                           &table_index,
802                                           &direct_code,
803                                           &direct_method)) {
804    MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod);
805    HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_,
806                                                     number_of_arguments,
807                                                     return_type,
808                                                     dex_pc,
809                                                     method_idx,
810                                                     original_invoke_type);
811    return HandleInvoke(invoke,
812                        number_of_vreg_arguments,
813                        args,
814                        register_index,
815                        is_range,
816                        descriptor,
817                        nullptr /* clinit_check */);
818  }
819
820  // Handle resolved methods (non string init).
821
822  DCHECK(optimized_invoke_type != kSuper);
823
824  // Potential class initialization check, in the case of a static method call.
825  HClinitCheck* clinit_check = nullptr;
826  HInvoke* invoke = nullptr;
827
828  if (optimized_invoke_type == kDirect || optimized_invoke_type == kStatic) {
829    // By default, consider that the called method implicitly requires
830    // an initialization check of its declaring method.
831    HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement
832        = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
833    if (optimized_invoke_type == kStatic) {
834      clinit_check = ProcessClinitCheckForInvoke(dex_pc, method_idx, &clinit_check_requirement);
835    }
836
837    HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
838        HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod,
839        HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
840        0u,
841        0U
842    };
843    invoke = new (arena_) HInvokeStaticOrDirect(arena_,
844                                                number_of_arguments,
845                                                return_type,
846                                                dex_pc,
847                                                method_idx,
848                                                target_method,
849                                                dispatch_info,
850                                                original_invoke_type,
851                                                optimized_invoke_type,
852                                                clinit_check_requirement);
853  } else if (optimized_invoke_type == kVirtual) {
854    invoke = new (arena_) HInvokeVirtual(arena_,
855                                         number_of_arguments,
856                                         return_type,
857                                         dex_pc,
858                                         method_idx,
859                                         table_index);
860  } else {
861    DCHECK_EQ(optimized_invoke_type, kInterface);
862    invoke = new (arena_) HInvokeInterface(arena_,
863                                           number_of_arguments,
864                                           return_type,
865                                           dex_pc,
866                                           method_idx,
867                                           table_index);
868  }
869
870  return HandleInvoke(invoke,
871                      number_of_vreg_arguments,
872                      args,
873                      register_index,
874                      is_range,
875                      descriptor,
876                      clinit_check);
877}
878
879bool HGraphBuilder::BuildNewInstance(uint16_t type_index, uint32_t dex_pc) {
880  bool finalizable;
881  bool can_throw = NeedsAccessCheck(type_index, &finalizable);
882
883  // Only the non-resolved entrypoint handles the finalizable class case. If we
884  // need access checks, then we haven't resolved the method and the class may
885  // again be finalizable.
886  QuickEntrypointEnum entrypoint = (finalizable || can_throw)
887      ? kQuickAllocObject
888      : kQuickAllocObjectInitialized;
889
890  ScopedObjectAccess soa(Thread::Current());
891  StackHandleScope<3> hs(soa.Self());
892  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
893      dex_compilation_unit_->GetClassLinker()->FindDexCache(
894          soa.Self(), *dex_compilation_unit_->GetDexFile())));
895  Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index)));
896  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
897  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
898      outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file)));
899
900  if (outer_dex_cache.Get() != dex_cache.Get()) {
901    // We currently do not support inlining allocations across dex files.
902    return false;
903  }
904
905  HLoadClass* load_class = new (arena_) HLoadClass(
906      graph_->GetCurrentMethod(),
907      type_index,
908      *dex_compilation_unit_->GetDexFile(),
909      IsOutermostCompilingClass(type_index),
910      dex_pc,
911      /*needs_access_check*/ can_throw);
912
913  current_block_->AddInstruction(load_class);
914  HInstruction* cls = load_class;
915  if (!IsInitialized(resolved_class)) {
916    cls = new (arena_) HClinitCheck(load_class, dex_pc);
917    current_block_->AddInstruction(cls);
918  }
919
920  current_block_->AddInstruction(new (arena_) HNewInstance(
921      cls,
922      graph_->GetCurrentMethod(),
923      dex_pc,
924      type_index,
925      *dex_compilation_unit_->GetDexFile(),
926      can_throw,
927      finalizable,
928      entrypoint));
929  return true;
930}
931
932static bool IsSubClass(mirror::Class* to_test, mirror::Class* super_class)
933    SHARED_REQUIRES(Locks::mutator_lock_) {
934  return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
935}
936
937bool HGraphBuilder::IsInitialized(Handle<mirror::Class> cls) const {
938  if (cls.Get() == nullptr) {
939    return false;
940  }
941
942  // `CanAssumeClassIsLoaded` will return true if we're JITting, or will
943  // check whether the class is in an image for the AOT compilation.
944  if (cls->IsInitialized() &&
945      compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) {
946    return true;
947  }
948
949  if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) {
950    return true;
951  }
952
953  // TODO: We should walk over the inlined methods, but we don't pass
954  //       that information to the builder.
955  if (IsSubClass(GetCompilingClass(), cls.Get())) {
956    return true;
957  }
958
959  return false;
960}
961
962HClinitCheck* HGraphBuilder::ProcessClinitCheckForInvoke(
963      uint32_t dex_pc,
964      uint32_t method_idx,
965      HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
966  ScopedObjectAccess soa(Thread::Current());
967  StackHandleScope<5> hs(soa.Self());
968  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
969      dex_compilation_unit_->GetClassLinker()->FindDexCache(
970          soa.Self(), *dex_compilation_unit_->GetDexFile())));
971  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
972      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
973  ArtMethod* resolved_method = compiler_driver_->ResolveMethod(
974      soa, dex_cache, class_loader, dex_compilation_unit_, method_idx, InvokeType::kStatic);
975
976  DCHECK(resolved_method != nullptr);
977
978  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
979  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
980      outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file)));
981  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
982  Handle<mirror::Class> resolved_method_class(hs.NewHandle(resolved_method->GetDeclaringClass()));
983
984  // The index at which the method's class is stored in the DexCache's type array.
985  uint32_t storage_index = DexFile::kDexNoIndex;
986  bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get());
987  if (is_outer_class) {
988    storage_index = outer_class->GetDexTypeIndex();
989  } else if (outer_dex_cache.Get() == dex_cache.Get()) {
990    // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer.
991    compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(),
992                                                               GetCompilingClass(),
993                                                               resolved_method,
994                                                               method_idx,
995                                                               &storage_index);
996  }
997
998  HClinitCheck* clinit_check = nullptr;
999
1000  if (IsInitialized(resolved_method_class)) {
1001    *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
1002  } else if (storage_index != DexFile::kDexNoIndex) {
1003    *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
1004    HLoadClass* load_class = new (arena_) HLoadClass(
1005        graph_->GetCurrentMethod(),
1006        storage_index,
1007        *dex_compilation_unit_->GetDexFile(),
1008        is_outer_class,
1009        dex_pc,
1010        /*needs_access_check*/ false);
1011    current_block_->AddInstruction(load_class);
1012    clinit_check = new (arena_) HClinitCheck(load_class, dex_pc);
1013    current_block_->AddInstruction(clinit_check);
1014  }
1015  return clinit_check;
1016}
1017
1018bool HGraphBuilder::SetupInvokeArguments(HInvoke* invoke,
1019                                         uint32_t number_of_vreg_arguments,
1020                                         uint32_t* args,
1021                                         uint32_t register_index,
1022                                         bool is_range,
1023                                         const char* descriptor,
1024                                         size_t start_index,
1025                                         size_t* argument_index) {
1026  uint32_t descriptor_index = 1;  // Skip the return type.
1027  uint32_t dex_pc = invoke->GetDexPc();
1028
1029  for (size_t i = start_index;
1030       // Make sure we don't go over the expected arguments or over the number of
1031       // dex registers given. If the instruction was seen as dead by the verifier,
1032       // it hasn't been properly checked.
1033       (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments());
1034       i++, (*argument_index)++) {
1035    Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]);
1036    bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
1037    if (!is_range
1038        && is_wide
1039        && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) {
1040      // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
1041      // reject any class where this is violated. However, the verifier only does these checks
1042      // on non trivially dead instructions, so we just bailout the compilation.
1043      VLOG(compiler) << "Did not compile "
1044                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
1045                     << " because of non-sequential dex register pair in wide argument";
1046      MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
1047      return false;
1048    }
1049    HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type, dex_pc);
1050    invoke->SetArgumentAt(*argument_index, arg);
1051    if (is_wide) {
1052      i++;
1053    }
1054  }
1055
1056  if (*argument_index != invoke->GetNumberOfArguments()) {
1057    VLOG(compiler) << "Did not compile "
1058                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
1059                   << " because of wrong number of arguments in invoke instruction";
1060    MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
1061    return false;
1062  }
1063
1064  if (invoke->IsInvokeStaticOrDirect() &&
1065      HInvokeStaticOrDirect::NeedsCurrentMethodInput(
1066          invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) {
1067    invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod());
1068    (*argument_index)++;
1069  }
1070
1071  return true;
1072}
1073
1074bool HGraphBuilder::HandleInvoke(HInvoke* invoke,
1075                                 uint32_t number_of_vreg_arguments,
1076                                 uint32_t* args,
1077                                 uint32_t register_index,
1078                                 bool is_range,
1079                                 const char* descriptor,
1080                                 HClinitCheck* clinit_check) {
1081  DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
1082
1083  size_t start_index = 0;
1084  size_t argument_index = 0;
1085  if (invoke->GetOriginalInvokeType() != InvokeType::kStatic) {  // Instance call.
1086    Temporaries temps(graph_);
1087    HInstruction* arg = LoadLocal(
1088        is_range ? register_index : args[0], Primitive::kPrimNot, invoke->GetDexPc());
1089    HNullCheck* null_check = new (arena_) HNullCheck(arg, invoke->GetDexPc());
1090    current_block_->AddInstruction(null_check);
1091    temps.Add(null_check);
1092    invoke->SetArgumentAt(0, null_check);
1093    start_index = 1;
1094    argument_index = 1;
1095  }
1096
1097  if (!SetupInvokeArguments(invoke,
1098                            number_of_vreg_arguments,
1099                            args,
1100                            register_index,
1101                            is_range,
1102                            descriptor,
1103                            start_index,
1104                            &argument_index)) {
1105    return false;
1106  }
1107
1108  if (clinit_check != nullptr) {
1109    // Add the class initialization check as last input of `invoke`.
1110    DCHECK(invoke->IsInvokeStaticOrDirect());
1111    DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement()
1112        == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
1113    invoke->SetArgumentAt(argument_index, clinit_check);
1114    argument_index++;
1115  }
1116
1117  current_block_->AddInstruction(invoke);
1118  latest_result_ = invoke;
1119
1120  return true;
1121}
1122
1123bool HGraphBuilder::HandleStringInit(HInvoke* invoke,
1124                                     uint32_t number_of_vreg_arguments,
1125                                     uint32_t* args,
1126                                     uint32_t register_index,
1127                                     bool is_range,
1128                                     const char* descriptor) {
1129  DCHECK(invoke->IsInvokeStaticOrDirect());
1130  DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
1131
1132  size_t start_index = 1;
1133  size_t argument_index = 0;
1134  if (!SetupInvokeArguments(invoke,
1135                            number_of_vreg_arguments,
1136                            args,
1137                            register_index,
1138                            is_range,
1139                            descriptor,
1140                            start_index,
1141                            &argument_index)) {
1142    return false;
1143  }
1144
1145  // Add move-result for StringFactory method.
1146  uint32_t orig_this_reg = is_range ? register_index : args[0];
1147  HInstruction* fake_string = LoadLocal(orig_this_reg, Primitive::kPrimNot, invoke->GetDexPc());
1148  invoke->SetArgumentAt(argument_index, fake_string);
1149  current_block_->AddInstruction(invoke);
1150  PotentiallySimplifyFakeString(orig_this_reg, invoke->GetDexPc(), invoke);
1151
1152  latest_result_ = invoke;
1153
1154  return true;
1155}
1156
1157void HGraphBuilder::PotentiallySimplifyFakeString(uint16_t original_dex_register,
1158                                                  uint32_t dex_pc,
1159                                                  HInvoke* actual_string) {
1160  if (!graph_->IsDebuggable()) {
1161    // Notify that we cannot compile with baseline. The dex registers aliasing
1162    // with `original_dex_register` will be handled when we optimize
1163    // (see HInstructionSimplifer::VisitFakeString).
1164    can_use_baseline_for_string_init_ = false;
1165    return;
1166  }
1167  const VerifiedMethod* verified_method =
1168      compiler_driver_->GetVerifiedMethod(dex_file_, dex_compilation_unit_->GetDexMethodIndex());
1169  if (verified_method != nullptr) {
1170    UpdateLocal(original_dex_register, actual_string, dex_pc);
1171    const SafeMap<uint32_t, std::set<uint32_t>>& string_init_map =
1172        verified_method->GetStringInitPcRegMap();
1173    auto map_it = string_init_map.find(dex_pc);
1174    if (map_it != string_init_map.end()) {
1175      for (uint32_t reg : map_it->second) {
1176        HInstruction* load_local = LoadLocal(original_dex_register, Primitive::kPrimNot, dex_pc);
1177        UpdateLocal(reg, load_local, dex_pc);
1178      }
1179    }
1180  } else {
1181    can_use_baseline_for_string_init_ = false;
1182  }
1183}
1184
1185static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
1186  const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index);
1187  const char* type = dex_file.GetFieldTypeDescriptor(field_id);
1188  return Primitive::GetType(type[0]);
1189}
1190
1191bool HGraphBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
1192                                             uint32_t dex_pc,
1193                                             bool is_put) {
1194  uint32_t source_or_dest_reg = instruction.VRegA_22c();
1195  uint32_t obj_reg = instruction.VRegB_22c();
1196  uint16_t field_index;
1197  if (instruction.IsQuickened()) {
1198    if (!CanDecodeQuickenedInfo()) {
1199      return false;
1200    }
1201    field_index = LookupQuickenedInfo(dex_pc);
1202  } else {
1203    field_index = instruction.VRegC_22c();
1204  }
1205
1206  ScopedObjectAccess soa(Thread::Current());
1207  ArtField* resolved_field =
1208      compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa);
1209
1210
1211  HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot, dex_pc);
1212  HInstruction* null_check = new (arena_) HNullCheck(object, dex_pc);
1213  current_block_->AddInstruction(null_check);
1214
1215  Primitive::Type field_type = (resolved_field == nullptr)
1216      ? GetFieldAccessType(*dex_file_, field_index)
1217      : resolved_field->GetTypeAsPrimitiveType();
1218  if (is_put) {
1219    Temporaries temps(graph_);
1220    // We need one temporary for the null check.
1221    temps.Add(null_check);
1222    HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc);
1223    HInstruction* field_set = nullptr;
1224    if (resolved_field == nullptr) {
1225      MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
1226      field_set = new (arena_) HUnresolvedInstanceFieldSet(null_check,
1227                                                           value,
1228                                                           field_type,
1229                                                           field_index,
1230                                                           dex_pc);
1231    } else {
1232      uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
1233      field_set = new (arena_) HInstanceFieldSet(null_check,
1234                                                 value,
1235                                                 field_type,
1236                                                 resolved_field->GetOffset(),
1237                                                 resolved_field->IsVolatile(),
1238                                                 field_index,
1239                                                 class_def_index,
1240                                                 *dex_file_,
1241                                                 dex_compilation_unit_->GetDexCache(),
1242                                                 dex_pc);
1243    }
1244    current_block_->AddInstruction(field_set);
1245  } else {
1246    HInstruction* field_get = nullptr;
1247    if (resolved_field == nullptr) {
1248      MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
1249      field_get = new (arena_) HUnresolvedInstanceFieldGet(null_check,
1250                                                           field_type,
1251                                                           field_index,
1252                                                           dex_pc);
1253    } else {
1254      uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
1255      field_get = new (arena_) HInstanceFieldGet(null_check,
1256                                                 field_type,
1257                                                 resolved_field->GetOffset(),
1258                                                 resolved_field->IsVolatile(),
1259                                                 field_index,
1260                                                 class_def_index,
1261                                                 *dex_file_,
1262                                                 dex_compilation_unit_->GetDexCache(),
1263                                                 dex_pc);
1264    }
1265    current_block_->AddInstruction(field_get);
1266    UpdateLocal(source_or_dest_reg, field_get, dex_pc);
1267  }
1268
1269  return true;
1270}
1271
1272static mirror::Class* GetClassFrom(CompilerDriver* driver,
1273                                   const DexCompilationUnit& compilation_unit) {
1274  ScopedObjectAccess soa(Thread::Current());
1275  StackHandleScope<2> hs(soa.Self());
1276  const DexFile& dex_file = *compilation_unit.GetDexFile();
1277  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1278      soa.Decode<mirror::ClassLoader*>(compilation_unit.GetClassLoader())));
1279  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1280      compilation_unit.GetClassLinker()->FindDexCache(soa.Self(), dex_file)));
1281
1282  return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit);
1283}
1284
1285mirror::Class* HGraphBuilder::GetOutermostCompilingClass() const {
1286  return GetClassFrom(compiler_driver_, *outer_compilation_unit_);
1287}
1288
1289mirror::Class* HGraphBuilder::GetCompilingClass() const {
1290  return GetClassFrom(compiler_driver_, *dex_compilation_unit_);
1291}
1292
1293bool HGraphBuilder::IsOutermostCompilingClass(uint16_t type_index) const {
1294  ScopedObjectAccess soa(Thread::Current());
1295  StackHandleScope<4> hs(soa.Self());
1296  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1297      dex_compilation_unit_->GetClassLinker()->FindDexCache(
1298          soa.Self(), *dex_compilation_unit_->GetDexFile())));
1299  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1300      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
1301  Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass(
1302      soa, dex_cache, class_loader, type_index, dex_compilation_unit_)));
1303  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
1304
1305  // GetOutermostCompilingClass returns null when the class is unresolved
1306  // (e.g. if it derives from an unresolved class). This is bogus knowing that
1307  // we are compiling it.
1308  // When this happens we cannot establish a direct relation between the current
1309  // class and the outer class, so we return false.
1310  // (Note that this is only used for optimizing invokes and field accesses)
1311  return (cls.Get() != nullptr) && (outer_class.Get() == cls.Get());
1312}
1313
1314void HGraphBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
1315                                                     uint32_t dex_pc,
1316                                                     bool is_put,
1317                                                     Primitive::Type field_type) {
1318  uint32_t source_or_dest_reg = instruction.VRegA_21c();
1319  uint16_t field_index = instruction.VRegB_21c();
1320
1321  if (is_put) {
1322    HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc);
1323    current_block_->AddInstruction(
1324        new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
1325  } else {
1326    current_block_->AddInstruction(
1327        new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
1328    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc);
1329  }
1330}
1331bool HGraphBuilder::BuildStaticFieldAccess(const Instruction& instruction,
1332                                           uint32_t dex_pc,
1333                                           bool is_put) {
1334  uint32_t source_or_dest_reg = instruction.VRegA_21c();
1335  uint16_t field_index = instruction.VRegB_21c();
1336
1337  ScopedObjectAccess soa(Thread::Current());
1338  StackHandleScope<5> hs(soa.Self());
1339  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1340      dex_compilation_unit_->GetClassLinker()->FindDexCache(
1341          soa.Self(), *dex_compilation_unit_->GetDexFile())));
1342  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1343      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
1344  ArtField* resolved_field = compiler_driver_->ResolveField(
1345      soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true);
1346
1347  if (resolved_field == nullptr) {
1348    MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
1349    Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1350    BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1351    return true;
1352  }
1353
1354  Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
1355  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
1356  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
1357      outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file)));
1358  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
1359
1360  // The index at which the field's class is stored in the DexCache's type array.
1361  uint32_t storage_index;
1362  bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass());
1363  if (is_outer_class) {
1364    storage_index = outer_class->GetDexTypeIndex();
1365  } else if (outer_dex_cache.Get() != dex_cache.Get()) {
1366    // The compiler driver cannot currently understand multiple dex caches involved. Just bailout.
1367    return false;
1368  } else {
1369    // TODO: This is rather expensive. Perf it and cache the results if needed.
1370    std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField(
1371        outer_dex_cache.Get(),
1372        GetCompilingClass(),
1373        resolved_field,
1374        field_index,
1375        &storage_index);
1376    bool can_easily_access = is_put ? pair.second : pair.first;
1377    if (!can_easily_access) {
1378      MaybeRecordStat(MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
1379      BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1380      return true;
1381    }
1382  }
1383
1384  HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(),
1385                                                 storage_index,
1386                                                 *dex_compilation_unit_->GetDexFile(),
1387                                                 is_outer_class,
1388                                                 dex_pc,
1389                                                 /*needs_access_check*/ false);
1390  current_block_->AddInstruction(constant);
1391
1392  HInstruction* cls = constant;
1393
1394  Handle<mirror::Class> klass(hs.NewHandle(resolved_field->GetDeclaringClass()));
1395  if (!IsInitialized(klass)) {
1396    cls = new (arena_) HClinitCheck(constant, dex_pc);
1397    current_block_->AddInstruction(cls);
1398  }
1399
1400  uint16_t class_def_index = klass->GetDexClassDefIndex();
1401  if (is_put) {
1402    // We need to keep the class alive before loading the value.
1403    Temporaries temps(graph_);
1404    temps.Add(cls);
1405    HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc);
1406    DCHECK_EQ(value->GetType(), field_type);
1407    current_block_->AddInstruction(new (arena_) HStaticFieldSet(cls,
1408                                                                value,
1409                                                                field_type,
1410                                                                resolved_field->GetOffset(),
1411                                                                resolved_field->IsVolatile(),
1412                                                                field_index,
1413                                                                class_def_index,
1414                                                                *dex_file_,
1415                                                                dex_cache_,
1416                                                                dex_pc));
1417  } else {
1418    current_block_->AddInstruction(new (arena_) HStaticFieldGet(cls,
1419                                                                field_type,
1420                                                                resolved_field->GetOffset(),
1421                                                                resolved_field->IsVolatile(),
1422                                                                field_index,
1423                                                                class_def_index,
1424                                                                *dex_file_,
1425                                                                dex_cache_,
1426                                                                dex_pc));
1427    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc);
1428  }
1429  return true;
1430}
1431
1432void HGraphBuilder::BuildCheckedDivRem(uint16_t out_vreg,
1433                                       uint16_t first_vreg,
1434                                       int64_t second_vreg_or_constant,
1435                                       uint32_t dex_pc,
1436                                       Primitive::Type type,
1437                                       bool second_is_constant,
1438                                       bool isDiv) {
1439  DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
1440
1441  HInstruction* first = LoadLocal(first_vreg, type, dex_pc);
1442  HInstruction* second = nullptr;
1443  if (second_is_constant) {
1444    if (type == Primitive::kPrimInt) {
1445      second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
1446    } else {
1447      second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
1448    }
1449  } else {
1450    second = LoadLocal(second_vreg_or_constant, type, dex_pc);
1451  }
1452
1453  if (!second_is_constant
1454      || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0)
1455      || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) {
1456    second = new (arena_) HDivZeroCheck(second, dex_pc);
1457    Temporaries temps(graph_);
1458    current_block_->AddInstruction(second);
1459    temps.Add(current_block_->GetLastInstruction());
1460  }
1461
1462  if (isDiv) {
1463    current_block_->AddInstruction(new (arena_) HDiv(type, first, second, dex_pc));
1464  } else {
1465    current_block_->AddInstruction(new (arena_) HRem(type, first, second, dex_pc));
1466  }
1467  UpdateLocal(out_vreg, current_block_->GetLastInstruction(), dex_pc);
1468}
1469
1470void HGraphBuilder::BuildArrayAccess(const Instruction& instruction,
1471                                     uint32_t dex_pc,
1472                                     bool is_put,
1473                                     Primitive::Type anticipated_type) {
1474  uint8_t source_or_dest_reg = instruction.VRegA_23x();
1475  uint8_t array_reg = instruction.VRegB_23x();
1476  uint8_t index_reg = instruction.VRegC_23x();
1477
1478  // We need one temporary for the null check, one for the index, and one for the length.
1479  Temporaries temps(graph_);
1480
1481  HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot, dex_pc);
1482  object = new (arena_) HNullCheck(object, dex_pc);
1483  current_block_->AddInstruction(object);
1484  temps.Add(object);
1485
1486  HInstruction* length = new (arena_) HArrayLength(object, dex_pc);
1487  current_block_->AddInstruction(length);
1488  temps.Add(length);
1489  HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt, dex_pc);
1490  index = new (arena_) HBoundsCheck(index, length, dex_pc);
1491  current_block_->AddInstruction(index);
1492  temps.Add(index);
1493  if (is_put) {
1494    HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type, dex_pc);
1495    // TODO: Insert a type check node if the type is Object.
1496    current_block_->AddInstruction(new (arena_) HArraySet(
1497        object, index, value, anticipated_type, dex_pc));
1498  } else {
1499    current_block_->AddInstruction(new (arena_) HArrayGet(object, index, anticipated_type, dex_pc));
1500    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc);
1501  }
1502  graph_->SetHasBoundsChecks(true);
1503}
1504
1505void HGraphBuilder::BuildFilledNewArray(uint32_t dex_pc,
1506                                        uint32_t type_index,
1507                                        uint32_t number_of_vreg_arguments,
1508                                        bool is_range,
1509                                        uint32_t* args,
1510                                        uint32_t register_index) {
1511  HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc);
1512  bool finalizable;
1513  QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable)
1514      ? kQuickAllocArrayWithAccessCheck
1515      : kQuickAllocArray;
1516  HInstruction* object = new (arena_) HNewArray(length,
1517                                                graph_->GetCurrentMethod(),
1518                                                dex_pc,
1519                                                type_index,
1520                                                *dex_compilation_unit_->GetDexFile(),
1521                                                entrypoint);
1522  current_block_->AddInstruction(object);
1523
1524  const char* descriptor = dex_file_->StringByTypeIdx(type_index);
1525  DCHECK_EQ(descriptor[0], '[') << descriptor;
1526  char primitive = descriptor[1];
1527  DCHECK(primitive == 'I'
1528      || primitive == 'L'
1529      || primitive == '[') << descriptor;
1530  bool is_reference_array = (primitive == 'L') || (primitive == '[');
1531  Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt;
1532
1533  Temporaries temps(graph_);
1534  temps.Add(object);
1535  for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
1536    HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type, dex_pc);
1537    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1538    current_block_->AddInstruction(
1539        new (arena_) HArraySet(object, index, value, type, dex_pc));
1540  }
1541  latest_result_ = object;
1542}
1543
1544template <typename T>
1545void HGraphBuilder::BuildFillArrayData(HInstruction* object,
1546                                       const T* data,
1547                                       uint32_t element_count,
1548                                       Primitive::Type anticipated_type,
1549                                       uint32_t dex_pc) {
1550  for (uint32_t i = 0; i < element_count; ++i) {
1551    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1552    HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
1553    current_block_->AddInstruction(new (arena_) HArraySet(
1554      object, index, value, anticipated_type, dex_pc));
1555  }
1556}
1557
1558void HGraphBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
1559  Temporaries temps(graph_);
1560  HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot, dex_pc);
1561  HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc);
1562  current_block_->AddInstruction(null_check);
1563  temps.Add(null_check);
1564
1565  HInstruction* length = new (arena_) HArrayLength(null_check, dex_pc);
1566  current_block_->AddInstruction(length);
1567
1568  int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
1569  const Instruction::ArrayDataPayload* payload =
1570      reinterpret_cast<const Instruction::ArrayDataPayload*>(code_start_ + payload_offset);
1571  const uint8_t* data = payload->data;
1572  uint32_t element_count = payload->element_count;
1573
1574  // Implementation of this DEX instruction seems to be that the bounds check is
1575  // done before doing any stores.
1576  HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
1577  current_block_->AddInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc));
1578
1579  switch (payload->element_width) {
1580    case 1:
1581      BuildFillArrayData(null_check,
1582                         reinterpret_cast<const int8_t*>(data),
1583                         element_count,
1584                         Primitive::kPrimByte,
1585                         dex_pc);
1586      break;
1587    case 2:
1588      BuildFillArrayData(null_check,
1589                         reinterpret_cast<const int16_t*>(data),
1590                         element_count,
1591                         Primitive::kPrimShort,
1592                         dex_pc);
1593      break;
1594    case 4:
1595      BuildFillArrayData(null_check,
1596                         reinterpret_cast<const int32_t*>(data),
1597                         element_count,
1598                         Primitive::kPrimInt,
1599                         dex_pc);
1600      break;
1601    case 8:
1602      BuildFillWideArrayData(null_check,
1603                             reinterpret_cast<const int64_t*>(data),
1604                             element_count,
1605                             dex_pc);
1606      break;
1607    default:
1608      LOG(FATAL) << "Unknown element width for " << payload->element_width;
1609  }
1610  graph_->SetHasBoundsChecks(true);
1611}
1612
1613void HGraphBuilder::BuildFillWideArrayData(HInstruction* object,
1614                                           const int64_t* data,
1615                                           uint32_t element_count,
1616                                           uint32_t dex_pc) {
1617  for (uint32_t i = 0; i < element_count; ++i) {
1618    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1619    HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
1620    current_block_->AddInstruction(new (arena_) HArraySet(
1621      object, index, value, Primitive::kPrimLong, dex_pc));
1622  }
1623}
1624
1625static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls)
1626    SHARED_REQUIRES(Locks::mutator_lock_) {
1627  if (cls.Get() == nullptr) {
1628    return TypeCheckKind::kUnresolvedCheck;
1629  } else if (cls->IsInterface()) {
1630    return TypeCheckKind::kInterfaceCheck;
1631  } else if (cls->IsArrayClass()) {
1632    if (cls->GetComponentType()->IsObjectClass()) {
1633      return TypeCheckKind::kArrayObjectCheck;
1634    } else if (cls->CannotBeAssignedFromOtherTypes()) {
1635      return TypeCheckKind::kExactCheck;
1636    } else {
1637      return TypeCheckKind::kArrayCheck;
1638    }
1639  } else if (cls->IsFinal()) {
1640    return TypeCheckKind::kExactCheck;
1641  } else if (cls->IsAbstract()) {
1642    return TypeCheckKind::kAbstractClassCheck;
1643  } else {
1644    return TypeCheckKind::kClassHierarchyCheck;
1645  }
1646}
1647
1648void HGraphBuilder::BuildTypeCheck(const Instruction& instruction,
1649                                   uint8_t destination,
1650                                   uint8_t reference,
1651                                   uint16_t type_index,
1652                                   uint32_t dex_pc) {
1653  bool type_known_final, type_known_abstract, use_declaring_class;
1654  bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
1655      dex_compilation_unit_->GetDexMethodIndex(),
1656      *dex_compilation_unit_->GetDexFile(),
1657      type_index,
1658      &type_known_final,
1659      &type_known_abstract,
1660      &use_declaring_class);
1661
1662  ScopedObjectAccess soa(Thread::Current());
1663  StackHandleScope<2> hs(soa.Self());
1664  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1665      dex_compilation_unit_->GetClassLinker()->FindDexCache(
1666          soa.Self(), *dex_compilation_unit_->GetDexFile())));
1667  Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index)));
1668
1669  HInstruction* object = LoadLocal(reference, Primitive::kPrimNot, dex_pc);
1670  HLoadClass* cls = new (arena_) HLoadClass(
1671      graph_->GetCurrentMethod(),
1672      type_index,
1673      *dex_compilation_unit_->GetDexFile(),
1674      IsOutermostCompilingClass(type_index),
1675      dex_pc,
1676      !can_access);
1677  current_block_->AddInstruction(cls);
1678
1679  // The class needs a temporary before being used by the type check.
1680  Temporaries temps(graph_);
1681  temps.Add(cls);
1682
1683  TypeCheckKind check_kind = ComputeTypeCheckKind(resolved_class);
1684  if (instruction.Opcode() == Instruction::INSTANCE_OF) {
1685    current_block_->AddInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc));
1686    UpdateLocal(destination, current_block_->GetLastInstruction(), dex_pc);
1687  } else {
1688    DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
1689    current_block_->AddInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc));
1690  }
1691}
1692
1693bool HGraphBuilder::NeedsAccessCheck(uint32_t type_index, bool* finalizable) const {
1694  return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks(
1695      dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index, finalizable);
1696}
1697
1698void HGraphBuilder::BuildSwitchJumpTable(const SwitchTable& table,
1699                                         const Instruction& instruction,
1700                                         HInstruction* value,
1701                                         uint32_t dex_pc) {
1702  // Add the successor blocks to the current block.
1703  uint16_t num_entries = table.GetNumEntries();
1704  for (size_t i = 1; i <= num_entries; i++) {
1705    int32_t target_offset = table.GetEntryAt(i);
1706    HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset);
1707    DCHECK(case_target != nullptr);
1708
1709    // Add the target block as a successor.
1710    current_block_->AddSuccessor(case_target);
1711  }
1712
1713  // Add the default target block as the last successor.
1714  HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
1715  DCHECK(default_target != nullptr);
1716  current_block_->AddSuccessor(default_target);
1717
1718  // Now add the Switch instruction.
1719  int32_t starting_key = table.GetEntryAt(0);
1720  current_block_->AddInstruction(
1721      new (arena_) HPackedSwitch(starting_key, num_entries, value, dex_pc));
1722  // This block ends with control flow.
1723  current_block_ = nullptr;
1724}
1725
1726void HGraphBuilder::BuildPackedSwitch(const Instruction& instruction, uint32_t dex_pc) {
1727  // Verifier guarantees that the payload for PackedSwitch contains:
1728  //   (a) number of entries (may be zero)
1729  //   (b) first and lowest switch case value (entry 0, always present)
1730  //   (c) list of target pcs (entries 1 <= i <= N)
1731  SwitchTable table(instruction, dex_pc, false);
1732
1733  // Value to test against.
1734  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
1735
1736  // Starting key value.
1737  int32_t starting_key = table.GetEntryAt(0);
1738
1739  // Retrieve number of entries.
1740  uint16_t num_entries = table.GetNumEntries();
1741  if (num_entries == 0) {
1742    return;
1743  }
1744
1745  // Don't use a packed switch if there are very few entries.
1746  if (num_entries > kSmallSwitchThreshold) {
1747    BuildSwitchJumpTable(table, instruction, value, dex_pc);
1748  } else {
1749    // Chained cmp-and-branch, starting from starting_key.
1750    for (size_t i = 1; i <= num_entries; i++) {
1751      BuildSwitchCaseHelper(instruction,
1752                            i,
1753                            i == num_entries,
1754                            table,
1755                            value,
1756                            starting_key + i - 1,
1757                            table.GetEntryAt(i),
1758                            dex_pc);
1759    }
1760  }
1761}
1762
1763void HGraphBuilder::BuildSparseSwitch(const Instruction& instruction, uint32_t dex_pc) {
1764  // Verifier guarantees that the payload for SparseSwitch contains:
1765  //   (a) number of entries (may be zero)
1766  //   (b) sorted key values (entries 0 <= i < N)
1767  //   (c) target pcs corresponding to the switch values (entries N <= i < 2*N)
1768  SwitchTable table(instruction, dex_pc, true);
1769
1770  // Value to test against.
1771  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
1772
1773  uint16_t num_entries = table.GetNumEntries();
1774
1775  for (size_t i = 0; i < num_entries; i++) {
1776    BuildSwitchCaseHelper(instruction, i, i == static_cast<size_t>(num_entries) - 1, table, value,
1777                          table.GetEntryAt(i), table.GetEntryAt(i + num_entries), dex_pc);
1778  }
1779}
1780
1781void HGraphBuilder::BuildSwitchCaseHelper(const Instruction& instruction, size_t index,
1782                                          bool is_last_case, const SwitchTable& table,
1783                                          HInstruction* value, int32_t case_value_int,
1784                                          int32_t target_offset, uint32_t dex_pc) {
1785  HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset);
1786  DCHECK(case_target != nullptr);
1787  PotentiallyAddSuspendCheck(case_target, dex_pc);
1788
1789  // The current case's value.
1790  HInstruction* this_case_value = graph_->GetIntConstant(case_value_int, dex_pc);
1791
1792  // Compare value and this_case_value.
1793  HEqual* comparison = new (arena_) HEqual(value, this_case_value, dex_pc);
1794  current_block_->AddInstruction(comparison);
1795  HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc);
1796  current_block_->AddInstruction(ifinst);
1797
1798  // Case hit: use the target offset to determine where to go.
1799  current_block_->AddSuccessor(case_target);
1800
1801  // Case miss: go to the next case (or default fall-through).
1802  // When there is a next case, we use the block stored with the table offset representing this
1803  // case (that is where we registered them in ComputeBranchTargets).
1804  // When there is no next case, we use the following instruction.
1805  // TODO: Find a good way to peel the last iteration to avoid conditional, but still have re-use.
1806  if (!is_last_case) {
1807    HBasicBlock* next_case_target = FindBlockStartingAt(table.GetDexPcForIndex(index));
1808    DCHECK(next_case_target != nullptr);
1809    current_block_->AddSuccessor(next_case_target);
1810
1811    // Need to manually add the block, as there is no dex-pc transition for the cases.
1812    graph_->AddBlock(next_case_target);
1813
1814    current_block_ = next_case_target;
1815  } else {
1816    HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
1817    DCHECK(default_target != nullptr);
1818    current_block_->AddSuccessor(default_target);
1819    current_block_ = nullptr;
1820  }
1821}
1822
1823void HGraphBuilder::PotentiallyAddSuspendCheck(HBasicBlock* target, uint32_t dex_pc) {
1824  int32_t target_offset = target->GetDexPc() - dex_pc;
1825  if (target_offset <= 0) {
1826    // DX generates back edges to the first encountered return. We can save
1827    // time of later passes by not adding redundant suspend checks.
1828    HInstruction* last_in_target = target->GetLastInstruction();
1829    if (last_in_target != nullptr &&
1830        (last_in_target->IsReturn() || last_in_target->IsReturnVoid())) {
1831      return;
1832    }
1833
1834    // Add a suspend check to backward branches which may potentially loop. We
1835    // can remove them after we recognize loops in the graph.
1836    current_block_->AddInstruction(new (arena_) HSuspendCheck(dex_pc));
1837  }
1838}
1839
1840bool HGraphBuilder::CanDecodeQuickenedInfo() const {
1841  return interpreter_metadata_ != nullptr;
1842}
1843
1844uint16_t HGraphBuilder::LookupQuickenedInfo(uint32_t dex_pc) {
1845  DCHECK(interpreter_metadata_ != nullptr);
1846  uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_);
1847  DCHECK_EQ(dex_pc, dex_pc_in_map);
1848  return DecodeUnsignedLeb128(&interpreter_metadata_);
1849}
1850
1851bool HGraphBuilder::AnalyzeDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
1852  if (current_block_ == nullptr) {
1853    return true;  // Dead code
1854  }
1855
1856  switch (instruction.Opcode()) {
1857    case Instruction::CONST_4: {
1858      int32_t register_index = instruction.VRegA();
1859      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
1860      UpdateLocal(register_index, constant, dex_pc);
1861      break;
1862    }
1863
1864    case Instruction::CONST_16: {
1865      int32_t register_index = instruction.VRegA();
1866      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
1867      UpdateLocal(register_index, constant, dex_pc);
1868      break;
1869    }
1870
1871    case Instruction::CONST: {
1872      int32_t register_index = instruction.VRegA();
1873      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
1874      UpdateLocal(register_index, constant, dex_pc);
1875      break;
1876    }
1877
1878    case Instruction::CONST_HIGH16: {
1879      int32_t register_index = instruction.VRegA();
1880      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
1881      UpdateLocal(register_index, constant, dex_pc);
1882      break;
1883    }
1884
1885    case Instruction::CONST_WIDE_16: {
1886      int32_t register_index = instruction.VRegA();
1887      // Get 16 bits of constant value, sign extended to 64 bits.
1888      int64_t value = instruction.VRegB_21s();
1889      value <<= 48;
1890      value >>= 48;
1891      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
1892      UpdateLocal(register_index, constant, dex_pc);
1893      break;
1894    }
1895
1896    case Instruction::CONST_WIDE_32: {
1897      int32_t register_index = instruction.VRegA();
1898      // Get 32 bits of constant value, sign extended to 64 bits.
1899      int64_t value = instruction.VRegB_31i();
1900      value <<= 32;
1901      value >>= 32;
1902      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
1903      UpdateLocal(register_index, constant, dex_pc);
1904      break;
1905    }
1906
1907    case Instruction::CONST_WIDE: {
1908      int32_t register_index = instruction.VRegA();
1909      HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
1910      UpdateLocal(register_index, constant, dex_pc);
1911      break;
1912    }
1913
1914    case Instruction::CONST_WIDE_HIGH16: {
1915      int32_t register_index = instruction.VRegA();
1916      int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
1917      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
1918      UpdateLocal(register_index, constant, dex_pc);
1919      break;
1920    }
1921
1922    // Note that the SSA building will refine the types.
1923    case Instruction::MOVE:
1924    case Instruction::MOVE_FROM16:
1925    case Instruction::MOVE_16: {
1926      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
1927      UpdateLocal(instruction.VRegA(), value, dex_pc);
1928      break;
1929    }
1930
1931    // Note that the SSA building will refine the types.
1932    case Instruction::MOVE_WIDE:
1933    case Instruction::MOVE_WIDE_FROM16:
1934    case Instruction::MOVE_WIDE_16: {
1935      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong, dex_pc);
1936      UpdateLocal(instruction.VRegA(), value, dex_pc);
1937      break;
1938    }
1939
1940    case Instruction::MOVE_OBJECT:
1941    case Instruction::MOVE_OBJECT_16:
1942    case Instruction::MOVE_OBJECT_FROM16: {
1943      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot, dex_pc);
1944      UpdateLocal(instruction.VRegA(), value, dex_pc);
1945      break;
1946    }
1947
1948    case Instruction::RETURN_VOID_NO_BARRIER:
1949    case Instruction::RETURN_VOID: {
1950      BuildReturn(instruction, Primitive::kPrimVoid, dex_pc);
1951      break;
1952    }
1953
1954#define IF_XX(comparison, cond) \
1955    case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
1956    case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
1957
1958    IF_XX(HEqual, EQ);
1959    IF_XX(HNotEqual, NE);
1960    IF_XX(HLessThan, LT);
1961    IF_XX(HLessThanOrEqual, LE);
1962    IF_XX(HGreaterThan, GT);
1963    IF_XX(HGreaterThanOrEqual, GE);
1964
1965    case Instruction::GOTO:
1966    case Instruction::GOTO_16:
1967    case Instruction::GOTO_32: {
1968      int32_t offset = instruction.GetTargetOffset();
1969      HBasicBlock* target = FindBlockStartingAt(offset + dex_pc);
1970      DCHECK(target != nullptr);
1971      PotentiallyAddSuspendCheck(target, dex_pc);
1972      current_block_->AddInstruction(new (arena_) HGoto(dex_pc));
1973      current_block_->AddSuccessor(target);
1974      current_block_ = nullptr;
1975      break;
1976    }
1977
1978    case Instruction::RETURN: {
1979      BuildReturn(instruction, return_type_, dex_pc);
1980      break;
1981    }
1982
1983    case Instruction::RETURN_OBJECT: {
1984      BuildReturn(instruction, return_type_, dex_pc);
1985      break;
1986    }
1987
1988    case Instruction::RETURN_WIDE: {
1989      BuildReturn(instruction, return_type_, dex_pc);
1990      break;
1991    }
1992
1993    case Instruction::INVOKE_DIRECT:
1994    case Instruction::INVOKE_INTERFACE:
1995    case Instruction::INVOKE_STATIC:
1996    case Instruction::INVOKE_SUPER:
1997    case Instruction::INVOKE_VIRTUAL:
1998    case Instruction::INVOKE_VIRTUAL_QUICK: {
1999      uint16_t method_idx;
2000      if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) {
2001        if (!CanDecodeQuickenedInfo()) {
2002          return false;
2003        }
2004        method_idx = LookupQuickenedInfo(dex_pc);
2005      } else {
2006        method_idx = instruction.VRegB_35c();
2007      }
2008      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
2009      uint32_t args[5];
2010      instruction.GetVarArgs(args);
2011      if (!BuildInvoke(instruction, dex_pc, method_idx,
2012                       number_of_vreg_arguments, false, args, -1)) {
2013        return false;
2014      }
2015      break;
2016    }
2017
2018    case Instruction::INVOKE_DIRECT_RANGE:
2019    case Instruction::INVOKE_INTERFACE_RANGE:
2020    case Instruction::INVOKE_STATIC_RANGE:
2021    case Instruction::INVOKE_SUPER_RANGE:
2022    case Instruction::INVOKE_VIRTUAL_RANGE:
2023    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2024      uint16_t method_idx;
2025      if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) {
2026        if (!CanDecodeQuickenedInfo()) {
2027          return false;
2028        }
2029        method_idx = LookupQuickenedInfo(dex_pc);
2030      } else {
2031        method_idx = instruction.VRegB_3rc();
2032      }
2033      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
2034      uint32_t register_index = instruction.VRegC();
2035      if (!BuildInvoke(instruction, dex_pc, method_idx,
2036                       number_of_vreg_arguments, true, nullptr, register_index)) {
2037        return false;
2038      }
2039      break;
2040    }
2041
2042    case Instruction::NEG_INT: {
2043      Unop_12x<HNeg>(instruction, Primitive::kPrimInt, dex_pc);
2044      break;
2045    }
2046
2047    case Instruction::NEG_LONG: {
2048      Unop_12x<HNeg>(instruction, Primitive::kPrimLong, dex_pc);
2049      break;
2050    }
2051
2052    case Instruction::NEG_FLOAT: {
2053      Unop_12x<HNeg>(instruction, Primitive::kPrimFloat, dex_pc);
2054      break;
2055    }
2056
2057    case Instruction::NEG_DOUBLE: {
2058      Unop_12x<HNeg>(instruction, Primitive::kPrimDouble, dex_pc);
2059      break;
2060    }
2061
2062    case Instruction::NOT_INT: {
2063      Unop_12x<HNot>(instruction, Primitive::kPrimInt, dex_pc);
2064      break;
2065    }
2066
2067    case Instruction::NOT_LONG: {
2068      Unop_12x<HNot>(instruction, Primitive::kPrimLong, dex_pc);
2069      break;
2070    }
2071
2072    case Instruction::INT_TO_LONG: {
2073      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc);
2074      break;
2075    }
2076
2077    case Instruction::INT_TO_FLOAT: {
2078      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc);
2079      break;
2080    }
2081
2082    case Instruction::INT_TO_DOUBLE: {
2083      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc);
2084      break;
2085    }
2086
2087    case Instruction::LONG_TO_INT: {
2088      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc);
2089      break;
2090    }
2091
2092    case Instruction::LONG_TO_FLOAT: {
2093      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc);
2094      break;
2095    }
2096
2097    case Instruction::LONG_TO_DOUBLE: {
2098      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc);
2099      break;
2100    }
2101
2102    case Instruction::FLOAT_TO_INT: {
2103      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc);
2104      break;
2105    }
2106
2107    case Instruction::FLOAT_TO_LONG: {
2108      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc);
2109      break;
2110    }
2111
2112    case Instruction::FLOAT_TO_DOUBLE: {
2113      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc);
2114      break;
2115    }
2116
2117    case Instruction::DOUBLE_TO_INT: {
2118      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc);
2119      break;
2120    }
2121
2122    case Instruction::DOUBLE_TO_LONG: {
2123      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc);
2124      break;
2125    }
2126
2127    case Instruction::DOUBLE_TO_FLOAT: {
2128      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc);
2129      break;
2130    }
2131
2132    case Instruction::INT_TO_BYTE: {
2133      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc);
2134      break;
2135    }
2136
2137    case Instruction::INT_TO_SHORT: {
2138      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc);
2139      break;
2140    }
2141
2142    case Instruction::INT_TO_CHAR: {
2143      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc);
2144      break;
2145    }
2146
2147    case Instruction::ADD_INT: {
2148      Binop_23x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
2149      break;
2150    }
2151
2152    case Instruction::ADD_LONG: {
2153      Binop_23x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
2154      break;
2155    }
2156
2157    case Instruction::ADD_DOUBLE: {
2158      Binop_23x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
2159      break;
2160    }
2161
2162    case Instruction::ADD_FLOAT: {
2163      Binop_23x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
2164      break;
2165    }
2166
2167    case Instruction::SUB_INT: {
2168      Binop_23x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
2169      break;
2170    }
2171
2172    case Instruction::SUB_LONG: {
2173      Binop_23x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
2174      break;
2175    }
2176
2177    case Instruction::SUB_FLOAT: {
2178      Binop_23x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
2179      break;
2180    }
2181
2182    case Instruction::SUB_DOUBLE: {
2183      Binop_23x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
2184      break;
2185    }
2186
2187    case Instruction::ADD_INT_2ADDR: {
2188      Binop_12x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
2189      break;
2190    }
2191
2192    case Instruction::MUL_INT: {
2193      Binop_23x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
2194      break;
2195    }
2196
2197    case Instruction::MUL_LONG: {
2198      Binop_23x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
2199      break;
2200    }
2201
2202    case Instruction::MUL_FLOAT: {
2203      Binop_23x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
2204      break;
2205    }
2206
2207    case Instruction::MUL_DOUBLE: {
2208      Binop_23x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
2209      break;
2210    }
2211
2212    case Instruction::DIV_INT: {
2213      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2214                         dex_pc, Primitive::kPrimInt, false, true);
2215      break;
2216    }
2217
2218    case Instruction::DIV_LONG: {
2219      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2220                         dex_pc, Primitive::kPrimLong, false, true);
2221      break;
2222    }
2223
2224    case Instruction::DIV_FLOAT: {
2225      Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
2226      break;
2227    }
2228
2229    case Instruction::DIV_DOUBLE: {
2230      Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
2231      break;
2232    }
2233
2234    case Instruction::REM_INT: {
2235      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2236                         dex_pc, Primitive::kPrimInt, false, false);
2237      break;
2238    }
2239
2240    case Instruction::REM_LONG: {
2241      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2242                         dex_pc, Primitive::kPrimLong, false, false);
2243      break;
2244    }
2245
2246    case Instruction::REM_FLOAT: {
2247      Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
2248      break;
2249    }
2250
2251    case Instruction::REM_DOUBLE: {
2252      Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
2253      break;
2254    }
2255
2256    case Instruction::AND_INT: {
2257      Binop_23x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
2258      break;
2259    }
2260
2261    case Instruction::AND_LONG: {
2262      Binop_23x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
2263      break;
2264    }
2265
2266    case Instruction::SHL_INT: {
2267      Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
2268      break;
2269    }
2270
2271    case Instruction::SHL_LONG: {
2272      Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
2273      break;
2274    }
2275
2276    case Instruction::SHR_INT: {
2277      Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
2278      break;
2279    }
2280
2281    case Instruction::SHR_LONG: {
2282      Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
2283      break;
2284    }
2285
2286    case Instruction::USHR_INT: {
2287      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
2288      break;
2289    }
2290
2291    case Instruction::USHR_LONG: {
2292      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
2293      break;
2294    }
2295
2296    case Instruction::OR_INT: {
2297      Binop_23x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
2298      break;
2299    }
2300
2301    case Instruction::OR_LONG: {
2302      Binop_23x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
2303      break;
2304    }
2305
2306    case Instruction::XOR_INT: {
2307      Binop_23x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
2308      break;
2309    }
2310
2311    case Instruction::XOR_LONG: {
2312      Binop_23x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
2313      break;
2314    }
2315
2316    case Instruction::ADD_LONG_2ADDR: {
2317      Binop_12x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
2318      break;
2319    }
2320
2321    case Instruction::ADD_DOUBLE_2ADDR: {
2322      Binop_12x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
2323      break;
2324    }
2325
2326    case Instruction::ADD_FLOAT_2ADDR: {
2327      Binop_12x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
2328      break;
2329    }
2330
2331    case Instruction::SUB_INT_2ADDR: {
2332      Binop_12x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
2333      break;
2334    }
2335
2336    case Instruction::SUB_LONG_2ADDR: {
2337      Binop_12x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
2338      break;
2339    }
2340
2341    case Instruction::SUB_FLOAT_2ADDR: {
2342      Binop_12x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
2343      break;
2344    }
2345
2346    case Instruction::SUB_DOUBLE_2ADDR: {
2347      Binop_12x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
2348      break;
2349    }
2350
2351    case Instruction::MUL_INT_2ADDR: {
2352      Binop_12x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
2353      break;
2354    }
2355
2356    case Instruction::MUL_LONG_2ADDR: {
2357      Binop_12x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
2358      break;
2359    }
2360
2361    case Instruction::MUL_FLOAT_2ADDR: {
2362      Binop_12x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
2363      break;
2364    }
2365
2366    case Instruction::MUL_DOUBLE_2ADDR: {
2367      Binop_12x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
2368      break;
2369    }
2370
2371    case Instruction::DIV_INT_2ADDR: {
2372      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2373                         dex_pc, Primitive::kPrimInt, false, true);
2374      break;
2375    }
2376
2377    case Instruction::DIV_LONG_2ADDR: {
2378      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2379                         dex_pc, Primitive::kPrimLong, false, true);
2380      break;
2381    }
2382
2383    case Instruction::REM_INT_2ADDR: {
2384      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2385                         dex_pc, Primitive::kPrimInt, false, false);
2386      break;
2387    }
2388
2389    case Instruction::REM_LONG_2ADDR: {
2390      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2391                         dex_pc, Primitive::kPrimLong, false, false);
2392      break;
2393    }
2394
2395    case Instruction::REM_FLOAT_2ADDR: {
2396      Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
2397      break;
2398    }
2399
2400    case Instruction::REM_DOUBLE_2ADDR: {
2401      Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
2402      break;
2403    }
2404
2405    case Instruction::SHL_INT_2ADDR: {
2406      Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
2407      break;
2408    }
2409
2410    case Instruction::SHL_LONG_2ADDR: {
2411      Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
2412      break;
2413    }
2414
2415    case Instruction::SHR_INT_2ADDR: {
2416      Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
2417      break;
2418    }
2419
2420    case Instruction::SHR_LONG_2ADDR: {
2421      Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
2422      break;
2423    }
2424
2425    case Instruction::USHR_INT_2ADDR: {
2426      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
2427      break;
2428    }
2429
2430    case Instruction::USHR_LONG_2ADDR: {
2431      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
2432      break;
2433    }
2434
2435    case Instruction::DIV_FLOAT_2ADDR: {
2436      Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
2437      break;
2438    }
2439
2440    case Instruction::DIV_DOUBLE_2ADDR: {
2441      Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
2442      break;
2443    }
2444
2445    case Instruction::AND_INT_2ADDR: {
2446      Binop_12x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
2447      break;
2448    }
2449
2450    case Instruction::AND_LONG_2ADDR: {
2451      Binop_12x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
2452      break;
2453    }
2454
2455    case Instruction::OR_INT_2ADDR: {
2456      Binop_12x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
2457      break;
2458    }
2459
2460    case Instruction::OR_LONG_2ADDR: {
2461      Binop_12x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
2462      break;
2463    }
2464
2465    case Instruction::XOR_INT_2ADDR: {
2466      Binop_12x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
2467      break;
2468    }
2469
2470    case Instruction::XOR_LONG_2ADDR: {
2471      Binop_12x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
2472      break;
2473    }
2474
2475    case Instruction::ADD_INT_LIT16: {
2476      Binop_22s<HAdd>(instruction, false, dex_pc);
2477      break;
2478    }
2479
2480    case Instruction::AND_INT_LIT16: {
2481      Binop_22s<HAnd>(instruction, false, dex_pc);
2482      break;
2483    }
2484
2485    case Instruction::OR_INT_LIT16: {
2486      Binop_22s<HOr>(instruction, false, dex_pc);
2487      break;
2488    }
2489
2490    case Instruction::XOR_INT_LIT16: {
2491      Binop_22s<HXor>(instruction, false, dex_pc);
2492      break;
2493    }
2494
2495    case Instruction::RSUB_INT: {
2496      Binop_22s<HSub>(instruction, true, dex_pc);
2497      break;
2498    }
2499
2500    case Instruction::MUL_INT_LIT16: {
2501      Binop_22s<HMul>(instruction, false, dex_pc);
2502      break;
2503    }
2504
2505    case Instruction::ADD_INT_LIT8: {
2506      Binop_22b<HAdd>(instruction, false, dex_pc);
2507      break;
2508    }
2509
2510    case Instruction::AND_INT_LIT8: {
2511      Binop_22b<HAnd>(instruction, false, dex_pc);
2512      break;
2513    }
2514
2515    case Instruction::OR_INT_LIT8: {
2516      Binop_22b<HOr>(instruction, false, dex_pc);
2517      break;
2518    }
2519
2520    case Instruction::XOR_INT_LIT8: {
2521      Binop_22b<HXor>(instruction, false, dex_pc);
2522      break;
2523    }
2524
2525    case Instruction::RSUB_INT_LIT8: {
2526      Binop_22b<HSub>(instruction, true, dex_pc);
2527      break;
2528    }
2529
2530    case Instruction::MUL_INT_LIT8: {
2531      Binop_22b<HMul>(instruction, false, dex_pc);
2532      break;
2533    }
2534
2535    case Instruction::DIV_INT_LIT16:
2536    case Instruction::DIV_INT_LIT8: {
2537      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2538                         dex_pc, Primitive::kPrimInt, true, true);
2539      break;
2540    }
2541
2542    case Instruction::REM_INT_LIT16:
2543    case Instruction::REM_INT_LIT8: {
2544      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2545                         dex_pc, Primitive::kPrimInt, true, false);
2546      break;
2547    }
2548
2549    case Instruction::SHL_INT_LIT8: {
2550      Binop_22b<HShl>(instruction, false, dex_pc);
2551      break;
2552    }
2553
2554    case Instruction::SHR_INT_LIT8: {
2555      Binop_22b<HShr>(instruction, false, dex_pc);
2556      break;
2557    }
2558
2559    case Instruction::USHR_INT_LIT8: {
2560      Binop_22b<HUShr>(instruction, false, dex_pc);
2561      break;
2562    }
2563
2564    case Instruction::NEW_INSTANCE: {
2565      uint16_t type_index = instruction.VRegB_21c();
2566      if (compiler_driver_->IsStringTypeIndex(type_index, dex_file_)) {
2567        int32_t register_index = instruction.VRegA();
2568        HFakeString* fake_string = new (arena_) HFakeString(dex_pc);
2569        current_block_->AddInstruction(fake_string);
2570        UpdateLocal(register_index, fake_string, dex_pc);
2571      } else {
2572        if (!BuildNewInstance(type_index, dex_pc)) {
2573          return false;
2574        }
2575        UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
2576      }
2577      break;
2578    }
2579
2580    case Instruction::NEW_ARRAY: {
2581      uint16_t type_index = instruction.VRegC_22c();
2582      HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt, dex_pc);
2583      bool finalizable;
2584      QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable)
2585          ? kQuickAllocArrayWithAccessCheck
2586          : kQuickAllocArray;
2587      current_block_->AddInstruction(new (arena_) HNewArray(length,
2588                                                            graph_->GetCurrentMethod(),
2589                                                            dex_pc,
2590                                                            type_index,
2591                                                            *dex_compilation_unit_->GetDexFile(),
2592                                                            entrypoint));
2593      UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction(), dex_pc);
2594      break;
2595    }
2596
2597    case Instruction::FILLED_NEW_ARRAY: {
2598      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
2599      uint32_t type_index = instruction.VRegB_35c();
2600      uint32_t args[5];
2601      instruction.GetVarArgs(args);
2602      BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0);
2603      break;
2604    }
2605
2606    case Instruction::FILLED_NEW_ARRAY_RANGE: {
2607      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
2608      uint32_t type_index = instruction.VRegB_3rc();
2609      uint32_t register_index = instruction.VRegC_3rc();
2610      BuildFilledNewArray(
2611          dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index);
2612      break;
2613    }
2614
2615    case Instruction::FILL_ARRAY_DATA: {
2616      BuildFillArrayData(instruction, dex_pc);
2617      break;
2618    }
2619
2620    case Instruction::MOVE_RESULT:
2621    case Instruction::MOVE_RESULT_WIDE:
2622    case Instruction::MOVE_RESULT_OBJECT: {
2623      if (latest_result_ == nullptr) {
2624        // Only dead code can lead to this situation, where the verifier
2625        // does not reject the method.
2626      } else {
2627        // An Invoke/FilledNewArray and its MoveResult could have landed in
2628        // different blocks if there was a try/catch block boundary between
2629        // them. For Invoke, we insert a StoreLocal after the instruction. For
2630        // FilledNewArray, the local needs to be updated after the array was
2631        // filled, otherwise we might overwrite an input vreg.
2632        HStoreLocal* update_local =
2633            new (arena_) HStoreLocal(GetLocalAt(instruction.VRegA()), latest_result_, dex_pc);
2634        HBasicBlock* block = latest_result_->GetBlock();
2635        if (block == current_block_) {
2636          // MoveResult and the previous instruction are in the same block.
2637          current_block_->AddInstruction(update_local);
2638        } else {
2639          // The two instructions are in different blocks. Insert the MoveResult
2640          // before the final control-flow instruction of the previous block.
2641          DCHECK(block->EndsWithControlFlowInstruction());
2642          DCHECK(current_block_->GetInstructions().IsEmpty());
2643          block->InsertInstructionBefore(update_local, block->GetLastInstruction());
2644        }
2645        latest_result_ = nullptr;
2646      }
2647      break;
2648    }
2649
2650    case Instruction::CMP_LONG: {
2651      Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc);
2652      break;
2653    }
2654
2655    case Instruction::CMPG_FLOAT: {
2656      Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc);
2657      break;
2658    }
2659
2660    case Instruction::CMPG_DOUBLE: {
2661      Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc);
2662      break;
2663    }
2664
2665    case Instruction::CMPL_FLOAT: {
2666      Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc);
2667      break;
2668    }
2669
2670    case Instruction::CMPL_DOUBLE: {
2671      Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc);
2672      break;
2673    }
2674
2675    case Instruction::NOP:
2676      break;
2677
2678    case Instruction::IGET:
2679    case Instruction::IGET_QUICK:
2680    case Instruction::IGET_WIDE:
2681    case Instruction::IGET_WIDE_QUICK:
2682    case Instruction::IGET_OBJECT:
2683    case Instruction::IGET_OBJECT_QUICK:
2684    case Instruction::IGET_BOOLEAN:
2685    case Instruction::IGET_BOOLEAN_QUICK:
2686    case Instruction::IGET_BYTE:
2687    case Instruction::IGET_BYTE_QUICK:
2688    case Instruction::IGET_CHAR:
2689    case Instruction::IGET_CHAR_QUICK:
2690    case Instruction::IGET_SHORT:
2691    case Instruction::IGET_SHORT_QUICK: {
2692      if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) {
2693        return false;
2694      }
2695      break;
2696    }
2697
2698    case Instruction::IPUT:
2699    case Instruction::IPUT_QUICK:
2700    case Instruction::IPUT_WIDE:
2701    case Instruction::IPUT_WIDE_QUICK:
2702    case Instruction::IPUT_OBJECT:
2703    case Instruction::IPUT_OBJECT_QUICK:
2704    case Instruction::IPUT_BOOLEAN:
2705    case Instruction::IPUT_BOOLEAN_QUICK:
2706    case Instruction::IPUT_BYTE:
2707    case Instruction::IPUT_BYTE_QUICK:
2708    case Instruction::IPUT_CHAR:
2709    case Instruction::IPUT_CHAR_QUICK:
2710    case Instruction::IPUT_SHORT:
2711    case Instruction::IPUT_SHORT_QUICK: {
2712      if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) {
2713        return false;
2714      }
2715      break;
2716    }
2717
2718    case Instruction::SGET:
2719    case Instruction::SGET_WIDE:
2720    case Instruction::SGET_OBJECT:
2721    case Instruction::SGET_BOOLEAN:
2722    case Instruction::SGET_BYTE:
2723    case Instruction::SGET_CHAR:
2724    case Instruction::SGET_SHORT: {
2725      if (!BuildStaticFieldAccess(instruction, dex_pc, false)) {
2726        return false;
2727      }
2728      break;
2729    }
2730
2731    case Instruction::SPUT:
2732    case Instruction::SPUT_WIDE:
2733    case Instruction::SPUT_OBJECT:
2734    case Instruction::SPUT_BOOLEAN:
2735    case Instruction::SPUT_BYTE:
2736    case Instruction::SPUT_CHAR:
2737    case Instruction::SPUT_SHORT: {
2738      if (!BuildStaticFieldAccess(instruction, dex_pc, true)) {
2739        return false;
2740      }
2741      break;
2742    }
2743
2744#define ARRAY_XX(kind, anticipated_type)                                          \
2745    case Instruction::AGET##kind: {                                               \
2746      BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \
2747      break;                                                                      \
2748    }                                                                             \
2749    case Instruction::APUT##kind: {                                               \
2750      BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \
2751      break;                                                                      \
2752    }
2753
2754    ARRAY_XX(, Primitive::kPrimInt);
2755    ARRAY_XX(_WIDE, Primitive::kPrimLong);
2756    ARRAY_XX(_OBJECT, Primitive::kPrimNot);
2757    ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean);
2758    ARRAY_XX(_BYTE, Primitive::kPrimByte);
2759    ARRAY_XX(_CHAR, Primitive::kPrimChar);
2760    ARRAY_XX(_SHORT, Primitive::kPrimShort);
2761
2762    case Instruction::ARRAY_LENGTH: {
2763      HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot, dex_pc);
2764      // No need for a temporary for the null check, it is the only input of the following
2765      // instruction.
2766      object = new (arena_) HNullCheck(object, dex_pc);
2767      current_block_->AddInstruction(object);
2768      current_block_->AddInstruction(new (arena_) HArrayLength(object, dex_pc));
2769      UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction(), dex_pc);
2770      break;
2771    }
2772
2773    case Instruction::CONST_STRING: {
2774      current_block_->AddInstruction(
2775          new (arena_) HLoadString(graph_->GetCurrentMethod(), instruction.VRegB_21c(), dex_pc));
2776      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction(), dex_pc);
2777      break;
2778    }
2779
2780    case Instruction::CONST_STRING_JUMBO: {
2781      current_block_->AddInstruction(
2782          new (arena_) HLoadString(graph_->GetCurrentMethod(), instruction.VRegB_31c(), dex_pc));
2783      UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction(), dex_pc);
2784      break;
2785    }
2786
2787    case Instruction::CONST_CLASS: {
2788      uint16_t type_index = instruction.VRegB_21c();
2789      bool type_known_final;
2790      bool type_known_abstract;
2791      bool dont_use_is_referrers_class;
2792      // `CanAccessTypeWithoutChecks` will tell whether the method being
2793      // built is trying to access its own class, so that the generated
2794      // code can optimize for this case. However, the optimization does not
2795      // work for inlining, so we use `IsOutermostCompilingClass` instead.
2796      bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
2797          dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index,
2798          &type_known_final, &type_known_abstract, &dont_use_is_referrers_class);
2799      current_block_->AddInstruction(new (arena_) HLoadClass(
2800          graph_->GetCurrentMethod(),
2801          type_index,
2802          *dex_compilation_unit_->GetDexFile(),
2803          IsOutermostCompilingClass(type_index),
2804          dex_pc,
2805          !can_access));
2806      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction(), dex_pc);
2807      break;
2808    }
2809
2810    case Instruction::MOVE_EXCEPTION: {
2811      current_block_->AddInstruction(new (arena_) HLoadException(dex_pc));
2812      UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction(), dex_pc);
2813      current_block_->AddInstruction(new (arena_) HClearException(dex_pc));
2814      break;
2815    }
2816
2817    case Instruction::THROW: {
2818      HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc);
2819      current_block_->AddInstruction(new (arena_) HThrow(exception, dex_pc));
2820      // A throw instruction must branch to the exit block.
2821      current_block_->AddSuccessor(exit_block_);
2822      // We finished building this block. Set the current block to null to avoid
2823      // adding dead instructions to it.
2824      current_block_ = nullptr;
2825      break;
2826    }
2827
2828    case Instruction::INSTANCE_OF: {
2829      uint8_t destination = instruction.VRegA_22c();
2830      uint8_t reference = instruction.VRegB_22c();
2831      uint16_t type_index = instruction.VRegC_22c();
2832      BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
2833      break;
2834    }
2835
2836    case Instruction::CHECK_CAST: {
2837      uint8_t reference = instruction.VRegA_21c();
2838      uint16_t type_index = instruction.VRegB_21c();
2839      BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
2840      break;
2841    }
2842
2843    case Instruction::MONITOR_ENTER: {
2844      current_block_->AddInstruction(new (arena_) HMonitorOperation(
2845          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc),
2846          HMonitorOperation::kEnter,
2847          dex_pc));
2848      break;
2849    }
2850
2851    case Instruction::MONITOR_EXIT: {
2852      current_block_->AddInstruction(new (arena_) HMonitorOperation(
2853          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc),
2854          HMonitorOperation::kExit,
2855          dex_pc));
2856      break;
2857    }
2858
2859    case Instruction::PACKED_SWITCH: {
2860      BuildPackedSwitch(instruction, dex_pc);
2861      break;
2862    }
2863
2864    case Instruction::SPARSE_SWITCH: {
2865      BuildSparseSwitch(instruction, dex_pc);
2866      break;
2867    }
2868
2869    default:
2870      VLOG(compiler) << "Did not compile "
2871                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
2872                     << " because of unhandled instruction "
2873                     << instruction.Name();
2874      MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction);
2875      return false;
2876  }
2877  return true;
2878}  // NOLINT(readability/fn_size)
2879
2880HLocal* HGraphBuilder::GetLocalAt(uint32_t register_index) const {
2881  return locals_[register_index];
2882}
2883
2884void HGraphBuilder::UpdateLocal(uint32_t register_index,
2885                                HInstruction* instruction,
2886                                uint32_t dex_pc) const {
2887  HLocal* local = GetLocalAt(register_index);
2888  current_block_->AddInstruction(new (arena_) HStoreLocal(local, instruction, dex_pc));
2889}
2890
2891HInstruction* HGraphBuilder::LoadLocal(uint32_t register_index,
2892                                       Primitive::Type type,
2893                                       uint32_t dex_pc) const {
2894  HLocal* local = GetLocalAt(register_index);
2895  current_block_->AddInstruction(new (arena_) HLoadLocal(local, type, dex_pc));
2896  return current_block_->GetLastInstruction();
2897}
2898
2899}  // namespace art
2900