builder.cc revision fedd91d50930e160c021d65b3740264f6ffec260
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "builder.h"
18
19#include "art_field-inl.h"
20#include "base/arena_bit_vector.h"
21#include "base/bit_vector-inl.h"
22#include "base/logging.h"
23#include "class_linker.h"
24#include "dex/verified_method.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex/verified_method.h"
28#include "driver/compiler_driver-inl.h"
29#include "driver/compiler_options.h"
30#include "mirror/class_loader.h"
31#include "mirror/dex_cache.h"
32#include "nodes.h"
33#include "primitive.h"
34#include "scoped_thread_state_change.h"
35#include "thread.h"
36#include "utils/dex_cache_arrays_layout-inl.h"
37
38namespace art {
39
40/**
41 * Helper class to add HTemporary instructions. This class is used when
42 * converting a DEX instruction to multiple HInstruction, and where those
43 * instructions do not die at the following instruction, but instead spans
44 * multiple instructions.
45 */
46class Temporaries : public ValueObject {
47 public:
48  explicit Temporaries(HGraph* graph) : graph_(graph), index_(0) {}
49
50  void Add(HInstruction* instruction) {
51    HInstruction* temp = new (graph_->GetArena()) HTemporary(index_, instruction->GetDexPc());
52    instruction->GetBlock()->AddInstruction(temp);
53
54    DCHECK(temp->GetPrevious() == instruction);
55
56    size_t offset;
57    if (instruction->GetType() == Primitive::kPrimLong
58        || instruction->GetType() == Primitive::kPrimDouble) {
59      offset = 2;
60    } else {
61      offset = 1;
62    }
63    index_ += offset;
64
65    graph_->UpdateTemporariesVRegSlots(index_);
66  }
67
68 private:
69  HGraph* const graph_;
70
71  // Current index in the temporary stack, updated by `Add`.
72  size_t index_;
73};
74
75class SwitchTable : public ValueObject {
76 public:
77  SwitchTable(const Instruction& instruction, uint32_t dex_pc, bool sparse)
78      : instruction_(instruction), dex_pc_(dex_pc), sparse_(sparse) {
79    int32_t table_offset = instruction.VRegB_31t();
80    const uint16_t* table = reinterpret_cast<const uint16_t*>(&instruction) + table_offset;
81    if (sparse) {
82      CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature));
83    } else {
84      CHECK_EQ(table[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature));
85    }
86    num_entries_ = table[1];
87    values_ = reinterpret_cast<const int32_t*>(&table[2]);
88  }
89
90  uint16_t GetNumEntries() const {
91    return num_entries_;
92  }
93
94  void CheckIndex(size_t index) const {
95    if (sparse_) {
96      // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
97      DCHECK_LT(index, 2 * static_cast<size_t>(num_entries_));
98    } else {
99      // In a packed table, we have the starting key and num_entries_ values.
100      DCHECK_LT(index, 1 + static_cast<size_t>(num_entries_));
101    }
102  }
103
104  int32_t GetEntryAt(size_t index) const {
105    CheckIndex(index);
106    return values_[index];
107  }
108
109  uint32_t GetDexPcForIndex(size_t index) const {
110    CheckIndex(index);
111    return dex_pc_ +
112        (reinterpret_cast<const int16_t*>(values_ + index) -
113         reinterpret_cast<const int16_t*>(&instruction_));
114  }
115
116  // Index of the first value in the table.
117  size_t GetFirstValueIndex() const {
118    if (sparse_) {
119      // In a sparse table, we have num_entries_ keys and num_entries_ values, in that order.
120      return num_entries_;
121    } else {
122      // In a packed table, we have the starting key and num_entries_ values.
123      return 1;
124    }
125  }
126
127 private:
128  const Instruction& instruction_;
129  const uint32_t dex_pc_;
130
131  // Whether this is a sparse-switch table (or a packed-switch one).
132  const bool sparse_;
133
134  // This can't be const as it needs to be computed off of the given instruction, and complicated
135  // expressions in the initializer list seemed very ugly.
136  uint16_t num_entries_;
137
138  const int32_t* values_;
139
140  DISALLOW_COPY_AND_ASSIGN(SwitchTable);
141};
142
143void HGraphBuilder::InitializeLocals(uint16_t count) {
144  graph_->SetNumberOfVRegs(count);
145  locals_.resize(count);
146  for (int i = 0; i < count; i++) {
147    HLocal* local = new (arena_) HLocal(i);
148    entry_block_->AddInstruction(local);
149    locals_[i] = local;
150  }
151}
152
153void HGraphBuilder::InitializeParameters(uint16_t number_of_parameters) {
154  // dex_compilation_unit_ is null only when unit testing.
155  if (dex_compilation_unit_ == nullptr) {
156    return;
157  }
158
159  graph_->SetNumberOfInVRegs(number_of_parameters);
160  const char* shorty = dex_compilation_unit_->GetShorty();
161  int locals_index = locals_.size() - number_of_parameters;
162  int parameter_index = 0;
163
164  const DexFile::MethodId& referrer_method_id =
165      dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
166  if (!dex_compilation_unit_->IsStatic()) {
167    // Add the implicit 'this' argument, not expressed in the signature.
168    HParameterValue* parameter = new (arena_) HParameterValue(*dex_file_,
169                                                              referrer_method_id.class_idx_,
170                                                              parameter_index++,
171                                                              Primitive::kPrimNot,
172                                                              true);
173    entry_block_->AddInstruction(parameter);
174    HLocal* local = GetLocalAt(locals_index++);
175    entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter, local->GetDexPc()));
176    number_of_parameters--;
177  }
178
179  const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
180  const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
181  for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
182    HParameterValue* parameter = new (arena_) HParameterValue(
183        *dex_file_,
184        arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
185        parameter_index++,
186        Primitive::GetType(shorty[shorty_pos]),
187        false);
188    ++shorty_pos;
189    entry_block_->AddInstruction(parameter);
190    HLocal* local = GetLocalAt(locals_index++);
191    // Store the parameter value in the local that the dex code will use
192    // to reference that parameter.
193    entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter, local->GetDexPc()));
194    bool is_wide = (parameter->GetType() == Primitive::kPrimLong)
195        || (parameter->GetType() == Primitive::kPrimDouble);
196    if (is_wide) {
197      i++;
198      locals_index++;
199      parameter_index++;
200    }
201  }
202}
203
204template<typename T>
205void HGraphBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
206  int32_t target_offset = instruction.GetTargetOffset();
207  HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset);
208  HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
209  DCHECK(branch_target != nullptr);
210  DCHECK(fallthrough_target != nullptr);
211  PotentiallyAddSuspendCheck(branch_target, dex_pc);
212  HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
213  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
214  T* comparison = new (arena_) T(first, second, dex_pc);
215  current_block_->AddInstruction(comparison);
216  HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc);
217  current_block_->AddInstruction(ifinst);
218  current_block_->AddSuccessor(branch_target);
219  current_block_->AddSuccessor(fallthrough_target);
220  current_block_ = nullptr;
221}
222
223template<typename T>
224void HGraphBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
225  int32_t target_offset = instruction.GetTargetOffset();
226  HBasicBlock* branch_target = FindBlockStartingAt(dex_pc + target_offset);
227  HBasicBlock* fallthrough_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
228  DCHECK(branch_target != nullptr);
229  DCHECK(fallthrough_target != nullptr);
230  PotentiallyAddSuspendCheck(branch_target, dex_pc);
231  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
232  T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
233  current_block_->AddInstruction(comparison);
234  HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc);
235  current_block_->AddInstruction(ifinst);
236  current_block_->AddSuccessor(branch_target);
237  current_block_->AddSuccessor(fallthrough_target);
238  current_block_ = nullptr;
239}
240
241void HGraphBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) {
242  if (compilation_stats_ != nullptr) {
243    compilation_stats_->RecordStat(compilation_stat);
244  }
245}
246
247bool HGraphBuilder::SkipCompilation(const DexFile::CodeItem& code_item,
248                                    size_t number_of_branches) {
249  const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions();
250  CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter();
251  if (compiler_filter == CompilerOptions::kEverything) {
252    return false;
253  }
254
255  if (compiler_options.IsHugeMethod(code_item.insns_size_in_code_units_)) {
256    VLOG(compiler) << "Skip compilation of huge method "
257                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
258                   << ": " << code_item.insns_size_in_code_units_ << " code units";
259    MaybeRecordStat(MethodCompilationStat::kNotCompiledHugeMethod);
260    return true;
261  }
262
263  // If it's large and contains no branches, it's likely to be machine generated initialization.
264  if (compiler_options.IsLargeMethod(code_item.insns_size_in_code_units_)
265      && (number_of_branches == 0)) {
266    VLOG(compiler) << "Skip compilation of large method with no branch "
267                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
268                   << ": " << code_item.insns_size_in_code_units_ << " code units";
269    MaybeRecordStat(MethodCompilationStat::kNotCompiledLargeMethodNoBranches);
270    return true;
271  }
272
273  return false;
274}
275
276void HGraphBuilder::CreateBlocksForTryCatch(const DexFile::CodeItem& code_item) {
277  if (code_item.tries_size_ == 0) {
278    return;
279  }
280
281  // Create branch targets at the start/end of the TryItem range. These are
282  // places where the program might fall through into/out of the a block and
283  // where TryBoundary instructions will be inserted later. Other edges which
284  // enter/exit the try blocks are a result of branches/switches.
285  for (size_t idx = 0; idx < code_item.tries_size_; ++idx) {
286    const DexFile::TryItem* try_item = DexFile::GetTryItems(code_item, idx);
287    uint32_t dex_pc_start = try_item->start_addr_;
288    uint32_t dex_pc_end = dex_pc_start + try_item->insn_count_;
289    FindOrCreateBlockStartingAt(dex_pc_start);
290    if (dex_pc_end < code_item.insns_size_in_code_units_) {
291      // TODO: Do not create block if the last instruction cannot fall through.
292      FindOrCreateBlockStartingAt(dex_pc_end);
293    } else {
294      // The TryItem spans until the very end of the CodeItem (or beyond if
295      // invalid) and therefore cannot have any code afterwards.
296    }
297  }
298
299  // Create branch targets for exception handlers.
300  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(code_item, 0);
301  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
302  for (uint32_t idx = 0; idx < handlers_size; ++idx) {
303    CatchHandlerIterator iterator(handlers_ptr);
304    for (; iterator.HasNext(); iterator.Next()) {
305      uint32_t address = iterator.GetHandlerAddress();
306      HBasicBlock* block = FindOrCreateBlockStartingAt(address);
307      block->SetTryCatchInformation(
308        new (arena_) TryCatchInformation(iterator.GetHandlerTypeIndex(), *dex_file_));
309    }
310    handlers_ptr = iterator.EndDataPointer();
311  }
312}
313
314// Returns the TryItem stored for `block` or nullptr if there is no info for it.
315static const DexFile::TryItem* GetTryItem(
316    HBasicBlock* block,
317    const ArenaSafeMap<uint32_t, const DexFile::TryItem*>& try_block_info) {
318  auto iterator = try_block_info.find(block->GetBlockId());
319  return (iterator == try_block_info.end()) ? nullptr : iterator->second;
320}
321
322void HGraphBuilder::LinkToCatchBlocks(HTryBoundary* try_boundary,
323                                      const DexFile::CodeItem& code_item,
324                                      const DexFile::TryItem* try_item) {
325  for (CatchHandlerIterator it(code_item, *try_item); it.HasNext(); it.Next()) {
326    try_boundary->AddExceptionHandler(FindBlockStartingAt(it.GetHandlerAddress()));
327  }
328}
329
330void HGraphBuilder::InsertTryBoundaryBlocks(const DexFile::CodeItem& code_item) {
331  if (code_item.tries_size_ == 0) {
332    return;
333  }
334
335  // Keep a map of all try blocks and their respective TryItems. We do not use
336  // the block's pointer but rather its id to ensure deterministic iteration.
337  ArenaSafeMap<uint32_t, const DexFile::TryItem*> try_block_info(
338      std::less<uint32_t>(), arena_->Adapter(kArenaAllocGraphBuilder));
339
340  // Obtain TryItem information for blocks with throwing instructions, and split
341  // blocks which are both try & catch to simplify the graph.
342  // NOTE: We are appending new blocks inside the loop, so we need to use index
343  // because iterators can be invalidated. We remember the initial size to avoid
344  // iterating over the new blocks which cannot throw.
345  for (size_t i = 0, e = graph_->GetBlocks().size(); i < e; ++i) {
346    HBasicBlock* block = graph_->GetBlocks()[i];
347
348    // Do not bother creating exceptional edges for try blocks which have no
349    // throwing instructions. In that case we simply assume that the block is
350    // not covered by a TryItem. This prevents us from creating a throw-catch
351    // loop for synchronized blocks.
352    if (block->HasThrowingInstructions()) {
353      // Try to find a TryItem covering the block.
354      DCHECK_NE(block->GetDexPc(), kNoDexPc) << "Block must have a dec_pc to find its TryItem.";
355      const int32_t try_item_idx = DexFile::FindTryItem(code_item, block->GetDexPc());
356      if (try_item_idx != -1) {
357        // Block throwing and in a TryItem. Store the try block information.
358        HBasicBlock* throwing_block = block;
359        if (block->IsCatchBlock()) {
360          // Simplify blocks which are both try and catch, otherwise we would
361          // need a strategy for splitting exceptional edges. We split the block
362          // after the move-exception (if present) and mark the first part not
363          // throwing. The normal-flow edge between them will be split later.
364          throwing_block = block->SplitCatchBlockAfterMoveException();
365          // Move-exception does not throw and the block has throwing insructions
366          // so it must have been possible to split it.
367          DCHECK(throwing_block != nullptr);
368        }
369
370        try_block_info.Put(throwing_block->GetBlockId(),
371                           DexFile::GetTryItems(code_item, try_item_idx));
372      }
373    }
374  }
375
376  // Do a pass over the try blocks and insert entering TryBoundaries where at
377  // least one predecessor is not covered by the same TryItem as the try block.
378  // We do not split each edge separately, but rather create one boundary block
379  // that all predecessors are relinked to. This preserves loop headers (b/23895756).
380  for (auto entry : try_block_info) {
381    HBasicBlock* try_block = graph_->GetBlocks()[entry.first];
382    for (HBasicBlock* predecessor : try_block->GetPredecessors()) {
383      if (GetTryItem(predecessor, try_block_info) != entry.second) {
384        // Found a predecessor not covered by the same TryItem. Insert entering
385        // boundary block.
386        HTryBoundary* try_entry =
387            new (arena_) HTryBoundary(HTryBoundary::kEntry, try_block->GetDexPc());
388        try_block->CreateImmediateDominator()->AddInstruction(try_entry);
389        LinkToCatchBlocks(try_entry, code_item, entry.second);
390        break;
391      }
392    }
393  }
394
395  // Do a second pass over the try blocks and insert exit TryBoundaries where
396  // the successor is not in the same TryItem.
397  for (auto entry : try_block_info) {
398    HBasicBlock* try_block = graph_->GetBlocks()[entry.first];
399    // NOTE: Do not use iterators because SplitEdge would invalidate them.
400    for (size_t i = 0, e = try_block->GetSuccessors().size(); i < e; ++i) {
401      HBasicBlock* successor = try_block->GetSuccessors()[i];
402
403      // If the successor is a try block, all of its predecessors must be
404      // covered by the same TryItem. Otherwise the previous pass would have
405      // created a non-throwing boundary block.
406      if (GetTryItem(successor, try_block_info) != nullptr) {
407        DCHECK_EQ(entry.second, GetTryItem(successor, try_block_info));
408        continue;
409      }
410
411      // Preserve the invariant that Return(Void) always jumps to Exit by moving
412      // it outside the try block if necessary.
413      HInstruction* last_instruction = try_block->GetLastInstruction();
414      if (last_instruction->IsReturn() || last_instruction->IsReturnVoid()) {
415        DCHECK_EQ(successor, exit_block_);
416        successor = try_block->SplitBefore(last_instruction);
417      }
418
419      // Insert TryBoundary and link to catch blocks.
420      HTryBoundary* try_exit =
421          new (arena_) HTryBoundary(HTryBoundary::kExit, successor->GetDexPc());
422      graph_->SplitEdge(try_block, successor)->AddInstruction(try_exit);
423      LinkToCatchBlocks(try_exit, code_item, entry.second);
424    }
425  }
426}
427
428bool HGraphBuilder::BuildGraph(const DexFile::CodeItem& code_item) {
429  DCHECK(graph_->GetBlocks().empty());
430
431  const uint16_t* code_ptr = code_item.insns_;
432  const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_;
433  code_start_ = code_ptr;
434
435  // Setup the graph with the entry block and exit block.
436  entry_block_ = new (arena_) HBasicBlock(graph_, 0);
437  graph_->AddBlock(entry_block_);
438  exit_block_ = new (arena_) HBasicBlock(graph_, kNoDexPc);
439  graph_->SetEntryBlock(entry_block_);
440  graph_->SetExitBlock(exit_block_);
441
442  graph_->SetHasTryCatch(code_item.tries_size_ != 0);
443
444  InitializeLocals(code_item.registers_size_);
445  graph_->SetMaximumNumberOfOutVRegs(code_item.outs_size_);
446
447  // Compute the number of dex instructions, blocks, and branches. We will
448  // check these values against limits given to the compiler.
449  size_t number_of_branches = 0;
450
451  // To avoid splitting blocks, we compute ahead of time the instructions that
452  // start a new block, and create these blocks.
453  if (!ComputeBranchTargets(code_ptr, code_end, &number_of_branches)) {
454    MaybeRecordStat(MethodCompilationStat::kNotCompiledBranchOutsideMethodCode);
455    return false;
456  }
457
458  // Note that the compiler driver is null when unit testing.
459  if ((compiler_driver_ != nullptr) && SkipCompilation(code_item, number_of_branches)) {
460    return false;
461  }
462
463  // Find locations where we want to generate extra stackmaps for native debugging.
464  // This allows us to generate the info only at interesting points (for example,
465  // at start of java statement) rather than before every dex instruction.
466  const bool native_debuggable = compiler_driver_ != nullptr &&
467                                 compiler_driver_->GetCompilerOptions().GetNativeDebuggable();
468  ArenaBitVector* native_debug_info_locations;
469  if (native_debuggable) {
470    const uint32_t num_instructions = code_item.insns_size_in_code_units_;
471    native_debug_info_locations = new (arena_) ArenaBitVector (arena_, num_instructions, false);
472    native_debug_info_locations->ClearAllBits();
473    FindNativeDebugInfoLocations(code_item, native_debug_info_locations);
474  }
475
476  CreateBlocksForTryCatch(code_item);
477
478  InitializeParameters(code_item.ins_size_);
479
480  size_t dex_pc = 0;
481  while (code_ptr < code_end) {
482    // Update the current block if dex_pc starts a new block.
483    MaybeUpdateCurrentBlock(dex_pc);
484    const Instruction& instruction = *Instruction::At(code_ptr);
485    if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) {
486      if (current_block_ != nullptr) {
487        current_block_->AddInstruction(new (arena_) HNativeDebugInfo(dex_pc));
488      }
489    }
490    if (!AnalyzeDexInstruction(instruction, dex_pc)) {
491      return false;
492    }
493    dex_pc += instruction.SizeInCodeUnits();
494    code_ptr += instruction.SizeInCodeUnits();
495  }
496
497  // Add Exit to the exit block.
498  exit_block_->AddInstruction(new (arena_) HExit());
499  // Add the suspend check to the entry block.
500  entry_block_->AddInstruction(new (arena_) HSuspendCheck(0));
501  entry_block_->AddInstruction(new (arena_) HGoto());
502  // Add the exit block at the end.
503  graph_->AddBlock(exit_block_);
504
505  // Iterate over blocks covered by TryItems and insert TryBoundaries at entry
506  // and exit points. This requires all control-flow instructions and
507  // non-exceptional edges to have been created.
508  InsertTryBoundaryBlocks(code_item);
509
510  return true;
511}
512
513void HGraphBuilder::MaybeUpdateCurrentBlock(size_t dex_pc) {
514  HBasicBlock* block = FindBlockStartingAt(dex_pc);
515  if (block == nullptr) {
516    return;
517  }
518
519  if (current_block_ != nullptr) {
520    // Branching instructions clear current_block, so we know
521    // the last instruction of the current block is not a branching
522    // instruction. We add an unconditional goto to the found block.
523    current_block_->AddInstruction(new (arena_) HGoto(dex_pc));
524    current_block_->AddSuccessor(block);
525  }
526  graph_->AddBlock(block);
527  current_block_ = block;
528}
529
530void HGraphBuilder::FindNativeDebugInfoLocations(const DexFile::CodeItem& code_item,
531                                                 ArenaBitVector* locations) {
532  // The callback gets called when the line number changes.
533  // In other words, it marks the start of new java statement.
534  struct Callback {
535    static bool Position(void* ctx, const DexFile::PositionInfo& entry) {
536      static_cast<ArenaBitVector*>(ctx)->SetBit(entry.address_);
537      return false;
538    }
539  };
540  dex_file_->DecodeDebugPositionInfo(&code_item, Callback::Position, locations);
541  // Add native debug info at the start of every basic block.
542  for (uint32_t pc = 0; pc < code_item.insns_size_in_code_units_; pc++) {
543    if (FindBlockStartingAt(pc) != nullptr) {
544      locations->SetBit(pc);
545    }
546  }
547  // Instruction-specific tweaks.
548  const Instruction* const begin = Instruction::At(code_item.insns_);
549  const Instruction* const end = begin->RelativeAt(code_item.insns_size_in_code_units_);
550  for (const Instruction* inst = begin; inst < end; inst = inst->Next()) {
551    switch (inst->Opcode()) {
552      case Instruction::MOVE_EXCEPTION:
553      case Instruction::MOVE_RESULT:
554      case Instruction::MOVE_RESULT_WIDE:
555      case Instruction::MOVE_RESULT_OBJECT: {
556        // The compiler checks that there are no instructions before those.
557        // So generate HNativeDebugInfo after them instead.
558        locations->ClearBit(inst->GetDexPc(code_item.insns_));
559        const Instruction* next = inst->Next();
560        if (next < end) {
561          locations->SetBit(next->GetDexPc(code_item.insns_));
562        }
563        break;
564      }
565      default:
566        break;
567    }
568  }
569}
570
571bool HGraphBuilder::ComputeBranchTargets(const uint16_t* code_ptr,
572                                         const uint16_t* code_end,
573                                         size_t* number_of_branches) {
574  branch_targets_.resize(code_end - code_ptr, nullptr);
575
576  // Create the first block for the dex instructions, single successor of the entry block.
577  HBasicBlock* block = new (arena_) HBasicBlock(graph_, 0);
578  branch_targets_[0] = block;
579  entry_block_->AddSuccessor(block);
580
581  // Iterate over all instructions and find branching instructions. Create blocks for
582  // the locations these instructions branch to.
583  uint32_t dex_pc = 0;
584  while (code_ptr < code_end) {
585    const Instruction& instruction = *Instruction::At(code_ptr);
586    if (instruction.IsBranch()) {
587      (*number_of_branches)++;
588      int32_t target = instruction.GetTargetOffset() + dex_pc;
589      // Create a block for the target instruction.
590      FindOrCreateBlockStartingAt(target);
591
592      dex_pc += instruction.SizeInCodeUnits();
593      code_ptr += instruction.SizeInCodeUnits();
594
595      if (instruction.CanFlowThrough()) {
596        if (code_ptr >= code_end) {
597          // In the normal case we should never hit this but someone can artificially forge a dex
598          // file to fall-through out the method code. In this case we bail out compilation.
599          return false;
600        } else {
601          FindOrCreateBlockStartingAt(dex_pc);
602        }
603      }
604    } else if (instruction.IsSwitch()) {
605      SwitchTable table(instruction, dex_pc, instruction.Opcode() == Instruction::SPARSE_SWITCH);
606
607      uint16_t num_entries = table.GetNumEntries();
608
609      // In a packed-switch, the entry at index 0 is the starting key. In a sparse-switch, the
610      // entry at index 0 is the first key, and values are after *all* keys.
611      size_t offset = table.GetFirstValueIndex();
612
613      // Use a larger loop counter type to avoid overflow issues.
614      for (size_t i = 0; i < num_entries; ++i) {
615        // The target of the case.
616        uint32_t target = dex_pc + table.GetEntryAt(i + offset);
617        FindOrCreateBlockStartingAt(target);
618
619        // Create a block for the switch-case logic. The block gets the dex_pc
620        // of the SWITCH instruction because it is part of its semantics.
621        block = new (arena_) HBasicBlock(graph_, dex_pc);
622        branch_targets_[table.GetDexPcForIndex(i)] = block;
623      }
624
625      // Fall-through. Add a block if there is more code afterwards.
626      dex_pc += instruction.SizeInCodeUnits();
627      code_ptr += instruction.SizeInCodeUnits();
628      if (code_ptr >= code_end) {
629        // In the normal case we should never hit this but someone can artificially forge a dex
630        // file to fall-through out the method code. In this case we bail out compilation.
631        // (A switch can fall-through so we don't need to check CanFlowThrough().)
632        return false;
633      } else {
634        FindOrCreateBlockStartingAt(dex_pc);
635      }
636    } else {
637      code_ptr += instruction.SizeInCodeUnits();
638      dex_pc += instruction.SizeInCodeUnits();
639    }
640  }
641  return true;
642}
643
644HBasicBlock* HGraphBuilder::FindBlockStartingAt(int32_t dex_pc) const {
645  DCHECK_GE(dex_pc, 0);
646  return branch_targets_[dex_pc];
647}
648
649HBasicBlock* HGraphBuilder::FindOrCreateBlockStartingAt(int32_t dex_pc) {
650  HBasicBlock* block = FindBlockStartingAt(dex_pc);
651  if (block == nullptr) {
652    block = new (arena_) HBasicBlock(graph_, dex_pc);
653    branch_targets_[dex_pc] = block;
654  }
655  return block;
656}
657
658template<typename T>
659void HGraphBuilder::Unop_12x(const Instruction& instruction,
660                             Primitive::Type type,
661                             uint32_t dex_pc) {
662  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
663  current_block_->AddInstruction(new (arena_) T(type, first, dex_pc));
664  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
665}
666
667void HGraphBuilder::Conversion_12x(const Instruction& instruction,
668                                   Primitive::Type input_type,
669                                   Primitive::Type result_type,
670                                   uint32_t dex_pc) {
671  HInstruction* first = LoadLocal(instruction.VRegB(), input_type, dex_pc);
672  current_block_->AddInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc));
673  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
674}
675
676template<typename T>
677void HGraphBuilder::Binop_23x(const Instruction& instruction,
678                              Primitive::Type type,
679                              uint32_t dex_pc) {
680  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
681  HInstruction* second = LoadLocal(instruction.VRegC(), type, dex_pc);
682  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
683  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
684}
685
686template<typename T>
687void HGraphBuilder::Binop_23x_shift(const Instruction& instruction,
688                                    Primitive::Type type,
689                                    uint32_t dex_pc) {
690  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
691  HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt, dex_pc);
692  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
693  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
694}
695
696void HGraphBuilder::Binop_23x_cmp(const Instruction& instruction,
697                                  Primitive::Type type,
698                                  ComparisonBias bias,
699                                  uint32_t dex_pc) {
700  HInstruction* first = LoadLocal(instruction.VRegB(), type, dex_pc);
701  HInstruction* second = LoadLocal(instruction.VRegC(), type, dex_pc);
702  current_block_->AddInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc));
703  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
704}
705
706template<typename T>
707void HGraphBuilder::Binop_12x_shift(const Instruction& instruction, Primitive::Type type,
708                                    uint32_t dex_pc) {
709  HInstruction* first = LoadLocal(instruction.VRegA(), type, dex_pc);
710  HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
711  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
712  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
713}
714
715template<typename T>
716void HGraphBuilder::Binop_12x(const Instruction& instruction,
717                              Primitive::Type type,
718                              uint32_t dex_pc) {
719  HInstruction* first = LoadLocal(instruction.VRegA(), type, dex_pc);
720  HInstruction* second = LoadLocal(instruction.VRegB(), type, dex_pc);
721  current_block_->AddInstruction(new (arena_) T(type, first, second, dex_pc));
722  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
723}
724
725template<typename T>
726void HGraphBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
727  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
728  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
729  if (reverse) {
730    std::swap(first, second);
731  }
732  current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
733  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
734}
735
736template<typename T>
737void HGraphBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
738  HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
739  HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
740  if (reverse) {
741    std::swap(first, second);
742  }
743  current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
744  UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
745}
746
747static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, const CompilerDriver& driver) {
748  Thread* self = Thread::Current();
749  return cu->IsConstructor()
750      && driver.RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex());
751}
752
753void HGraphBuilder::BuildReturn(const Instruction& instruction,
754                                Primitive::Type type,
755                                uint32_t dex_pc) {
756  if (type == Primitive::kPrimVoid) {
757    if (graph_->ShouldGenerateConstructorBarrier()) {
758      // The compilation unit is null during testing.
759      if (dex_compilation_unit_ != nullptr) {
760        DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, *compiler_driver_))
761          << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier.";
762      }
763      current_block_->AddInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc));
764    }
765    current_block_->AddInstruction(new (arena_) HReturnVoid(dex_pc));
766  } else {
767    HInstruction* value = LoadLocal(instruction.VRegA(), type, dex_pc);
768    current_block_->AddInstruction(new (arena_) HReturn(value, dex_pc));
769  }
770  current_block_->AddSuccessor(exit_block_);
771  current_block_ = nullptr;
772}
773
774static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
775  switch (opcode) {
776    case Instruction::INVOKE_STATIC:
777    case Instruction::INVOKE_STATIC_RANGE:
778      return kStatic;
779    case Instruction::INVOKE_DIRECT:
780    case Instruction::INVOKE_DIRECT_RANGE:
781      return kDirect;
782    case Instruction::INVOKE_VIRTUAL:
783    case Instruction::INVOKE_VIRTUAL_QUICK:
784    case Instruction::INVOKE_VIRTUAL_RANGE:
785    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
786      return kVirtual;
787    case Instruction::INVOKE_INTERFACE:
788    case Instruction::INVOKE_INTERFACE_RANGE:
789      return kInterface;
790    case Instruction::INVOKE_SUPER_RANGE:
791    case Instruction::INVOKE_SUPER:
792      return kSuper;
793    default:
794      LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
795      UNREACHABLE();
796  }
797}
798
799ArtMethod* HGraphBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) {
800  ScopedObjectAccess soa(Thread::Current());
801  StackHandleScope<3> hs(soa.Self());
802
803  ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
804  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
805      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
806  Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass()));
807
808  ArtMethod* resolved_method = class_linker->ResolveMethod<ClassLinker::kForceICCECheck>(
809      *dex_compilation_unit_->GetDexFile(),
810      method_idx,
811      dex_compilation_unit_->GetDexCache(),
812      class_loader,
813      /* referrer */ nullptr,
814      invoke_type);
815
816  if (UNLIKELY(resolved_method == nullptr)) {
817    // Clean up any exception left by type resolution.
818    soa.Self()->ClearException();
819    return nullptr;
820  }
821
822  // Check access. The class linker has a fast path for looking into the dex cache
823  // and does not check the access if it hits it.
824  if (compiling_class.Get() == nullptr) {
825    if (!resolved_method->IsPublic()) {
826      return nullptr;
827    }
828  } else if (!compiling_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(),
829                                                       resolved_method,
830                                                       dex_compilation_unit_->GetDexCache().Get(),
831                                                       method_idx)) {
832    return nullptr;
833  }
834
835  // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not.
836  // We need to look at the referrer's super class vtable. We need to do this to know if we need to
837  // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of
838  // which require runtime handling.
839  if (invoke_type == kSuper) {
840    if (compiling_class.Get() == nullptr) {
841      // We could not determine the method's class we need to wait until runtime.
842      DCHECK(Runtime::Current()->IsAotCompiler());
843      return nullptr;
844    }
845    ArtMethod* current_method = graph_->GetArtMethod();
846    DCHECK(current_method != nullptr);
847    Handle<mirror::Class> methods_class(hs.NewHandle(
848        dex_compilation_unit_->GetClassLinker()->ResolveReferencedClassOfMethod(Thread::Current(),
849                                                                                method_idx,
850                                                                                current_method)));
851    if (methods_class.Get() == nullptr) {
852      // Invoking a super method requires knowing the actual super class. If we did not resolve
853      // the compiling method's declaring class (which only happens for ahead of time
854      // compilation), bail out.
855      DCHECK(Runtime::Current()->IsAotCompiler());
856      return nullptr;
857    } else {
858      ArtMethod* actual_method;
859      if (methods_class->IsInterface()) {
860        actual_method = methods_class->FindVirtualMethodForInterfaceSuper(
861            resolved_method, class_linker->GetImagePointerSize());
862      } else {
863        uint16_t vtable_index = resolved_method->GetMethodIndex();
864        actual_method = compiling_class->GetSuperClass()->GetVTableEntry(
865            vtable_index, class_linker->GetImagePointerSize());
866      }
867      if (actual_method != resolved_method &&
868          !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
869        // The back-end code generator relies on this check in order to ensure that it will not
870        // attempt to read the dex_cache with a dex_method_index that is not from the correct
871        // dex_file. If we didn't do this check then the dex_method_index will not be updated in the
872        // builder, which means that the code-generator (and compiler driver during sharpening and
873        // inliner, maybe) might invoke an incorrect method.
874        // TODO: The actual method could still be referenced in the current dex file, so we
875        //       could try locating it.
876        // TODO: Remove the dex_file restriction.
877        return nullptr;
878      }
879      if (!actual_method->IsInvokable()) {
880        // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub
881        // could resolve the callee to the wrong method.
882        return nullptr;
883      }
884      resolved_method = actual_method;
885    }
886  }
887
888  // Check for incompatible class changes. The class linker has a fast path for
889  // looking into the dex cache and does not check incompatible class changes if it hits it.
890  if (resolved_method->CheckIncompatibleClassChange(invoke_type)) {
891    return nullptr;
892  }
893
894  return resolved_method;
895}
896
897bool HGraphBuilder::BuildInvoke(const Instruction& instruction,
898                                uint32_t dex_pc,
899                                uint32_t method_idx,
900                                uint32_t number_of_vreg_arguments,
901                                bool is_range,
902                                uint32_t* args,
903                                uint32_t register_index) {
904  InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
905  const char* descriptor = dex_file_->GetMethodShorty(method_idx);
906  Primitive::Type return_type = Primitive::GetType(descriptor[0]);
907
908  // Remove the return type from the 'proto'.
909  size_t number_of_arguments = strlen(descriptor) - 1;
910  if (invoke_type != kStatic) {  // instance call
911    // One extra argument for 'this'.
912    number_of_arguments++;
913  }
914
915  MethodReference target_method(dex_file_, method_idx);
916
917  // Special handling for string init.
918  int32_t string_init_offset = 0;
919  bool is_string_init = compiler_driver_->IsStringInit(method_idx,
920                                                       dex_file_,
921                                                       &string_init_offset);
922  // Replace calls to String.<init> with StringFactory.
923  if (is_string_init) {
924    HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
925        HInvokeStaticOrDirect::MethodLoadKind::kStringInit,
926        HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
927        dchecked_integral_cast<uint64_t>(string_init_offset),
928        0U
929    };
930    HInvoke* invoke = new (arena_) HInvokeStaticOrDirect(
931        arena_,
932        number_of_arguments - 1,
933        Primitive::kPrimNot /*return_type */,
934        dex_pc,
935        method_idx,
936        target_method,
937        dispatch_info,
938        invoke_type,
939        kStatic /* optimized_invoke_type */,
940        HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
941    return HandleStringInit(invoke,
942                            number_of_vreg_arguments,
943                            args,
944                            register_index,
945                            is_range,
946                            descriptor);
947  }
948
949  ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type);
950
951  if (UNLIKELY(resolved_method == nullptr)) {
952    MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod);
953    HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_,
954                                                     number_of_arguments,
955                                                     return_type,
956                                                     dex_pc,
957                                                     method_idx,
958                                                     invoke_type);
959    return HandleInvoke(invoke,
960                        number_of_vreg_arguments,
961                        args,
962                        register_index,
963                        is_range,
964                        descriptor,
965                        nullptr /* clinit_check */);
966  }
967
968  // Potential class initialization check, in the case of a static method call.
969  HClinitCheck* clinit_check = nullptr;
970  HInvoke* invoke = nullptr;
971  if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) {
972    // By default, consider that the called method implicitly requires
973    // an initialization check of its declaring method.
974    HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement
975        = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
976    ScopedObjectAccess soa(Thread::Current());
977    if (invoke_type == kStatic) {
978      clinit_check = ProcessClinitCheckForInvoke(
979          dex_pc, resolved_method, method_idx, &clinit_check_requirement);
980    } else if (invoke_type == kSuper) {
981      if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
982        // Update the target method to the one resolved. Note that this may be a no-op if
983        // we resolved to the method referenced by the instruction.
984        method_idx = resolved_method->GetDexMethodIndex();
985        target_method = MethodReference(dex_file_, method_idx);
986      }
987    }
988
989    HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
990        HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod,
991        HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
992        0u,
993        0U
994    };
995    invoke = new (arena_) HInvokeStaticOrDirect(arena_,
996                                                number_of_arguments,
997                                                return_type,
998                                                dex_pc,
999                                                method_idx,
1000                                                target_method,
1001                                                dispatch_info,
1002                                                invoke_type,
1003                                                invoke_type,
1004                                                clinit_check_requirement);
1005  } else if (invoke_type == kVirtual) {
1006    ScopedObjectAccess soa(Thread::Current());  // Needed for the method index
1007    invoke = new (arena_) HInvokeVirtual(arena_,
1008                                         number_of_arguments,
1009                                         return_type,
1010                                         dex_pc,
1011                                         method_idx,
1012                                         resolved_method->GetMethodIndex());
1013  } else {
1014    DCHECK_EQ(invoke_type, kInterface);
1015    ScopedObjectAccess soa(Thread::Current());  // Needed for the method index
1016    invoke = new (arena_) HInvokeInterface(arena_,
1017                                           number_of_arguments,
1018                                           return_type,
1019                                           dex_pc,
1020                                           method_idx,
1021                                           resolved_method->GetDexMethodIndex());
1022  }
1023
1024  return HandleInvoke(invoke,
1025                      number_of_vreg_arguments,
1026                      args,
1027                      register_index,
1028                      is_range,
1029                      descriptor,
1030                      clinit_check);
1031}
1032
1033bool HGraphBuilder::BuildNewInstance(uint16_t type_index, uint32_t dex_pc) {
1034  bool finalizable;
1035  bool can_throw = NeedsAccessCheck(type_index, &finalizable);
1036
1037  // Only the non-resolved entrypoint handles the finalizable class case. If we
1038  // need access checks, then we haven't resolved the method and the class may
1039  // again be finalizable.
1040  QuickEntrypointEnum entrypoint = (finalizable || can_throw)
1041      ? kQuickAllocObject
1042      : kQuickAllocObjectInitialized;
1043
1044  ScopedObjectAccess soa(Thread::Current());
1045  StackHandleScope<3> hs(soa.Self());
1046  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1047      dex_compilation_unit_->GetClassLinker()->FindDexCache(
1048          soa.Self(), *dex_compilation_unit_->GetDexFile())));
1049  Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index)));
1050  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
1051  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
1052      outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file)));
1053
1054  if (outer_dex_cache.Get() != dex_cache.Get()) {
1055    // We currently do not support inlining allocations across dex files.
1056    return false;
1057  }
1058
1059  HLoadClass* load_class = new (arena_) HLoadClass(
1060      graph_->GetCurrentMethod(),
1061      type_index,
1062      outer_dex_file,
1063      IsOutermostCompilingClass(type_index),
1064      dex_pc,
1065      /*needs_access_check*/ can_throw,
1066      compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, type_index));
1067
1068  current_block_->AddInstruction(load_class);
1069  HInstruction* cls = load_class;
1070  if (!IsInitialized(resolved_class)) {
1071    cls = new (arena_) HClinitCheck(load_class, dex_pc);
1072    current_block_->AddInstruction(cls);
1073  }
1074
1075  current_block_->AddInstruction(new (arena_) HNewInstance(
1076      cls,
1077      graph_->GetCurrentMethod(),
1078      dex_pc,
1079      type_index,
1080      *dex_compilation_unit_->GetDexFile(),
1081      can_throw,
1082      finalizable,
1083      entrypoint));
1084  return true;
1085}
1086
1087static bool IsSubClass(mirror::Class* to_test, mirror::Class* super_class)
1088    SHARED_REQUIRES(Locks::mutator_lock_) {
1089  return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
1090}
1091
1092bool HGraphBuilder::IsInitialized(Handle<mirror::Class> cls) const {
1093  if (cls.Get() == nullptr) {
1094    return false;
1095  }
1096
1097  // `CanAssumeClassIsLoaded` will return true if we're JITting, or will
1098  // check whether the class is in an image for the AOT compilation.
1099  if (cls->IsInitialized() &&
1100      compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) {
1101    return true;
1102  }
1103
1104  if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) {
1105    return true;
1106  }
1107
1108  // TODO: We should walk over the inlined methods, but we don't pass
1109  //       that information to the builder.
1110  if (IsSubClass(GetCompilingClass(), cls.Get())) {
1111    return true;
1112  }
1113
1114  return false;
1115}
1116
1117HClinitCheck* HGraphBuilder::ProcessClinitCheckForInvoke(
1118      uint32_t dex_pc,
1119      ArtMethod* resolved_method,
1120      uint32_t method_idx,
1121      HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
1122  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
1123  Thread* self = Thread::Current();
1124  StackHandleScope<4> hs(self);
1125  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1126      dex_compilation_unit_->GetClassLinker()->FindDexCache(
1127          self, *dex_compilation_unit_->GetDexFile())));
1128  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
1129      outer_compilation_unit_->GetClassLinker()->FindDexCache(
1130          self, outer_dex_file)));
1131  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
1132  Handle<mirror::Class> resolved_method_class(hs.NewHandle(resolved_method->GetDeclaringClass()));
1133
1134  // The index at which the method's class is stored in the DexCache's type array.
1135  uint32_t storage_index = DexFile::kDexNoIndex;
1136  bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get());
1137  if (is_outer_class) {
1138    storage_index = outer_class->GetDexTypeIndex();
1139  } else if (outer_dex_cache.Get() == dex_cache.Get()) {
1140    // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer.
1141    compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(),
1142                                                               GetCompilingClass(),
1143                                                               resolved_method,
1144                                                               method_idx,
1145                                                               &storage_index);
1146  }
1147
1148  HClinitCheck* clinit_check = nullptr;
1149
1150  if (IsInitialized(resolved_method_class)) {
1151    *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
1152  } else if (storage_index != DexFile::kDexNoIndex) {
1153    *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
1154    HLoadClass* load_class = new (arena_) HLoadClass(
1155        graph_->GetCurrentMethod(),
1156        storage_index,
1157        outer_dex_file,
1158        is_outer_class,
1159        dex_pc,
1160        /*needs_access_check*/ false,
1161        compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, storage_index));
1162    current_block_->AddInstruction(load_class);
1163    clinit_check = new (arena_) HClinitCheck(load_class, dex_pc);
1164    current_block_->AddInstruction(clinit_check);
1165  }
1166  return clinit_check;
1167}
1168
1169bool HGraphBuilder::SetupInvokeArguments(HInvoke* invoke,
1170                                         uint32_t number_of_vreg_arguments,
1171                                         uint32_t* args,
1172                                         uint32_t register_index,
1173                                         bool is_range,
1174                                         const char* descriptor,
1175                                         size_t start_index,
1176                                         size_t* argument_index) {
1177  uint32_t descriptor_index = 1;  // Skip the return type.
1178  uint32_t dex_pc = invoke->GetDexPc();
1179
1180  for (size_t i = start_index;
1181       // Make sure we don't go over the expected arguments or over the number of
1182       // dex registers given. If the instruction was seen as dead by the verifier,
1183       // it hasn't been properly checked.
1184       (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments());
1185       i++, (*argument_index)++) {
1186    Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]);
1187    bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
1188    if (!is_range
1189        && is_wide
1190        && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) {
1191      // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
1192      // reject any class where this is violated. However, the verifier only does these checks
1193      // on non trivially dead instructions, so we just bailout the compilation.
1194      VLOG(compiler) << "Did not compile "
1195                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
1196                     << " because of non-sequential dex register pair in wide argument";
1197      MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
1198      return false;
1199    }
1200    HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type, dex_pc);
1201    invoke->SetArgumentAt(*argument_index, arg);
1202    if (is_wide) {
1203      i++;
1204    }
1205  }
1206
1207  if (*argument_index != invoke->GetNumberOfArguments()) {
1208    VLOG(compiler) << "Did not compile "
1209                   << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
1210                   << " because of wrong number of arguments in invoke instruction";
1211    MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
1212    return false;
1213  }
1214
1215  if (invoke->IsInvokeStaticOrDirect() &&
1216      HInvokeStaticOrDirect::NeedsCurrentMethodInput(
1217          invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) {
1218    invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod());
1219    (*argument_index)++;
1220  }
1221
1222  return true;
1223}
1224
1225bool HGraphBuilder::HandleInvoke(HInvoke* invoke,
1226                                 uint32_t number_of_vreg_arguments,
1227                                 uint32_t* args,
1228                                 uint32_t register_index,
1229                                 bool is_range,
1230                                 const char* descriptor,
1231                                 HClinitCheck* clinit_check) {
1232  DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
1233
1234  size_t start_index = 0;
1235  size_t argument_index = 0;
1236  if (invoke->GetOriginalInvokeType() != InvokeType::kStatic) {  // Instance call.
1237    Temporaries temps(graph_);
1238    HInstruction* arg = LoadLocal(
1239        is_range ? register_index : args[0], Primitive::kPrimNot, invoke->GetDexPc());
1240    HNullCheck* null_check = new (arena_) HNullCheck(arg, invoke->GetDexPc());
1241    current_block_->AddInstruction(null_check);
1242    temps.Add(null_check);
1243    invoke->SetArgumentAt(0, null_check);
1244    start_index = 1;
1245    argument_index = 1;
1246  }
1247
1248  if (!SetupInvokeArguments(invoke,
1249                            number_of_vreg_arguments,
1250                            args,
1251                            register_index,
1252                            is_range,
1253                            descriptor,
1254                            start_index,
1255                            &argument_index)) {
1256    return false;
1257  }
1258
1259  if (clinit_check != nullptr) {
1260    // Add the class initialization check as last input of `invoke`.
1261    DCHECK(invoke->IsInvokeStaticOrDirect());
1262    DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement()
1263        == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
1264    invoke->SetArgumentAt(argument_index, clinit_check);
1265    argument_index++;
1266  }
1267
1268  current_block_->AddInstruction(invoke);
1269  latest_result_ = invoke;
1270
1271  return true;
1272}
1273
1274bool HGraphBuilder::HandleStringInit(HInvoke* invoke,
1275                                     uint32_t number_of_vreg_arguments,
1276                                     uint32_t* args,
1277                                     uint32_t register_index,
1278                                     bool is_range,
1279                                     const char* descriptor) {
1280  DCHECK(invoke->IsInvokeStaticOrDirect());
1281  DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
1282
1283  size_t start_index = 1;
1284  size_t argument_index = 0;
1285  if (!SetupInvokeArguments(invoke,
1286                            number_of_vreg_arguments,
1287                            args,
1288                            register_index,
1289                            is_range,
1290                            descriptor,
1291                            start_index,
1292                            &argument_index)) {
1293    return false;
1294  }
1295
1296  // Add move-result for StringFactory method.
1297  uint32_t orig_this_reg = is_range ? register_index : args[0];
1298  HInstruction* new_instance = LoadLocal(orig_this_reg, Primitive::kPrimNot, invoke->GetDexPc());
1299  invoke->SetArgumentAt(argument_index, new_instance);
1300  current_block_->AddInstruction(invoke);
1301
1302  latest_result_ = invoke;
1303  return true;
1304}
1305
1306static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
1307  const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index);
1308  const char* type = dex_file.GetFieldTypeDescriptor(field_id);
1309  return Primitive::GetType(type[0]);
1310}
1311
1312bool HGraphBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
1313                                             uint32_t dex_pc,
1314                                             bool is_put) {
1315  uint32_t source_or_dest_reg = instruction.VRegA_22c();
1316  uint32_t obj_reg = instruction.VRegB_22c();
1317  uint16_t field_index;
1318  if (instruction.IsQuickened()) {
1319    if (!CanDecodeQuickenedInfo()) {
1320      return false;
1321    }
1322    field_index = LookupQuickenedInfo(dex_pc);
1323  } else {
1324    field_index = instruction.VRegC_22c();
1325  }
1326
1327  ScopedObjectAccess soa(Thread::Current());
1328  ArtField* resolved_field =
1329      compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa);
1330
1331
1332  HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot, dex_pc);
1333  HInstruction* null_check = new (arena_) HNullCheck(object, dex_pc);
1334  current_block_->AddInstruction(null_check);
1335
1336  Primitive::Type field_type = (resolved_field == nullptr)
1337      ? GetFieldAccessType(*dex_file_, field_index)
1338      : resolved_field->GetTypeAsPrimitiveType();
1339  if (is_put) {
1340    Temporaries temps(graph_);
1341    // We need one temporary for the null check.
1342    temps.Add(null_check);
1343    HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc);
1344    HInstruction* field_set = nullptr;
1345    if (resolved_field == nullptr) {
1346      MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
1347      field_set = new (arena_) HUnresolvedInstanceFieldSet(null_check,
1348                                                           value,
1349                                                           field_type,
1350                                                           field_index,
1351                                                           dex_pc);
1352    } else {
1353      uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
1354      field_set = new (arena_) HInstanceFieldSet(null_check,
1355                                                 value,
1356                                                 field_type,
1357                                                 resolved_field->GetOffset(),
1358                                                 resolved_field->IsVolatile(),
1359                                                 field_index,
1360                                                 class_def_index,
1361                                                 *dex_file_,
1362                                                 dex_compilation_unit_->GetDexCache(),
1363                                                 dex_pc);
1364    }
1365    current_block_->AddInstruction(field_set);
1366  } else {
1367    HInstruction* field_get = nullptr;
1368    if (resolved_field == nullptr) {
1369      MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
1370      field_get = new (arena_) HUnresolvedInstanceFieldGet(null_check,
1371                                                           field_type,
1372                                                           field_index,
1373                                                           dex_pc);
1374    } else {
1375      uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
1376      field_get = new (arena_) HInstanceFieldGet(null_check,
1377                                                 field_type,
1378                                                 resolved_field->GetOffset(),
1379                                                 resolved_field->IsVolatile(),
1380                                                 field_index,
1381                                                 class_def_index,
1382                                                 *dex_file_,
1383                                                 dex_compilation_unit_->GetDexCache(),
1384                                                 dex_pc);
1385    }
1386    current_block_->AddInstruction(field_get);
1387    UpdateLocal(source_or_dest_reg, field_get, dex_pc);
1388  }
1389
1390  return true;
1391}
1392
1393static mirror::Class* GetClassFrom(CompilerDriver* driver,
1394                                   const DexCompilationUnit& compilation_unit) {
1395  ScopedObjectAccess soa(Thread::Current());
1396  StackHandleScope<2> hs(soa.Self());
1397  const DexFile& dex_file = *compilation_unit.GetDexFile();
1398  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1399      soa.Decode<mirror::ClassLoader*>(compilation_unit.GetClassLoader())));
1400  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1401      compilation_unit.GetClassLinker()->FindDexCache(soa.Self(), dex_file)));
1402
1403  return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit);
1404}
1405
1406mirror::Class* HGraphBuilder::GetOutermostCompilingClass() const {
1407  return GetClassFrom(compiler_driver_, *outer_compilation_unit_);
1408}
1409
1410mirror::Class* HGraphBuilder::GetCompilingClass() const {
1411  return GetClassFrom(compiler_driver_, *dex_compilation_unit_);
1412}
1413
1414bool HGraphBuilder::IsOutermostCompilingClass(uint16_t type_index) const {
1415  ScopedObjectAccess soa(Thread::Current());
1416  StackHandleScope<4> hs(soa.Self());
1417  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1418      dex_compilation_unit_->GetClassLinker()->FindDexCache(
1419          soa.Self(), *dex_compilation_unit_->GetDexFile())));
1420  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1421      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
1422  Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass(
1423      soa, dex_cache, class_loader, type_index, dex_compilation_unit_)));
1424  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
1425
1426  // GetOutermostCompilingClass returns null when the class is unresolved
1427  // (e.g. if it derives from an unresolved class). This is bogus knowing that
1428  // we are compiling it.
1429  // When this happens we cannot establish a direct relation between the current
1430  // class and the outer class, so we return false.
1431  // (Note that this is only used for optimizing invokes and field accesses)
1432  return (cls.Get() != nullptr) && (outer_class.Get() == cls.Get());
1433}
1434
1435void HGraphBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
1436                                                     uint32_t dex_pc,
1437                                                     bool is_put,
1438                                                     Primitive::Type field_type) {
1439  uint32_t source_or_dest_reg = instruction.VRegA_21c();
1440  uint16_t field_index = instruction.VRegB_21c();
1441
1442  if (is_put) {
1443    HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc);
1444    current_block_->AddInstruction(
1445        new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
1446  } else {
1447    current_block_->AddInstruction(
1448        new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
1449    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc);
1450  }
1451}
1452bool HGraphBuilder::BuildStaticFieldAccess(const Instruction& instruction,
1453                                           uint32_t dex_pc,
1454                                           bool is_put) {
1455  uint32_t source_or_dest_reg = instruction.VRegA_21c();
1456  uint16_t field_index = instruction.VRegB_21c();
1457
1458  ScopedObjectAccess soa(Thread::Current());
1459  StackHandleScope<5> hs(soa.Self());
1460  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1461      dex_compilation_unit_->GetClassLinker()->FindDexCache(
1462          soa.Self(), *dex_compilation_unit_->GetDexFile())));
1463  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
1464      soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
1465  ArtField* resolved_field = compiler_driver_->ResolveField(
1466      soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true);
1467
1468  if (resolved_field == nullptr) {
1469    MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
1470    Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1471    BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1472    return true;
1473  }
1474
1475  Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
1476  const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
1477  Handle<mirror::DexCache> outer_dex_cache(hs.NewHandle(
1478      outer_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), outer_dex_file)));
1479  Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
1480
1481  // The index at which the field's class is stored in the DexCache's type array.
1482  uint32_t storage_index;
1483  bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass());
1484  if (is_outer_class) {
1485    storage_index = outer_class->GetDexTypeIndex();
1486  } else if (outer_dex_cache.Get() != dex_cache.Get()) {
1487    // The compiler driver cannot currently understand multiple dex caches involved. Just bailout.
1488    return false;
1489  } else {
1490    // TODO: This is rather expensive. Perf it and cache the results if needed.
1491    std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField(
1492        outer_dex_cache.Get(),
1493        GetCompilingClass(),
1494        resolved_field,
1495        field_index,
1496        &storage_index);
1497    bool can_easily_access = is_put ? pair.second : pair.first;
1498    if (!can_easily_access) {
1499      MaybeRecordStat(MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
1500      BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1501      return true;
1502    }
1503  }
1504
1505  bool is_in_cache =
1506      compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_file, storage_index);
1507  HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(),
1508                                                 storage_index,
1509                                                 outer_dex_file,
1510                                                 is_outer_class,
1511                                                 dex_pc,
1512                                                 /*needs_access_check*/ false,
1513                                                 is_in_cache);
1514  current_block_->AddInstruction(constant);
1515
1516  HInstruction* cls = constant;
1517
1518  Handle<mirror::Class> klass(hs.NewHandle(resolved_field->GetDeclaringClass()));
1519  if (!IsInitialized(klass)) {
1520    cls = new (arena_) HClinitCheck(constant, dex_pc);
1521    current_block_->AddInstruction(cls);
1522  }
1523
1524  uint16_t class_def_index = klass->GetDexClassDefIndex();
1525  if (is_put) {
1526    // We need to keep the class alive before loading the value.
1527    Temporaries temps(graph_);
1528    temps.Add(cls);
1529    HInstruction* value = LoadLocal(source_or_dest_reg, field_type, dex_pc);
1530    DCHECK_EQ(value->GetType(), field_type);
1531    current_block_->AddInstruction(new (arena_) HStaticFieldSet(cls,
1532                                                                value,
1533                                                                field_type,
1534                                                                resolved_field->GetOffset(),
1535                                                                resolved_field->IsVolatile(),
1536                                                                field_index,
1537                                                                class_def_index,
1538                                                                *dex_file_,
1539                                                                dex_cache_,
1540                                                                dex_pc));
1541  } else {
1542    current_block_->AddInstruction(new (arena_) HStaticFieldGet(cls,
1543                                                                field_type,
1544                                                                resolved_field->GetOffset(),
1545                                                                resolved_field->IsVolatile(),
1546                                                                field_index,
1547                                                                class_def_index,
1548                                                                *dex_file_,
1549                                                                dex_cache_,
1550                                                                dex_pc));
1551    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc);
1552  }
1553  return true;
1554}
1555
1556void HGraphBuilder::BuildCheckedDivRem(uint16_t out_vreg,
1557                                       uint16_t first_vreg,
1558                                       int64_t second_vreg_or_constant,
1559                                       uint32_t dex_pc,
1560                                       Primitive::Type type,
1561                                       bool second_is_constant,
1562                                       bool isDiv) {
1563  DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
1564
1565  HInstruction* first = LoadLocal(first_vreg, type, dex_pc);
1566  HInstruction* second = nullptr;
1567  if (second_is_constant) {
1568    if (type == Primitive::kPrimInt) {
1569      second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
1570    } else {
1571      second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
1572    }
1573  } else {
1574    second = LoadLocal(second_vreg_or_constant, type, dex_pc);
1575  }
1576
1577  if (!second_is_constant
1578      || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0)
1579      || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) {
1580    second = new (arena_) HDivZeroCheck(second, dex_pc);
1581    Temporaries temps(graph_);
1582    current_block_->AddInstruction(second);
1583    temps.Add(current_block_->GetLastInstruction());
1584  }
1585
1586  if (isDiv) {
1587    current_block_->AddInstruction(new (arena_) HDiv(type, first, second, dex_pc));
1588  } else {
1589    current_block_->AddInstruction(new (arena_) HRem(type, first, second, dex_pc));
1590  }
1591  UpdateLocal(out_vreg, current_block_->GetLastInstruction(), dex_pc);
1592}
1593
1594void HGraphBuilder::BuildArrayAccess(const Instruction& instruction,
1595                                     uint32_t dex_pc,
1596                                     bool is_put,
1597                                     Primitive::Type anticipated_type) {
1598  uint8_t source_or_dest_reg = instruction.VRegA_23x();
1599  uint8_t array_reg = instruction.VRegB_23x();
1600  uint8_t index_reg = instruction.VRegC_23x();
1601
1602  // We need one temporary for the null check, one for the index, and one for the length.
1603  Temporaries temps(graph_);
1604
1605  HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot, dex_pc);
1606  object = new (arena_) HNullCheck(object, dex_pc);
1607  current_block_->AddInstruction(object);
1608  temps.Add(object);
1609
1610  HInstruction* length = new (arena_) HArrayLength(object, dex_pc);
1611  current_block_->AddInstruction(length);
1612  temps.Add(length);
1613  HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt, dex_pc);
1614  index = new (arena_) HBoundsCheck(index, length, dex_pc);
1615  current_block_->AddInstruction(index);
1616  temps.Add(index);
1617  if (is_put) {
1618    HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type, dex_pc);
1619    // TODO: Insert a type check node if the type is Object.
1620    current_block_->AddInstruction(new (arena_) HArraySet(
1621        object, index, value, anticipated_type, dex_pc));
1622  } else {
1623    current_block_->AddInstruction(new (arena_) HArrayGet(object, index, anticipated_type, dex_pc));
1624    UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction(), dex_pc);
1625  }
1626  graph_->SetHasBoundsChecks(true);
1627}
1628
1629void HGraphBuilder::BuildFilledNewArray(uint32_t dex_pc,
1630                                        uint32_t type_index,
1631                                        uint32_t number_of_vreg_arguments,
1632                                        bool is_range,
1633                                        uint32_t* args,
1634                                        uint32_t register_index) {
1635  HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc);
1636  bool finalizable;
1637  QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable)
1638      ? kQuickAllocArrayWithAccessCheck
1639      : kQuickAllocArray;
1640  HInstruction* object = new (arena_) HNewArray(length,
1641                                                graph_->GetCurrentMethod(),
1642                                                dex_pc,
1643                                                type_index,
1644                                                *dex_compilation_unit_->GetDexFile(),
1645                                                entrypoint);
1646  current_block_->AddInstruction(object);
1647
1648  const char* descriptor = dex_file_->StringByTypeIdx(type_index);
1649  DCHECK_EQ(descriptor[0], '[') << descriptor;
1650  char primitive = descriptor[1];
1651  DCHECK(primitive == 'I'
1652      || primitive == 'L'
1653      || primitive == '[') << descriptor;
1654  bool is_reference_array = (primitive == 'L') || (primitive == '[');
1655  Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt;
1656
1657  Temporaries temps(graph_);
1658  temps.Add(object);
1659  for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
1660    HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type, dex_pc);
1661    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1662    current_block_->AddInstruction(
1663        new (arena_) HArraySet(object, index, value, type, dex_pc));
1664  }
1665  latest_result_ = object;
1666}
1667
1668template <typename T>
1669void HGraphBuilder::BuildFillArrayData(HInstruction* object,
1670                                       const T* data,
1671                                       uint32_t element_count,
1672                                       Primitive::Type anticipated_type,
1673                                       uint32_t dex_pc) {
1674  for (uint32_t i = 0; i < element_count; ++i) {
1675    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1676    HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
1677    current_block_->AddInstruction(new (arena_) HArraySet(
1678      object, index, value, anticipated_type, dex_pc));
1679  }
1680}
1681
1682void HGraphBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
1683  Temporaries temps(graph_);
1684  HInstruction* array = LoadLocal(instruction.VRegA_31t(), Primitive::kPrimNot, dex_pc);
1685  HNullCheck* null_check = new (arena_) HNullCheck(array, dex_pc);
1686  current_block_->AddInstruction(null_check);
1687  temps.Add(null_check);
1688
1689  HInstruction* length = new (arena_) HArrayLength(null_check, dex_pc);
1690  current_block_->AddInstruction(length);
1691
1692  int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
1693  const Instruction::ArrayDataPayload* payload =
1694      reinterpret_cast<const Instruction::ArrayDataPayload*>(code_start_ + payload_offset);
1695  const uint8_t* data = payload->data;
1696  uint32_t element_count = payload->element_count;
1697
1698  // Implementation of this DEX instruction seems to be that the bounds check is
1699  // done before doing any stores.
1700  HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
1701  current_block_->AddInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc));
1702
1703  switch (payload->element_width) {
1704    case 1:
1705      BuildFillArrayData(null_check,
1706                         reinterpret_cast<const int8_t*>(data),
1707                         element_count,
1708                         Primitive::kPrimByte,
1709                         dex_pc);
1710      break;
1711    case 2:
1712      BuildFillArrayData(null_check,
1713                         reinterpret_cast<const int16_t*>(data),
1714                         element_count,
1715                         Primitive::kPrimShort,
1716                         dex_pc);
1717      break;
1718    case 4:
1719      BuildFillArrayData(null_check,
1720                         reinterpret_cast<const int32_t*>(data),
1721                         element_count,
1722                         Primitive::kPrimInt,
1723                         dex_pc);
1724      break;
1725    case 8:
1726      BuildFillWideArrayData(null_check,
1727                             reinterpret_cast<const int64_t*>(data),
1728                             element_count,
1729                             dex_pc);
1730      break;
1731    default:
1732      LOG(FATAL) << "Unknown element width for " << payload->element_width;
1733  }
1734  graph_->SetHasBoundsChecks(true);
1735}
1736
1737void HGraphBuilder::BuildFillWideArrayData(HInstruction* object,
1738                                           const int64_t* data,
1739                                           uint32_t element_count,
1740                                           uint32_t dex_pc) {
1741  for (uint32_t i = 0; i < element_count; ++i) {
1742    HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1743    HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
1744    current_block_->AddInstruction(new (arena_) HArraySet(
1745      object, index, value, Primitive::kPrimLong, dex_pc));
1746  }
1747}
1748
1749static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls)
1750    SHARED_REQUIRES(Locks::mutator_lock_) {
1751  if (cls.Get() == nullptr) {
1752    return TypeCheckKind::kUnresolvedCheck;
1753  } else if (cls->IsInterface()) {
1754    return TypeCheckKind::kInterfaceCheck;
1755  } else if (cls->IsArrayClass()) {
1756    if (cls->GetComponentType()->IsObjectClass()) {
1757      return TypeCheckKind::kArrayObjectCheck;
1758    } else if (cls->CannotBeAssignedFromOtherTypes()) {
1759      return TypeCheckKind::kExactCheck;
1760    } else {
1761      return TypeCheckKind::kArrayCheck;
1762    }
1763  } else if (cls->IsFinal()) {
1764    return TypeCheckKind::kExactCheck;
1765  } else if (cls->IsAbstract()) {
1766    return TypeCheckKind::kAbstractClassCheck;
1767  } else {
1768    return TypeCheckKind::kClassHierarchyCheck;
1769  }
1770}
1771
1772void HGraphBuilder::BuildTypeCheck(const Instruction& instruction,
1773                                   uint8_t destination,
1774                                   uint8_t reference,
1775                                   uint16_t type_index,
1776                                   uint32_t dex_pc) {
1777  bool type_known_final, type_known_abstract, use_declaring_class;
1778  bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
1779      dex_compilation_unit_->GetDexMethodIndex(),
1780      *dex_compilation_unit_->GetDexFile(),
1781      type_index,
1782      &type_known_final,
1783      &type_known_abstract,
1784      &use_declaring_class);
1785
1786  ScopedObjectAccess soa(Thread::Current());
1787  StackHandleScope<2> hs(soa.Self());
1788  const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
1789  Handle<mirror::DexCache> dex_cache(hs.NewHandle(
1790      dex_compilation_unit_->GetClassLinker()->FindDexCache(soa.Self(), dex_file)));
1791  Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index)));
1792
1793  HInstruction* object = LoadLocal(reference, Primitive::kPrimNot, dex_pc);
1794  HLoadClass* cls = new (arena_) HLoadClass(
1795      graph_->GetCurrentMethod(),
1796      type_index,
1797      dex_file,
1798      IsOutermostCompilingClass(type_index),
1799      dex_pc,
1800      !can_access,
1801      compiler_driver_->CanAssumeTypeIsPresentInDexCache(dex_file, type_index));
1802  current_block_->AddInstruction(cls);
1803
1804  // The class needs a temporary before being used by the type check.
1805  Temporaries temps(graph_);
1806  temps.Add(cls);
1807
1808  TypeCheckKind check_kind = ComputeTypeCheckKind(resolved_class);
1809  if (instruction.Opcode() == Instruction::INSTANCE_OF) {
1810    current_block_->AddInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc));
1811    UpdateLocal(destination, current_block_->GetLastInstruction(), dex_pc);
1812  } else {
1813    DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
1814    // We emit a CheckCast followed by a BoundType. CheckCast is a statement
1815    // which may throw. If it succeeds BoundType sets the new type of `object`
1816    // for all subsequent uses.
1817    current_block_->AddInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc));
1818    current_block_->AddInstruction(new (arena_) HBoundType(object, dex_pc));
1819    UpdateLocal(reference, current_block_->GetLastInstruction(), dex_pc);
1820  }
1821}
1822
1823bool HGraphBuilder::NeedsAccessCheck(uint32_t type_index, bool* finalizable) const {
1824  return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks(
1825      dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index, finalizable);
1826}
1827
1828void HGraphBuilder::BuildSwitchJumpTable(const SwitchTable& table,
1829                                         const Instruction& instruction,
1830                                         HInstruction* value,
1831                                         uint32_t dex_pc) {
1832  // Add the successor blocks to the current block.
1833  uint16_t num_entries = table.GetNumEntries();
1834  for (size_t i = 1; i <= num_entries; i++) {
1835    int32_t target_offset = table.GetEntryAt(i);
1836    HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset);
1837    DCHECK(case_target != nullptr);
1838
1839    // Add the target block as a successor.
1840    current_block_->AddSuccessor(case_target);
1841  }
1842
1843  // Add the default target block as the last successor.
1844  HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
1845  DCHECK(default_target != nullptr);
1846  current_block_->AddSuccessor(default_target);
1847
1848  // Now add the Switch instruction.
1849  int32_t starting_key = table.GetEntryAt(0);
1850  current_block_->AddInstruction(
1851      new (arena_) HPackedSwitch(starting_key, num_entries, value, dex_pc));
1852  // This block ends with control flow.
1853  current_block_ = nullptr;
1854}
1855
1856void HGraphBuilder::BuildPackedSwitch(const Instruction& instruction, uint32_t dex_pc) {
1857  // Verifier guarantees that the payload for PackedSwitch contains:
1858  //   (a) number of entries (may be zero)
1859  //   (b) first and lowest switch case value (entry 0, always present)
1860  //   (c) list of target pcs (entries 1 <= i <= N)
1861  SwitchTable table(instruction, dex_pc, false);
1862
1863  // Value to test against.
1864  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
1865
1866  // Starting key value.
1867  int32_t starting_key = table.GetEntryAt(0);
1868
1869  // Retrieve number of entries.
1870  uint16_t num_entries = table.GetNumEntries();
1871  if (num_entries == 0) {
1872    return;
1873  }
1874
1875  // Don't use a packed switch if there are very few entries.
1876  if (num_entries > kSmallSwitchThreshold) {
1877    BuildSwitchJumpTable(table, instruction, value, dex_pc);
1878  } else {
1879    // Chained cmp-and-branch, starting from starting_key.
1880    for (size_t i = 1; i <= num_entries; i++) {
1881      BuildSwitchCaseHelper(instruction,
1882                            i,
1883                            i == num_entries,
1884                            table,
1885                            value,
1886                            starting_key + i - 1,
1887                            table.GetEntryAt(i),
1888                            dex_pc);
1889    }
1890  }
1891}
1892
1893void HGraphBuilder::BuildSparseSwitch(const Instruction& instruction, uint32_t dex_pc) {
1894  // Verifier guarantees that the payload for SparseSwitch contains:
1895  //   (a) number of entries (may be zero)
1896  //   (b) sorted key values (entries 0 <= i < N)
1897  //   (c) target pcs corresponding to the switch values (entries N <= i < 2*N)
1898  SwitchTable table(instruction, dex_pc, true);
1899
1900  // Value to test against.
1901  HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt, dex_pc);
1902
1903  uint16_t num_entries = table.GetNumEntries();
1904
1905  for (size_t i = 0; i < num_entries; i++) {
1906    BuildSwitchCaseHelper(instruction, i, i == static_cast<size_t>(num_entries) - 1, table, value,
1907                          table.GetEntryAt(i), table.GetEntryAt(i + num_entries), dex_pc);
1908  }
1909}
1910
1911void HGraphBuilder::BuildSwitchCaseHelper(const Instruction& instruction, size_t index,
1912                                          bool is_last_case, const SwitchTable& table,
1913                                          HInstruction* value, int32_t case_value_int,
1914                                          int32_t target_offset, uint32_t dex_pc) {
1915  HBasicBlock* case_target = FindBlockStartingAt(dex_pc + target_offset);
1916  DCHECK(case_target != nullptr);
1917  PotentiallyAddSuspendCheck(case_target, dex_pc);
1918
1919  // The current case's value.
1920  HInstruction* this_case_value = graph_->GetIntConstant(case_value_int, dex_pc);
1921
1922  // Compare value and this_case_value.
1923  HEqual* comparison = new (arena_) HEqual(value, this_case_value, dex_pc);
1924  current_block_->AddInstruction(comparison);
1925  HInstruction* ifinst = new (arena_) HIf(comparison, dex_pc);
1926  current_block_->AddInstruction(ifinst);
1927
1928  // Case hit: use the target offset to determine where to go.
1929  current_block_->AddSuccessor(case_target);
1930
1931  // Case miss: go to the next case (or default fall-through).
1932  // When there is a next case, we use the block stored with the table offset representing this
1933  // case (that is where we registered them in ComputeBranchTargets).
1934  // When there is no next case, we use the following instruction.
1935  // TODO: Find a good way to peel the last iteration to avoid conditional, but still have re-use.
1936  if (!is_last_case) {
1937    HBasicBlock* next_case_target = FindBlockStartingAt(table.GetDexPcForIndex(index));
1938    DCHECK(next_case_target != nullptr);
1939    current_block_->AddSuccessor(next_case_target);
1940
1941    // Need to manually add the block, as there is no dex-pc transition for the cases.
1942    graph_->AddBlock(next_case_target);
1943
1944    current_block_ = next_case_target;
1945  } else {
1946    HBasicBlock* default_target = FindBlockStartingAt(dex_pc + instruction.SizeInCodeUnits());
1947    DCHECK(default_target != nullptr);
1948    current_block_->AddSuccessor(default_target);
1949    current_block_ = nullptr;
1950  }
1951}
1952
1953void HGraphBuilder::PotentiallyAddSuspendCheck(HBasicBlock* target, uint32_t dex_pc) {
1954  int32_t target_offset = target->GetDexPc() - dex_pc;
1955  if (target_offset <= 0) {
1956    // DX generates back edges to the first encountered return. We can save
1957    // time of later passes by not adding redundant suspend checks.
1958    HInstruction* last_in_target = target->GetLastInstruction();
1959    if (last_in_target != nullptr &&
1960        (last_in_target->IsReturn() || last_in_target->IsReturnVoid())) {
1961      return;
1962    }
1963
1964    // Add a suspend check to backward branches which may potentially loop. We
1965    // can remove them after we recognize loops in the graph.
1966    current_block_->AddInstruction(new (arena_) HSuspendCheck(dex_pc));
1967  }
1968}
1969
1970bool HGraphBuilder::CanDecodeQuickenedInfo() const {
1971  return interpreter_metadata_ != nullptr;
1972}
1973
1974uint16_t HGraphBuilder::LookupQuickenedInfo(uint32_t dex_pc) {
1975  DCHECK(interpreter_metadata_ != nullptr);
1976  uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_);
1977  DCHECK_EQ(dex_pc, dex_pc_in_map);
1978  return DecodeUnsignedLeb128(&interpreter_metadata_);
1979}
1980
1981bool HGraphBuilder::AnalyzeDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
1982  if (current_block_ == nullptr) {
1983    return true;  // Dead code
1984  }
1985
1986  switch (instruction.Opcode()) {
1987    case Instruction::CONST_4: {
1988      int32_t register_index = instruction.VRegA();
1989      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
1990      UpdateLocal(register_index, constant, dex_pc);
1991      break;
1992    }
1993
1994    case Instruction::CONST_16: {
1995      int32_t register_index = instruction.VRegA();
1996      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
1997      UpdateLocal(register_index, constant, dex_pc);
1998      break;
1999    }
2000
2001    case Instruction::CONST: {
2002      int32_t register_index = instruction.VRegA();
2003      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
2004      UpdateLocal(register_index, constant, dex_pc);
2005      break;
2006    }
2007
2008    case Instruction::CONST_HIGH16: {
2009      int32_t register_index = instruction.VRegA();
2010      HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
2011      UpdateLocal(register_index, constant, dex_pc);
2012      break;
2013    }
2014
2015    case Instruction::CONST_WIDE_16: {
2016      int32_t register_index = instruction.VRegA();
2017      // Get 16 bits of constant value, sign extended to 64 bits.
2018      int64_t value = instruction.VRegB_21s();
2019      value <<= 48;
2020      value >>= 48;
2021      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2022      UpdateLocal(register_index, constant, dex_pc);
2023      break;
2024    }
2025
2026    case Instruction::CONST_WIDE_32: {
2027      int32_t register_index = instruction.VRegA();
2028      // Get 32 bits of constant value, sign extended to 64 bits.
2029      int64_t value = instruction.VRegB_31i();
2030      value <<= 32;
2031      value >>= 32;
2032      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2033      UpdateLocal(register_index, constant, dex_pc);
2034      break;
2035    }
2036
2037    case Instruction::CONST_WIDE: {
2038      int32_t register_index = instruction.VRegA();
2039      HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
2040      UpdateLocal(register_index, constant, dex_pc);
2041      break;
2042    }
2043
2044    case Instruction::CONST_WIDE_HIGH16: {
2045      int32_t register_index = instruction.VRegA();
2046      int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
2047      HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2048      UpdateLocal(register_index, constant, dex_pc);
2049      break;
2050    }
2051
2052    // Note that the SSA building will refine the types.
2053    case Instruction::MOVE:
2054    case Instruction::MOVE_FROM16:
2055    case Instruction::MOVE_16: {
2056      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt, dex_pc);
2057      UpdateLocal(instruction.VRegA(), value, dex_pc);
2058      break;
2059    }
2060
2061    // Note that the SSA building will refine the types.
2062    case Instruction::MOVE_WIDE:
2063    case Instruction::MOVE_WIDE_FROM16:
2064    case Instruction::MOVE_WIDE_16: {
2065      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong, dex_pc);
2066      UpdateLocal(instruction.VRegA(), value, dex_pc);
2067      break;
2068    }
2069
2070    case Instruction::MOVE_OBJECT:
2071    case Instruction::MOVE_OBJECT_16:
2072    case Instruction::MOVE_OBJECT_FROM16: {
2073      HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot, dex_pc);
2074      UpdateLocal(instruction.VRegA(), value, dex_pc);
2075      break;
2076    }
2077
2078    case Instruction::RETURN_VOID_NO_BARRIER:
2079    case Instruction::RETURN_VOID: {
2080      BuildReturn(instruction, Primitive::kPrimVoid, dex_pc);
2081      break;
2082    }
2083
2084#define IF_XX(comparison, cond) \
2085    case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
2086    case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
2087
2088    IF_XX(HEqual, EQ);
2089    IF_XX(HNotEqual, NE);
2090    IF_XX(HLessThan, LT);
2091    IF_XX(HLessThanOrEqual, LE);
2092    IF_XX(HGreaterThan, GT);
2093    IF_XX(HGreaterThanOrEqual, GE);
2094
2095    case Instruction::GOTO:
2096    case Instruction::GOTO_16:
2097    case Instruction::GOTO_32: {
2098      int32_t offset = instruction.GetTargetOffset();
2099      HBasicBlock* target = FindBlockStartingAt(offset + dex_pc);
2100      DCHECK(target != nullptr);
2101      PotentiallyAddSuspendCheck(target, dex_pc);
2102      current_block_->AddInstruction(new (arena_) HGoto(dex_pc));
2103      current_block_->AddSuccessor(target);
2104      current_block_ = nullptr;
2105      break;
2106    }
2107
2108    case Instruction::RETURN: {
2109      BuildReturn(instruction, return_type_, dex_pc);
2110      break;
2111    }
2112
2113    case Instruction::RETURN_OBJECT: {
2114      BuildReturn(instruction, return_type_, dex_pc);
2115      break;
2116    }
2117
2118    case Instruction::RETURN_WIDE: {
2119      BuildReturn(instruction, return_type_, dex_pc);
2120      break;
2121    }
2122
2123    case Instruction::INVOKE_DIRECT:
2124    case Instruction::INVOKE_INTERFACE:
2125    case Instruction::INVOKE_STATIC:
2126    case Instruction::INVOKE_SUPER:
2127    case Instruction::INVOKE_VIRTUAL:
2128    case Instruction::INVOKE_VIRTUAL_QUICK: {
2129      uint16_t method_idx;
2130      if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) {
2131        if (!CanDecodeQuickenedInfo()) {
2132          return false;
2133        }
2134        method_idx = LookupQuickenedInfo(dex_pc);
2135      } else {
2136        method_idx = instruction.VRegB_35c();
2137      }
2138      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
2139      uint32_t args[5];
2140      instruction.GetVarArgs(args);
2141      if (!BuildInvoke(instruction, dex_pc, method_idx,
2142                       number_of_vreg_arguments, false, args, -1)) {
2143        return false;
2144      }
2145      break;
2146    }
2147
2148    case Instruction::INVOKE_DIRECT_RANGE:
2149    case Instruction::INVOKE_INTERFACE_RANGE:
2150    case Instruction::INVOKE_STATIC_RANGE:
2151    case Instruction::INVOKE_SUPER_RANGE:
2152    case Instruction::INVOKE_VIRTUAL_RANGE:
2153    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2154      uint16_t method_idx;
2155      if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) {
2156        if (!CanDecodeQuickenedInfo()) {
2157          return false;
2158        }
2159        method_idx = LookupQuickenedInfo(dex_pc);
2160      } else {
2161        method_idx = instruction.VRegB_3rc();
2162      }
2163      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
2164      uint32_t register_index = instruction.VRegC();
2165      if (!BuildInvoke(instruction, dex_pc, method_idx,
2166                       number_of_vreg_arguments, true, nullptr, register_index)) {
2167        return false;
2168      }
2169      break;
2170    }
2171
2172    case Instruction::NEG_INT: {
2173      Unop_12x<HNeg>(instruction, Primitive::kPrimInt, dex_pc);
2174      break;
2175    }
2176
2177    case Instruction::NEG_LONG: {
2178      Unop_12x<HNeg>(instruction, Primitive::kPrimLong, dex_pc);
2179      break;
2180    }
2181
2182    case Instruction::NEG_FLOAT: {
2183      Unop_12x<HNeg>(instruction, Primitive::kPrimFloat, dex_pc);
2184      break;
2185    }
2186
2187    case Instruction::NEG_DOUBLE: {
2188      Unop_12x<HNeg>(instruction, Primitive::kPrimDouble, dex_pc);
2189      break;
2190    }
2191
2192    case Instruction::NOT_INT: {
2193      Unop_12x<HNot>(instruction, Primitive::kPrimInt, dex_pc);
2194      break;
2195    }
2196
2197    case Instruction::NOT_LONG: {
2198      Unop_12x<HNot>(instruction, Primitive::kPrimLong, dex_pc);
2199      break;
2200    }
2201
2202    case Instruction::INT_TO_LONG: {
2203      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc);
2204      break;
2205    }
2206
2207    case Instruction::INT_TO_FLOAT: {
2208      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc);
2209      break;
2210    }
2211
2212    case Instruction::INT_TO_DOUBLE: {
2213      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc);
2214      break;
2215    }
2216
2217    case Instruction::LONG_TO_INT: {
2218      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc);
2219      break;
2220    }
2221
2222    case Instruction::LONG_TO_FLOAT: {
2223      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc);
2224      break;
2225    }
2226
2227    case Instruction::LONG_TO_DOUBLE: {
2228      Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc);
2229      break;
2230    }
2231
2232    case Instruction::FLOAT_TO_INT: {
2233      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc);
2234      break;
2235    }
2236
2237    case Instruction::FLOAT_TO_LONG: {
2238      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc);
2239      break;
2240    }
2241
2242    case Instruction::FLOAT_TO_DOUBLE: {
2243      Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc);
2244      break;
2245    }
2246
2247    case Instruction::DOUBLE_TO_INT: {
2248      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc);
2249      break;
2250    }
2251
2252    case Instruction::DOUBLE_TO_LONG: {
2253      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc);
2254      break;
2255    }
2256
2257    case Instruction::DOUBLE_TO_FLOAT: {
2258      Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc);
2259      break;
2260    }
2261
2262    case Instruction::INT_TO_BYTE: {
2263      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc);
2264      break;
2265    }
2266
2267    case Instruction::INT_TO_SHORT: {
2268      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc);
2269      break;
2270    }
2271
2272    case Instruction::INT_TO_CHAR: {
2273      Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc);
2274      break;
2275    }
2276
2277    case Instruction::ADD_INT: {
2278      Binop_23x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
2279      break;
2280    }
2281
2282    case Instruction::ADD_LONG: {
2283      Binop_23x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
2284      break;
2285    }
2286
2287    case Instruction::ADD_DOUBLE: {
2288      Binop_23x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
2289      break;
2290    }
2291
2292    case Instruction::ADD_FLOAT: {
2293      Binop_23x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
2294      break;
2295    }
2296
2297    case Instruction::SUB_INT: {
2298      Binop_23x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
2299      break;
2300    }
2301
2302    case Instruction::SUB_LONG: {
2303      Binop_23x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
2304      break;
2305    }
2306
2307    case Instruction::SUB_FLOAT: {
2308      Binop_23x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
2309      break;
2310    }
2311
2312    case Instruction::SUB_DOUBLE: {
2313      Binop_23x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
2314      break;
2315    }
2316
2317    case Instruction::ADD_INT_2ADDR: {
2318      Binop_12x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
2319      break;
2320    }
2321
2322    case Instruction::MUL_INT: {
2323      Binop_23x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
2324      break;
2325    }
2326
2327    case Instruction::MUL_LONG: {
2328      Binop_23x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
2329      break;
2330    }
2331
2332    case Instruction::MUL_FLOAT: {
2333      Binop_23x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
2334      break;
2335    }
2336
2337    case Instruction::MUL_DOUBLE: {
2338      Binop_23x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
2339      break;
2340    }
2341
2342    case Instruction::DIV_INT: {
2343      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2344                         dex_pc, Primitive::kPrimInt, false, true);
2345      break;
2346    }
2347
2348    case Instruction::DIV_LONG: {
2349      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2350                         dex_pc, Primitive::kPrimLong, false, true);
2351      break;
2352    }
2353
2354    case Instruction::DIV_FLOAT: {
2355      Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
2356      break;
2357    }
2358
2359    case Instruction::DIV_DOUBLE: {
2360      Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
2361      break;
2362    }
2363
2364    case Instruction::REM_INT: {
2365      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2366                         dex_pc, Primitive::kPrimInt, false, false);
2367      break;
2368    }
2369
2370    case Instruction::REM_LONG: {
2371      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2372                         dex_pc, Primitive::kPrimLong, false, false);
2373      break;
2374    }
2375
2376    case Instruction::REM_FLOAT: {
2377      Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
2378      break;
2379    }
2380
2381    case Instruction::REM_DOUBLE: {
2382      Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
2383      break;
2384    }
2385
2386    case Instruction::AND_INT: {
2387      Binop_23x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
2388      break;
2389    }
2390
2391    case Instruction::AND_LONG: {
2392      Binop_23x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
2393      break;
2394    }
2395
2396    case Instruction::SHL_INT: {
2397      Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
2398      break;
2399    }
2400
2401    case Instruction::SHL_LONG: {
2402      Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
2403      break;
2404    }
2405
2406    case Instruction::SHR_INT: {
2407      Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
2408      break;
2409    }
2410
2411    case Instruction::SHR_LONG: {
2412      Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
2413      break;
2414    }
2415
2416    case Instruction::USHR_INT: {
2417      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
2418      break;
2419    }
2420
2421    case Instruction::USHR_LONG: {
2422      Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
2423      break;
2424    }
2425
2426    case Instruction::OR_INT: {
2427      Binop_23x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
2428      break;
2429    }
2430
2431    case Instruction::OR_LONG: {
2432      Binop_23x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
2433      break;
2434    }
2435
2436    case Instruction::XOR_INT: {
2437      Binop_23x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
2438      break;
2439    }
2440
2441    case Instruction::XOR_LONG: {
2442      Binop_23x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
2443      break;
2444    }
2445
2446    case Instruction::ADD_LONG_2ADDR: {
2447      Binop_12x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
2448      break;
2449    }
2450
2451    case Instruction::ADD_DOUBLE_2ADDR: {
2452      Binop_12x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
2453      break;
2454    }
2455
2456    case Instruction::ADD_FLOAT_2ADDR: {
2457      Binop_12x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
2458      break;
2459    }
2460
2461    case Instruction::SUB_INT_2ADDR: {
2462      Binop_12x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
2463      break;
2464    }
2465
2466    case Instruction::SUB_LONG_2ADDR: {
2467      Binop_12x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
2468      break;
2469    }
2470
2471    case Instruction::SUB_FLOAT_2ADDR: {
2472      Binop_12x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
2473      break;
2474    }
2475
2476    case Instruction::SUB_DOUBLE_2ADDR: {
2477      Binop_12x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
2478      break;
2479    }
2480
2481    case Instruction::MUL_INT_2ADDR: {
2482      Binop_12x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
2483      break;
2484    }
2485
2486    case Instruction::MUL_LONG_2ADDR: {
2487      Binop_12x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
2488      break;
2489    }
2490
2491    case Instruction::MUL_FLOAT_2ADDR: {
2492      Binop_12x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
2493      break;
2494    }
2495
2496    case Instruction::MUL_DOUBLE_2ADDR: {
2497      Binop_12x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
2498      break;
2499    }
2500
2501    case Instruction::DIV_INT_2ADDR: {
2502      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2503                         dex_pc, Primitive::kPrimInt, false, true);
2504      break;
2505    }
2506
2507    case Instruction::DIV_LONG_2ADDR: {
2508      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2509                         dex_pc, Primitive::kPrimLong, false, true);
2510      break;
2511    }
2512
2513    case Instruction::REM_INT_2ADDR: {
2514      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2515                         dex_pc, Primitive::kPrimInt, false, false);
2516      break;
2517    }
2518
2519    case Instruction::REM_LONG_2ADDR: {
2520      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2521                         dex_pc, Primitive::kPrimLong, false, false);
2522      break;
2523    }
2524
2525    case Instruction::REM_FLOAT_2ADDR: {
2526      Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
2527      break;
2528    }
2529
2530    case Instruction::REM_DOUBLE_2ADDR: {
2531      Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
2532      break;
2533    }
2534
2535    case Instruction::SHL_INT_2ADDR: {
2536      Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
2537      break;
2538    }
2539
2540    case Instruction::SHL_LONG_2ADDR: {
2541      Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
2542      break;
2543    }
2544
2545    case Instruction::SHR_INT_2ADDR: {
2546      Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
2547      break;
2548    }
2549
2550    case Instruction::SHR_LONG_2ADDR: {
2551      Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
2552      break;
2553    }
2554
2555    case Instruction::USHR_INT_2ADDR: {
2556      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
2557      break;
2558    }
2559
2560    case Instruction::USHR_LONG_2ADDR: {
2561      Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
2562      break;
2563    }
2564
2565    case Instruction::DIV_FLOAT_2ADDR: {
2566      Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
2567      break;
2568    }
2569
2570    case Instruction::DIV_DOUBLE_2ADDR: {
2571      Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
2572      break;
2573    }
2574
2575    case Instruction::AND_INT_2ADDR: {
2576      Binop_12x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
2577      break;
2578    }
2579
2580    case Instruction::AND_LONG_2ADDR: {
2581      Binop_12x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
2582      break;
2583    }
2584
2585    case Instruction::OR_INT_2ADDR: {
2586      Binop_12x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
2587      break;
2588    }
2589
2590    case Instruction::OR_LONG_2ADDR: {
2591      Binop_12x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
2592      break;
2593    }
2594
2595    case Instruction::XOR_INT_2ADDR: {
2596      Binop_12x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
2597      break;
2598    }
2599
2600    case Instruction::XOR_LONG_2ADDR: {
2601      Binop_12x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
2602      break;
2603    }
2604
2605    case Instruction::ADD_INT_LIT16: {
2606      Binop_22s<HAdd>(instruction, false, dex_pc);
2607      break;
2608    }
2609
2610    case Instruction::AND_INT_LIT16: {
2611      Binop_22s<HAnd>(instruction, false, dex_pc);
2612      break;
2613    }
2614
2615    case Instruction::OR_INT_LIT16: {
2616      Binop_22s<HOr>(instruction, false, dex_pc);
2617      break;
2618    }
2619
2620    case Instruction::XOR_INT_LIT16: {
2621      Binop_22s<HXor>(instruction, false, dex_pc);
2622      break;
2623    }
2624
2625    case Instruction::RSUB_INT: {
2626      Binop_22s<HSub>(instruction, true, dex_pc);
2627      break;
2628    }
2629
2630    case Instruction::MUL_INT_LIT16: {
2631      Binop_22s<HMul>(instruction, false, dex_pc);
2632      break;
2633    }
2634
2635    case Instruction::ADD_INT_LIT8: {
2636      Binop_22b<HAdd>(instruction, false, dex_pc);
2637      break;
2638    }
2639
2640    case Instruction::AND_INT_LIT8: {
2641      Binop_22b<HAnd>(instruction, false, dex_pc);
2642      break;
2643    }
2644
2645    case Instruction::OR_INT_LIT8: {
2646      Binop_22b<HOr>(instruction, false, dex_pc);
2647      break;
2648    }
2649
2650    case Instruction::XOR_INT_LIT8: {
2651      Binop_22b<HXor>(instruction, false, dex_pc);
2652      break;
2653    }
2654
2655    case Instruction::RSUB_INT_LIT8: {
2656      Binop_22b<HSub>(instruction, true, dex_pc);
2657      break;
2658    }
2659
2660    case Instruction::MUL_INT_LIT8: {
2661      Binop_22b<HMul>(instruction, false, dex_pc);
2662      break;
2663    }
2664
2665    case Instruction::DIV_INT_LIT16:
2666    case Instruction::DIV_INT_LIT8: {
2667      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2668                         dex_pc, Primitive::kPrimInt, true, true);
2669      break;
2670    }
2671
2672    case Instruction::REM_INT_LIT16:
2673    case Instruction::REM_INT_LIT8: {
2674      BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2675                         dex_pc, Primitive::kPrimInt, true, false);
2676      break;
2677    }
2678
2679    case Instruction::SHL_INT_LIT8: {
2680      Binop_22b<HShl>(instruction, false, dex_pc);
2681      break;
2682    }
2683
2684    case Instruction::SHR_INT_LIT8: {
2685      Binop_22b<HShr>(instruction, false, dex_pc);
2686      break;
2687    }
2688
2689    case Instruction::USHR_INT_LIT8: {
2690      Binop_22b<HUShr>(instruction, false, dex_pc);
2691      break;
2692    }
2693
2694    case Instruction::NEW_INSTANCE: {
2695      if (!BuildNewInstance(instruction.VRegB_21c(), dex_pc)) {
2696        return false;
2697      }
2698      UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction(), dex_pc);
2699      break;
2700    }
2701
2702    case Instruction::NEW_ARRAY: {
2703      uint16_t type_index = instruction.VRegC_22c();
2704      HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt, dex_pc);
2705      bool finalizable;
2706      QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable)
2707          ? kQuickAllocArrayWithAccessCheck
2708          : kQuickAllocArray;
2709      current_block_->AddInstruction(new (arena_) HNewArray(length,
2710                                                            graph_->GetCurrentMethod(),
2711                                                            dex_pc,
2712                                                            type_index,
2713                                                            *dex_compilation_unit_->GetDexFile(),
2714                                                            entrypoint));
2715      UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction(), dex_pc);
2716      break;
2717    }
2718
2719    case Instruction::FILLED_NEW_ARRAY: {
2720      uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
2721      uint32_t type_index = instruction.VRegB_35c();
2722      uint32_t args[5];
2723      instruction.GetVarArgs(args);
2724      BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0);
2725      break;
2726    }
2727
2728    case Instruction::FILLED_NEW_ARRAY_RANGE: {
2729      uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
2730      uint32_t type_index = instruction.VRegB_3rc();
2731      uint32_t register_index = instruction.VRegC_3rc();
2732      BuildFilledNewArray(
2733          dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index);
2734      break;
2735    }
2736
2737    case Instruction::FILL_ARRAY_DATA: {
2738      BuildFillArrayData(instruction, dex_pc);
2739      break;
2740    }
2741
2742    case Instruction::MOVE_RESULT:
2743    case Instruction::MOVE_RESULT_WIDE:
2744    case Instruction::MOVE_RESULT_OBJECT: {
2745      if (latest_result_ == nullptr) {
2746        // Only dead code can lead to this situation, where the verifier
2747        // does not reject the method.
2748      } else {
2749        // An Invoke/FilledNewArray and its MoveResult could have landed in
2750        // different blocks if there was a try/catch block boundary between
2751        // them. For Invoke, we insert a StoreLocal after the instruction. For
2752        // FilledNewArray, the local needs to be updated after the array was
2753        // filled, otherwise we might overwrite an input vreg.
2754        HStoreLocal* update_local =
2755            new (arena_) HStoreLocal(GetLocalAt(instruction.VRegA()), latest_result_, dex_pc);
2756        HBasicBlock* block = latest_result_->GetBlock();
2757        if (block == current_block_) {
2758          // MoveResult and the previous instruction are in the same block.
2759          current_block_->AddInstruction(update_local);
2760        } else {
2761          // The two instructions are in different blocks. Insert the MoveResult
2762          // before the final control-flow instruction of the previous block.
2763          DCHECK(block->EndsWithControlFlowInstruction());
2764          DCHECK(current_block_->GetInstructions().IsEmpty());
2765          block->InsertInstructionBefore(update_local, block->GetLastInstruction());
2766        }
2767        latest_result_ = nullptr;
2768      }
2769      break;
2770    }
2771
2772    case Instruction::CMP_LONG: {
2773      Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc);
2774      break;
2775    }
2776
2777    case Instruction::CMPG_FLOAT: {
2778      Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc);
2779      break;
2780    }
2781
2782    case Instruction::CMPG_DOUBLE: {
2783      Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc);
2784      break;
2785    }
2786
2787    case Instruction::CMPL_FLOAT: {
2788      Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc);
2789      break;
2790    }
2791
2792    case Instruction::CMPL_DOUBLE: {
2793      Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc);
2794      break;
2795    }
2796
2797    case Instruction::NOP:
2798      break;
2799
2800    case Instruction::IGET:
2801    case Instruction::IGET_QUICK:
2802    case Instruction::IGET_WIDE:
2803    case Instruction::IGET_WIDE_QUICK:
2804    case Instruction::IGET_OBJECT:
2805    case Instruction::IGET_OBJECT_QUICK:
2806    case Instruction::IGET_BOOLEAN:
2807    case Instruction::IGET_BOOLEAN_QUICK:
2808    case Instruction::IGET_BYTE:
2809    case Instruction::IGET_BYTE_QUICK:
2810    case Instruction::IGET_CHAR:
2811    case Instruction::IGET_CHAR_QUICK:
2812    case Instruction::IGET_SHORT:
2813    case Instruction::IGET_SHORT_QUICK: {
2814      if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) {
2815        return false;
2816      }
2817      break;
2818    }
2819
2820    case Instruction::IPUT:
2821    case Instruction::IPUT_QUICK:
2822    case Instruction::IPUT_WIDE:
2823    case Instruction::IPUT_WIDE_QUICK:
2824    case Instruction::IPUT_OBJECT:
2825    case Instruction::IPUT_OBJECT_QUICK:
2826    case Instruction::IPUT_BOOLEAN:
2827    case Instruction::IPUT_BOOLEAN_QUICK:
2828    case Instruction::IPUT_BYTE:
2829    case Instruction::IPUT_BYTE_QUICK:
2830    case Instruction::IPUT_CHAR:
2831    case Instruction::IPUT_CHAR_QUICK:
2832    case Instruction::IPUT_SHORT:
2833    case Instruction::IPUT_SHORT_QUICK: {
2834      if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) {
2835        return false;
2836      }
2837      break;
2838    }
2839
2840    case Instruction::SGET:
2841    case Instruction::SGET_WIDE:
2842    case Instruction::SGET_OBJECT:
2843    case Instruction::SGET_BOOLEAN:
2844    case Instruction::SGET_BYTE:
2845    case Instruction::SGET_CHAR:
2846    case Instruction::SGET_SHORT: {
2847      if (!BuildStaticFieldAccess(instruction, dex_pc, false)) {
2848        return false;
2849      }
2850      break;
2851    }
2852
2853    case Instruction::SPUT:
2854    case Instruction::SPUT_WIDE:
2855    case Instruction::SPUT_OBJECT:
2856    case Instruction::SPUT_BOOLEAN:
2857    case Instruction::SPUT_BYTE:
2858    case Instruction::SPUT_CHAR:
2859    case Instruction::SPUT_SHORT: {
2860      if (!BuildStaticFieldAccess(instruction, dex_pc, true)) {
2861        return false;
2862      }
2863      break;
2864    }
2865
2866#define ARRAY_XX(kind, anticipated_type)                                          \
2867    case Instruction::AGET##kind: {                                               \
2868      BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \
2869      break;                                                                      \
2870    }                                                                             \
2871    case Instruction::APUT##kind: {                                               \
2872      BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \
2873      break;                                                                      \
2874    }
2875
2876    ARRAY_XX(, Primitive::kPrimInt);
2877    ARRAY_XX(_WIDE, Primitive::kPrimLong);
2878    ARRAY_XX(_OBJECT, Primitive::kPrimNot);
2879    ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean);
2880    ARRAY_XX(_BYTE, Primitive::kPrimByte);
2881    ARRAY_XX(_CHAR, Primitive::kPrimChar);
2882    ARRAY_XX(_SHORT, Primitive::kPrimShort);
2883
2884    case Instruction::ARRAY_LENGTH: {
2885      HInstruction* object = LoadLocal(instruction.VRegB_12x(), Primitive::kPrimNot, dex_pc);
2886      // No need for a temporary for the null check, it is the only input of the following
2887      // instruction.
2888      object = new (arena_) HNullCheck(object, dex_pc);
2889      current_block_->AddInstruction(object);
2890      current_block_->AddInstruction(new (arena_) HArrayLength(object, dex_pc));
2891      UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction(), dex_pc);
2892      break;
2893    }
2894
2895    case Instruction::CONST_STRING: {
2896      uint32_t string_index = instruction.VRegB_21c();
2897      bool in_dex_cache = compiler_driver_->CanAssumeStringIsPresentInDexCache(
2898          *dex_file_, string_index);
2899      current_block_->AddInstruction(
2900          new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, dex_pc, in_dex_cache));
2901      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction(), dex_pc);
2902      break;
2903    }
2904
2905    case Instruction::CONST_STRING_JUMBO: {
2906      uint32_t string_index = instruction.VRegB_31c();
2907      bool in_dex_cache = compiler_driver_->CanAssumeStringIsPresentInDexCache(
2908          *dex_file_, string_index);
2909      current_block_->AddInstruction(
2910          new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, dex_pc, in_dex_cache));
2911      UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction(), dex_pc);
2912      break;
2913    }
2914
2915    case Instruction::CONST_CLASS: {
2916      uint16_t type_index = instruction.VRegB_21c();
2917      bool type_known_final;
2918      bool type_known_abstract;
2919      bool dont_use_is_referrers_class;
2920      // `CanAccessTypeWithoutChecks` will tell whether the method being
2921      // built is trying to access its own class, so that the generated
2922      // code can optimize for this case. However, the optimization does not
2923      // work for inlining, so we use `IsOutermostCompilingClass` instead.
2924      bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
2925          dex_compilation_unit_->GetDexMethodIndex(), *dex_file_, type_index,
2926          &type_known_final, &type_known_abstract, &dont_use_is_referrers_class);
2927      current_block_->AddInstruction(new (arena_) HLoadClass(
2928          graph_->GetCurrentMethod(),
2929          type_index,
2930          *dex_file_,
2931          IsOutermostCompilingClass(type_index),
2932          dex_pc,
2933          !can_access,
2934          compiler_driver_->CanAssumeTypeIsPresentInDexCache(*dex_file_, type_index)));
2935      UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction(), dex_pc);
2936      break;
2937    }
2938
2939    case Instruction::MOVE_EXCEPTION: {
2940      current_block_->AddInstruction(new (arena_) HLoadException(dex_pc));
2941      UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction(), dex_pc);
2942      current_block_->AddInstruction(new (arena_) HClearException(dex_pc));
2943      break;
2944    }
2945
2946    case Instruction::THROW: {
2947      HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc);
2948      current_block_->AddInstruction(new (arena_) HThrow(exception, dex_pc));
2949      // A throw instruction must branch to the exit block.
2950      current_block_->AddSuccessor(exit_block_);
2951      // We finished building this block. Set the current block to null to avoid
2952      // adding dead instructions to it.
2953      current_block_ = nullptr;
2954      break;
2955    }
2956
2957    case Instruction::INSTANCE_OF: {
2958      uint8_t destination = instruction.VRegA_22c();
2959      uint8_t reference = instruction.VRegB_22c();
2960      uint16_t type_index = instruction.VRegC_22c();
2961      BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
2962      break;
2963    }
2964
2965    case Instruction::CHECK_CAST: {
2966      uint8_t reference = instruction.VRegA_21c();
2967      uint16_t type_index = instruction.VRegB_21c();
2968      BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
2969      break;
2970    }
2971
2972    case Instruction::MONITOR_ENTER: {
2973      current_block_->AddInstruction(new (arena_) HMonitorOperation(
2974          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc),
2975          HMonitorOperation::kEnter,
2976          dex_pc));
2977      break;
2978    }
2979
2980    case Instruction::MONITOR_EXIT: {
2981      current_block_->AddInstruction(new (arena_) HMonitorOperation(
2982          LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot, dex_pc),
2983          HMonitorOperation::kExit,
2984          dex_pc));
2985      break;
2986    }
2987
2988    case Instruction::PACKED_SWITCH: {
2989      BuildPackedSwitch(instruction, dex_pc);
2990      break;
2991    }
2992
2993    case Instruction::SPARSE_SWITCH: {
2994      BuildSparseSwitch(instruction, dex_pc);
2995      break;
2996    }
2997
2998    default:
2999      VLOG(compiler) << "Did not compile "
3000                     << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
3001                     << " because of unhandled instruction "
3002                     << instruction.Name();
3003      MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction);
3004      return false;
3005  }
3006  return true;
3007}  // NOLINT(readability/fn_size)
3008
3009HLocal* HGraphBuilder::GetLocalAt(uint32_t register_index) const {
3010  return locals_[register_index];
3011}
3012
3013void HGraphBuilder::UpdateLocal(uint32_t register_index,
3014                                HInstruction* instruction,
3015                                uint32_t dex_pc) const {
3016  HLocal* local = GetLocalAt(register_index);
3017  current_block_->AddInstruction(new (arena_) HStoreLocal(local, instruction, dex_pc));
3018}
3019
3020HInstruction* HGraphBuilder::LoadLocal(uint32_t register_index,
3021                                       Primitive::Type type,
3022                                       uint32_t dex_pc) const {
3023  HLocal* local = GetLocalAt(register_index);
3024  current_block_->AddInstruction(new (arena_) HLoadLocal(local, type, dex_pc));
3025  return current_block_->GetLastInstruction();
3026}
3027
3028}  // namespace art
3029