nodes.h revision 03196cfae4e8a91ce37d257b315f78a965a79829
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_bit_vector.h"
25#include "base/arena_containers.h"
26#include "base/arena_object.h"
27#include "base/stl_util.h"
28#include "dex/compiler_enums.h"
29#include "entrypoints/quick/quick_entrypoints_enum.h"
30#include "handle.h"
31#include "handle_scope.h"
32#include "invoke_type.h"
33#include "locations.h"
34#include "method_reference.h"
35#include "mirror/class.h"
36#include "offsets.h"
37#include "primitive.h"
38#include "utils/array_ref.h"
39
40namespace art {
41
42class GraphChecker;
43class HBasicBlock;
44class HCurrentMethod;
45class HDoubleConstant;
46class HEnvironment;
47class HFloatConstant;
48class HGraphBuilder;
49class HGraphVisitor;
50class HInstruction;
51class HIntConstant;
52class HInvoke;
53class HLongConstant;
54class HNullConstant;
55class HPhi;
56class HSuspendCheck;
57class HTryBoundary;
58class LiveInterval;
59class LocationSummary;
60class SlowPathCode;
61class SsaBuilder;
62
63namespace mirror {
64class DexCache;
65}  // namespace mirror
66
67static const int kDefaultNumberOfBlocks = 8;
68static const int kDefaultNumberOfSuccessors = 2;
69static const int kDefaultNumberOfPredecessors = 2;
70static const int kDefaultNumberOfExceptionalPredecessors = 0;
71static const int kDefaultNumberOfDominatedBlocks = 1;
72static const int kDefaultNumberOfBackEdges = 1;
73
74static constexpr uint32_t kMaxIntShiftValue = 0x1f;
75static constexpr uint64_t kMaxLongShiftValue = 0x3f;
76
77static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
78static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
79
80static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
81
82static constexpr uint32_t kNoDexPc = -1;
83
84enum IfCondition {
85  // All types.
86  kCondEQ,  // ==
87  kCondNE,  // !=
88  // Signed integers and floating-point numbers.
89  kCondLT,  // <
90  kCondLE,  // <=
91  kCondGT,  // >
92  kCondGE,  // >=
93  // Unsigned integers.
94  kCondB,   // <
95  kCondBE,  // <=
96  kCondA,   // >
97  kCondAE,  // >=
98};
99
100enum GraphAnalysisResult {
101  kAnalysisFailThrowCatchLoop,
102  kAnalysisFailAmbiguousArrayOp,
103  kAnalysisSuccess,
104};
105
106class HInstructionList : public ValueObject {
107 public:
108  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
109
110  void AddInstruction(HInstruction* instruction);
111  void RemoveInstruction(HInstruction* instruction);
112
113  // Insert `instruction` before/after an existing instruction `cursor`.
114  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
115  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
116
117  // Return true if this list contains `instruction`.
118  bool Contains(HInstruction* instruction) const;
119
120  // Return true if `instruction1` is found before `instruction2` in
121  // this instruction list and false otherwise.  Abort if none
122  // of these instructions is found.
123  bool FoundBefore(const HInstruction* instruction1,
124                   const HInstruction* instruction2) const;
125
126  bool IsEmpty() const { return first_instruction_ == nullptr; }
127  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
128
129  // Update the block of all instructions to be `block`.
130  void SetBlockOfInstructions(HBasicBlock* block) const;
131
132  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
133  void Add(const HInstructionList& instruction_list);
134
135  // Return the number of instructions in the list. This is an expensive operation.
136  size_t CountSize() const;
137
138 private:
139  HInstruction* first_instruction_;
140  HInstruction* last_instruction_;
141
142  friend class HBasicBlock;
143  friend class HGraph;
144  friend class HInstruction;
145  friend class HInstructionIterator;
146  friend class HBackwardInstructionIterator;
147
148  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
149};
150
151class ReferenceTypeInfo : ValueObject {
152 public:
153  typedef Handle<mirror::Class> TypeHandle;
154
155  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
156    // The constructor will check that the type_handle is valid.
157    return ReferenceTypeInfo(type_handle, is_exact);
158  }
159
160  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
161
162  static bool IsValidHandle(TypeHandle handle) {
163    return handle.GetReference() != nullptr;
164  }
165
166  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
167    return IsValidHandle(type_handle_);
168  }
169
170  bool IsExact() const { return is_exact_; }
171
172  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
173    DCHECK(IsValid());
174    return GetTypeHandle()->IsObjectClass();
175  }
176
177  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
178    DCHECK(IsValid());
179    return GetTypeHandle()->IsStringClass();
180  }
181
182  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
183    DCHECK(IsValid());
184    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
185  }
186
187  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
188    DCHECK(IsValid());
189    return GetTypeHandle()->IsInterface();
190  }
191
192  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
193    DCHECK(IsValid());
194    return GetTypeHandle()->IsArrayClass();
195  }
196
197  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
198    DCHECK(IsValid());
199    return GetTypeHandle()->IsPrimitiveArray();
200  }
201
202  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
203    DCHECK(IsValid());
204    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
205  }
206
207  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
208    DCHECK(IsValid());
209    if (!IsExact()) return false;
210    if (!IsArrayClass()) return false;
211    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
212  }
213
214  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
215    DCHECK(IsValid());
216    if (!IsExact()) return false;
217    if (!IsArrayClass()) return false;
218    if (!rti.IsArrayClass()) return false;
219    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
220        rti.GetTypeHandle()->GetComponentType());
221  }
222
223  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
224
225  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
226    DCHECK(IsValid());
227    DCHECK(rti.IsValid());
228    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
229  }
230
231  bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
232    DCHECK(IsValid());
233    DCHECK(rti.IsValid());
234    return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
235        GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
236  }
237
238  // Returns true if the type information provide the same amount of details.
239  // Note that it does not mean that the instructions have the same actual type
240  // (because the type can be the result of a merge).
241  bool IsEqual(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
242    if (!IsValid() && !rti.IsValid()) {
243      // Invalid types are equal.
244      return true;
245    }
246    if (!IsValid() || !rti.IsValid()) {
247      // One is valid, the other not.
248      return false;
249    }
250    return IsExact() == rti.IsExact()
251        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
252  }
253
254 private:
255  ReferenceTypeInfo();
256  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
257
258  // The class of the object.
259  TypeHandle type_handle_;
260  // Whether or not the type is exact or a superclass of the actual type.
261  // Whether or not we have any information about this type.
262  bool is_exact_;
263};
264
265std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
266
267// Control-flow graph of a method. Contains a list of basic blocks.
268class HGraph : public ArenaObject<kArenaAllocGraph> {
269 public:
270  HGraph(ArenaAllocator* arena,
271         const DexFile& dex_file,
272         uint32_t method_idx,
273         bool should_generate_constructor_barrier,
274         InstructionSet instruction_set,
275         InvokeType invoke_type = kInvalidInvokeType,
276         bool debuggable = false,
277         int start_instruction_id = 0)
278      : arena_(arena),
279        blocks_(arena->Adapter(kArenaAllocBlockList)),
280        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
281        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
282        entry_block_(nullptr),
283        exit_block_(nullptr),
284        maximum_number_of_out_vregs_(0),
285        number_of_vregs_(0),
286        number_of_in_vregs_(0),
287        temporaries_vreg_slots_(0),
288        has_bounds_checks_(false),
289        has_try_catch_(false),
290        has_irreducible_loops_(false),
291        debuggable_(debuggable),
292        current_instruction_id_(start_instruction_id),
293        dex_file_(dex_file),
294        method_idx_(method_idx),
295        invoke_type_(invoke_type),
296        in_ssa_form_(false),
297        should_generate_constructor_barrier_(should_generate_constructor_barrier),
298        instruction_set_(instruction_set),
299        cached_null_constant_(nullptr),
300        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
301        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
302        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
303        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
304        cached_current_method_(nullptr),
305        inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()) {
306    blocks_.reserve(kDefaultNumberOfBlocks);
307  }
308
309  ArenaAllocator* GetArena() const { return arena_; }
310  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
311
312  bool IsInSsaForm() const { return in_ssa_form_; }
313
314  HBasicBlock* GetEntryBlock() const { return entry_block_; }
315  HBasicBlock* GetExitBlock() const { return exit_block_; }
316  bool HasExitBlock() const { return exit_block_ != nullptr; }
317
318  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
319  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
320
321  void AddBlock(HBasicBlock* block);
322
323  // Try building the SSA form of this graph, with dominance computation and
324  // loop recognition. Returns a code specifying that it was successful or the
325  // reason for failure.
326  GraphAnalysisResult TryBuildingSsa(StackHandleScopeCollection* handles);
327
328  void ComputeDominanceInformation();
329  void ClearDominanceInformation();
330  void ClearLoopInformation();
331  void FindBackEdges(ArenaBitVector* visited);
332  GraphAnalysisResult BuildDominatorTree();
333  void SimplifyCFG();
334  void SimplifyCatchBlocks();
335
336  // Analyze all natural loops in this graph. Returns a code specifying that it
337  // was successful or the reason for failure. The method will fail if a loop
338  // is a throw-catch loop, i.e. the header is a catch block.
339  GraphAnalysisResult AnalyzeLoops() const;
340
341  // Iterate over blocks to compute try block membership. Needs reverse post
342  // order and loop information.
343  void ComputeTryBlockInformation();
344
345  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
346  // Returns the instruction used to replace the invoke expression or null if the
347  // invoke is for a void method.
348  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
349
350  // Need to add a couple of blocks to test if the loop body is entered and
351  // put deoptimization instructions, etc.
352  void TransformLoopHeaderForBCE(HBasicBlock* header);
353
354  // Removes `block` from the graph. Assumes `block` has been disconnected from
355  // other blocks and has no instructions or phis.
356  void DeleteDeadEmptyBlock(HBasicBlock* block);
357
358  // Splits the edge between `block` and `successor` while preserving the
359  // indices in the predecessor/successor lists. If there are multiple edges
360  // between the blocks, the lowest indices are used.
361  // Returns the new block which is empty and has the same dex pc as `successor`.
362  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
363
364  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
365  void SimplifyLoop(HBasicBlock* header);
366
367  int32_t GetNextInstructionId() {
368    DCHECK_NE(current_instruction_id_, INT32_MAX);
369    return current_instruction_id_++;
370  }
371
372  int32_t GetCurrentInstructionId() const {
373    return current_instruction_id_;
374  }
375
376  void SetCurrentInstructionId(int32_t id) {
377    current_instruction_id_ = id;
378  }
379
380  uint16_t GetMaximumNumberOfOutVRegs() const {
381    return maximum_number_of_out_vregs_;
382  }
383
384  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
385    maximum_number_of_out_vregs_ = new_value;
386  }
387
388  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
389    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
390  }
391
392  void UpdateTemporariesVRegSlots(size_t slots) {
393    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
394  }
395
396  size_t GetTemporariesVRegSlots() const {
397    DCHECK(!in_ssa_form_);
398    return temporaries_vreg_slots_;
399  }
400
401  void SetNumberOfVRegs(uint16_t number_of_vregs) {
402    number_of_vregs_ = number_of_vregs;
403  }
404
405  uint16_t GetNumberOfVRegs() const {
406    return number_of_vregs_;
407  }
408
409  void SetNumberOfInVRegs(uint16_t value) {
410    number_of_in_vregs_ = value;
411  }
412
413  uint16_t GetNumberOfLocalVRegs() const {
414    DCHECK(!in_ssa_form_);
415    return number_of_vregs_ - number_of_in_vregs_;
416  }
417
418  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
419    return reverse_post_order_;
420  }
421
422  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
423    return linear_order_;
424  }
425
426  bool HasBoundsChecks() const {
427    return has_bounds_checks_;
428  }
429
430  void SetHasBoundsChecks(bool value) {
431    has_bounds_checks_ = value;
432  }
433
434  bool ShouldGenerateConstructorBarrier() const {
435    return should_generate_constructor_barrier_;
436  }
437
438  bool IsDebuggable() const { return debuggable_; }
439
440  // Returns a constant of the given type and value. If it does not exist
441  // already, it is created and inserted into the graph. This method is only for
442  // integral types.
443  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
444
445  // TODO: This is problematic for the consistency of reference type propagation
446  // because it can be created anytime after the pass and thus it will be left
447  // with an invalid type.
448  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
449
450  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
451    return CreateConstant(value, &cached_int_constants_, dex_pc);
452  }
453  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
454    return CreateConstant(value, &cached_long_constants_, dex_pc);
455  }
456  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
457    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
458  }
459  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
460    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
461  }
462
463  HCurrentMethod* GetCurrentMethod();
464
465  const DexFile& GetDexFile() const {
466    return dex_file_;
467  }
468
469  uint32_t GetMethodIdx() const {
470    return method_idx_;
471  }
472
473  InvokeType GetInvokeType() const {
474    return invoke_type_;
475  }
476
477  InstructionSet GetInstructionSet() const {
478    return instruction_set_;
479  }
480
481  bool HasTryCatch() const { return has_try_catch_; }
482  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
483
484  bool HasIrreducibleLoops() const { return has_irreducible_loops_; }
485  void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; }
486
487  ArtMethod* GetArtMethod() const { return art_method_; }
488  void SetArtMethod(ArtMethod* method) { art_method_ = method; }
489
490  // Returns an instruction with the opposite boolean value from 'cond'.
491  // The instruction has been inserted into the graph, either as a constant, or
492  // before cursor.
493  HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
494
495 private:
496  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
497  void RemoveDeadBlocks(const ArenaBitVector& visited);
498
499  template <class InstructionType, typename ValueType>
500  InstructionType* CreateConstant(ValueType value,
501                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
502                                  uint32_t dex_pc = kNoDexPc) {
503    // Try to find an existing constant of the given value.
504    InstructionType* constant = nullptr;
505    auto cached_constant = cache->find(value);
506    if (cached_constant != cache->end()) {
507      constant = cached_constant->second;
508    }
509
510    // If not found or previously deleted, create and cache a new instruction.
511    // Don't bother reviving a previously deleted instruction, for simplicity.
512    if (constant == nullptr || constant->GetBlock() == nullptr) {
513      constant = new (arena_) InstructionType(value, dex_pc);
514      cache->Overwrite(value, constant);
515      InsertConstant(constant);
516    }
517    return constant;
518  }
519
520  void InsertConstant(HConstant* instruction);
521
522  // Cache a float constant into the graph. This method should only be
523  // called by the SsaBuilder when creating "equivalent" instructions.
524  void CacheFloatConstant(HFloatConstant* constant);
525
526  // See CacheFloatConstant comment.
527  void CacheDoubleConstant(HDoubleConstant* constant);
528
529  ArenaAllocator* const arena_;
530
531  // List of blocks in insertion order.
532  ArenaVector<HBasicBlock*> blocks_;
533
534  // List of blocks to perform a reverse post order tree traversal.
535  ArenaVector<HBasicBlock*> reverse_post_order_;
536
537  // List of blocks to perform a linear order tree traversal.
538  ArenaVector<HBasicBlock*> linear_order_;
539
540  HBasicBlock* entry_block_;
541  HBasicBlock* exit_block_;
542
543  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
544  uint16_t maximum_number_of_out_vregs_;
545
546  // The number of virtual registers in this method. Contains the parameters.
547  uint16_t number_of_vregs_;
548
549  // The number of virtual registers used by parameters of this method.
550  uint16_t number_of_in_vregs_;
551
552  // Number of vreg size slots that the temporaries use (used in baseline compiler).
553  size_t temporaries_vreg_slots_;
554
555  // Has bounds checks. We can totally skip BCE if it's false.
556  bool has_bounds_checks_;
557
558  // Flag whether there are any try/catch blocks in the graph. We will skip
559  // try/catch-related passes if false.
560  bool has_try_catch_;
561
562  // Flag whether there are any irreducible loops in the graph.
563  bool has_irreducible_loops_;
564
565  // Indicates whether the graph should be compiled in a way that
566  // ensures full debuggability. If false, we can apply more
567  // aggressive optimizations that may limit the level of debugging.
568  const bool debuggable_;
569
570  // The current id to assign to a newly added instruction. See HInstruction.id_.
571  int32_t current_instruction_id_;
572
573  // The dex file from which the method is from.
574  const DexFile& dex_file_;
575
576  // The method index in the dex file.
577  const uint32_t method_idx_;
578
579  // If inlined, this encodes how the callee is being invoked.
580  const InvokeType invoke_type_;
581
582  // Whether the graph has been transformed to SSA form. Only used
583  // in debug mode to ensure we are not using properties only valid
584  // for non-SSA form (like the number of temporaries).
585  bool in_ssa_form_;
586
587  const bool should_generate_constructor_barrier_;
588
589  const InstructionSet instruction_set_;
590
591  // Cached constants.
592  HNullConstant* cached_null_constant_;
593  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
594  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
595  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
596  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
597
598  HCurrentMethod* cached_current_method_;
599
600  // The ArtMethod this graph is for. Note that for AOT, it may be null,
601  // for example for methods whose declaring class could not be resolved
602  // (such as when the superclass could not be found).
603  ArtMethod* art_method_;
604
605  // Keep the RTI of inexact Object to avoid having to pass stack handle
606  // collection pointer to passes which may create NullConstant.
607  ReferenceTypeInfo inexact_object_rti_;
608
609  friend class SsaBuilder;           // For caching constants.
610  friend class SsaLivenessAnalysis;  // For the linear order.
611  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
612  DISALLOW_COPY_AND_ASSIGN(HGraph);
613};
614
615class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
616 public:
617  HLoopInformation(HBasicBlock* header, HGraph* graph)
618      : header_(header),
619        suspend_check_(nullptr),
620        irreducible_(false),
621        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
622        // Make bit vector growable, as the number of blocks may change.
623        blocks_(graph->GetArena(), graph->GetBlocks().size(), true) {
624    back_edges_.reserve(kDefaultNumberOfBackEdges);
625  }
626
627  bool IsIrreducible() const { return irreducible_; }
628
629  void Dump(std::ostream& os);
630
631  HBasicBlock* GetHeader() const {
632    return header_;
633  }
634
635  void SetHeader(HBasicBlock* block) {
636    header_ = block;
637  }
638
639  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
640  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
641  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
642
643  void AddBackEdge(HBasicBlock* back_edge) {
644    back_edges_.push_back(back_edge);
645  }
646
647  void RemoveBackEdge(HBasicBlock* back_edge) {
648    RemoveElement(back_edges_, back_edge);
649  }
650
651  bool IsBackEdge(const HBasicBlock& block) const {
652    return ContainsElement(back_edges_, &block);
653  }
654
655  size_t NumberOfBackEdges() const {
656    return back_edges_.size();
657  }
658
659  HBasicBlock* GetPreHeader() const;
660
661  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
662    return back_edges_;
663  }
664
665  // Returns the lifetime position of the back edge that has the
666  // greatest lifetime position.
667  size_t GetLifetimeEnd() const;
668
669  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
670    ReplaceElement(back_edges_, existing, new_back_edge);
671  }
672
673  // Finds blocks that are part of this loop.
674  void Populate();
675
676  // Returns whether this loop information contains `block`.
677  // Note that this loop information *must* be populated before entering this function.
678  bool Contains(const HBasicBlock& block) const;
679
680  // Returns whether this loop information is an inner loop of `other`.
681  // Note that `other` *must* be populated before entering this function.
682  bool IsIn(const HLoopInformation& other) const;
683
684  // Returns true if instruction is not defined within this loop.
685  bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
686
687  const ArenaBitVector& GetBlocks() const { return blocks_; }
688
689  void Add(HBasicBlock* block);
690  void Remove(HBasicBlock* block);
691
692  void ClearAllBlocks() {
693    blocks_.ClearAllBits();
694  }
695
696 private:
697  // Internal recursive implementation of `Populate`.
698  void PopulateRecursive(HBasicBlock* block);
699  void PopulateIrreducibleRecursive(HBasicBlock* block);
700
701  HBasicBlock* header_;
702  HSuspendCheck* suspend_check_;
703  bool irreducible_;
704  ArenaVector<HBasicBlock*> back_edges_;
705  ArenaBitVector blocks_;
706
707  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
708};
709
710// Stores try/catch information for basic blocks.
711// Note that HGraph is constructed so that catch blocks cannot simultaneously
712// be try blocks.
713class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
714 public:
715  // Try block information constructor.
716  explicit TryCatchInformation(const HTryBoundary& try_entry)
717      : try_entry_(&try_entry),
718        catch_dex_file_(nullptr),
719        catch_type_index_(DexFile::kDexNoIndex16) {
720    DCHECK(try_entry_ != nullptr);
721  }
722
723  // Catch block information constructor.
724  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
725      : try_entry_(nullptr),
726        catch_dex_file_(&dex_file),
727        catch_type_index_(catch_type_index) {}
728
729  bool IsTryBlock() const { return try_entry_ != nullptr; }
730
731  const HTryBoundary& GetTryEntry() const {
732    DCHECK(IsTryBlock());
733    return *try_entry_;
734  }
735
736  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
737
738  bool IsCatchAllTypeIndex() const {
739    DCHECK(IsCatchBlock());
740    return catch_type_index_ == DexFile::kDexNoIndex16;
741  }
742
743  uint16_t GetCatchTypeIndex() const {
744    DCHECK(IsCatchBlock());
745    return catch_type_index_;
746  }
747
748  const DexFile& GetCatchDexFile() const {
749    DCHECK(IsCatchBlock());
750    return *catch_dex_file_;
751  }
752
753 private:
754  // One of possibly several TryBoundary instructions entering the block's try.
755  // Only set for try blocks.
756  const HTryBoundary* try_entry_;
757
758  // Exception type information. Only set for catch blocks.
759  const DexFile* catch_dex_file_;
760  const uint16_t catch_type_index_;
761};
762
763static constexpr size_t kNoLifetime = -1;
764static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
765
766// A block in a method. Contains the list of instructions represented
767// as a double linked list. Each block knows its predecessors and
768// successors.
769
770class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
771 public:
772  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
773      : graph_(graph),
774        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
775        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
776        loop_information_(nullptr),
777        dominator_(nullptr),
778        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
779        block_id_(kInvalidBlockId),
780        dex_pc_(dex_pc),
781        lifetime_start_(kNoLifetime),
782        lifetime_end_(kNoLifetime),
783        try_catch_information_(nullptr) {
784    predecessors_.reserve(kDefaultNumberOfPredecessors);
785    successors_.reserve(kDefaultNumberOfSuccessors);
786    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
787  }
788
789  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
790    return predecessors_;
791  }
792
793  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
794    return successors_;
795  }
796
797  ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
798  ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
799
800  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
801    return ContainsElement(successors_, block, start_from);
802  }
803
804  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
805    return dominated_blocks_;
806  }
807
808  bool IsEntryBlock() const {
809    return graph_->GetEntryBlock() == this;
810  }
811
812  bool IsExitBlock() const {
813    return graph_->GetExitBlock() == this;
814  }
815
816  bool IsSingleGoto() const;
817  bool IsSingleTryBoundary() const;
818
819  // Returns true if this block emits nothing but a jump.
820  bool IsSingleJump() const {
821    HLoopInformation* loop_info = GetLoopInformation();
822    return (IsSingleGoto() || IsSingleTryBoundary())
823           // Back edges generate a suspend check.
824           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
825  }
826
827  void AddBackEdge(HBasicBlock* back_edge) {
828    if (loop_information_ == nullptr) {
829      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
830    }
831    DCHECK_EQ(loop_information_->GetHeader(), this);
832    loop_information_->AddBackEdge(back_edge);
833  }
834
835  HGraph* GetGraph() const { return graph_; }
836  void SetGraph(HGraph* graph) { graph_ = graph; }
837
838  uint32_t GetBlockId() const { return block_id_; }
839  void SetBlockId(int id) { block_id_ = id; }
840  uint32_t GetDexPc() const { return dex_pc_; }
841
842  HBasicBlock* GetDominator() const { return dominator_; }
843  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
844  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
845
846  void RemoveDominatedBlock(HBasicBlock* block) {
847    RemoveElement(dominated_blocks_, block);
848  }
849
850  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
851    ReplaceElement(dominated_blocks_, existing, new_block);
852  }
853
854  void ClearDominanceInformation();
855
856  int NumberOfBackEdges() const {
857    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
858  }
859
860  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
861  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
862  const HInstructionList& GetInstructions() const { return instructions_; }
863  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
864  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
865  const HInstructionList& GetPhis() const { return phis_; }
866
867  HInstruction* GetFirstInstructionDisregardMoves() const;
868
869  void AddSuccessor(HBasicBlock* block) {
870    successors_.push_back(block);
871    block->predecessors_.push_back(this);
872  }
873
874  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
875    size_t successor_index = GetSuccessorIndexOf(existing);
876    existing->RemovePredecessor(this);
877    new_block->predecessors_.push_back(this);
878    successors_[successor_index] = new_block;
879  }
880
881  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
882    size_t predecessor_index = GetPredecessorIndexOf(existing);
883    existing->RemoveSuccessor(this);
884    new_block->successors_.push_back(this);
885    predecessors_[predecessor_index] = new_block;
886  }
887
888  // Insert `this` between `predecessor` and `successor. This method
889  // preserves the indicies, and will update the first edge found between
890  // `predecessor` and `successor`.
891  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
892    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
893    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
894    successor->predecessors_[predecessor_index] = this;
895    predecessor->successors_[successor_index] = this;
896    successors_.push_back(successor);
897    predecessors_.push_back(predecessor);
898  }
899
900  void RemovePredecessor(HBasicBlock* block) {
901    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
902  }
903
904  void RemoveSuccessor(HBasicBlock* block) {
905    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
906  }
907
908  void ClearAllPredecessors() {
909    predecessors_.clear();
910  }
911
912  void AddPredecessor(HBasicBlock* block) {
913    predecessors_.push_back(block);
914    block->successors_.push_back(this);
915  }
916
917  void SwapPredecessors() {
918    DCHECK_EQ(predecessors_.size(), 2u);
919    std::swap(predecessors_[0], predecessors_[1]);
920  }
921
922  void SwapSuccessors() {
923    DCHECK_EQ(successors_.size(), 2u);
924    std::swap(successors_[0], successors_[1]);
925  }
926
927  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
928    return IndexOfElement(predecessors_, predecessor);
929  }
930
931  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
932    return IndexOfElement(successors_, successor);
933  }
934
935  HBasicBlock* GetSinglePredecessor() const {
936    DCHECK_EQ(GetPredecessors().size(), 1u);
937    return GetPredecessors()[0];
938  }
939
940  HBasicBlock* GetSingleSuccessor() const {
941    DCHECK_EQ(GetSuccessors().size(), 1u);
942    return GetSuccessors()[0];
943  }
944
945  // Returns whether the first occurrence of `predecessor` in the list of
946  // predecessors is at index `idx`.
947  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
948    DCHECK_EQ(GetPredecessors()[idx], predecessor);
949    return GetPredecessorIndexOf(predecessor) == idx;
950  }
951
952  // Create a new block between this block and its predecessors. The new block
953  // is added to the graph, all predecessor edges are relinked to it and an edge
954  // is created to `this`. Returns the new empty block. Reverse post order or
955  // loop and try/catch information are not updated.
956  HBasicBlock* CreateImmediateDominator();
957
958  // Split the block into two blocks just before `cursor`. Returns the newly
959  // created, latter block. Note that this method will add the block to the
960  // graph, create a Goto at the end of the former block and will create an edge
961  // between the blocks. It will not, however, update the reverse post order or
962  // loop and try/catch information.
963  HBasicBlock* SplitBefore(HInstruction* cursor);
964
965  // Split the block into two blocks just after `cursor`. Returns the newly
966  // created block. Note that this method just updates raw block information,
967  // like predecessors, successors, dominators, and instruction list. It does not
968  // update the graph, reverse post order, loop information, nor make sure the
969  // blocks are consistent (for example ending with a control flow instruction).
970  HBasicBlock* SplitAfter(HInstruction* cursor);
971
972  // Split catch block into two blocks after the original move-exception bytecode
973  // instruction, or at the beginning if not present. Returns the newly created,
974  // latter block, or nullptr if such block could not be created (must be dead
975  // in that case). Note that this method just updates raw block information,
976  // like predecessors, successors, dominators, and instruction list. It does not
977  // update the graph, reverse post order, loop information, nor make sure the
978  // blocks are consistent (for example ending with a control flow instruction).
979  HBasicBlock* SplitCatchBlockAfterMoveException();
980
981  // Merge `other` at the end of `this`. Successors and dominated blocks of
982  // `other` are changed to be successors and dominated blocks of `this`. Note
983  // that this method does not update the graph, reverse post order, loop
984  // information, nor make sure the blocks are consistent (for example ending
985  // with a control flow instruction).
986  void MergeWithInlined(HBasicBlock* other);
987
988  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
989  // of `this` are moved to `other`.
990  // Note that this method does not update the graph, reverse post order, loop
991  // information, nor make sure the blocks are consistent (for example ending
992  // with a control flow instruction).
993  void ReplaceWith(HBasicBlock* other);
994
995  // Merge `other` at the end of `this`. This method updates loops, reverse post
996  // order, links to predecessors, successors, dominators and deletes the block
997  // from the graph. The two blocks must be successive, i.e. `this` the only
998  // predecessor of `other` and vice versa.
999  void MergeWith(HBasicBlock* other);
1000
1001  // Disconnects `this` from all its predecessors, successors and dominator,
1002  // removes it from all loops it is included in and eventually from the graph.
1003  // The block must not dominate any other block. Predecessors and successors
1004  // are safely updated.
1005  void DisconnectAndDelete();
1006
1007  void AddInstruction(HInstruction* instruction);
1008  // Insert `instruction` before/after an existing instruction `cursor`.
1009  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
1010  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
1011  // Replace instruction `initial` with `replacement` within this block.
1012  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
1013                                       HInstruction* replacement);
1014  void MoveInstructionBefore(HInstruction* insn, HInstruction* cursor);
1015  void AddPhi(HPhi* phi);
1016  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
1017  // RemoveInstruction and RemovePhi delete a given instruction from the respective
1018  // instruction list. With 'ensure_safety' set to true, it verifies that the
1019  // instruction is not in use and removes it from the use lists of its inputs.
1020  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
1021  void RemovePhi(HPhi* phi, bool ensure_safety = true);
1022  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
1023
1024  bool IsLoopHeader() const {
1025    return IsInLoop() && (loop_information_->GetHeader() == this);
1026  }
1027
1028  bool IsLoopPreHeaderFirstPredecessor() const {
1029    DCHECK(IsLoopHeader());
1030    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
1031  }
1032
1033  bool IsFirstPredecessorBackEdge() const {
1034    DCHECK(IsLoopHeader());
1035    return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]);
1036  }
1037
1038  HLoopInformation* GetLoopInformation() const {
1039    return loop_information_;
1040  }
1041
1042  // Set the loop_information_ on this block. Overrides the current
1043  // loop_information if it is an outer loop of the passed loop information.
1044  // Note that this method is called while creating the loop information.
1045  void SetInLoop(HLoopInformation* info) {
1046    if (IsLoopHeader()) {
1047      // Nothing to do. This just means `info` is an outer loop.
1048    } else if (!IsInLoop()) {
1049      loop_information_ = info;
1050    } else if (loop_information_->Contains(*info->GetHeader())) {
1051      // Block is currently part of an outer loop. Make it part of this inner loop.
1052      // Note that a non loop header having a loop information means this loop information
1053      // has already been populated
1054      loop_information_ = info;
1055    } else {
1056      // Block is part of an inner loop. Do not update the loop information.
1057      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
1058      // at this point, because this method is being called while populating `info`.
1059    }
1060  }
1061
1062  // Raw update of the loop information.
1063  void SetLoopInformation(HLoopInformation* info) {
1064    loop_information_ = info;
1065  }
1066
1067  bool IsInLoop() const { return loop_information_ != nullptr; }
1068
1069  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
1070
1071  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
1072    try_catch_information_ = try_catch_information;
1073  }
1074
1075  bool IsTryBlock() const {
1076    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
1077  }
1078
1079  bool IsCatchBlock() const {
1080    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
1081  }
1082
1083  // Returns the try entry that this block's successors should have. They will
1084  // be in the same try, unless the block ends in a try boundary. In that case,
1085  // the appropriate try entry will be returned.
1086  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
1087
1088  bool HasThrowingInstructions() const;
1089
1090  // Returns whether this block dominates the blocked passed as parameter.
1091  bool Dominates(HBasicBlock* block) const;
1092
1093  size_t GetLifetimeStart() const { return lifetime_start_; }
1094  size_t GetLifetimeEnd() const { return lifetime_end_; }
1095
1096  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
1097  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
1098
1099  bool EndsWithControlFlowInstruction() const;
1100  bool EndsWithIf() const;
1101  bool EndsWithTryBoundary() const;
1102  bool HasSinglePhi() const;
1103
1104 private:
1105  HGraph* graph_;
1106  ArenaVector<HBasicBlock*> predecessors_;
1107  ArenaVector<HBasicBlock*> successors_;
1108  HInstructionList instructions_;
1109  HInstructionList phis_;
1110  HLoopInformation* loop_information_;
1111  HBasicBlock* dominator_;
1112  ArenaVector<HBasicBlock*> dominated_blocks_;
1113  uint32_t block_id_;
1114  // The dex program counter of the first instruction of this block.
1115  const uint32_t dex_pc_;
1116  size_t lifetime_start_;
1117  size_t lifetime_end_;
1118  TryCatchInformation* try_catch_information_;
1119
1120  friend class HGraph;
1121  friend class HInstruction;
1122
1123  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
1124};
1125
1126// Iterates over the LoopInformation of all loops which contain 'block'
1127// from the innermost to the outermost.
1128class HLoopInformationOutwardIterator : public ValueObject {
1129 public:
1130  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
1131      : current_(block.GetLoopInformation()) {}
1132
1133  bool Done() const { return current_ == nullptr; }
1134
1135  void Advance() {
1136    DCHECK(!Done());
1137    current_ = current_->GetPreHeader()->GetLoopInformation();
1138  }
1139
1140  HLoopInformation* Current() const {
1141    DCHECK(!Done());
1142    return current_;
1143  }
1144
1145 private:
1146  HLoopInformation* current_;
1147
1148  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1149};
1150
1151#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1152  M(Above, Condition)                                                   \
1153  M(AboveOrEqual, Condition)                                            \
1154  M(Add, BinaryOperation)                                               \
1155  M(And, BinaryOperation)                                               \
1156  M(ArrayGet, Instruction)                                              \
1157  M(ArrayLength, Instruction)                                           \
1158  M(ArraySet, Instruction)                                              \
1159  M(Below, Condition)                                                   \
1160  M(BelowOrEqual, Condition)                                            \
1161  M(BooleanNot, UnaryOperation)                                         \
1162  M(BoundsCheck, Instruction)                                           \
1163  M(BoundType, Instruction)                                             \
1164  M(CheckCast, Instruction)                                             \
1165  M(ClassTableGet, Instruction)                                         \
1166  M(ClearException, Instruction)                                        \
1167  M(ClinitCheck, Instruction)                                           \
1168  M(Compare, BinaryOperation)                                           \
1169  M(CurrentMethod, Instruction)                                         \
1170  M(Deoptimize, Instruction)                                            \
1171  M(Div, BinaryOperation)                                               \
1172  M(DivZeroCheck, Instruction)                                          \
1173  M(DoubleConstant, Constant)                                           \
1174  M(Equal, Condition)                                                   \
1175  M(Exit, Instruction)                                                  \
1176  M(FloatConstant, Constant)                                            \
1177  M(Goto, Instruction)                                                  \
1178  M(GreaterThan, Condition)                                             \
1179  M(GreaterThanOrEqual, Condition)                                      \
1180  M(If, Instruction)                                                    \
1181  M(InstanceFieldGet, Instruction)                                      \
1182  M(InstanceFieldSet, Instruction)                                      \
1183  M(InstanceOf, Instruction)                                            \
1184  M(IntConstant, Constant)                                              \
1185  M(InvokeUnresolved, Invoke)                                           \
1186  M(InvokeInterface, Invoke)                                            \
1187  M(InvokeStaticOrDirect, Invoke)                                       \
1188  M(InvokeVirtual, Invoke)                                              \
1189  M(LessThan, Condition)                                                \
1190  M(LessThanOrEqual, Condition)                                         \
1191  M(LoadClass, Instruction)                                             \
1192  M(LoadException, Instruction)                                         \
1193  M(LoadLocal, Instruction)                                             \
1194  M(LoadString, Instruction)                                            \
1195  M(Local, Instruction)                                                 \
1196  M(LongConstant, Constant)                                             \
1197  M(MemoryBarrier, Instruction)                                         \
1198  M(MonitorOperation, Instruction)                                      \
1199  M(Mul, BinaryOperation)                                               \
1200  M(NativeDebugInfo, Instruction)                                       \
1201  M(Neg, UnaryOperation)                                                \
1202  M(NewArray, Instruction)                                              \
1203  M(NewInstance, Instruction)                                           \
1204  M(Not, UnaryOperation)                                                \
1205  M(NotEqual, Condition)                                                \
1206  M(NullConstant, Instruction)                                          \
1207  M(NullCheck, Instruction)                                             \
1208  M(Or, BinaryOperation)                                                \
1209  M(PackedSwitch, Instruction)                                          \
1210  M(ParallelMove, Instruction)                                          \
1211  M(ParameterValue, Instruction)                                        \
1212  M(Phi, Instruction)                                                   \
1213  M(Rem, BinaryOperation)                                               \
1214  M(Return, Instruction)                                                \
1215  M(ReturnVoid, Instruction)                                            \
1216  M(Ror, BinaryOperation)                                               \
1217  M(Shl, BinaryOperation)                                               \
1218  M(Shr, BinaryOperation)                                               \
1219  M(StaticFieldGet, Instruction)                                        \
1220  M(StaticFieldSet, Instruction)                                        \
1221  M(UnresolvedInstanceFieldGet, Instruction)                            \
1222  M(UnresolvedInstanceFieldSet, Instruction)                            \
1223  M(UnresolvedStaticFieldGet, Instruction)                              \
1224  M(UnresolvedStaticFieldSet, Instruction)                              \
1225  M(Select, Instruction)                                                \
1226  M(StoreLocal, Instruction)                                            \
1227  M(Sub, BinaryOperation)                                               \
1228  M(SuspendCheck, Instruction)                                          \
1229  M(Temporary, Instruction)                                             \
1230  M(Throw, Instruction)                                                 \
1231  M(TryBoundary, Instruction)                                           \
1232  M(TypeConversion, Instruction)                                        \
1233  M(UShr, BinaryOperation)                                              \
1234  M(Xor, BinaryOperation)                                               \
1235
1236#ifndef ART_ENABLE_CODEGEN_arm
1237#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1238#else
1239#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                            \
1240  M(ArmDexCacheArraysBase, Instruction)
1241#endif
1242
1243#ifndef ART_ENABLE_CODEGEN_arm64
1244#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1245#else
1246#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1247  M(Arm64DataProcWithShifterOp, Instruction)                            \
1248  M(Arm64IntermediateAddress, Instruction)                              \
1249  M(Arm64MultiplyAccumulate, Instruction)
1250#endif
1251
1252#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1253
1254#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1255
1256#ifndef ART_ENABLE_CODEGEN_x86
1257#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1258#else
1259#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1260  M(X86ComputeBaseMethodAddress, Instruction)                           \
1261  M(X86LoadFromConstantTable, Instruction)                              \
1262  M(X86PackedSwitch, Instruction)
1263#endif
1264
1265#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1266
1267#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1268  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1269  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1270  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1271  FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
1272  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1273  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1274  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1275
1276#define FOR_EACH_ABSTRACT_INSTRUCTION(M)                                \
1277  M(Condition, BinaryOperation)                                         \
1278  M(Constant, Instruction)                                              \
1279  M(UnaryOperation, Instruction)                                        \
1280  M(BinaryOperation, Instruction)                                       \
1281  M(Invoke, Instruction)
1282
1283#define FOR_EACH_INSTRUCTION(M)                                         \
1284  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1285  FOR_EACH_ABSTRACT_INSTRUCTION(M)
1286
1287#define FORWARD_DECLARATION(type, super) class H##type;
1288FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1289#undef FORWARD_DECLARATION
1290
1291#define DECLARE_INSTRUCTION(type)                                       \
1292  InstructionKind GetKindInternal() const OVERRIDE { return k##type; }  \
1293  const char* DebugName() const OVERRIDE { return #type; }              \
1294  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1295    return other->Is##type();                                           \
1296  }                                                                     \
1297  void Accept(HGraphVisitor* visitor) OVERRIDE
1298
1299#define DECLARE_ABSTRACT_INSTRUCTION(type)                              \
1300  bool Is##type() const { return As##type() != nullptr; }               \
1301  const H##type* As##type() const { return this; }                      \
1302  H##type* As##type() { return this; }
1303
1304template <typename T> class HUseList;
1305
1306template <typename T>
1307class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1308 public:
1309  HUseListNode* GetPrevious() const { return prev_; }
1310  HUseListNode* GetNext() const { return next_; }
1311  T GetUser() const { return user_; }
1312  size_t GetIndex() const { return index_; }
1313  void SetIndex(size_t index) { index_ = index; }
1314
1315 private:
1316  HUseListNode(T user, size_t index)
1317      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1318
1319  T const user_;
1320  size_t index_;
1321  HUseListNode<T>* prev_;
1322  HUseListNode<T>* next_;
1323
1324  friend class HUseList<T>;
1325
1326  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1327};
1328
1329template <typename T>
1330class HUseList : public ValueObject {
1331 public:
1332  HUseList() : first_(nullptr) {}
1333
1334  void Clear() {
1335    first_ = nullptr;
1336  }
1337
1338  // Adds a new entry at the beginning of the use list and returns
1339  // the newly created node.
1340  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1341    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1342    if (IsEmpty()) {
1343      first_ = new_node;
1344    } else {
1345      first_->prev_ = new_node;
1346      new_node->next_ = first_;
1347      first_ = new_node;
1348    }
1349    return new_node;
1350  }
1351
1352  HUseListNode<T>* GetFirst() const {
1353    return first_;
1354  }
1355
1356  void Remove(HUseListNode<T>* node) {
1357    DCHECK(node != nullptr);
1358    DCHECK(Contains(node));
1359
1360    if (node->prev_ != nullptr) {
1361      node->prev_->next_ = node->next_;
1362    }
1363    if (node->next_ != nullptr) {
1364      node->next_->prev_ = node->prev_;
1365    }
1366    if (node == first_) {
1367      first_ = node->next_;
1368    }
1369  }
1370
1371  bool Contains(const HUseListNode<T>* node) const {
1372    if (node == nullptr) {
1373      return false;
1374    }
1375    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1376      if (current == node) {
1377        return true;
1378      }
1379    }
1380    return false;
1381  }
1382
1383  bool IsEmpty() const {
1384    return first_ == nullptr;
1385  }
1386
1387  bool HasOnlyOneUse() const {
1388    return first_ != nullptr && first_->next_ == nullptr;
1389  }
1390
1391  size_t SizeSlow() const {
1392    size_t count = 0;
1393    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1394      ++count;
1395    }
1396    return count;
1397  }
1398
1399 private:
1400  HUseListNode<T>* first_;
1401};
1402
1403template<typename T>
1404class HUseIterator : public ValueObject {
1405 public:
1406  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1407
1408  bool Done() const { return current_ == nullptr; }
1409
1410  void Advance() {
1411    DCHECK(!Done());
1412    current_ = current_->GetNext();
1413  }
1414
1415  HUseListNode<T>* Current() const {
1416    DCHECK(!Done());
1417    return current_;
1418  }
1419
1420 private:
1421  HUseListNode<T>* current_;
1422
1423  friend class HValue;
1424};
1425
1426// This class is used by HEnvironment and HInstruction classes to record the
1427// instructions they use and pointers to the corresponding HUseListNodes kept
1428// by the used instructions.
1429template <typename T>
1430class HUserRecord : public ValueObject {
1431 public:
1432  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1433  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1434
1435  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1436    : instruction_(old_record.instruction_), use_node_(use_node) {
1437    DCHECK(instruction_ != nullptr);
1438    DCHECK(use_node_ != nullptr);
1439    DCHECK(old_record.use_node_ == nullptr);
1440  }
1441
1442  HInstruction* GetInstruction() const { return instruction_; }
1443  HUseListNode<T>* GetUseNode() const { return use_node_; }
1444
1445 private:
1446  // Instruction used by the user.
1447  HInstruction* instruction_;
1448
1449  // Corresponding entry in the use list kept by 'instruction_'.
1450  HUseListNode<T>* use_node_;
1451};
1452
1453/**
1454 * Side-effects representation.
1455 *
1456 * For write/read dependences on fields/arrays, the dependence analysis uses
1457 * type disambiguation (e.g. a float field write cannot modify the value of an
1458 * integer field read) and the access type (e.g.  a reference array write cannot
1459 * modify the value of a reference field read [although it may modify the
1460 * reference fetch prior to reading the field, which is represented by its own
1461 * write/read dependence]). The analysis makes conservative points-to
1462 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1463 * the same, and any reference read depends on any reference read without
1464 * further regard of its type).
1465 *
1466 * The internal representation uses 38-bit and is described in the table below.
1467 * The first line indicates the side effect, and for field/array accesses the
1468 * second line indicates the type of the access (in the order of the
1469 * Primitive::Type enum).
1470 * The two numbered lines below indicate the bit position in the bitfield (read
1471 * vertically).
1472 *
1473 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1474 *   +-------------+---------+---------+--------------+---------+---------+
1475 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1476 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1477 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1478 *
1479 * Note that, to ease the implementation, 'changes' bits are least significant
1480 * bits, while 'dependency' bits are most significant bits.
1481 */
1482class SideEffects : public ValueObject {
1483 public:
1484  SideEffects() : flags_(0) {}
1485
1486  static SideEffects None() {
1487    return SideEffects(0);
1488  }
1489
1490  static SideEffects All() {
1491    return SideEffects(kAllChangeBits | kAllDependOnBits);
1492  }
1493
1494  static SideEffects AllChanges() {
1495    return SideEffects(kAllChangeBits);
1496  }
1497
1498  static SideEffects AllDependencies() {
1499    return SideEffects(kAllDependOnBits);
1500  }
1501
1502  static SideEffects AllExceptGCDependency() {
1503    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1504  }
1505
1506  static SideEffects AllWritesAndReads() {
1507    return SideEffects(kAllWrites | kAllReads);
1508  }
1509
1510  static SideEffects AllWrites() {
1511    return SideEffects(kAllWrites);
1512  }
1513
1514  static SideEffects AllReads() {
1515    return SideEffects(kAllReads);
1516  }
1517
1518  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1519    return is_volatile
1520        ? AllWritesAndReads()
1521        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1522  }
1523
1524  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1525    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1526  }
1527
1528  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1529    return is_volatile
1530        ? AllWritesAndReads()
1531        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1532  }
1533
1534  static SideEffects ArrayReadOfType(Primitive::Type type) {
1535    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1536  }
1537
1538  static SideEffects CanTriggerGC() {
1539    return SideEffects(1ULL << kCanTriggerGCBit);
1540  }
1541
1542  static SideEffects DependsOnGC() {
1543    return SideEffects(1ULL << kDependsOnGCBit);
1544  }
1545
1546  // Combines the side-effects of this and the other.
1547  SideEffects Union(SideEffects other) const {
1548    return SideEffects(flags_ | other.flags_);
1549  }
1550
1551  SideEffects Exclusion(SideEffects other) const {
1552    return SideEffects(flags_ & ~other.flags_);
1553  }
1554
1555  void Add(SideEffects other) {
1556    flags_ |= other.flags_;
1557  }
1558
1559  bool Includes(SideEffects other) const {
1560    return (other.flags_ & flags_) == other.flags_;
1561  }
1562
1563  bool HasSideEffects() const {
1564    return (flags_ & kAllChangeBits);
1565  }
1566
1567  bool HasDependencies() const {
1568    return (flags_ & kAllDependOnBits);
1569  }
1570
1571  // Returns true if there are no side effects or dependencies.
1572  bool DoesNothing() const {
1573    return flags_ == 0;
1574  }
1575
1576  // Returns true if something is written.
1577  bool DoesAnyWrite() const {
1578    return (flags_ & kAllWrites);
1579  }
1580
1581  // Returns true if something is read.
1582  bool DoesAnyRead() const {
1583    return (flags_ & kAllReads);
1584  }
1585
1586  // Returns true if potentially everything is written and read
1587  // (every type and every kind of access).
1588  bool DoesAllReadWrite() const {
1589    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1590  }
1591
1592  bool DoesAll() const {
1593    return flags_ == (kAllChangeBits | kAllDependOnBits);
1594  }
1595
1596  // Returns true if `this` may read something written by `other`.
1597  bool MayDependOn(SideEffects other) const {
1598    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1599    return (other.flags_ & depends_on_flags);
1600  }
1601
1602  // Returns string representation of flags (for debugging only).
1603  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1604  std::string ToString() const {
1605    std::string flags = "|";
1606    for (int s = kLastBit; s >= 0; s--) {
1607      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1608      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1609        // This is a bit for the GC side effect.
1610        if (current_bit_is_set) {
1611          flags += "GC";
1612        }
1613        flags += "|";
1614      } else {
1615        // This is a bit for the array/field analysis.
1616        // The underscore character stands for the 'can trigger GC' bit.
1617        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1618        if (current_bit_is_set) {
1619          flags += kDebug[s];
1620        }
1621        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1622            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1623          flags += "|";
1624        }
1625      }
1626    }
1627    return flags;
1628  }
1629
1630  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1631
1632 private:
1633  static constexpr int kFieldArrayAnalysisBits = 9;
1634
1635  static constexpr int kFieldWriteOffset = 0;
1636  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1637  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1638  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1639
1640  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1641
1642  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1643  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1644  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1645  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1646
1647  static constexpr int kLastBit = kDependsOnGCBit;
1648  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1649
1650  // Aliases.
1651
1652  static_assert(kChangeBits == kDependOnBits,
1653                "the 'change' bits should match the 'depend on' bits.");
1654
1655  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1656  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1657  static constexpr uint64_t kAllWrites =
1658      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1659  static constexpr uint64_t kAllReads =
1660      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1661
1662  // Work around the fact that HIR aliases I/F and J/D.
1663  // TODO: remove this interceptor once HIR types are clean
1664  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1665    switch (type) {
1666      case Primitive::kPrimInt:
1667      case Primitive::kPrimFloat:
1668        return TypeFlag(Primitive::kPrimInt, offset) |
1669               TypeFlag(Primitive::kPrimFloat, offset);
1670      case Primitive::kPrimLong:
1671      case Primitive::kPrimDouble:
1672        return TypeFlag(Primitive::kPrimLong, offset) |
1673               TypeFlag(Primitive::kPrimDouble, offset);
1674      default:
1675        return TypeFlag(type, offset);
1676    }
1677  }
1678
1679  // Translates type to bit flag.
1680  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1681    CHECK_NE(type, Primitive::kPrimVoid);
1682    const uint64_t one = 1;
1683    const int shift = type;  // 0-based consecutive enum
1684    DCHECK_LE(kFieldWriteOffset, shift);
1685    DCHECK_LT(shift, kArrayWriteOffset);
1686    return one << (type + offset);
1687  }
1688
1689  // Private constructor on direct flags value.
1690  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1691
1692  uint64_t flags_;
1693};
1694
1695// A HEnvironment object contains the values of virtual registers at a given location.
1696class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1697 public:
1698  HEnvironment(ArenaAllocator* arena,
1699               size_t number_of_vregs,
1700               const DexFile& dex_file,
1701               uint32_t method_idx,
1702               uint32_t dex_pc,
1703               InvokeType invoke_type,
1704               HInstruction* holder)
1705     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1706       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1707       parent_(nullptr),
1708       dex_file_(dex_file),
1709       method_idx_(method_idx),
1710       dex_pc_(dex_pc),
1711       invoke_type_(invoke_type),
1712       holder_(holder) {
1713  }
1714
1715  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1716      : HEnvironment(arena,
1717                     to_copy.Size(),
1718                     to_copy.GetDexFile(),
1719                     to_copy.GetMethodIdx(),
1720                     to_copy.GetDexPc(),
1721                     to_copy.GetInvokeType(),
1722                     holder) {}
1723
1724  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1725    if (parent_ != nullptr) {
1726      parent_->SetAndCopyParentChain(allocator, parent);
1727    } else {
1728      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1729      parent_->CopyFrom(parent);
1730      if (parent->GetParent() != nullptr) {
1731        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1732      }
1733    }
1734  }
1735
1736  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1737  void CopyFrom(HEnvironment* environment);
1738
1739  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1740  // input to the loop phi instead. This is for inserting instructions that
1741  // require an environment (like HDeoptimization) in the loop pre-header.
1742  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1743
1744  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1745    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1746  }
1747
1748  HInstruction* GetInstructionAt(size_t index) const {
1749    return vregs_[index].GetInstruction();
1750  }
1751
1752  void RemoveAsUserOfInput(size_t index) const;
1753
1754  size_t Size() const { return vregs_.size(); }
1755
1756  HEnvironment* GetParent() const { return parent_; }
1757
1758  void SetLocationAt(size_t index, Location location) {
1759    locations_[index] = location;
1760  }
1761
1762  Location GetLocationAt(size_t index) const {
1763    return locations_[index];
1764  }
1765
1766  uint32_t GetDexPc() const {
1767    return dex_pc_;
1768  }
1769
1770  uint32_t GetMethodIdx() const {
1771    return method_idx_;
1772  }
1773
1774  InvokeType GetInvokeType() const {
1775    return invoke_type_;
1776  }
1777
1778  const DexFile& GetDexFile() const {
1779    return dex_file_;
1780  }
1781
1782  HInstruction* GetHolder() const {
1783    return holder_;
1784  }
1785
1786
1787  bool IsFromInlinedInvoke() const {
1788    return GetParent() != nullptr;
1789  }
1790
1791 private:
1792  // Record instructions' use entries of this environment for constant-time removal.
1793  // It should only be called by HInstruction when a new environment use is added.
1794  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1795    DCHECK(env_use->GetUser() == this);
1796    size_t index = env_use->GetIndex();
1797    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1798  }
1799
1800  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1801  ArenaVector<Location> locations_;
1802  HEnvironment* parent_;
1803  const DexFile& dex_file_;
1804  const uint32_t method_idx_;
1805  const uint32_t dex_pc_;
1806  const InvokeType invoke_type_;
1807
1808  // The instruction that holds this environment.
1809  HInstruction* const holder_;
1810
1811  friend class HInstruction;
1812
1813  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1814};
1815
1816class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1817 public:
1818  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1819      : previous_(nullptr),
1820        next_(nullptr),
1821        block_(nullptr),
1822        dex_pc_(dex_pc),
1823        id_(-1),
1824        ssa_index_(-1),
1825        emitted_at_use_site_(false),
1826        environment_(nullptr),
1827        locations_(nullptr),
1828        live_interval_(nullptr),
1829        lifetime_position_(kNoLifetime),
1830        side_effects_(side_effects),
1831        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1832
1833  virtual ~HInstruction() {}
1834
1835#define DECLARE_KIND(type, super) k##type,
1836  enum InstructionKind {
1837    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1838  };
1839#undef DECLARE_KIND
1840
1841  HInstruction* GetNext() const { return next_; }
1842  HInstruction* GetPrevious() const { return previous_; }
1843
1844  HInstruction* GetNextDisregardingMoves() const;
1845  HInstruction* GetPreviousDisregardingMoves() const;
1846
1847  HBasicBlock* GetBlock() const { return block_; }
1848  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1849  void SetBlock(HBasicBlock* block) { block_ = block; }
1850  bool IsInBlock() const { return block_ != nullptr; }
1851  bool IsInLoop() const { return block_->IsInLoop(); }
1852  bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); }
1853  bool IsIrreducibleLoopHeaderPhi() const {
1854    return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible();
1855  }
1856
1857  virtual size_t InputCount() const = 0;
1858  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1859
1860  virtual void Accept(HGraphVisitor* visitor) = 0;
1861  virtual const char* DebugName() const = 0;
1862
1863  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1864  void SetRawInputAt(size_t index, HInstruction* input) {
1865    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1866  }
1867
1868  virtual bool NeedsEnvironment() const { return false; }
1869
1870  uint32_t GetDexPc() const { return dex_pc_; }
1871
1872  virtual bool IsControlFlow() const { return false; }
1873
1874  virtual bool CanThrow() const { return false; }
1875  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1876
1877  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1878  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1879
1880  // Does not apply for all instructions, but having this at top level greatly
1881  // simplifies the null check elimination.
1882  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1883  virtual bool CanBeNull() const {
1884    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1885    return true;
1886  }
1887
1888  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1889    return false;
1890  }
1891
1892  virtual bool IsActualObject() const {
1893    return GetType() == Primitive::kPrimNot;
1894  }
1895
1896  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1897
1898  ReferenceTypeInfo GetReferenceTypeInfo() const {
1899    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1900    return reference_type_info_;
1901  }
1902
1903  void AddUseAt(HInstruction* user, size_t index) {
1904    DCHECK(user != nullptr);
1905    HUseListNode<HInstruction*>* use =
1906        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1907    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1908  }
1909
1910  void AddEnvUseAt(HEnvironment* user, size_t index) {
1911    DCHECK(user != nullptr);
1912    HUseListNode<HEnvironment*>* env_use =
1913        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1914    user->RecordEnvUse(env_use);
1915  }
1916
1917  void RemoveAsUserOfInput(size_t input) {
1918    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1919    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1920  }
1921
1922  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1923  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1924
1925  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1926  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1927  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1928  bool HasOnlyOneNonEnvironmentUse() const {
1929    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1930  }
1931
1932  // Does this instruction strictly dominate `other_instruction`?
1933  // Returns false if this instruction and `other_instruction` are the same.
1934  // Aborts if this instruction and `other_instruction` are both phis.
1935  bool StrictlyDominates(HInstruction* other_instruction) const;
1936
1937  int GetId() const { return id_; }
1938  void SetId(int id) { id_ = id; }
1939
1940  int GetSsaIndex() const { return ssa_index_; }
1941  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1942  bool HasSsaIndex() const { return ssa_index_ != -1; }
1943
1944  bool HasEnvironment() const { return environment_ != nullptr; }
1945  HEnvironment* GetEnvironment() const { return environment_; }
1946  // Set the `environment_` field. Raw because this method does not
1947  // update the uses lists.
1948  void SetRawEnvironment(HEnvironment* environment) {
1949    DCHECK(environment_ == nullptr);
1950    DCHECK_EQ(environment->GetHolder(), this);
1951    environment_ = environment;
1952  }
1953
1954  // Set the environment of this instruction, copying it from `environment`. While
1955  // copying, the uses lists are being updated.
1956  void CopyEnvironmentFrom(HEnvironment* environment) {
1957    DCHECK(environment_ == nullptr);
1958    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1959    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1960    environment_->CopyFrom(environment);
1961    if (environment->GetParent() != nullptr) {
1962      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1963    }
1964  }
1965
1966  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1967                                                HBasicBlock* block) {
1968    DCHECK(environment_ == nullptr);
1969    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1970    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1971    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1972    if (environment->GetParent() != nullptr) {
1973      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1974    }
1975  }
1976
1977  // Returns the number of entries in the environment. Typically, that is the
1978  // number of dex registers in a method. It could be more in case of inlining.
1979  size_t EnvironmentSize() const;
1980
1981  LocationSummary* GetLocations() const { return locations_; }
1982  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1983
1984  void ReplaceWith(HInstruction* instruction);
1985  void ReplaceInput(HInstruction* replacement, size_t index);
1986
1987  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1988  // uses of this instruction by `other` are *not* updated.
1989  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1990    ReplaceWith(other);
1991    other->ReplaceInput(this, use_index);
1992  }
1993
1994  // Move `this` instruction before `cursor`.
1995  void MoveBefore(HInstruction* cursor);
1996
1997  // Move `this` before its first user and out of any loops. If there is no
1998  // out-of-loop user that dominates all other users, move the instruction
1999  // to the end of the out-of-loop common dominator of the user's blocks.
2000  //
2001  // This can be used only on non-throwing instructions with no side effects that
2002  // have at least one use but no environment uses.
2003  void MoveBeforeFirstUserAndOutOfLoops();
2004
2005#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
2006  bool Is##type() const;                                                       \
2007  const H##type* As##type() const;                                             \
2008  H##type* As##type();
2009
2010  FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
2011#undef INSTRUCTION_TYPE_CHECK
2012
2013#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
2014  bool Is##type() const { return (As##type() != nullptr); }                    \
2015  virtual const H##type* As##type() const { return nullptr; }                  \
2016  virtual H##type* As##type() { return nullptr; }
2017  FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
2018#undef INSTRUCTION_TYPE_CHECK
2019
2020  // Returns whether the instruction can be moved within the graph.
2021  virtual bool CanBeMoved() const { return false; }
2022
2023  // Returns whether the two instructions are of the same kind.
2024  virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
2025    return false;
2026  }
2027
2028  // Returns whether any data encoded in the two instructions is equal.
2029  // This method does not look at the inputs. Both instructions must be
2030  // of the same type, otherwise the method has undefined behavior.
2031  virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
2032    return false;
2033  }
2034
2035  // Returns whether two instructions are equal, that is:
2036  // 1) They have the same type and contain the same data (InstructionDataEquals).
2037  // 2) Their inputs are identical.
2038  bool Equals(HInstruction* other) const;
2039
2040  // TODO: Remove this indirection when the [[pure]] attribute proposal (n3744)
2041  // is adopted and implemented by our C++ compiler(s). Fow now, we need to hide
2042  // the virtual function because the __attribute__((__pure__)) doesn't really
2043  // apply the strong requirement for virtual functions, preventing optimizations.
2044  InstructionKind GetKind() const PURE;
2045  virtual InstructionKind GetKindInternal() const = 0;
2046
2047  virtual size_t ComputeHashCode() const {
2048    size_t result = GetKind();
2049    for (size_t i = 0, e = InputCount(); i < e; ++i) {
2050      result = (result * 31) + InputAt(i)->GetId();
2051    }
2052    return result;
2053  }
2054
2055  SideEffects GetSideEffects() const { return side_effects_; }
2056  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
2057
2058  size_t GetLifetimePosition() const { return lifetime_position_; }
2059  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
2060  LiveInterval* GetLiveInterval() const { return live_interval_; }
2061  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
2062  bool HasLiveInterval() const { return live_interval_ != nullptr; }
2063
2064  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2065
2066  // Returns whether the code generation of the instruction will require to have access
2067  // to the current method. Such instructions are:
2068  // (1): Instructions that require an environment, as calling the runtime requires
2069  //      to walk the stack and have the current method stored at a specific stack address.
2070  // (2): Object literals like classes and strings, that are loaded from the dex cache
2071  //      fields of the current method.
2072  bool NeedsCurrentMethod() const {
2073    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
2074  }
2075
2076  // Returns whether the code generation of the instruction will require to have access
2077  // to the dex cache of the current method's declaring class via the current method.
2078  virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2079
2080  // Does this instruction have any use in an environment before
2081  // control flow hits 'other'?
2082  bool HasAnyEnvironmentUseBefore(HInstruction* other);
2083
2084  // Remove all references to environment uses of this instruction.
2085  // The caller must ensure that this is safe to do.
2086  void RemoveEnvironmentUsers();
2087
2088  bool IsEmittedAtUseSite() const { return emitted_at_use_site_; }
2089  void MarkEmittedAtUseSite() { emitted_at_use_site_ = true; }
2090
2091 protected:
2092  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
2093  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
2094  void SetSideEffects(SideEffects other) { side_effects_ = other; }
2095
2096 private:
2097  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
2098
2099  HInstruction* previous_;
2100  HInstruction* next_;
2101  HBasicBlock* block_;
2102  const uint32_t dex_pc_;
2103
2104  // An instruction gets an id when it is added to the graph.
2105  // It reflects creation order. A negative id means the instruction
2106  // has not been added to the graph.
2107  int id_;
2108
2109  // When doing liveness analysis, instructions that have uses get an SSA index.
2110  int ssa_index_;
2111
2112  // If set, the machine code for this instruction is assumed to be generated by
2113  // its users. Used by liveness analysis to compute use positions accordingly.
2114  bool emitted_at_use_site_;
2115
2116  // List of instructions that have this instruction as input.
2117  HUseList<HInstruction*> uses_;
2118
2119  // List of environments that contain this instruction.
2120  HUseList<HEnvironment*> env_uses_;
2121
2122  // The environment associated with this instruction. Not null if the instruction
2123  // might jump out of the method.
2124  HEnvironment* environment_;
2125
2126  // Set by the code generator.
2127  LocationSummary* locations_;
2128
2129  // Set by the liveness analysis.
2130  LiveInterval* live_interval_;
2131
2132  // Set by the liveness analysis, this is the position in a linear
2133  // order of blocks where this instruction's live interval start.
2134  size_t lifetime_position_;
2135
2136  SideEffects side_effects_;
2137
2138  // TODO: for primitive types this should be marked as invalid.
2139  ReferenceTypeInfo reference_type_info_;
2140
2141  friend class GraphChecker;
2142  friend class HBasicBlock;
2143  friend class HEnvironment;
2144  friend class HGraph;
2145  friend class HInstructionList;
2146
2147  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2148};
2149std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2150
2151class HInputIterator : public ValueObject {
2152 public:
2153  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2154
2155  bool Done() const { return index_ == instruction_->InputCount(); }
2156  HInstruction* Current() const { return instruction_->InputAt(index_); }
2157  void Advance() { index_++; }
2158
2159 private:
2160  HInstruction* instruction_;
2161  size_t index_;
2162
2163  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2164};
2165
2166class HInstructionIterator : public ValueObject {
2167 public:
2168  explicit HInstructionIterator(const HInstructionList& instructions)
2169      : instruction_(instructions.first_instruction_) {
2170    next_ = Done() ? nullptr : instruction_->GetNext();
2171  }
2172
2173  bool Done() const { return instruction_ == nullptr; }
2174  HInstruction* Current() const { return instruction_; }
2175  void Advance() {
2176    instruction_ = next_;
2177    next_ = Done() ? nullptr : instruction_->GetNext();
2178  }
2179
2180 private:
2181  HInstruction* instruction_;
2182  HInstruction* next_;
2183
2184  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2185};
2186
2187class HBackwardInstructionIterator : public ValueObject {
2188 public:
2189  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2190      : instruction_(instructions.last_instruction_) {
2191    next_ = Done() ? nullptr : instruction_->GetPrevious();
2192  }
2193
2194  bool Done() const { return instruction_ == nullptr; }
2195  HInstruction* Current() const { return instruction_; }
2196  void Advance() {
2197    instruction_ = next_;
2198    next_ = Done() ? nullptr : instruction_->GetPrevious();
2199  }
2200
2201 private:
2202  HInstruction* instruction_;
2203  HInstruction* next_;
2204
2205  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2206};
2207
2208template<size_t N>
2209class HTemplateInstruction: public HInstruction {
2210 public:
2211  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2212      : HInstruction(side_effects, dex_pc), inputs_() {}
2213  virtual ~HTemplateInstruction() {}
2214
2215  size_t InputCount() const OVERRIDE { return N; }
2216
2217 protected:
2218  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2219    DCHECK_LT(i, N);
2220    return inputs_[i];
2221  }
2222
2223  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2224    DCHECK_LT(i, N);
2225    inputs_[i] = input;
2226  }
2227
2228 private:
2229  std::array<HUserRecord<HInstruction*>, N> inputs_;
2230
2231  friend class SsaBuilder;
2232};
2233
2234// HTemplateInstruction specialization for N=0.
2235template<>
2236class HTemplateInstruction<0>: public HInstruction {
2237 public:
2238  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2239      : HInstruction(side_effects, dex_pc) {}
2240
2241  virtual ~HTemplateInstruction() {}
2242
2243  size_t InputCount() const OVERRIDE { return 0; }
2244
2245 protected:
2246  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2247    LOG(FATAL) << "Unreachable";
2248    UNREACHABLE();
2249  }
2250
2251  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2252                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2253    LOG(FATAL) << "Unreachable";
2254    UNREACHABLE();
2255  }
2256
2257 private:
2258  friend class SsaBuilder;
2259};
2260
2261template<intptr_t N>
2262class HExpression : public HTemplateInstruction<N> {
2263 public:
2264  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2265      : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {}
2266  virtual ~HExpression() {}
2267
2268  Primitive::Type GetType() const OVERRIDE { return type_; }
2269
2270 protected:
2271  Primitive::Type type_;
2272};
2273
2274// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2275// instruction that branches to the exit block.
2276class HReturnVoid : public HTemplateInstruction<0> {
2277 public:
2278  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2279      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2280
2281  bool IsControlFlow() const OVERRIDE { return true; }
2282
2283  DECLARE_INSTRUCTION(ReturnVoid);
2284
2285 private:
2286  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2287};
2288
2289// Represents dex's RETURN opcodes. A HReturn is a control flow
2290// instruction that branches to the exit block.
2291class HReturn : public HTemplateInstruction<1> {
2292 public:
2293  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2294      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2295    SetRawInputAt(0, value);
2296  }
2297
2298  bool IsControlFlow() const OVERRIDE { return true; }
2299
2300  DECLARE_INSTRUCTION(Return);
2301
2302 private:
2303  DISALLOW_COPY_AND_ASSIGN(HReturn);
2304};
2305
2306// The exit instruction is the only instruction of the exit block.
2307// Instructions aborting the method (HThrow and HReturn) must branch to the
2308// exit block.
2309class HExit : public HTemplateInstruction<0> {
2310 public:
2311  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2312
2313  bool IsControlFlow() const OVERRIDE { return true; }
2314
2315  DECLARE_INSTRUCTION(Exit);
2316
2317 private:
2318  DISALLOW_COPY_AND_ASSIGN(HExit);
2319};
2320
2321// Jumps from one block to another.
2322class HGoto : public HTemplateInstruction<0> {
2323 public:
2324  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2325
2326  bool IsControlFlow() const OVERRIDE { return true; }
2327
2328  HBasicBlock* GetSuccessor() const {
2329    return GetBlock()->GetSingleSuccessor();
2330  }
2331
2332  DECLARE_INSTRUCTION(Goto);
2333
2334 private:
2335  DISALLOW_COPY_AND_ASSIGN(HGoto);
2336};
2337
2338class HConstant : public HExpression<0> {
2339 public:
2340  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2341      : HExpression(type, SideEffects::None(), dex_pc) {}
2342
2343  bool CanBeMoved() const OVERRIDE { return true; }
2344
2345  virtual bool IsMinusOne() const { return false; }
2346  virtual bool IsZero() const { return false; }
2347  virtual bool IsOne() const { return false; }
2348
2349  virtual uint64_t GetValueAsUint64() const = 0;
2350
2351  DECLARE_ABSTRACT_INSTRUCTION(Constant);
2352
2353 private:
2354  DISALLOW_COPY_AND_ASSIGN(HConstant);
2355};
2356
2357class HNullConstant : public HConstant {
2358 public:
2359  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2360    return true;
2361  }
2362
2363  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2364
2365  size_t ComputeHashCode() const OVERRIDE { return 0; }
2366
2367  DECLARE_INSTRUCTION(NullConstant);
2368
2369 private:
2370  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2371
2372  friend class HGraph;
2373  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2374};
2375
2376// Constants of the type int. Those can be from Dex instructions, or
2377// synthesized (for example with the if-eqz instruction).
2378class HIntConstant : public HConstant {
2379 public:
2380  int32_t GetValue() const { return value_; }
2381
2382  uint64_t GetValueAsUint64() const OVERRIDE {
2383    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2384  }
2385
2386  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2387    DCHECK(other->IsIntConstant());
2388    return other->AsIntConstant()->value_ == value_;
2389  }
2390
2391  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2392
2393  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2394  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2395  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2396
2397  DECLARE_INSTRUCTION(IntConstant);
2398
2399 private:
2400  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2401      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2402  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2403      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2404
2405  const int32_t value_;
2406
2407  friend class HGraph;
2408  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2409  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2410  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2411};
2412
2413class HLongConstant : public HConstant {
2414 public:
2415  int64_t GetValue() const { return value_; }
2416
2417  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2418
2419  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2420    DCHECK(other->IsLongConstant());
2421    return other->AsLongConstant()->value_ == value_;
2422  }
2423
2424  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2425
2426  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2427  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2428  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2429
2430  DECLARE_INSTRUCTION(LongConstant);
2431
2432 private:
2433  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2434      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2435
2436  const int64_t value_;
2437
2438  friend class HGraph;
2439  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2440};
2441
2442// Conditional branch. A block ending with an HIf instruction must have
2443// two successors.
2444class HIf : public HTemplateInstruction<1> {
2445 public:
2446  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2447      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2448    SetRawInputAt(0, input);
2449  }
2450
2451  bool IsControlFlow() const OVERRIDE { return true; }
2452
2453  HBasicBlock* IfTrueSuccessor() const {
2454    return GetBlock()->GetSuccessors()[0];
2455  }
2456
2457  HBasicBlock* IfFalseSuccessor() const {
2458    return GetBlock()->GetSuccessors()[1];
2459  }
2460
2461  DECLARE_INSTRUCTION(If);
2462
2463 private:
2464  DISALLOW_COPY_AND_ASSIGN(HIf);
2465};
2466
2467
2468// Abstract instruction which marks the beginning and/or end of a try block and
2469// links it to the respective exception handlers. Behaves the same as a Goto in
2470// non-exceptional control flow.
2471// Normal-flow successor is stored at index zero, exception handlers under
2472// higher indices in no particular order.
2473class HTryBoundary : public HTemplateInstruction<0> {
2474 public:
2475  enum BoundaryKind {
2476    kEntry,
2477    kExit,
2478  };
2479
2480  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2481      : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {}
2482
2483  bool IsControlFlow() const OVERRIDE { return true; }
2484
2485  // Returns the block's non-exceptional successor (index zero).
2486  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2487
2488  ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
2489    return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
2490  }
2491
2492  // Returns whether `handler` is among its exception handlers (non-zero index
2493  // successors).
2494  bool HasExceptionHandler(const HBasicBlock& handler) const {
2495    DCHECK(handler.IsCatchBlock());
2496    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2497  }
2498
2499  // If not present already, adds `handler` to its block's list of exception
2500  // handlers.
2501  void AddExceptionHandler(HBasicBlock* handler) {
2502    if (!HasExceptionHandler(*handler)) {
2503      GetBlock()->AddSuccessor(handler);
2504    }
2505  }
2506
2507  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2508
2509  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2510
2511  DECLARE_INSTRUCTION(TryBoundary);
2512
2513 private:
2514  const BoundaryKind kind_;
2515
2516  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2517};
2518
2519// Deoptimize to interpreter, upon checking a condition.
2520class HDeoptimize : public HTemplateInstruction<1> {
2521 public:
2522  // We set CanTriggerGC to prevent any intermediate address to be live
2523  // at the point of the `HDeoptimize`.
2524  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2525      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
2526    SetRawInputAt(0, cond);
2527  }
2528
2529  bool CanBeMoved() const OVERRIDE { return true; }
2530  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2531    return true;
2532  }
2533  bool NeedsEnvironment() const OVERRIDE { return true; }
2534  bool CanThrow() const OVERRIDE { return true; }
2535
2536  DECLARE_INSTRUCTION(Deoptimize);
2537
2538 private:
2539  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2540};
2541
2542// Represents the ArtMethod that was passed as a first argument to
2543// the method. It is used by instructions that depend on it, like
2544// instructions that work with the dex cache.
2545class HCurrentMethod : public HExpression<0> {
2546 public:
2547  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2548      : HExpression(type, SideEffects::None(), dex_pc) {}
2549
2550  DECLARE_INSTRUCTION(CurrentMethod);
2551
2552 private:
2553  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2554};
2555
2556// Fetches an ArtMethod from the virtual table or the interface method table
2557// of a class.
2558class HClassTableGet : public HExpression<1> {
2559 public:
2560  enum TableKind {
2561    kVTable,
2562    kIMTable,
2563  };
2564  HClassTableGet(HInstruction* cls,
2565                 Primitive::Type type,
2566                 TableKind kind,
2567                 size_t index,
2568                 uint32_t dex_pc)
2569      : HExpression(type, SideEffects::None(), dex_pc),
2570        index_(index),
2571        table_kind_(kind) {
2572    SetRawInputAt(0, cls);
2573  }
2574
2575  bool CanBeMoved() const OVERRIDE { return true; }
2576  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2577    return other->AsClassTableGet()->GetIndex() == index_ &&
2578        other->AsClassTableGet()->GetTableKind() == table_kind_;
2579  }
2580
2581  TableKind GetTableKind() const { return table_kind_; }
2582  size_t GetIndex() const { return index_; }
2583
2584  DECLARE_INSTRUCTION(ClassTableGet);
2585
2586 private:
2587  // The index of the ArtMethod in the table.
2588  const size_t index_;
2589  const TableKind table_kind_;
2590
2591  DISALLOW_COPY_AND_ASSIGN(HClassTableGet);
2592};
2593
2594// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2595// have one successor for each entry in the switch table, and the final successor
2596// will be the block containing the next Dex opcode.
2597class HPackedSwitch : public HTemplateInstruction<1> {
2598 public:
2599  HPackedSwitch(int32_t start_value,
2600                uint32_t num_entries,
2601                HInstruction* input,
2602                uint32_t dex_pc = kNoDexPc)
2603    : HTemplateInstruction(SideEffects::None(), dex_pc),
2604      start_value_(start_value),
2605      num_entries_(num_entries) {
2606    SetRawInputAt(0, input);
2607  }
2608
2609  bool IsControlFlow() const OVERRIDE { return true; }
2610
2611  int32_t GetStartValue() const { return start_value_; }
2612
2613  uint32_t GetNumEntries() const { return num_entries_; }
2614
2615  HBasicBlock* GetDefaultBlock() const {
2616    // Last entry is the default block.
2617    return GetBlock()->GetSuccessors()[num_entries_];
2618  }
2619  DECLARE_INSTRUCTION(PackedSwitch);
2620
2621 private:
2622  const int32_t start_value_;
2623  const uint32_t num_entries_;
2624
2625  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2626};
2627
2628class HUnaryOperation : public HExpression<1> {
2629 public:
2630  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2631      : HExpression(result_type, SideEffects::None(), dex_pc) {
2632    SetRawInputAt(0, input);
2633  }
2634
2635  HInstruction* GetInput() const { return InputAt(0); }
2636  Primitive::Type GetResultType() const { return GetType(); }
2637
2638  bool CanBeMoved() const OVERRIDE { return true; }
2639  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2640    return true;
2641  }
2642
2643  // Try to statically evaluate `operation` and return a HConstant
2644  // containing the result of this evaluation.  If `operation` cannot
2645  // be evaluated as a constant, return null.
2646  HConstant* TryStaticEvaluation() const;
2647
2648  // Apply this operation to `x`.
2649  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2650  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2651
2652  DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
2653
2654 private:
2655  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2656};
2657
2658class HBinaryOperation : public HExpression<2> {
2659 public:
2660  HBinaryOperation(Primitive::Type result_type,
2661                   HInstruction* left,
2662                   HInstruction* right,
2663                   SideEffects side_effects = SideEffects::None(),
2664                   uint32_t dex_pc = kNoDexPc)
2665      : HExpression(result_type, side_effects, dex_pc) {
2666    SetRawInputAt(0, left);
2667    SetRawInputAt(1, right);
2668  }
2669
2670  HInstruction* GetLeft() const { return InputAt(0); }
2671  HInstruction* GetRight() const { return InputAt(1); }
2672  Primitive::Type GetResultType() const { return GetType(); }
2673
2674  virtual bool IsCommutative() const { return false; }
2675
2676  // Put constant on the right.
2677  // Returns whether order is changed.
2678  bool OrderInputsWithConstantOnTheRight() {
2679    HInstruction* left = InputAt(0);
2680    HInstruction* right = InputAt(1);
2681    if (left->IsConstant() && !right->IsConstant()) {
2682      ReplaceInput(right, 0);
2683      ReplaceInput(left, 1);
2684      return true;
2685    }
2686    return false;
2687  }
2688
2689  // Order inputs by instruction id, but favor constant on the right side.
2690  // This helps GVN for commutative ops.
2691  void OrderInputs() {
2692    DCHECK(IsCommutative());
2693    HInstruction* left = InputAt(0);
2694    HInstruction* right = InputAt(1);
2695    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2696      return;
2697    }
2698    if (OrderInputsWithConstantOnTheRight()) {
2699      return;
2700    }
2701    // Order according to instruction id.
2702    if (left->GetId() > right->GetId()) {
2703      ReplaceInput(right, 0);
2704      ReplaceInput(left, 1);
2705    }
2706  }
2707
2708  bool CanBeMoved() const OVERRIDE { return true; }
2709  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2710    return true;
2711  }
2712
2713  // Try to statically evaluate `operation` and return a HConstant
2714  // containing the result of this evaluation.  If `operation` cannot
2715  // be evaluated as a constant, return null.
2716  HConstant* TryStaticEvaluation() const;
2717
2718  // Apply this operation to `x` and `y`.
2719  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2720  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2721  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2722                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2723    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2724    return nullptr;
2725  }
2726  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2727                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2728    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2729    return nullptr;
2730  }
2731  virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2732                              HNullConstant* y ATTRIBUTE_UNUSED) const {
2733    VLOG(compiler) << DebugName() << " is not defined for the (null, null) case.";
2734    return nullptr;
2735  }
2736
2737  // Returns an input that can legally be used as the right input and is
2738  // constant, or null.
2739  HConstant* GetConstantRight() const;
2740
2741  // If `GetConstantRight()` returns one of the input, this returns the other
2742  // one. Otherwise it returns null.
2743  HInstruction* GetLeastConstantLeft() const;
2744
2745  DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
2746
2747 private:
2748  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2749};
2750
2751// The comparison bias applies for floating point operations and indicates how NaN
2752// comparisons are treated:
2753enum class ComparisonBias {
2754  kNoBias,  // bias is not applicable (i.e. for long operation)
2755  kGtBias,  // return 1 for NaN comparisons
2756  kLtBias,  // return -1 for NaN comparisons
2757};
2758
2759class HCondition : public HBinaryOperation {
2760 public:
2761  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2762      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc),
2763        bias_(ComparisonBias::kNoBias) {}
2764
2765  // For code generation purposes, returns whether this instruction is just before
2766  // `instruction`, and disregard moves in between.
2767  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2768
2769  DECLARE_ABSTRACT_INSTRUCTION(Condition);
2770
2771  virtual IfCondition GetCondition() const = 0;
2772
2773  virtual IfCondition GetOppositeCondition() const = 0;
2774
2775  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2776
2777  void SetBias(ComparisonBias bias) { bias_ = bias; }
2778
2779  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2780    return bias_ == other->AsCondition()->bias_;
2781  }
2782
2783  bool IsFPConditionTrueIfNaN() const {
2784    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2785    IfCondition if_cond = GetCondition();
2786    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2787  }
2788
2789  bool IsFPConditionFalseIfNaN() const {
2790    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2791    IfCondition if_cond = GetCondition();
2792    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2793  }
2794
2795 private:
2796  // Needed if we merge a HCompare into a HCondition.
2797  ComparisonBias bias_;
2798
2799  DISALLOW_COPY_AND_ASSIGN(HCondition);
2800};
2801
2802// Instruction to check if two inputs are equal to each other.
2803class HEqual : public HCondition {
2804 public:
2805  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2806      : HCondition(first, second, dex_pc) {}
2807
2808  bool IsCommutative() const OVERRIDE { return true; }
2809
2810  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2811    return GetBlock()->GetGraph()->GetIntConstant(
2812        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2813  }
2814  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2815    return GetBlock()->GetGraph()->GetIntConstant(
2816        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2817  }
2818  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2819                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2820    return GetBlock()->GetGraph()->GetIntConstant(1);
2821  }
2822
2823  DECLARE_INSTRUCTION(Equal);
2824
2825  IfCondition GetCondition() const OVERRIDE {
2826    return kCondEQ;
2827  }
2828
2829  IfCondition GetOppositeCondition() const OVERRIDE {
2830    return kCondNE;
2831  }
2832
2833 private:
2834  template <typename T> bool Compute(T x, T y) const { return x == y; }
2835
2836  DISALLOW_COPY_AND_ASSIGN(HEqual);
2837};
2838
2839class HNotEqual : public HCondition {
2840 public:
2841  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2842      : HCondition(first, second, dex_pc) {}
2843
2844  bool IsCommutative() const OVERRIDE { return true; }
2845
2846  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2847    return GetBlock()->GetGraph()->GetIntConstant(
2848        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2849  }
2850  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2851    return GetBlock()->GetGraph()->GetIntConstant(
2852        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2853  }
2854  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2855                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2856    return GetBlock()->GetGraph()->GetIntConstant(0);
2857  }
2858
2859  DECLARE_INSTRUCTION(NotEqual);
2860
2861  IfCondition GetCondition() const OVERRIDE {
2862    return kCondNE;
2863  }
2864
2865  IfCondition GetOppositeCondition() const OVERRIDE {
2866    return kCondEQ;
2867  }
2868
2869 private:
2870  template <typename T> bool Compute(T x, T y) const { return x != y; }
2871
2872  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2873};
2874
2875class HLessThan : public HCondition {
2876 public:
2877  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2878      : HCondition(first, second, dex_pc) {}
2879
2880  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2881    return GetBlock()->GetGraph()->GetIntConstant(
2882        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2883  }
2884  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2885    return GetBlock()->GetGraph()->GetIntConstant(
2886        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2887  }
2888
2889  DECLARE_INSTRUCTION(LessThan);
2890
2891  IfCondition GetCondition() const OVERRIDE {
2892    return kCondLT;
2893  }
2894
2895  IfCondition GetOppositeCondition() const OVERRIDE {
2896    return kCondGE;
2897  }
2898
2899 private:
2900  template <typename T> bool Compute(T x, T y) const { return x < y; }
2901
2902  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2903};
2904
2905class HLessThanOrEqual : public HCondition {
2906 public:
2907  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2908      : HCondition(first, second, dex_pc) {}
2909
2910  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2911    return GetBlock()->GetGraph()->GetIntConstant(
2912        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2913  }
2914  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2915    return GetBlock()->GetGraph()->GetIntConstant(
2916        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2917  }
2918
2919  DECLARE_INSTRUCTION(LessThanOrEqual);
2920
2921  IfCondition GetCondition() const OVERRIDE {
2922    return kCondLE;
2923  }
2924
2925  IfCondition GetOppositeCondition() const OVERRIDE {
2926    return kCondGT;
2927  }
2928
2929 private:
2930  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2931
2932  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2933};
2934
2935class HGreaterThan : public HCondition {
2936 public:
2937  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2938      : HCondition(first, second, dex_pc) {}
2939
2940  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2941    return GetBlock()->GetGraph()->GetIntConstant(
2942        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2943  }
2944  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2945    return GetBlock()->GetGraph()->GetIntConstant(
2946        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2947  }
2948
2949  DECLARE_INSTRUCTION(GreaterThan);
2950
2951  IfCondition GetCondition() const OVERRIDE {
2952    return kCondGT;
2953  }
2954
2955  IfCondition GetOppositeCondition() const OVERRIDE {
2956    return kCondLE;
2957  }
2958
2959 private:
2960  template <typename T> bool Compute(T x, T y) const { return x > y; }
2961
2962  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2963};
2964
2965class HGreaterThanOrEqual : public HCondition {
2966 public:
2967  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2968      : HCondition(first, second, dex_pc) {}
2969
2970  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2971    return GetBlock()->GetGraph()->GetIntConstant(
2972        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2973  }
2974  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2975    return GetBlock()->GetGraph()->GetIntConstant(
2976        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2977  }
2978
2979  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2980
2981  IfCondition GetCondition() const OVERRIDE {
2982    return kCondGE;
2983  }
2984
2985  IfCondition GetOppositeCondition() const OVERRIDE {
2986    return kCondLT;
2987  }
2988
2989 private:
2990  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2991
2992  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2993};
2994
2995class HBelow : public HCondition {
2996 public:
2997  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2998      : HCondition(first, second, dex_pc) {}
2999
3000  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3001    return GetBlock()->GetGraph()->GetIntConstant(
3002        Compute(static_cast<uint32_t>(x->GetValue()),
3003                static_cast<uint32_t>(y->GetValue())), GetDexPc());
3004  }
3005  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3006    return GetBlock()->GetGraph()->GetIntConstant(
3007        Compute(static_cast<uint64_t>(x->GetValue()),
3008                static_cast<uint64_t>(y->GetValue())), GetDexPc());
3009  }
3010
3011  DECLARE_INSTRUCTION(Below);
3012
3013  IfCondition GetCondition() const OVERRIDE {
3014    return kCondB;
3015  }
3016
3017  IfCondition GetOppositeCondition() const OVERRIDE {
3018    return kCondAE;
3019  }
3020
3021 private:
3022  template <typename T> bool Compute(T x, T y) const { return x < y; }
3023
3024  DISALLOW_COPY_AND_ASSIGN(HBelow);
3025};
3026
3027class HBelowOrEqual : public HCondition {
3028 public:
3029  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3030      : HCondition(first, second, dex_pc) {}
3031
3032  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3033    return GetBlock()->GetGraph()->GetIntConstant(
3034        Compute(static_cast<uint32_t>(x->GetValue()),
3035                static_cast<uint32_t>(y->GetValue())), GetDexPc());
3036  }
3037  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3038    return GetBlock()->GetGraph()->GetIntConstant(
3039        Compute(static_cast<uint64_t>(x->GetValue()),
3040                static_cast<uint64_t>(y->GetValue())), GetDexPc());
3041  }
3042
3043  DECLARE_INSTRUCTION(BelowOrEqual);
3044
3045  IfCondition GetCondition() const OVERRIDE {
3046    return kCondBE;
3047  }
3048
3049  IfCondition GetOppositeCondition() const OVERRIDE {
3050    return kCondA;
3051  }
3052
3053 private:
3054  template <typename T> bool Compute(T x, T y) const { return x <= y; }
3055
3056  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
3057};
3058
3059class HAbove : public HCondition {
3060 public:
3061  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3062      : HCondition(first, second, dex_pc) {}
3063
3064  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3065    return GetBlock()->GetGraph()->GetIntConstant(
3066        Compute(static_cast<uint32_t>(x->GetValue()),
3067                static_cast<uint32_t>(y->GetValue())), GetDexPc());
3068  }
3069  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3070    return GetBlock()->GetGraph()->GetIntConstant(
3071        Compute(static_cast<uint64_t>(x->GetValue()),
3072                static_cast<uint64_t>(y->GetValue())), GetDexPc());
3073  }
3074
3075  DECLARE_INSTRUCTION(Above);
3076
3077  IfCondition GetCondition() const OVERRIDE {
3078    return kCondA;
3079  }
3080
3081  IfCondition GetOppositeCondition() const OVERRIDE {
3082    return kCondBE;
3083  }
3084
3085 private:
3086  template <typename T> bool Compute(T x, T y) const { return x > y; }
3087
3088  DISALLOW_COPY_AND_ASSIGN(HAbove);
3089};
3090
3091class HAboveOrEqual : public HCondition {
3092 public:
3093  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3094      : HCondition(first, second, dex_pc) {}
3095
3096  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3097    return GetBlock()->GetGraph()->GetIntConstant(
3098        Compute(static_cast<uint32_t>(x->GetValue()),
3099                static_cast<uint32_t>(y->GetValue())), GetDexPc());
3100  }
3101  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3102    return GetBlock()->GetGraph()->GetIntConstant(
3103        Compute(static_cast<uint64_t>(x->GetValue()),
3104                static_cast<uint64_t>(y->GetValue())), GetDexPc());
3105  }
3106
3107  DECLARE_INSTRUCTION(AboveOrEqual);
3108
3109  IfCondition GetCondition() const OVERRIDE {
3110    return kCondAE;
3111  }
3112
3113  IfCondition GetOppositeCondition() const OVERRIDE {
3114    return kCondB;
3115  }
3116
3117 private:
3118  template <typename T> bool Compute(T x, T y) const { return x >= y; }
3119
3120  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
3121};
3122
3123// Instruction to check how two inputs compare to each other.
3124// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
3125class HCompare : public HBinaryOperation {
3126 public:
3127  HCompare(Primitive::Type type,
3128           HInstruction* first,
3129           HInstruction* second,
3130           ComparisonBias bias,
3131           uint32_t dex_pc)
3132      : HBinaryOperation(Primitive::kPrimInt,
3133                         first,
3134                         second,
3135                         SideEffectsForArchRuntimeCalls(type),
3136                         dex_pc),
3137        bias_(bias) {
3138    DCHECK_EQ(type, first->GetType());
3139    DCHECK_EQ(type, second->GetType());
3140  }
3141
3142  template <typename T>
3143  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
3144
3145  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3146    return GetBlock()->GetGraph()->GetIntConstant(
3147        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3148  }
3149  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3150    return GetBlock()->GetGraph()->GetIntConstant(
3151        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3152  }
3153
3154  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3155    return bias_ == other->AsCompare()->bias_;
3156  }
3157
3158  ComparisonBias GetBias() const { return bias_; }
3159
3160  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
3161
3162
3163  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
3164    // MIPS64 uses a runtime call for FP comparisons.
3165    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
3166  }
3167
3168  DECLARE_INSTRUCTION(Compare);
3169
3170 private:
3171  const ComparisonBias bias_;
3172
3173  DISALLOW_COPY_AND_ASSIGN(HCompare);
3174};
3175
3176// A local in the graph. Corresponds to a Dex register.
3177class HLocal : public HTemplateInstruction<0> {
3178 public:
3179  explicit HLocal(uint16_t reg_number)
3180      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
3181
3182  DECLARE_INSTRUCTION(Local);
3183
3184  uint16_t GetRegNumber() const { return reg_number_; }
3185
3186 private:
3187  // The Dex register number.
3188  const uint16_t reg_number_;
3189
3190  DISALLOW_COPY_AND_ASSIGN(HLocal);
3191};
3192
3193// Load a given local. The local is an input of this instruction.
3194class HLoadLocal : public HExpression<1> {
3195 public:
3196  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
3197      : HExpression(type, SideEffects::None(), dex_pc) {
3198    SetRawInputAt(0, local);
3199  }
3200
3201  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3202
3203  DECLARE_INSTRUCTION(LoadLocal);
3204
3205 private:
3206  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
3207};
3208
3209// Store a value in a given local. This instruction has two inputs: the value
3210// and the local.
3211class HStoreLocal : public HTemplateInstruction<2> {
3212 public:
3213  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
3214      : HTemplateInstruction(SideEffects::None(), dex_pc) {
3215    SetRawInputAt(0, local);
3216    SetRawInputAt(1, value);
3217  }
3218
3219  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3220
3221  DECLARE_INSTRUCTION(StoreLocal);
3222
3223 private:
3224  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
3225};
3226
3227class HFloatConstant : public HConstant {
3228 public:
3229  float GetValue() const { return value_; }
3230
3231  uint64_t GetValueAsUint64() const OVERRIDE {
3232    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3233  }
3234
3235  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3236    DCHECK(other->IsFloatConstant());
3237    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3238  }
3239
3240  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3241
3242  bool IsMinusOne() const OVERRIDE {
3243    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3244  }
3245  bool IsZero() const OVERRIDE {
3246    return value_ == 0.0f;
3247  }
3248  bool IsOne() const OVERRIDE {
3249    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3250  }
3251  bool IsNaN() const {
3252    return std::isnan(value_);
3253  }
3254
3255  DECLARE_INSTRUCTION(FloatConstant);
3256
3257 private:
3258  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3259      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
3260  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3261      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
3262
3263  const float value_;
3264
3265  // Only the SsaBuilder and HGraph can create floating-point constants.
3266  friend class SsaBuilder;
3267  friend class HGraph;
3268  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
3269};
3270
3271class HDoubleConstant : public HConstant {
3272 public:
3273  double GetValue() const { return value_; }
3274
3275  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
3276
3277  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3278    DCHECK(other->IsDoubleConstant());
3279    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3280  }
3281
3282  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3283
3284  bool IsMinusOne() const OVERRIDE {
3285    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3286  }
3287  bool IsZero() const OVERRIDE {
3288    return value_ == 0.0;
3289  }
3290  bool IsOne() const OVERRIDE {
3291    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3292  }
3293  bool IsNaN() const {
3294    return std::isnan(value_);
3295  }
3296
3297  DECLARE_INSTRUCTION(DoubleConstant);
3298
3299 private:
3300  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3301      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
3302  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3303      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
3304
3305  const double value_;
3306
3307  // Only the SsaBuilder and HGraph can create floating-point constants.
3308  friend class SsaBuilder;
3309  friend class HGraph;
3310  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
3311};
3312
3313class HNewInstance : public HExpression<2> {
3314 public:
3315  HNewInstance(HInstruction* cls,
3316               HCurrentMethod* current_method,
3317               uint32_t dex_pc,
3318               uint16_t type_index,
3319               const DexFile& dex_file,
3320               bool can_throw,
3321               bool finalizable,
3322               QuickEntrypointEnum entrypoint)
3323      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3324        type_index_(type_index),
3325        dex_file_(dex_file),
3326        can_throw_(can_throw),
3327        finalizable_(finalizable),
3328        entrypoint_(entrypoint) {
3329    SetRawInputAt(0, cls);
3330    SetRawInputAt(1, current_method);
3331  }
3332
3333  uint16_t GetTypeIndex() const { return type_index_; }
3334  const DexFile& GetDexFile() const { return dex_file_; }
3335
3336  // Calls runtime so needs an environment.
3337  bool NeedsEnvironment() const OVERRIDE { return true; }
3338
3339  // It may throw when called on type that's not instantiable/accessible.
3340  // It can throw OOME.
3341  // TODO: distinguish between the two cases so we can for example allow allocation elimination.
3342  bool CanThrow() const OVERRIDE { return can_throw_ || true; }
3343
3344  bool IsFinalizable() const { return finalizable_; }
3345
3346  bool CanBeNull() const OVERRIDE { return false; }
3347
3348  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3349
3350  void SetEntrypoint(QuickEntrypointEnum entrypoint) {
3351    entrypoint_ = entrypoint;
3352  }
3353
3354  bool IsStringAlloc() const;
3355
3356  DECLARE_INSTRUCTION(NewInstance);
3357
3358 private:
3359  const uint16_t type_index_;
3360  const DexFile& dex_file_;
3361  const bool can_throw_;
3362  const bool finalizable_;
3363  QuickEntrypointEnum entrypoint_;
3364
3365  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3366};
3367
3368enum class Intrinsics {
3369#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache, SideEffects, Exceptions) \
3370  k ## Name,
3371#include "intrinsics_list.h"
3372  kNone,
3373  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3374#undef INTRINSICS_LIST
3375#undef OPTIMIZING_INTRINSICS
3376};
3377std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3378
3379enum IntrinsicNeedsEnvironmentOrCache {
3380  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3381  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3382};
3383
3384enum IntrinsicSideEffects {
3385  kNoSideEffects,     // Intrinsic does not have any heap memory side effects.
3386  kReadSideEffects,   // Intrinsic may read heap memory.
3387  kWriteSideEffects,  // Intrinsic may write heap memory.
3388  kAllSideEffects     // Intrinsic may read or write heap memory, or trigger GC.
3389};
3390
3391enum IntrinsicExceptions {
3392  kNoThrow,  // Intrinsic does not throw any exceptions.
3393  kCanThrow  // Intrinsic may throw exceptions.
3394};
3395
3396class HInvoke : public HInstruction {
3397 public:
3398  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3399
3400  bool NeedsEnvironment() const OVERRIDE;
3401
3402  void SetArgumentAt(size_t index, HInstruction* argument) {
3403    SetRawInputAt(index, argument);
3404  }
3405
3406  // Return the number of arguments.  This number can be lower than
3407  // the number of inputs returned by InputCount(), as some invoke
3408  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3409  // inputs at the end of their list of inputs.
3410  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3411
3412  Primitive::Type GetType() const OVERRIDE { return return_type_; }
3413
3414  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3415  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3416
3417  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
3418
3419  Intrinsics GetIntrinsic() const {
3420    return intrinsic_;
3421  }
3422
3423  void SetIntrinsic(Intrinsics intrinsic,
3424                    IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
3425                    IntrinsicSideEffects side_effects,
3426                    IntrinsicExceptions exceptions);
3427
3428  bool IsFromInlinedInvoke() const {
3429    return GetEnvironment()->IsFromInlinedInvoke();
3430  }
3431
3432  bool CanThrow() const OVERRIDE { return can_throw_; }
3433
3434  bool CanBeMoved() const OVERRIDE { return IsIntrinsic(); }
3435
3436  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3437    return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
3438  }
3439
3440  uint32_t* GetIntrinsicOptimizations() {
3441    return &intrinsic_optimizations_;
3442  }
3443
3444  const uint32_t* GetIntrinsicOptimizations() const {
3445    return &intrinsic_optimizations_;
3446  }
3447
3448  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3449
3450  DECLARE_ABSTRACT_INSTRUCTION(Invoke);
3451
3452 protected:
3453  HInvoke(ArenaAllocator* arena,
3454          uint32_t number_of_arguments,
3455          uint32_t number_of_other_inputs,
3456          Primitive::Type return_type,
3457          uint32_t dex_pc,
3458          uint32_t dex_method_index,
3459          InvokeType original_invoke_type)
3460    : HInstruction(
3461          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3462      number_of_arguments_(number_of_arguments),
3463      inputs_(number_of_arguments + number_of_other_inputs,
3464              arena->Adapter(kArenaAllocInvokeInputs)),
3465      return_type_(return_type),
3466      dex_method_index_(dex_method_index),
3467      original_invoke_type_(original_invoke_type),
3468      can_throw_(true),
3469      intrinsic_(Intrinsics::kNone),
3470      intrinsic_optimizations_(0) {
3471  }
3472
3473  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3474    return inputs_[index];
3475  }
3476
3477  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3478    inputs_[index] = input;
3479  }
3480
3481  void SetCanThrow(bool can_throw) { can_throw_ = can_throw; }
3482
3483  uint32_t number_of_arguments_;
3484  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3485  const Primitive::Type return_type_;
3486  const uint32_t dex_method_index_;
3487  const InvokeType original_invoke_type_;
3488  bool can_throw_;
3489  Intrinsics intrinsic_;
3490
3491  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3492  uint32_t intrinsic_optimizations_;
3493
3494 private:
3495  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3496};
3497
3498class HInvokeUnresolved : public HInvoke {
3499 public:
3500  HInvokeUnresolved(ArenaAllocator* arena,
3501                    uint32_t number_of_arguments,
3502                    Primitive::Type return_type,
3503                    uint32_t dex_pc,
3504                    uint32_t dex_method_index,
3505                    InvokeType invoke_type)
3506      : HInvoke(arena,
3507                number_of_arguments,
3508                0u /* number_of_other_inputs */,
3509                return_type,
3510                dex_pc,
3511                dex_method_index,
3512                invoke_type) {
3513  }
3514
3515  DECLARE_INSTRUCTION(InvokeUnresolved);
3516
3517 private:
3518  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3519};
3520
3521class HInvokeStaticOrDirect : public HInvoke {
3522 public:
3523  // Requirements of this method call regarding the class
3524  // initialization (clinit) check of its declaring class.
3525  enum class ClinitCheckRequirement {
3526    kNone,      // Class already initialized.
3527    kExplicit,  // Static call having explicit clinit check as last input.
3528    kImplicit,  // Static call implicitly requiring a clinit check.
3529  };
3530
3531  // Determines how to load the target ArtMethod*.
3532  enum class MethodLoadKind {
3533    // Use a String init ArtMethod* loaded from Thread entrypoints.
3534    kStringInit,
3535
3536    // Use the method's own ArtMethod* loaded by the register allocator.
3537    kRecursive,
3538
3539    // Use ArtMethod* at a known address, embed the direct address in the code.
3540    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3541    kDirectAddress,
3542
3543    // Use ArtMethod* at an address that will be known at link time, embed the direct
3544    // address in the code. If the image is relocatable, emit .patch_oat entry.
3545    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3546    // the image relocatable or not.
3547    kDirectAddressWithFixup,
3548
3549    // Load from resoved methods array in the dex cache using a PC-relative load.
3550    // Used when we need to use the dex cache, for example for invoke-static that
3551    // may cause class initialization (the entry may point to a resolution method),
3552    // and we know that we can access the dex cache arrays using a PC-relative load.
3553    kDexCachePcRelative,
3554
3555    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3556    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3557    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3558    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3559    kDexCacheViaMethod,
3560  };
3561
3562  // Determines the location of the code pointer.
3563  enum class CodePtrLocation {
3564    // Recursive call, use local PC-relative call instruction.
3565    kCallSelf,
3566
3567    // Use PC-relative call instruction patched at link time.
3568    // Used for calls within an oat file, boot->boot or app->app.
3569    kCallPCRelative,
3570
3571    // Call to a known target address, embed the direct address in code.
3572    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3573    kCallDirect,
3574
3575    // Call to a target address that will be known at link time, embed the direct
3576    // address in code. If the image is relocatable, emit .patch_oat entry.
3577    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3578    // the image relocatable or not.
3579    kCallDirectWithFixup,
3580
3581    // Use code pointer from the ArtMethod*.
3582    // Used when we don't know the target code. This is also the last-resort-kind used when
3583    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3584    kCallArtMethod,
3585  };
3586
3587  struct DispatchInfo {
3588    MethodLoadKind method_load_kind;
3589    CodePtrLocation code_ptr_location;
3590    // The method load data holds
3591    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3592    //     Note that there are multiple string init methods, each having its own offset.
3593    //   - the method address for kDirectAddress
3594    //   - the dex cache arrays offset for kDexCachePcRel.
3595    uint64_t method_load_data;
3596    uint64_t direct_code_ptr;
3597  };
3598
3599  HInvokeStaticOrDirect(ArenaAllocator* arena,
3600                        uint32_t number_of_arguments,
3601                        Primitive::Type return_type,
3602                        uint32_t dex_pc,
3603                        uint32_t method_index,
3604                        MethodReference target_method,
3605                        DispatchInfo dispatch_info,
3606                        InvokeType original_invoke_type,
3607                        InvokeType optimized_invoke_type,
3608                        ClinitCheckRequirement clinit_check_requirement)
3609      : HInvoke(arena,
3610                number_of_arguments,
3611                // There is potentially one extra argument for the HCurrentMethod node, and
3612                // potentially one other if the clinit check is explicit, and potentially
3613                // one other if the method is a string factory.
3614                (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
3615                    (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u) +
3616                    (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3617                return_type,
3618                dex_pc,
3619                method_index,
3620                original_invoke_type),
3621        optimized_invoke_type_(optimized_invoke_type),
3622        clinit_check_requirement_(clinit_check_requirement),
3623        target_method_(target_method),
3624        dispatch_info_(dispatch_info) { }
3625
3626  void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3627    bool had_current_method_input = HasCurrentMethodInput();
3628    bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
3629
3630    // Using the current method is the default and once we find a better
3631    // method load kind, we should not go back to using the current method.
3632    DCHECK(had_current_method_input || !needs_current_method_input);
3633
3634    if (had_current_method_input && !needs_current_method_input) {
3635      DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
3636      RemoveInputAt(GetSpecialInputIndex());
3637    }
3638    dispatch_info_ = dispatch_info;
3639  }
3640
3641  void AddSpecialInput(HInstruction* input) {
3642    // We allow only one special input.
3643    DCHECK(!IsStringInit() && !HasCurrentMethodInput());
3644    DCHECK(InputCount() == GetSpecialInputIndex() ||
3645           (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
3646    InsertInputAt(GetSpecialInputIndex(), input);
3647  }
3648
3649  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3650    // We access the method via the dex cache so we can't do an implicit null check.
3651    // TODO: for intrinsics we can generate implicit null checks.
3652    return false;
3653  }
3654
3655  bool CanBeNull() const OVERRIDE {
3656    return return_type_ == Primitive::kPrimNot && !IsStringInit();
3657  }
3658
3659  // Get the index of the special input, if any.
3660  //
3661  // If the invoke HasCurrentMethodInput(), the "special input" is the current
3662  // method pointer; otherwise there may be one platform-specific special input,
3663  // such as PC-relative addressing base.
3664  uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
3665
3666  InvokeType GetOptimizedInvokeType() const { return optimized_invoke_type_; }
3667  void SetOptimizedInvokeType(InvokeType invoke_type) {
3668    optimized_invoke_type_ = invoke_type;
3669  }
3670
3671  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3672  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3673  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3674  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
3675  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3676  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3677  bool HasPcRelativeDexCache() const {
3678    return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
3679  }
3680  bool HasCurrentMethodInput() const {
3681    // This function can be called only after the invoke has been fully initialized by the builder.
3682    if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
3683      DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3684      return true;
3685    } else {
3686      DCHECK(InputCount() == GetSpecialInputIndex() ||
3687             !InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3688      return false;
3689    }
3690  }
3691  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3692  MethodReference GetTargetMethod() const { return target_method_; }
3693  void SetTargetMethod(MethodReference method) { target_method_ = method; }
3694
3695  int32_t GetStringInitOffset() const {
3696    DCHECK(IsStringInit());
3697    return dispatch_info_.method_load_data;
3698  }
3699
3700  uint64_t GetMethodAddress() const {
3701    DCHECK(HasMethodAddress());
3702    return dispatch_info_.method_load_data;
3703  }
3704
3705  uint32_t GetDexCacheArrayOffset() const {
3706    DCHECK(HasPcRelativeDexCache());
3707    return dispatch_info_.method_load_data;
3708  }
3709
3710  uint64_t GetDirectCodePtr() const {
3711    DCHECK(HasDirectCodePtr());
3712    return dispatch_info_.direct_code_ptr;
3713  }
3714
3715  ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; }
3716
3717  // Is this instruction a call to a static method?
3718  bool IsStatic() const {
3719    return GetOriginalInvokeType() == kStatic;
3720  }
3721
3722  // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
3723  // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
3724  // instruction; only relevant for static calls with explicit clinit check.
3725  void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
3726    DCHECK(IsStaticWithExplicitClinitCheck());
3727    size_t last_input_index = InputCount() - 1;
3728    HInstruction* last_input = InputAt(last_input_index);
3729    DCHECK(last_input != nullptr);
3730    DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
3731    RemoveAsUserOfInput(last_input_index);
3732    inputs_.pop_back();
3733    clinit_check_requirement_ = new_requirement;
3734    DCHECK(!IsStaticWithExplicitClinitCheck());
3735  }
3736
3737  HInstruction* GetAndRemoveThisArgumentOfStringInit() {
3738    DCHECK(IsStringInit());
3739    size_t index = InputCount() - 1;
3740    HInstruction* input = InputAt(index);
3741    RemoveAsUserOfInput(index);
3742    inputs_.pop_back();
3743    return input;
3744  }
3745
3746  // Is this a call to a static method whose declaring class has an
3747  // explicit initialization check in the graph?
3748  bool IsStaticWithExplicitClinitCheck() const {
3749    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3750  }
3751
3752  // Is this a call to a static method whose declaring class has an
3753  // implicit intialization check requirement?
3754  bool IsStaticWithImplicitClinitCheck() const {
3755    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3756  }
3757
3758  // Does this method load kind need the current method as an input?
3759  static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
3760    return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod;
3761  }
3762
3763  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3764
3765 protected:
3766  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3767    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3768    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3769      HInstruction* input = input_record.GetInstruction();
3770      // `input` is the last input of a static invoke marked as having
3771      // an explicit clinit check. It must either be:
3772      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3773      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3774      DCHECK(input != nullptr);
3775      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3776    }
3777    return input_record;
3778  }
3779
3780  void InsertInputAt(size_t index, HInstruction* input);
3781  void RemoveInputAt(size_t index);
3782
3783 private:
3784  InvokeType optimized_invoke_type_;
3785  ClinitCheckRequirement clinit_check_requirement_;
3786  // The target method may refer to different dex file or method index than the original
3787  // invoke. This happens for sharpened calls and for calls where a method was redeclared
3788  // in derived class to increase visibility.
3789  MethodReference target_method_;
3790  DispatchInfo dispatch_info_;
3791
3792  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3793};
3794std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs);
3795std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
3796
3797class HInvokeVirtual : public HInvoke {
3798 public:
3799  HInvokeVirtual(ArenaAllocator* arena,
3800                 uint32_t number_of_arguments,
3801                 Primitive::Type return_type,
3802                 uint32_t dex_pc,
3803                 uint32_t dex_method_index,
3804                 uint32_t vtable_index)
3805      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3806        vtable_index_(vtable_index) {}
3807
3808  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3809    // TODO: Add implicit null checks in intrinsics.
3810    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3811  }
3812
3813  uint32_t GetVTableIndex() const { return vtable_index_; }
3814
3815  DECLARE_INSTRUCTION(InvokeVirtual);
3816
3817 private:
3818  const uint32_t vtable_index_;
3819
3820  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3821};
3822
3823class HInvokeInterface : public HInvoke {
3824 public:
3825  HInvokeInterface(ArenaAllocator* arena,
3826                   uint32_t number_of_arguments,
3827                   Primitive::Type return_type,
3828                   uint32_t dex_pc,
3829                   uint32_t dex_method_index,
3830                   uint32_t imt_index)
3831      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3832        imt_index_(imt_index) {}
3833
3834  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3835    // TODO: Add implicit null checks in intrinsics.
3836    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3837  }
3838
3839  uint32_t GetImtIndex() const { return imt_index_; }
3840  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3841
3842  DECLARE_INSTRUCTION(InvokeInterface);
3843
3844 private:
3845  const uint32_t imt_index_;
3846
3847  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3848};
3849
3850class HNeg : public HUnaryOperation {
3851 public:
3852  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3853      : HUnaryOperation(result_type, input, dex_pc) {}
3854
3855  template <typename T> T Compute(T x) const { return -x; }
3856
3857  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3858    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3859  }
3860  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3861    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3862  }
3863
3864  DECLARE_INSTRUCTION(Neg);
3865
3866 private:
3867  DISALLOW_COPY_AND_ASSIGN(HNeg);
3868};
3869
3870class HNewArray : public HExpression<2> {
3871 public:
3872  HNewArray(HInstruction* length,
3873            HCurrentMethod* current_method,
3874            uint32_t dex_pc,
3875            uint16_t type_index,
3876            const DexFile& dex_file,
3877            QuickEntrypointEnum entrypoint)
3878      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3879        type_index_(type_index),
3880        dex_file_(dex_file),
3881        entrypoint_(entrypoint) {
3882    SetRawInputAt(0, length);
3883    SetRawInputAt(1, current_method);
3884  }
3885
3886  uint16_t GetTypeIndex() const { return type_index_; }
3887  const DexFile& GetDexFile() const { return dex_file_; }
3888
3889  // Calls runtime so needs an environment.
3890  bool NeedsEnvironment() const OVERRIDE { return true; }
3891
3892  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3893  bool CanThrow() const OVERRIDE { return true; }
3894
3895  bool CanBeNull() const OVERRIDE { return false; }
3896
3897  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3898
3899  DECLARE_INSTRUCTION(NewArray);
3900
3901 private:
3902  const uint16_t type_index_;
3903  const DexFile& dex_file_;
3904  const QuickEntrypointEnum entrypoint_;
3905
3906  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3907};
3908
3909class HAdd : public HBinaryOperation {
3910 public:
3911  HAdd(Primitive::Type result_type,
3912       HInstruction* left,
3913       HInstruction* right,
3914       uint32_t dex_pc = kNoDexPc)
3915      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3916
3917  bool IsCommutative() const OVERRIDE { return true; }
3918
3919  template <typename T> T Compute(T x, T y) const { return x + y; }
3920
3921  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3922    return GetBlock()->GetGraph()->GetIntConstant(
3923        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3924  }
3925  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3926    return GetBlock()->GetGraph()->GetLongConstant(
3927        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3928  }
3929
3930  DECLARE_INSTRUCTION(Add);
3931
3932 private:
3933  DISALLOW_COPY_AND_ASSIGN(HAdd);
3934};
3935
3936class HSub : public HBinaryOperation {
3937 public:
3938  HSub(Primitive::Type result_type,
3939       HInstruction* left,
3940       HInstruction* right,
3941       uint32_t dex_pc = kNoDexPc)
3942      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3943
3944  template <typename T> T Compute(T x, T y) const { return x - y; }
3945
3946  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3947    return GetBlock()->GetGraph()->GetIntConstant(
3948        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3949  }
3950  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3951    return GetBlock()->GetGraph()->GetLongConstant(
3952        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3953  }
3954
3955  DECLARE_INSTRUCTION(Sub);
3956
3957 private:
3958  DISALLOW_COPY_AND_ASSIGN(HSub);
3959};
3960
3961class HMul : public HBinaryOperation {
3962 public:
3963  HMul(Primitive::Type result_type,
3964       HInstruction* left,
3965       HInstruction* right,
3966       uint32_t dex_pc = kNoDexPc)
3967      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3968
3969  bool IsCommutative() const OVERRIDE { return true; }
3970
3971  template <typename T> T Compute(T x, T y) const { return x * y; }
3972
3973  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3974    return GetBlock()->GetGraph()->GetIntConstant(
3975        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3976  }
3977  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3978    return GetBlock()->GetGraph()->GetLongConstant(
3979        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3980  }
3981
3982  DECLARE_INSTRUCTION(Mul);
3983
3984 private:
3985  DISALLOW_COPY_AND_ASSIGN(HMul);
3986};
3987
3988class HDiv : public HBinaryOperation {
3989 public:
3990  HDiv(Primitive::Type result_type,
3991       HInstruction* left,
3992       HInstruction* right,
3993       uint32_t dex_pc)
3994      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3995
3996  template <typename T>
3997  T Compute(T x, T y) const {
3998    // Our graph structure ensures we never have 0 for `y` during
3999    // constant folding.
4000    DCHECK_NE(y, 0);
4001    // Special case -1 to avoid getting a SIGFPE on x86(_64).
4002    return (y == -1) ? -x : x / y;
4003  }
4004
4005  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4006    return GetBlock()->GetGraph()->GetIntConstant(
4007        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4008  }
4009  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4010    return GetBlock()->GetGraph()->GetLongConstant(
4011        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4012  }
4013
4014  static SideEffects SideEffectsForArchRuntimeCalls() {
4015    // The generated code can use a runtime call.
4016    return SideEffects::CanTriggerGC();
4017  }
4018
4019  DECLARE_INSTRUCTION(Div);
4020
4021 private:
4022  DISALLOW_COPY_AND_ASSIGN(HDiv);
4023};
4024
4025class HRem : public HBinaryOperation {
4026 public:
4027  HRem(Primitive::Type result_type,
4028       HInstruction* left,
4029       HInstruction* right,
4030       uint32_t dex_pc)
4031      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
4032
4033  template <typename T>
4034  T Compute(T x, T y) const {
4035    // Our graph structure ensures we never have 0 for `y` during
4036    // constant folding.
4037    DCHECK_NE(y, 0);
4038    // Special case -1 to avoid getting a SIGFPE on x86(_64).
4039    return (y == -1) ? 0 : x % y;
4040  }
4041
4042  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4043    return GetBlock()->GetGraph()->GetIntConstant(
4044        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4045  }
4046  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4047    return GetBlock()->GetGraph()->GetLongConstant(
4048        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4049  }
4050
4051
4052  static SideEffects SideEffectsForArchRuntimeCalls() {
4053    return SideEffects::CanTriggerGC();
4054  }
4055
4056  DECLARE_INSTRUCTION(Rem);
4057
4058 private:
4059  DISALLOW_COPY_AND_ASSIGN(HRem);
4060};
4061
4062class HDivZeroCheck : public HExpression<1> {
4063 public:
4064  // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException`
4065  // constructor.
4066  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
4067      : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
4068    SetRawInputAt(0, value);
4069  }
4070
4071  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
4072
4073  bool CanBeMoved() const OVERRIDE { return true; }
4074
4075  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4076    return true;
4077  }
4078
4079  bool NeedsEnvironment() const OVERRIDE { return true; }
4080  bool CanThrow() const OVERRIDE { return true; }
4081
4082  DECLARE_INSTRUCTION(DivZeroCheck);
4083
4084 private:
4085  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
4086};
4087
4088class HShl : public HBinaryOperation {
4089 public:
4090  HShl(Primitive::Type result_type,
4091       HInstruction* left,
4092       HInstruction* right,
4093       uint32_t dex_pc = kNoDexPc)
4094      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4095
4096  template <typename T, typename U, typename V>
4097  T Compute(T x, U y, V max_shift_value) const {
4098    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4099                  "V is not the unsigned integer type corresponding to T");
4100    return x << (y & max_shift_value);
4101  }
4102
4103  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4104    return GetBlock()->GetGraph()->GetIntConstant(
4105        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4106  }
4107  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4108  // case is handled as `x << static_cast<int>(y)`.
4109  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4110    return GetBlock()->GetGraph()->GetLongConstant(
4111        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4112  }
4113  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4114    return GetBlock()->GetGraph()->GetLongConstant(
4115        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4116  }
4117
4118  DECLARE_INSTRUCTION(Shl);
4119
4120 private:
4121  DISALLOW_COPY_AND_ASSIGN(HShl);
4122};
4123
4124class HShr : public HBinaryOperation {
4125 public:
4126  HShr(Primitive::Type result_type,
4127       HInstruction* left,
4128       HInstruction* right,
4129       uint32_t dex_pc = kNoDexPc)
4130      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4131
4132  template <typename T, typename U, typename V>
4133  T Compute(T x, U y, V max_shift_value) const {
4134    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4135                  "V is not the unsigned integer type corresponding to T");
4136    return x >> (y & max_shift_value);
4137  }
4138
4139  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4140    return GetBlock()->GetGraph()->GetIntConstant(
4141        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4142  }
4143  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4144  // case is handled as `x >> static_cast<int>(y)`.
4145  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4146    return GetBlock()->GetGraph()->GetLongConstant(
4147        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4148  }
4149  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4150    return GetBlock()->GetGraph()->GetLongConstant(
4151        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4152  }
4153
4154  DECLARE_INSTRUCTION(Shr);
4155
4156 private:
4157  DISALLOW_COPY_AND_ASSIGN(HShr);
4158};
4159
4160class HUShr : public HBinaryOperation {
4161 public:
4162  HUShr(Primitive::Type result_type,
4163        HInstruction* left,
4164        HInstruction* right,
4165        uint32_t dex_pc = kNoDexPc)
4166      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4167
4168  template <typename T, typename U, typename V>
4169  T Compute(T x, U y, V max_shift_value) const {
4170    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4171                  "V is not the unsigned integer type corresponding to T");
4172    V ux = static_cast<V>(x);
4173    return static_cast<T>(ux >> (y & max_shift_value));
4174  }
4175
4176  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4177    return GetBlock()->GetGraph()->GetIntConstant(
4178        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4179  }
4180  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4181  // case is handled as `x >>> static_cast<int>(y)`.
4182  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4183    return GetBlock()->GetGraph()->GetLongConstant(
4184        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4185  }
4186  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4187    return GetBlock()->GetGraph()->GetLongConstant(
4188        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4189  }
4190
4191  DECLARE_INSTRUCTION(UShr);
4192
4193 private:
4194  DISALLOW_COPY_AND_ASSIGN(HUShr);
4195};
4196
4197class HAnd : public HBinaryOperation {
4198 public:
4199  HAnd(Primitive::Type result_type,
4200       HInstruction* left,
4201       HInstruction* right,
4202       uint32_t dex_pc = kNoDexPc)
4203      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4204
4205  bool IsCommutative() const OVERRIDE { return true; }
4206
4207  template <typename T, typename U>
4208  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
4209
4210  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4211    return GetBlock()->GetGraph()->GetIntConstant(
4212        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4213  }
4214  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4215    return GetBlock()->GetGraph()->GetLongConstant(
4216        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4217  }
4218  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4219    return GetBlock()->GetGraph()->GetLongConstant(
4220        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4221  }
4222  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4223    return GetBlock()->GetGraph()->GetLongConstant(
4224        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4225  }
4226
4227  DECLARE_INSTRUCTION(And);
4228
4229 private:
4230  DISALLOW_COPY_AND_ASSIGN(HAnd);
4231};
4232
4233class HOr : public HBinaryOperation {
4234 public:
4235  HOr(Primitive::Type result_type,
4236      HInstruction* left,
4237      HInstruction* right,
4238      uint32_t dex_pc = kNoDexPc)
4239      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4240
4241  bool IsCommutative() const OVERRIDE { return true; }
4242
4243  template <typename T, typename U>
4244  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
4245
4246  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4247    return GetBlock()->GetGraph()->GetIntConstant(
4248        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4249  }
4250  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4251    return GetBlock()->GetGraph()->GetLongConstant(
4252        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4253  }
4254  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4255    return GetBlock()->GetGraph()->GetLongConstant(
4256        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4257  }
4258  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4259    return GetBlock()->GetGraph()->GetLongConstant(
4260        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4261  }
4262
4263  DECLARE_INSTRUCTION(Or);
4264
4265 private:
4266  DISALLOW_COPY_AND_ASSIGN(HOr);
4267};
4268
4269class HXor : public HBinaryOperation {
4270 public:
4271  HXor(Primitive::Type result_type,
4272       HInstruction* left,
4273       HInstruction* right,
4274       uint32_t dex_pc = kNoDexPc)
4275      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4276
4277  bool IsCommutative() const OVERRIDE { return true; }
4278
4279  template <typename T, typename U>
4280  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
4281
4282  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4283    return GetBlock()->GetGraph()->GetIntConstant(
4284        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4285  }
4286  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4287    return GetBlock()->GetGraph()->GetLongConstant(
4288        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4289  }
4290  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4291    return GetBlock()->GetGraph()->GetLongConstant(
4292        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4293  }
4294  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4295    return GetBlock()->GetGraph()->GetLongConstant(
4296        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4297  }
4298
4299  DECLARE_INSTRUCTION(Xor);
4300
4301 private:
4302  DISALLOW_COPY_AND_ASSIGN(HXor);
4303};
4304
4305class HRor : public HBinaryOperation {
4306 public:
4307  HRor(Primitive::Type result_type, HInstruction* value, HInstruction* distance)
4308    : HBinaryOperation(result_type, value, distance) {}
4309
4310  template <typename T, typename U, typename V>
4311  T Compute(T x, U y, V max_shift_value) const {
4312    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4313                  "V is not the unsigned integer type corresponding to T");
4314    V ux = static_cast<V>(x);
4315    if ((y & max_shift_value) == 0) {
4316      return static_cast<T>(ux);
4317    } else {
4318      const V reg_bits = sizeof(T) * 8;
4319      return static_cast<T>(ux >> (y & max_shift_value)) |
4320                           (x << (reg_bits - (y & max_shift_value)));
4321    }
4322  }
4323
4324  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4325    return GetBlock()->GetGraph()->GetIntConstant(
4326        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4327  }
4328  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4329    return GetBlock()->GetGraph()->GetLongConstant(
4330        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4331  }
4332  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4333    return GetBlock()->GetGraph()->GetLongConstant(
4334        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4335  }
4336
4337  DECLARE_INSTRUCTION(Ror);
4338
4339 private:
4340  DISALLOW_COPY_AND_ASSIGN(HRor);
4341};
4342
4343// The value of a parameter in this method. Its location depends on
4344// the calling convention.
4345class HParameterValue : public HExpression<0> {
4346 public:
4347  HParameterValue(const DexFile& dex_file,
4348                  uint16_t type_index,
4349                  uint8_t index,
4350                  Primitive::Type parameter_type,
4351                  bool is_this = false)
4352      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4353        dex_file_(dex_file),
4354        type_index_(type_index),
4355        index_(index),
4356        is_this_(is_this),
4357        can_be_null_(!is_this) {}
4358
4359  const DexFile& GetDexFile() const { return dex_file_; }
4360  uint16_t GetTypeIndex() const { return type_index_; }
4361  uint8_t GetIndex() const { return index_; }
4362  bool IsThis() const { return is_this_; }
4363
4364  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4365  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4366
4367  DECLARE_INSTRUCTION(ParameterValue);
4368
4369 private:
4370  const DexFile& dex_file_;
4371  const uint16_t type_index_;
4372  // The index of this parameter in the parameters list. Must be less
4373  // than HGraph::number_of_in_vregs_.
4374  const uint8_t index_;
4375
4376  // Whether or not the parameter value corresponds to 'this' argument.
4377  const bool is_this_;
4378
4379  bool can_be_null_;
4380
4381  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4382};
4383
4384class HNot : public HUnaryOperation {
4385 public:
4386  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4387      : HUnaryOperation(result_type, input, dex_pc) {}
4388
4389  bool CanBeMoved() const OVERRIDE { return true; }
4390  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4391    return true;
4392  }
4393
4394  template <typename T> T Compute(T x) const { return ~x; }
4395
4396  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4397    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4398  }
4399  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4400    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4401  }
4402
4403  DECLARE_INSTRUCTION(Not);
4404
4405 private:
4406  DISALLOW_COPY_AND_ASSIGN(HNot);
4407};
4408
4409class HBooleanNot : public HUnaryOperation {
4410 public:
4411  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4412      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4413
4414  bool CanBeMoved() const OVERRIDE { return true; }
4415  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4416    return true;
4417  }
4418
4419  template <typename T> bool Compute(T x) const {
4420    DCHECK(IsUint<1>(x));
4421    return !x;
4422  }
4423
4424  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4425    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4426  }
4427  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4428    LOG(FATAL) << DebugName() << " is not defined for long values";
4429    UNREACHABLE();
4430  }
4431
4432  DECLARE_INSTRUCTION(BooleanNot);
4433
4434 private:
4435  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4436};
4437
4438class HTypeConversion : public HExpression<1> {
4439 public:
4440  // Instantiate a type conversion of `input` to `result_type`.
4441  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4442      : HExpression(result_type,
4443                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4444                    dex_pc) {
4445    SetRawInputAt(0, input);
4446    DCHECK_NE(input->GetType(), result_type);
4447  }
4448
4449  HInstruction* GetInput() const { return InputAt(0); }
4450  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4451  Primitive::Type GetResultType() const { return GetType(); }
4452
4453  bool CanBeMoved() const OVERRIDE { return true; }
4454  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4455
4456  // Try to statically evaluate the conversion and return a HConstant
4457  // containing the result.  If the input cannot be converted, return nullptr.
4458  HConstant* TryStaticEvaluation() const;
4459
4460  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4461                                                    Primitive::Type result_type) {
4462    // Some architectures may not require the 'GC' side effects, but at this point
4463    // in the compilation process we do not know what architecture we will
4464    // generate code for, so we must be conservative.
4465    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4466        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4467      return SideEffects::CanTriggerGC();
4468    }
4469    return SideEffects::None();
4470  }
4471
4472  DECLARE_INSTRUCTION(TypeConversion);
4473
4474 private:
4475  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4476};
4477
4478static constexpr uint32_t kNoRegNumber = -1;
4479
4480class HPhi : public HInstruction {
4481 public:
4482  HPhi(ArenaAllocator* arena,
4483       uint32_t reg_number,
4484       size_t number_of_inputs,
4485       Primitive::Type type,
4486       uint32_t dex_pc = kNoDexPc)
4487      : HInstruction(SideEffects::None(), dex_pc),
4488        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4489        reg_number_(reg_number),
4490        type_(ToPhiType(type)),
4491        // Phis are constructed live and marked dead if conflicting or unused.
4492        // Individual steps of SsaBuilder should assume that if a phi has been
4493        // marked dead, it can be ignored and will be removed by SsaPhiElimination.
4494        is_live_(true),
4495        can_be_null_(true) {
4496    DCHECK_NE(type_, Primitive::kPrimVoid);
4497  }
4498
4499  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4500  static Primitive::Type ToPhiType(Primitive::Type type) {
4501    switch (type) {
4502      case Primitive::kPrimBoolean:
4503      case Primitive::kPrimByte:
4504      case Primitive::kPrimShort:
4505      case Primitive::kPrimChar:
4506        return Primitive::kPrimInt;
4507      default:
4508        return type;
4509    }
4510  }
4511
4512  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4513
4514  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4515
4516  void AddInput(HInstruction* input);
4517  void RemoveInputAt(size_t index);
4518
4519  Primitive::Type GetType() const OVERRIDE { return type_; }
4520  void SetType(Primitive::Type new_type) {
4521    // Make sure that only valid type changes occur. The following are allowed:
4522    //  (1) int  -> float/ref (primitive type propagation),
4523    //  (2) long -> double (primitive type propagation).
4524    DCHECK(type_ == new_type ||
4525           (type_ == Primitive::kPrimInt && new_type == Primitive::kPrimFloat) ||
4526           (type_ == Primitive::kPrimInt && new_type == Primitive::kPrimNot) ||
4527           (type_ == Primitive::kPrimLong && new_type == Primitive::kPrimDouble));
4528    type_ = new_type;
4529  }
4530
4531  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4532  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4533
4534  uint32_t GetRegNumber() const { return reg_number_; }
4535
4536  void SetDead() { is_live_ = false; }
4537  void SetLive() { is_live_ = true; }
4538  bool IsDead() const { return !is_live_; }
4539  bool IsLive() const { return is_live_; }
4540
4541  bool IsVRegEquivalentOf(HInstruction* other) const {
4542    return other != nullptr
4543        && other->IsPhi()
4544        && other->AsPhi()->GetBlock() == GetBlock()
4545        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4546  }
4547
4548  // Returns the next equivalent phi (starting from the current one) or null if there is none.
4549  // An equivalent phi is a phi having the same dex register and type.
4550  // It assumes that phis with the same dex register are adjacent.
4551  HPhi* GetNextEquivalentPhiWithSameType() {
4552    HInstruction* next = GetNext();
4553    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
4554      if (next->GetType() == GetType()) {
4555        return next->AsPhi();
4556      }
4557      next = next->GetNext();
4558    }
4559    return nullptr;
4560  }
4561
4562  DECLARE_INSTRUCTION(Phi);
4563
4564 protected:
4565  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
4566    return inputs_[index];
4567  }
4568
4569  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
4570    inputs_[index] = input;
4571  }
4572
4573 private:
4574  ArenaVector<HUserRecord<HInstruction*> > inputs_;
4575  const uint32_t reg_number_;
4576  Primitive::Type type_;
4577  bool is_live_;
4578  bool can_be_null_;
4579
4580  DISALLOW_COPY_AND_ASSIGN(HPhi);
4581};
4582
4583class HNullCheck : public HExpression<1> {
4584 public:
4585  // `HNullCheck` can trigger GC, as it may call the `NullPointerException`
4586  // constructor.
4587  HNullCheck(HInstruction* value, uint32_t dex_pc)
4588      : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
4589    SetRawInputAt(0, value);
4590  }
4591
4592  bool CanBeMoved() const OVERRIDE { return true; }
4593  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4594    return true;
4595  }
4596
4597  bool NeedsEnvironment() const OVERRIDE { return true; }
4598
4599  bool CanThrow() const OVERRIDE { return true; }
4600
4601  bool CanBeNull() const OVERRIDE { return false; }
4602
4603
4604  DECLARE_INSTRUCTION(NullCheck);
4605
4606 private:
4607  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4608};
4609
4610class FieldInfo : public ValueObject {
4611 public:
4612  FieldInfo(MemberOffset field_offset,
4613            Primitive::Type field_type,
4614            bool is_volatile,
4615            uint32_t index,
4616            uint16_t declaring_class_def_index,
4617            const DexFile& dex_file,
4618            Handle<mirror::DexCache> dex_cache)
4619      : field_offset_(field_offset),
4620        field_type_(field_type),
4621        is_volatile_(is_volatile),
4622        index_(index),
4623        declaring_class_def_index_(declaring_class_def_index),
4624        dex_file_(dex_file),
4625        dex_cache_(dex_cache) {}
4626
4627  MemberOffset GetFieldOffset() const { return field_offset_; }
4628  Primitive::Type GetFieldType() const { return field_type_; }
4629  uint32_t GetFieldIndex() const { return index_; }
4630  uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
4631  const DexFile& GetDexFile() const { return dex_file_; }
4632  bool IsVolatile() const { return is_volatile_; }
4633  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4634
4635 private:
4636  const MemberOffset field_offset_;
4637  const Primitive::Type field_type_;
4638  const bool is_volatile_;
4639  const uint32_t index_;
4640  const uint16_t declaring_class_def_index_;
4641  const DexFile& dex_file_;
4642  const Handle<mirror::DexCache> dex_cache_;
4643};
4644
4645class HInstanceFieldGet : public HExpression<1> {
4646 public:
4647  HInstanceFieldGet(HInstruction* value,
4648                    Primitive::Type field_type,
4649                    MemberOffset field_offset,
4650                    bool is_volatile,
4651                    uint32_t field_idx,
4652                    uint16_t declaring_class_def_index,
4653                    const DexFile& dex_file,
4654                    Handle<mirror::DexCache> dex_cache,
4655                    uint32_t dex_pc)
4656      : HExpression(field_type,
4657                    SideEffects::FieldReadOfType(field_type, is_volatile),
4658                    dex_pc),
4659        field_info_(field_offset,
4660                    field_type,
4661                    is_volatile,
4662                    field_idx,
4663                    declaring_class_def_index,
4664                    dex_file,
4665                    dex_cache) {
4666    SetRawInputAt(0, value);
4667  }
4668
4669  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4670
4671  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4672    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
4673    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4674  }
4675
4676  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4677    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4678  }
4679
4680  size_t ComputeHashCode() const OVERRIDE {
4681    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4682  }
4683
4684  const FieldInfo& GetFieldInfo() const { return field_info_; }
4685  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4686  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4687  bool IsVolatile() const { return field_info_.IsVolatile(); }
4688
4689  DECLARE_INSTRUCTION(InstanceFieldGet);
4690
4691 private:
4692  const FieldInfo field_info_;
4693
4694  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
4695};
4696
4697class HInstanceFieldSet : public HTemplateInstruction<2> {
4698 public:
4699  HInstanceFieldSet(HInstruction* object,
4700                    HInstruction* value,
4701                    Primitive::Type field_type,
4702                    MemberOffset field_offset,
4703                    bool is_volatile,
4704                    uint32_t field_idx,
4705                    uint16_t declaring_class_def_index,
4706                    const DexFile& dex_file,
4707                    Handle<mirror::DexCache> dex_cache,
4708                    uint32_t dex_pc)
4709      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4710                             dex_pc),
4711        field_info_(field_offset,
4712                    field_type,
4713                    is_volatile,
4714                    field_idx,
4715                    declaring_class_def_index,
4716                    dex_file,
4717                    dex_cache),
4718        value_can_be_null_(true) {
4719    SetRawInputAt(0, object);
4720    SetRawInputAt(1, value);
4721  }
4722
4723  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4724    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4725  }
4726
4727  const FieldInfo& GetFieldInfo() const { return field_info_; }
4728  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4729  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4730  bool IsVolatile() const { return field_info_.IsVolatile(); }
4731  HInstruction* GetValue() const { return InputAt(1); }
4732  bool GetValueCanBeNull() const { return value_can_be_null_; }
4733  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4734
4735  DECLARE_INSTRUCTION(InstanceFieldSet);
4736
4737 private:
4738  const FieldInfo field_info_;
4739  bool value_can_be_null_;
4740
4741  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
4742};
4743
4744class HArrayGet : public HExpression<2> {
4745 public:
4746  HArrayGet(HInstruction* array,
4747            HInstruction* index,
4748            Primitive::Type type,
4749            uint32_t dex_pc,
4750            SideEffects additional_side_effects = SideEffects::None())
4751      : HExpression(type,
4752                    SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
4753                    dex_pc) {
4754    SetRawInputAt(0, array);
4755    SetRawInputAt(1, index);
4756  }
4757
4758  bool CanBeMoved() const OVERRIDE { return true; }
4759  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4760    return true;
4761  }
4762  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4763    // TODO: We can be smarter here.
4764    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
4765    // which generates the implicit null check. There are cases when these can be removed
4766    // to produce better code. If we ever add optimizations to do so we should allow an
4767    // implicit check here (as long as the address falls in the first page).
4768    return false;
4769  }
4770
4771  bool IsEquivalentOf(HArrayGet* other) const {
4772    bool result = (GetDexPc() == other->GetDexPc());
4773    if (kIsDebugBuild && result) {
4774      DCHECK_EQ(GetBlock(), other->GetBlock());
4775      DCHECK_EQ(GetArray(), other->GetArray());
4776      DCHECK_EQ(GetIndex(), other->GetIndex());
4777      if (Primitive::IsIntOrLongType(GetType())) {
4778        DCHECK(Primitive::IsFloatingPointType(other->GetType()));
4779      } else {
4780        DCHECK(Primitive::IsFloatingPointType(GetType()));
4781        DCHECK(Primitive::IsIntOrLongType(other->GetType()));
4782      }
4783    }
4784    return result;
4785  }
4786
4787  HInstruction* GetArray() const { return InputAt(0); }
4788  HInstruction* GetIndex() const { return InputAt(1); }
4789
4790  DECLARE_INSTRUCTION(ArrayGet);
4791
4792 private:
4793  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4794};
4795
4796class HArraySet : public HTemplateInstruction<3> {
4797 public:
4798  HArraySet(HInstruction* array,
4799            HInstruction* index,
4800            HInstruction* value,
4801            Primitive::Type expected_component_type,
4802            uint32_t dex_pc,
4803            SideEffects additional_side_effects = SideEffects::None())
4804      : HTemplateInstruction(
4805            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4806                SideEffectsForArchRuntimeCalls(value->GetType())).Union(
4807                    additional_side_effects),
4808            dex_pc),
4809        expected_component_type_(expected_component_type),
4810        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4811        value_can_be_null_(true),
4812        static_type_of_array_is_object_array_(false) {
4813    SetRawInputAt(0, array);
4814    SetRawInputAt(1, index);
4815    SetRawInputAt(2, value);
4816  }
4817
4818  bool NeedsEnvironment() const OVERRIDE {
4819    // We call a runtime method to throw ArrayStoreException.
4820    return needs_type_check_;
4821  }
4822
4823  // Can throw ArrayStoreException.
4824  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4825
4826  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4827    // TODO: Same as for ArrayGet.
4828    return false;
4829  }
4830
4831  void ClearNeedsTypeCheck() {
4832    needs_type_check_ = false;
4833  }
4834
4835  void ClearValueCanBeNull() {
4836    value_can_be_null_ = false;
4837  }
4838
4839  void SetStaticTypeOfArrayIsObjectArray() {
4840    static_type_of_array_is_object_array_ = true;
4841  }
4842
4843  bool GetValueCanBeNull() const { return value_can_be_null_; }
4844  bool NeedsTypeCheck() const { return needs_type_check_; }
4845  bool StaticTypeOfArrayIsObjectArray() const { return static_type_of_array_is_object_array_; }
4846
4847  HInstruction* GetArray() const { return InputAt(0); }
4848  HInstruction* GetIndex() const { return InputAt(1); }
4849  HInstruction* GetValue() const { return InputAt(2); }
4850
4851  Primitive::Type GetComponentType() const {
4852    // The Dex format does not type floating point index operations. Since the
4853    // `expected_component_type_` is set during building and can therefore not
4854    // be correct, we also check what is the value type. If it is a floating
4855    // point type, we must use that type.
4856    Primitive::Type value_type = GetValue()->GetType();
4857    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4858        ? value_type
4859        : expected_component_type_;
4860  }
4861
4862  Primitive::Type GetRawExpectedComponentType() const {
4863    return expected_component_type_;
4864  }
4865
4866  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4867    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4868  }
4869
4870  DECLARE_INSTRUCTION(ArraySet);
4871
4872 private:
4873  const Primitive::Type expected_component_type_;
4874  bool needs_type_check_;
4875  bool value_can_be_null_;
4876  // Cached information for the reference_type_info_ so that codegen
4877  // does not need to inspect the static type.
4878  bool static_type_of_array_is_object_array_;
4879
4880  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4881};
4882
4883class HArrayLength : public HExpression<1> {
4884 public:
4885  HArrayLength(HInstruction* array, uint32_t dex_pc)
4886      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
4887    // Note that arrays do not change length, so the instruction does not
4888    // depend on any write.
4889    SetRawInputAt(0, array);
4890  }
4891
4892  bool CanBeMoved() const OVERRIDE { return true; }
4893  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4894    return true;
4895  }
4896  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4897    return obj == InputAt(0);
4898  }
4899
4900  DECLARE_INSTRUCTION(ArrayLength);
4901
4902 private:
4903  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4904};
4905
4906class HBoundsCheck : public HExpression<2> {
4907 public:
4908  // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException`
4909  // constructor.
4910  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4911      : HExpression(index->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
4912    DCHECK(index->GetType() == Primitive::kPrimInt);
4913    SetRawInputAt(0, index);
4914    SetRawInputAt(1, length);
4915  }
4916
4917  bool CanBeMoved() const OVERRIDE { return true; }
4918  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4919    return true;
4920  }
4921
4922  bool NeedsEnvironment() const OVERRIDE { return true; }
4923
4924  bool CanThrow() const OVERRIDE { return true; }
4925
4926  HInstruction* GetIndex() const { return InputAt(0); }
4927
4928  DECLARE_INSTRUCTION(BoundsCheck);
4929
4930 private:
4931  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4932};
4933
4934/**
4935 * Some DEX instructions are folded into multiple HInstructions that need
4936 * to stay live until the last HInstruction. This class
4937 * is used as a marker for the baseline compiler to ensure its preceding
4938 * HInstruction stays live. `index` represents the stack location index of the
4939 * instruction (the actual offset is computed as index * vreg_size).
4940 */
4941class HTemporary : public HTemplateInstruction<0> {
4942 public:
4943  explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc)
4944      : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {}
4945
4946  size_t GetIndex() const { return index_; }
4947
4948  Primitive::Type GetType() const OVERRIDE {
4949    // The previous instruction is the one that will be stored in the temporary location.
4950    DCHECK(GetPrevious() != nullptr);
4951    return GetPrevious()->GetType();
4952  }
4953
4954  DECLARE_INSTRUCTION(Temporary);
4955
4956 private:
4957  const size_t index_;
4958  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4959};
4960
4961class HSuspendCheck : public HTemplateInstruction<0> {
4962 public:
4963  explicit HSuspendCheck(uint32_t dex_pc)
4964      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
4965
4966  bool NeedsEnvironment() const OVERRIDE {
4967    return true;
4968  }
4969
4970  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4971  SlowPathCode* GetSlowPath() const { return slow_path_; }
4972
4973  DECLARE_INSTRUCTION(SuspendCheck);
4974
4975 private:
4976  // Only used for code generation, in order to share the same slow path between back edges
4977  // of a same loop.
4978  SlowPathCode* slow_path_;
4979
4980  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4981};
4982
4983// Pseudo-instruction which provides the native debugger with mapping information.
4984// It ensures that we can generate line number and local variables at this point.
4985class HNativeDebugInfo : public HTemplateInstruction<0> {
4986 public:
4987  explicit HNativeDebugInfo(uint32_t dex_pc)
4988      : HTemplateInstruction<0>(SideEffects::None(), dex_pc) {}
4989
4990  bool NeedsEnvironment() const OVERRIDE {
4991    return true;
4992  }
4993
4994  DECLARE_INSTRUCTION(NativeDebugInfo);
4995
4996 private:
4997  DISALLOW_COPY_AND_ASSIGN(HNativeDebugInfo);
4998};
4999
5000/**
5001 * Instruction to load a Class object.
5002 */
5003class HLoadClass : public HExpression<1> {
5004 public:
5005  HLoadClass(HCurrentMethod* current_method,
5006             uint16_t type_index,
5007             const DexFile& dex_file,
5008             bool is_referrers_class,
5009             uint32_t dex_pc,
5010             bool needs_access_check,
5011             bool is_in_dex_cache)
5012      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
5013        type_index_(type_index),
5014        dex_file_(dex_file),
5015        is_referrers_class_(is_referrers_class),
5016        generate_clinit_check_(false),
5017        needs_access_check_(needs_access_check),
5018        is_in_dex_cache_(is_in_dex_cache),
5019        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
5020    // Referrers class should not need access check. We never inline unverified
5021    // methods so we can't possibly end up in this situation.
5022    DCHECK(!is_referrers_class_ || !needs_access_check_);
5023    SetRawInputAt(0, current_method);
5024  }
5025
5026  bool CanBeMoved() const OVERRIDE { return true; }
5027
5028  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
5029    // Note that we don't need to test for generate_clinit_check_.
5030    // Whether or not we need to generate the clinit check is processed in
5031    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
5032    return other->AsLoadClass()->type_index_ == type_index_ &&
5033        other->AsLoadClass()->needs_access_check_ == needs_access_check_;
5034  }
5035
5036  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
5037
5038  uint16_t GetTypeIndex() const { return type_index_; }
5039  bool IsReferrersClass() const { return is_referrers_class_; }
5040  bool CanBeNull() const OVERRIDE { return false; }
5041
5042  bool NeedsEnvironment() const OVERRIDE {
5043    return CanCallRuntime();
5044  }
5045
5046  bool MustGenerateClinitCheck() const {
5047    return generate_clinit_check_;
5048  }
5049
5050  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
5051    // The entrypoint the code generator is going to call does not do
5052    // clinit of the class.
5053    DCHECK(!NeedsAccessCheck());
5054    generate_clinit_check_ = generate_clinit_check;
5055  }
5056
5057  bool CanCallRuntime() const {
5058    return MustGenerateClinitCheck() ||
5059           (!is_referrers_class_ && !is_in_dex_cache_) ||
5060           needs_access_check_;
5061  }
5062
5063  bool NeedsAccessCheck() const {
5064    return needs_access_check_;
5065  }
5066
5067  bool CanThrow() const OVERRIDE {
5068    return CanCallRuntime();
5069  }
5070
5071  ReferenceTypeInfo GetLoadedClassRTI() {
5072    return loaded_class_rti_;
5073  }
5074
5075  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
5076    // Make sure we only set exact types (the loaded class should never be merged).
5077    DCHECK(rti.IsExact());
5078    loaded_class_rti_ = rti;
5079  }
5080
5081  const DexFile& GetDexFile() { return dex_file_; }
5082
5083  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !is_referrers_class_; }
5084
5085  static SideEffects SideEffectsForArchRuntimeCalls() {
5086    return SideEffects::CanTriggerGC();
5087  }
5088
5089  bool IsInDexCache() const { return is_in_dex_cache_; }
5090
5091  DECLARE_INSTRUCTION(LoadClass);
5092
5093 private:
5094  const uint16_t type_index_;
5095  const DexFile& dex_file_;
5096  const bool is_referrers_class_;
5097  // Whether this instruction must generate the initialization check.
5098  // Used for code generation.
5099  bool generate_clinit_check_;
5100  const bool needs_access_check_;
5101  const bool is_in_dex_cache_;
5102
5103  ReferenceTypeInfo loaded_class_rti_;
5104
5105  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
5106};
5107
5108class HLoadString : public HExpression<1> {
5109 public:
5110  HLoadString(HCurrentMethod* current_method,
5111              uint32_t string_index,
5112              uint32_t dex_pc,
5113              bool is_in_dex_cache)
5114      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
5115        string_index_(string_index),
5116        is_in_dex_cache_(is_in_dex_cache) {
5117    SetRawInputAt(0, current_method);
5118  }
5119
5120  bool CanBeMoved() const OVERRIDE { return true; }
5121
5122  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
5123    return other->AsLoadString()->string_index_ == string_index_;
5124  }
5125
5126  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
5127
5128  uint32_t GetStringIndex() const { return string_index_; }
5129
5130  // Will call the runtime if the string is not already in the dex cache.
5131  bool NeedsEnvironment() const OVERRIDE { return !IsInDexCache(); }
5132
5133  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return true; }
5134  bool CanBeNull() const OVERRIDE { return false; }
5135  bool IsInDexCache() const { return is_in_dex_cache_; }
5136  bool CanThrow() const OVERRIDE { return !IsInDexCache(); }
5137
5138  static SideEffects SideEffectsForArchRuntimeCalls() {
5139    return SideEffects::CanTriggerGC();
5140  }
5141
5142  DECLARE_INSTRUCTION(LoadString);
5143
5144 private:
5145  const uint32_t string_index_;
5146  const bool is_in_dex_cache_;
5147
5148  DISALLOW_COPY_AND_ASSIGN(HLoadString);
5149};
5150
5151/**
5152 * Performs an initialization check on its Class object input.
5153 */
5154class HClinitCheck : public HExpression<1> {
5155 public:
5156  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
5157      : HExpression(
5158            Primitive::kPrimNot,
5159            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
5160            dex_pc) {
5161    SetRawInputAt(0, constant);
5162  }
5163
5164  bool CanBeMoved() const OVERRIDE { return true; }
5165  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5166    return true;
5167  }
5168
5169  bool NeedsEnvironment() const OVERRIDE {
5170    // May call runtime to initialize the class.
5171    return true;
5172  }
5173
5174  bool CanThrow() const OVERRIDE { return true; }
5175
5176  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
5177
5178  DECLARE_INSTRUCTION(ClinitCheck);
5179
5180 private:
5181  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
5182};
5183
5184class HStaticFieldGet : public HExpression<1> {
5185 public:
5186  HStaticFieldGet(HInstruction* cls,
5187                  Primitive::Type field_type,
5188                  MemberOffset field_offset,
5189                  bool is_volatile,
5190                  uint32_t field_idx,
5191                  uint16_t declaring_class_def_index,
5192                  const DexFile& dex_file,
5193                  Handle<mirror::DexCache> dex_cache,
5194                  uint32_t dex_pc)
5195      : HExpression(field_type,
5196                    SideEffects::FieldReadOfType(field_type, is_volatile),
5197                    dex_pc),
5198        field_info_(field_offset,
5199                    field_type,
5200                    is_volatile,
5201                    field_idx,
5202                    declaring_class_def_index,
5203                    dex_file,
5204                    dex_cache) {
5205    SetRawInputAt(0, cls);
5206  }
5207
5208
5209  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
5210
5211  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
5212    HStaticFieldGet* other_get = other->AsStaticFieldGet();
5213    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
5214  }
5215
5216  size_t ComputeHashCode() const OVERRIDE {
5217    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
5218  }
5219
5220  const FieldInfo& GetFieldInfo() const { return field_info_; }
5221  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5222  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5223  bool IsVolatile() const { return field_info_.IsVolatile(); }
5224
5225  DECLARE_INSTRUCTION(StaticFieldGet);
5226
5227 private:
5228  const FieldInfo field_info_;
5229
5230  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
5231};
5232
5233class HStaticFieldSet : public HTemplateInstruction<2> {
5234 public:
5235  HStaticFieldSet(HInstruction* cls,
5236                  HInstruction* value,
5237                  Primitive::Type field_type,
5238                  MemberOffset field_offset,
5239                  bool is_volatile,
5240                  uint32_t field_idx,
5241                  uint16_t declaring_class_def_index,
5242                  const DexFile& dex_file,
5243                  Handle<mirror::DexCache> dex_cache,
5244                  uint32_t dex_pc)
5245      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
5246                             dex_pc),
5247        field_info_(field_offset,
5248                    field_type,
5249                    is_volatile,
5250                    field_idx,
5251                    declaring_class_def_index,
5252                    dex_file,
5253                    dex_cache),
5254        value_can_be_null_(true) {
5255    SetRawInputAt(0, cls);
5256    SetRawInputAt(1, value);
5257  }
5258
5259  const FieldInfo& GetFieldInfo() const { return field_info_; }
5260  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5261  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5262  bool IsVolatile() const { return field_info_.IsVolatile(); }
5263
5264  HInstruction* GetValue() const { return InputAt(1); }
5265  bool GetValueCanBeNull() const { return value_can_be_null_; }
5266  void ClearValueCanBeNull() { value_can_be_null_ = false; }
5267
5268  DECLARE_INSTRUCTION(StaticFieldSet);
5269
5270 private:
5271  const FieldInfo field_info_;
5272  bool value_can_be_null_;
5273
5274  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
5275};
5276
5277class HUnresolvedInstanceFieldGet : public HExpression<1> {
5278 public:
5279  HUnresolvedInstanceFieldGet(HInstruction* obj,
5280                              Primitive::Type field_type,
5281                              uint32_t field_index,
5282                              uint32_t dex_pc)
5283      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5284        field_index_(field_index) {
5285    SetRawInputAt(0, obj);
5286  }
5287
5288  bool NeedsEnvironment() const OVERRIDE { return true; }
5289  bool CanThrow() const OVERRIDE { return true; }
5290
5291  Primitive::Type GetFieldType() const { return GetType(); }
5292  uint32_t GetFieldIndex() const { return field_index_; }
5293
5294  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
5295
5296 private:
5297  const uint32_t field_index_;
5298
5299  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
5300};
5301
5302class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
5303 public:
5304  HUnresolvedInstanceFieldSet(HInstruction* obj,
5305                              HInstruction* value,
5306                              Primitive::Type field_type,
5307                              uint32_t field_index,
5308                              uint32_t dex_pc)
5309      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5310        field_type_(field_type),
5311        field_index_(field_index) {
5312    DCHECK_EQ(field_type, value->GetType());
5313    SetRawInputAt(0, obj);
5314    SetRawInputAt(1, value);
5315  }
5316
5317  bool NeedsEnvironment() const OVERRIDE { return true; }
5318  bool CanThrow() const OVERRIDE { return true; }
5319
5320  Primitive::Type GetFieldType() const { return field_type_; }
5321  uint32_t GetFieldIndex() const { return field_index_; }
5322
5323  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
5324
5325 private:
5326  const Primitive::Type field_type_;
5327  const uint32_t field_index_;
5328
5329  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
5330};
5331
5332class HUnresolvedStaticFieldGet : public HExpression<0> {
5333 public:
5334  HUnresolvedStaticFieldGet(Primitive::Type field_type,
5335                            uint32_t field_index,
5336                            uint32_t dex_pc)
5337      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5338        field_index_(field_index) {
5339  }
5340
5341  bool NeedsEnvironment() const OVERRIDE { return true; }
5342  bool CanThrow() const OVERRIDE { return true; }
5343
5344  Primitive::Type GetFieldType() const { return GetType(); }
5345  uint32_t GetFieldIndex() const { return field_index_; }
5346
5347  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
5348
5349 private:
5350  const uint32_t field_index_;
5351
5352  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
5353};
5354
5355class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
5356 public:
5357  HUnresolvedStaticFieldSet(HInstruction* value,
5358                            Primitive::Type field_type,
5359                            uint32_t field_index,
5360                            uint32_t dex_pc)
5361      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5362        field_type_(field_type),
5363        field_index_(field_index) {
5364    DCHECK_EQ(field_type, value->GetType());
5365    SetRawInputAt(0, value);
5366  }
5367
5368  bool NeedsEnvironment() const OVERRIDE { return true; }
5369  bool CanThrow() const OVERRIDE { return true; }
5370
5371  Primitive::Type GetFieldType() const { return field_type_; }
5372  uint32_t GetFieldIndex() const { return field_index_; }
5373
5374  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
5375
5376 private:
5377  const Primitive::Type field_type_;
5378  const uint32_t field_index_;
5379
5380  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
5381};
5382
5383// Implement the move-exception DEX instruction.
5384class HLoadException : public HExpression<0> {
5385 public:
5386  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
5387      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
5388
5389  bool CanBeNull() const OVERRIDE { return false; }
5390
5391  DECLARE_INSTRUCTION(LoadException);
5392
5393 private:
5394  DISALLOW_COPY_AND_ASSIGN(HLoadException);
5395};
5396
5397// Implicit part of move-exception which clears thread-local exception storage.
5398// Must not be removed because the runtime expects the TLS to get cleared.
5399class HClearException : public HTemplateInstruction<0> {
5400 public:
5401  explicit HClearException(uint32_t dex_pc = kNoDexPc)
5402      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
5403
5404  DECLARE_INSTRUCTION(ClearException);
5405
5406 private:
5407  DISALLOW_COPY_AND_ASSIGN(HClearException);
5408};
5409
5410class HThrow : public HTemplateInstruction<1> {
5411 public:
5412  HThrow(HInstruction* exception, uint32_t dex_pc)
5413      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
5414    SetRawInputAt(0, exception);
5415  }
5416
5417  bool IsControlFlow() const OVERRIDE { return true; }
5418
5419  bool NeedsEnvironment() const OVERRIDE { return true; }
5420
5421  bool CanThrow() const OVERRIDE { return true; }
5422
5423
5424  DECLARE_INSTRUCTION(Throw);
5425
5426 private:
5427  DISALLOW_COPY_AND_ASSIGN(HThrow);
5428};
5429
5430/**
5431 * Implementation strategies for the code generator of a HInstanceOf
5432 * or `HCheckCast`.
5433 */
5434enum class TypeCheckKind {
5435  kUnresolvedCheck,       // Check against an unresolved type.
5436  kExactCheck,            // Can do a single class compare.
5437  kClassHierarchyCheck,   // Can just walk the super class chain.
5438  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
5439  kInterfaceCheck,        // No optimization yet when checking against an interface.
5440  kArrayObjectCheck,      // Can just check if the array is not primitive.
5441  kArrayCheck             // No optimization yet when checking against a generic array.
5442};
5443
5444class HInstanceOf : public HExpression<2> {
5445 public:
5446  HInstanceOf(HInstruction* object,
5447              HLoadClass* constant,
5448              TypeCheckKind check_kind,
5449              uint32_t dex_pc)
5450      : HExpression(Primitive::kPrimBoolean,
5451                    SideEffectsForArchRuntimeCalls(check_kind),
5452                    dex_pc),
5453        check_kind_(check_kind),
5454        must_do_null_check_(true) {
5455    SetRawInputAt(0, object);
5456    SetRawInputAt(1, constant);
5457  }
5458
5459  bool CanBeMoved() const OVERRIDE { return true; }
5460
5461  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5462    return true;
5463  }
5464
5465  bool NeedsEnvironment() const OVERRIDE {
5466    return CanCallRuntime(check_kind_);
5467  }
5468
5469  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5470
5471  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5472
5473  // Used only in code generation.
5474  bool MustDoNullCheck() const { return must_do_null_check_; }
5475  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5476
5477  static bool CanCallRuntime(TypeCheckKind check_kind) {
5478    // Mips currently does runtime calls for any other checks.
5479    return check_kind != TypeCheckKind::kExactCheck;
5480  }
5481
5482  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
5483    return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None();
5484  }
5485
5486  DECLARE_INSTRUCTION(InstanceOf);
5487
5488 private:
5489  const TypeCheckKind check_kind_;
5490  bool must_do_null_check_;
5491
5492  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
5493};
5494
5495class HBoundType : public HExpression<1> {
5496 public:
5497  HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc)
5498      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
5499        upper_bound_(ReferenceTypeInfo::CreateInvalid()),
5500        upper_can_be_null_(true),
5501        can_be_null_(true) {
5502    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
5503    SetRawInputAt(0, input);
5504  }
5505
5506  // {Get,Set}Upper* should only be used in reference type propagation.
5507  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
5508  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
5509  void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null);
5510
5511  void SetCanBeNull(bool can_be_null) {
5512    DCHECK(upper_can_be_null_ || !can_be_null);
5513    can_be_null_ = can_be_null;
5514  }
5515
5516  bool CanBeNull() const OVERRIDE { return can_be_null_; }
5517
5518  DECLARE_INSTRUCTION(BoundType);
5519
5520 private:
5521  // Encodes the most upper class that this instruction can have. In other words
5522  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
5523  // It is used to bound the type in cases like:
5524  //   if (x instanceof ClassX) {
5525  //     // uper_bound_ will be ClassX
5526  //   }
5527  ReferenceTypeInfo upper_bound_;
5528  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
5529  // is false then can_be_null_ cannot be true).
5530  bool upper_can_be_null_;
5531  bool can_be_null_;
5532
5533  DISALLOW_COPY_AND_ASSIGN(HBoundType);
5534};
5535
5536class HCheckCast : public HTemplateInstruction<2> {
5537 public:
5538  HCheckCast(HInstruction* object,
5539             HLoadClass* constant,
5540             TypeCheckKind check_kind,
5541             uint32_t dex_pc)
5542      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc),
5543        check_kind_(check_kind),
5544        must_do_null_check_(true) {
5545    SetRawInputAt(0, object);
5546    SetRawInputAt(1, constant);
5547  }
5548
5549  bool CanBeMoved() const OVERRIDE { return true; }
5550
5551  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5552    return true;
5553  }
5554
5555  bool NeedsEnvironment() const OVERRIDE {
5556    // Instruction may throw a CheckCastError.
5557    return true;
5558  }
5559
5560  bool CanThrow() const OVERRIDE { return true; }
5561
5562  bool MustDoNullCheck() const { return must_do_null_check_; }
5563  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5564  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5565
5566  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5567
5568  DECLARE_INSTRUCTION(CheckCast);
5569
5570 private:
5571  const TypeCheckKind check_kind_;
5572  bool must_do_null_check_;
5573
5574  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
5575};
5576
5577class HMemoryBarrier : public HTemplateInstruction<0> {
5578 public:
5579  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
5580      : HTemplateInstruction(
5581            SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays.
5582        barrier_kind_(barrier_kind) {}
5583
5584  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
5585
5586  DECLARE_INSTRUCTION(MemoryBarrier);
5587
5588 private:
5589  const MemBarrierKind barrier_kind_;
5590
5591  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
5592};
5593
5594class HMonitorOperation : public HTemplateInstruction<1> {
5595 public:
5596  enum OperationKind {
5597    kEnter,
5598    kExit,
5599  };
5600
5601  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
5602    : HTemplateInstruction(
5603          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
5604      kind_(kind) {
5605    SetRawInputAt(0, object);
5606  }
5607
5608  // Instruction may go into runtime, so we need an environment.
5609  bool NeedsEnvironment() const OVERRIDE { return true; }
5610
5611  bool CanThrow() const OVERRIDE {
5612    // Verifier guarantees that monitor-exit cannot throw.
5613    // This is important because it allows the HGraphBuilder to remove
5614    // a dead throw-catch loop generated for `synchronized` blocks/methods.
5615    return IsEnter();
5616  }
5617
5618
5619  bool IsEnter() const { return kind_ == kEnter; }
5620
5621  DECLARE_INSTRUCTION(MonitorOperation);
5622
5623 private:
5624  const OperationKind kind_;
5625
5626 private:
5627  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
5628};
5629
5630class HSelect : public HExpression<3> {
5631 public:
5632  HSelect(HInstruction* condition,
5633          HInstruction* true_value,
5634          HInstruction* false_value,
5635          uint32_t dex_pc)
5636      : HExpression(HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) {
5637    DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType()));
5638
5639    // First input must be `true_value` or `false_value` to allow codegens to
5640    // use the SameAsFirstInput allocation policy. We make it `false_value`, so
5641    // that architectures which implement HSelect as a conditional move also
5642    // will not need to invert the condition.
5643    SetRawInputAt(0, false_value);
5644    SetRawInputAt(1, true_value);
5645    SetRawInputAt(2, condition);
5646  }
5647
5648  HInstruction* GetFalseValue() const { return InputAt(0); }
5649  HInstruction* GetTrueValue() const { return InputAt(1); }
5650  HInstruction* GetCondition() const { return InputAt(2); }
5651
5652  bool CanBeMoved() const OVERRIDE { return true; }
5653  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
5654
5655  bool CanBeNull() const OVERRIDE {
5656    return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull();
5657  }
5658
5659  DECLARE_INSTRUCTION(Select);
5660
5661 private:
5662  DISALLOW_COPY_AND_ASSIGN(HSelect);
5663};
5664
5665class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
5666 public:
5667  MoveOperands(Location source,
5668               Location destination,
5669               Primitive::Type type,
5670               HInstruction* instruction)
5671      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
5672
5673  Location GetSource() const { return source_; }
5674  Location GetDestination() const { return destination_; }
5675
5676  void SetSource(Location value) { source_ = value; }
5677  void SetDestination(Location value) { destination_ = value; }
5678
5679  // The parallel move resolver marks moves as "in-progress" by clearing the
5680  // destination (but not the source).
5681  Location MarkPending() {
5682    DCHECK(!IsPending());
5683    Location dest = destination_;
5684    destination_ = Location::NoLocation();
5685    return dest;
5686  }
5687
5688  void ClearPending(Location dest) {
5689    DCHECK(IsPending());
5690    destination_ = dest;
5691  }
5692
5693  bool IsPending() const {
5694    DCHECK(source_.IsValid() || destination_.IsInvalid());
5695    return destination_.IsInvalid() && source_.IsValid();
5696  }
5697
5698  // True if this blocks a move from the given location.
5699  bool Blocks(Location loc) const {
5700    return !IsEliminated() && source_.OverlapsWith(loc);
5701  }
5702
5703  // A move is redundant if it's been eliminated, if its source and
5704  // destination are the same, or if its destination is unneeded.
5705  bool IsRedundant() const {
5706    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
5707  }
5708
5709  // We clear both operands to indicate move that's been eliminated.
5710  void Eliminate() {
5711    source_ = destination_ = Location::NoLocation();
5712  }
5713
5714  bool IsEliminated() const {
5715    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5716    return source_.IsInvalid();
5717  }
5718
5719  Primitive::Type GetType() const { return type_; }
5720
5721  bool Is64BitMove() const {
5722    return Primitive::Is64BitType(type_);
5723  }
5724
5725  HInstruction* GetInstruction() const { return instruction_; }
5726
5727 private:
5728  Location source_;
5729  Location destination_;
5730  // The type this move is for.
5731  Primitive::Type type_;
5732  // The instruction this move is assocatied with. Null when this move is
5733  // for moving an input in the expected locations of user (including a phi user).
5734  // This is only used in debug mode, to ensure we do not connect interval siblings
5735  // in the same parallel move.
5736  HInstruction* instruction_;
5737};
5738
5739std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs);
5740
5741static constexpr size_t kDefaultNumberOfMoves = 4;
5742
5743class HParallelMove : public HTemplateInstruction<0> {
5744 public:
5745  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
5746      : HTemplateInstruction(SideEffects::None(), dex_pc),
5747        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
5748    moves_.reserve(kDefaultNumberOfMoves);
5749  }
5750
5751  void AddMove(Location source,
5752               Location destination,
5753               Primitive::Type type,
5754               HInstruction* instruction) {
5755    DCHECK(source.IsValid());
5756    DCHECK(destination.IsValid());
5757    if (kIsDebugBuild) {
5758      if (instruction != nullptr) {
5759        for (const MoveOperands& move : moves_) {
5760          if (move.GetInstruction() == instruction) {
5761            // Special case the situation where the move is for the spill slot
5762            // of the instruction.
5763            if ((GetPrevious() == instruction)
5764                || ((GetPrevious() == nullptr)
5765                    && instruction->IsPhi()
5766                    && instruction->GetBlock() == GetBlock())) {
5767              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
5768                  << "Doing parallel moves for the same instruction.";
5769            } else {
5770              DCHECK(false) << "Doing parallel moves for the same instruction.";
5771            }
5772          }
5773        }
5774      }
5775      for (const MoveOperands& move : moves_) {
5776        DCHECK(!destination.OverlapsWith(move.GetDestination()))
5777            << "Overlapped destination for two moves in a parallel move: "
5778            << move.GetSource() << " ==> " << move.GetDestination() << " and "
5779            << source << " ==> " << destination;
5780      }
5781    }
5782    moves_.emplace_back(source, destination, type, instruction);
5783  }
5784
5785  MoveOperands* MoveOperandsAt(size_t index) {
5786    return &moves_[index];
5787  }
5788
5789  size_t NumMoves() const { return moves_.size(); }
5790
5791  DECLARE_INSTRUCTION(ParallelMove);
5792
5793 private:
5794  ArenaVector<MoveOperands> moves_;
5795
5796  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
5797};
5798
5799}  // namespace art
5800
5801#ifdef ART_ENABLE_CODEGEN_arm
5802#include "nodes_arm.h"
5803#endif
5804#ifdef ART_ENABLE_CODEGEN_arm64
5805#include "nodes_arm64.h"
5806#endif
5807#ifdef ART_ENABLE_CODEGEN_x86
5808#include "nodes_x86.h"
5809#endif
5810
5811namespace art {
5812
5813class HGraphVisitor : public ValueObject {
5814 public:
5815  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
5816  virtual ~HGraphVisitor() {}
5817
5818  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
5819  virtual void VisitBasicBlock(HBasicBlock* block);
5820
5821  // Visit the graph following basic block insertion order.
5822  void VisitInsertionOrder();
5823
5824  // Visit the graph following dominator tree reverse post-order.
5825  void VisitReversePostOrder();
5826
5827  HGraph* GetGraph() const { return graph_; }
5828
5829  // Visit functions for instruction classes.
5830#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5831  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
5832
5833  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5834
5835#undef DECLARE_VISIT_INSTRUCTION
5836
5837 private:
5838  HGraph* const graph_;
5839
5840  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
5841};
5842
5843class HGraphDelegateVisitor : public HGraphVisitor {
5844 public:
5845  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
5846  virtual ~HGraphDelegateVisitor() {}
5847
5848  // Visit functions that delegate to to super class.
5849#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5850  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
5851
5852  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5853
5854#undef DECLARE_VISIT_INSTRUCTION
5855
5856 private:
5857  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
5858};
5859
5860class HInsertionOrderIterator : public ValueObject {
5861 public:
5862  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
5863
5864  bool Done() const { return index_ == graph_.GetBlocks().size(); }
5865  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
5866  void Advance() { ++index_; }
5867
5868 private:
5869  const HGraph& graph_;
5870  size_t index_;
5871
5872  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
5873};
5874
5875class HReversePostOrderIterator : public ValueObject {
5876 public:
5877  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
5878    // Check that reverse post order of the graph has been built.
5879    DCHECK(!graph.GetReversePostOrder().empty());
5880  }
5881
5882  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
5883  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
5884  void Advance() { ++index_; }
5885
5886 private:
5887  const HGraph& graph_;
5888  size_t index_;
5889
5890  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
5891};
5892
5893class HPostOrderIterator : public ValueObject {
5894 public:
5895  explicit HPostOrderIterator(const HGraph& graph)
5896      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
5897    // Check that reverse post order of the graph has been built.
5898    DCHECK(!graph.GetReversePostOrder().empty());
5899  }
5900
5901  bool Done() const { return index_ == 0; }
5902  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
5903  void Advance() { --index_; }
5904
5905 private:
5906  const HGraph& graph_;
5907  size_t index_;
5908
5909  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
5910};
5911
5912class HLinearPostOrderIterator : public ValueObject {
5913 public:
5914  explicit HLinearPostOrderIterator(const HGraph& graph)
5915      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
5916
5917  bool Done() const { return index_ == 0; }
5918
5919  HBasicBlock* Current() const { return order_[index_ - 1u]; }
5920
5921  void Advance() {
5922    --index_;
5923    DCHECK_GE(index_, 0U);
5924  }
5925
5926 private:
5927  const ArenaVector<HBasicBlock*>& order_;
5928  size_t index_;
5929
5930  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
5931};
5932
5933class HLinearOrderIterator : public ValueObject {
5934 public:
5935  explicit HLinearOrderIterator(const HGraph& graph)
5936      : order_(graph.GetLinearOrder()), index_(0) {}
5937
5938  bool Done() const { return index_ == order_.size(); }
5939  HBasicBlock* Current() const { return order_[index_]; }
5940  void Advance() { ++index_; }
5941
5942 private:
5943  const ArenaVector<HBasicBlock*>& order_;
5944  size_t index_;
5945
5946  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
5947};
5948
5949// Iterator over the blocks that art part of the loop. Includes blocks part
5950// of an inner loop. The order in which the blocks are iterated is on their
5951// block id.
5952class HBlocksInLoopIterator : public ValueObject {
5953 public:
5954  explicit HBlocksInLoopIterator(const HLoopInformation& info)
5955      : blocks_in_loop_(info.GetBlocks()),
5956        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
5957        index_(0) {
5958    if (!blocks_in_loop_.IsBitSet(index_)) {
5959      Advance();
5960    }
5961  }
5962
5963  bool Done() const { return index_ == blocks_.size(); }
5964  HBasicBlock* Current() const { return blocks_[index_]; }
5965  void Advance() {
5966    ++index_;
5967    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5968      if (blocks_in_loop_.IsBitSet(index_)) {
5969        break;
5970      }
5971    }
5972  }
5973
5974 private:
5975  const BitVector& blocks_in_loop_;
5976  const ArenaVector<HBasicBlock*>& blocks_;
5977  size_t index_;
5978
5979  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
5980};
5981
5982// Iterator over the blocks that art part of the loop. Includes blocks part
5983// of an inner loop. The order in which the blocks are iterated is reverse
5984// post order.
5985class HBlocksInLoopReversePostOrderIterator : public ValueObject {
5986 public:
5987  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
5988      : blocks_in_loop_(info.GetBlocks()),
5989        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
5990        index_(0) {
5991    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5992      Advance();
5993    }
5994  }
5995
5996  bool Done() const { return index_ == blocks_.size(); }
5997  HBasicBlock* Current() const { return blocks_[index_]; }
5998  void Advance() {
5999    ++index_;
6000    for (size_t e = blocks_.size(); index_ < e; ++index_) {
6001      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
6002        break;
6003      }
6004    }
6005  }
6006
6007 private:
6008  const BitVector& blocks_in_loop_;
6009  const ArenaVector<HBasicBlock*>& blocks_;
6010  size_t index_;
6011
6012  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
6013};
6014
6015inline int64_t Int64FromConstant(HConstant* constant) {
6016  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
6017  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
6018                                   : constant->AsLongConstant()->GetValue();
6019}
6020
6021inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
6022  // For the purposes of the compiler, the dex files must actually be the same object
6023  // if we want to safely treat them as the same. This is especially important for JIT
6024  // as custom class loaders can open the same underlying file (or memory) multiple
6025  // times and provide different class resolution but no two class loaders should ever
6026  // use the same DexFile object - doing so is an unsupported hack that can lead to
6027  // all sorts of weird failures.
6028  return &lhs == &rhs;
6029}
6030
6031#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
6032  inline bool HInstruction::Is##type() const { return GetKind() == k##type; }  \
6033  inline const H##type* HInstruction::As##type() const {                       \
6034    return Is##type() ? down_cast<const H##type*>(this) : nullptr;             \
6035  }                                                                            \
6036  inline H##type* HInstruction::As##type() {                                   \
6037    return Is##type() ? static_cast<H##type*>(this) : nullptr;                 \
6038  }
6039
6040  FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
6041#undef INSTRUCTION_TYPE_CHECK
6042
6043}  // namespace art
6044
6045#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
6046