nodes.h revision 0f7dca4ca0be8d2f8776794d35edf8b51b5bc997
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_bit_vector.h"
25#include "base/arena_containers.h"
26#include "base/arena_object.h"
27#include "base/stl_util.h"
28#include "dex/compiler_enums.h"
29#include "entrypoints/quick/quick_entrypoints_enum.h"
30#include "handle.h"
31#include "handle_scope.h"
32#include "invoke_type.h"
33#include "locations.h"
34#include "method_reference.h"
35#include "mirror/class.h"
36#include "offsets.h"
37#include "primitive.h"
38
39namespace art {
40
41class GraphChecker;
42class HBasicBlock;
43class HCurrentMethod;
44class HDoubleConstant;
45class HEnvironment;
46class HFakeString;
47class HFloatConstant;
48class HGraphBuilder;
49class HGraphVisitor;
50class HInstruction;
51class HIntConstant;
52class HInvoke;
53class HLongConstant;
54class HNullConstant;
55class HPhi;
56class HSuspendCheck;
57class HTryBoundary;
58class LiveInterval;
59class LocationSummary;
60class SlowPathCode;
61class SsaBuilder;
62
63namespace mirror {
64class DexCache;
65}  // namespace mirror
66
67static const int kDefaultNumberOfBlocks = 8;
68static const int kDefaultNumberOfSuccessors = 2;
69static const int kDefaultNumberOfPredecessors = 2;
70static const int kDefaultNumberOfExceptionalPredecessors = 0;
71static const int kDefaultNumberOfDominatedBlocks = 1;
72static const int kDefaultNumberOfBackEdges = 1;
73
74static constexpr uint32_t kMaxIntShiftValue = 0x1f;
75static constexpr uint64_t kMaxLongShiftValue = 0x3f;
76
77static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
78static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
79
80static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
81
82static constexpr uint32_t kNoDexPc = -1;
83
84enum IfCondition {
85  // All types.
86  kCondEQ,  // ==
87  kCondNE,  // !=
88  // Signed integers and floating-point numbers.
89  kCondLT,  // <
90  kCondLE,  // <=
91  kCondGT,  // >
92  kCondGE,  // >=
93  // Unsigned integers.
94  kCondB,   // <
95  kCondBE,  // <=
96  kCondA,   // >
97  kCondAE,  // >=
98};
99
100class HInstructionList : public ValueObject {
101 public:
102  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
103
104  void AddInstruction(HInstruction* instruction);
105  void RemoveInstruction(HInstruction* instruction);
106
107  // Insert `instruction` before/after an existing instruction `cursor`.
108  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
109  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
110
111  // Return true if this list contains `instruction`.
112  bool Contains(HInstruction* instruction) const;
113
114  // Return true if `instruction1` is found before `instruction2` in
115  // this instruction list and false otherwise.  Abort if none
116  // of these instructions is found.
117  bool FoundBefore(const HInstruction* instruction1,
118                   const HInstruction* instruction2) const;
119
120  bool IsEmpty() const { return first_instruction_ == nullptr; }
121  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
122
123  // Update the block of all instructions to be `block`.
124  void SetBlockOfInstructions(HBasicBlock* block) const;
125
126  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
127  void Add(const HInstructionList& instruction_list);
128
129  // Return the number of instructions in the list. This is an expensive operation.
130  size_t CountSize() const;
131
132 private:
133  HInstruction* first_instruction_;
134  HInstruction* last_instruction_;
135
136  friend class HBasicBlock;
137  friend class HGraph;
138  friend class HInstruction;
139  friend class HInstructionIterator;
140  friend class HBackwardInstructionIterator;
141
142  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
143};
144
145// Control-flow graph of a method. Contains a list of basic blocks.
146class HGraph : public ArenaObject<kArenaAllocGraph> {
147 public:
148  HGraph(ArenaAllocator* arena,
149         const DexFile& dex_file,
150         uint32_t method_idx,
151         bool should_generate_constructor_barrier,
152         InstructionSet instruction_set,
153         InvokeType invoke_type = kInvalidInvokeType,
154         bool debuggable = false,
155         int start_instruction_id = 0)
156      : arena_(arena),
157        blocks_(arena->Adapter(kArenaAllocBlockList)),
158        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
159        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
160        entry_block_(nullptr),
161        exit_block_(nullptr),
162        maximum_number_of_out_vregs_(0),
163        number_of_vregs_(0),
164        number_of_in_vregs_(0),
165        temporaries_vreg_slots_(0),
166        has_bounds_checks_(false),
167        has_try_catch_(false),
168        debuggable_(debuggable),
169        current_instruction_id_(start_instruction_id),
170        dex_file_(dex_file),
171        method_idx_(method_idx),
172        invoke_type_(invoke_type),
173        in_ssa_form_(false),
174        should_generate_constructor_barrier_(should_generate_constructor_barrier),
175        instruction_set_(instruction_set),
176        cached_null_constant_(nullptr),
177        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
178        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
179        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
180        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
181        cached_current_method_(nullptr) {
182    blocks_.reserve(kDefaultNumberOfBlocks);
183  }
184
185  ArenaAllocator* GetArena() const { return arena_; }
186  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
187
188  bool IsInSsaForm() const { return in_ssa_form_; }
189
190  HBasicBlock* GetEntryBlock() const { return entry_block_; }
191  HBasicBlock* GetExitBlock() const { return exit_block_; }
192  bool HasExitBlock() const { return exit_block_ != nullptr; }
193
194  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
195  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
196
197  void AddBlock(HBasicBlock* block);
198
199  // Try building the SSA form of this graph, with dominance computation and loop
200  // recognition. Returns whether it was successful in doing all these steps.
201  bool TryBuildingSsa() {
202    BuildDominatorTree();
203    // The SSA builder requires loops to all be natural. Specifically, the dead phi
204    // elimination phase checks the consistency of the graph when doing a post-order
205    // visit for eliminating dead phis: a dead phi can only have loop header phi
206    // users remaining when being visited.
207    if (!AnalyzeNaturalLoops()) return false;
208    // Precompute per-block try membership before entering the SSA builder,
209    // which needs the information to build catch block phis from values of
210    // locals at throwing instructions inside try blocks.
211    ComputeTryBlockInformation();
212    TransformToSsa();
213    in_ssa_form_ = true;
214    return true;
215  }
216
217  void ComputeDominanceInformation();
218  void ClearDominanceInformation();
219
220  void BuildDominatorTree();
221  void TransformToSsa();
222  void SimplifyCFG();
223  void SimplifyCatchBlocks();
224
225  // Analyze all natural loops in this graph. Returns false if one
226  // loop is not natural, that is the header does not dominate the
227  // back edge.
228  bool AnalyzeNaturalLoops() const;
229
230  // Iterate over blocks to compute try block membership. Needs reverse post
231  // order and loop information.
232  void ComputeTryBlockInformation();
233
234  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
235  // Returns the instruction used to replace the invoke expression or null if the
236  // invoke is for a void method.
237  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
238
239  // Need to add a couple of blocks to test if the loop body is entered and
240  // put deoptimization instructions, etc.
241  void TransformLoopHeaderForBCE(HBasicBlock* header);
242
243  // Removes `block` from the graph.
244  void DeleteDeadBlock(HBasicBlock* block);
245
246  // Splits the edge between `block` and `successor` while preserving the
247  // indices in the predecessor/successor lists. If there are multiple edges
248  // between the blocks, the lowest indices are used.
249  // Returns the new block which is empty and has the same dex pc as `successor`.
250  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
251
252  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
253  void SimplifyLoop(HBasicBlock* header);
254
255  int32_t GetNextInstructionId() {
256    DCHECK_NE(current_instruction_id_, INT32_MAX);
257    return current_instruction_id_++;
258  }
259
260  int32_t GetCurrentInstructionId() const {
261    return current_instruction_id_;
262  }
263
264  void SetCurrentInstructionId(int32_t id) {
265    current_instruction_id_ = id;
266  }
267
268  uint16_t GetMaximumNumberOfOutVRegs() const {
269    return maximum_number_of_out_vregs_;
270  }
271
272  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
273    maximum_number_of_out_vregs_ = new_value;
274  }
275
276  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
277    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
278  }
279
280  void UpdateTemporariesVRegSlots(size_t slots) {
281    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
282  }
283
284  size_t GetTemporariesVRegSlots() const {
285    DCHECK(!in_ssa_form_);
286    return temporaries_vreg_slots_;
287  }
288
289  void SetNumberOfVRegs(uint16_t number_of_vregs) {
290    number_of_vregs_ = number_of_vregs;
291  }
292
293  uint16_t GetNumberOfVRegs() const {
294    return number_of_vregs_;
295  }
296
297  void SetNumberOfInVRegs(uint16_t value) {
298    number_of_in_vregs_ = value;
299  }
300
301  uint16_t GetNumberOfLocalVRegs() const {
302    DCHECK(!in_ssa_form_);
303    return number_of_vregs_ - number_of_in_vregs_;
304  }
305
306  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
307    return reverse_post_order_;
308  }
309
310  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
311    return linear_order_;
312  }
313
314  bool HasBoundsChecks() const {
315    return has_bounds_checks_;
316  }
317
318  void SetHasBoundsChecks(bool value) {
319    has_bounds_checks_ = value;
320  }
321
322  bool ShouldGenerateConstructorBarrier() const {
323    return should_generate_constructor_barrier_;
324  }
325
326  bool IsDebuggable() const { return debuggable_; }
327
328  // Returns a constant of the given type and value. If it does not exist
329  // already, it is created and inserted into the graph. This method is only for
330  // integral types.
331  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
332
333  // TODO: This is problematic for the consistency of reference type propagation
334  // because it can be created anytime after the pass and thus it will be left
335  // with an invalid type.
336  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
337
338  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
339    return CreateConstant(value, &cached_int_constants_, dex_pc);
340  }
341  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
342    return CreateConstant(value, &cached_long_constants_, dex_pc);
343  }
344  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
345    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
346  }
347  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
348    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
349  }
350
351  HCurrentMethod* GetCurrentMethod();
352
353  const DexFile& GetDexFile() const {
354    return dex_file_;
355  }
356
357  uint32_t GetMethodIdx() const {
358    return method_idx_;
359  }
360
361  InvokeType GetInvokeType() const {
362    return invoke_type_;
363  }
364
365  InstructionSet GetInstructionSet() const {
366    return instruction_set_;
367  }
368
369  bool HasTryCatch() const { return has_try_catch_; }
370  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
371
372 private:
373  void FindBackEdges(ArenaBitVector* visited);
374  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
375  void RemoveDeadBlocks(const ArenaBitVector& visited);
376
377  template <class InstructionType, typename ValueType>
378  InstructionType* CreateConstant(ValueType value,
379                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
380                                  uint32_t dex_pc = kNoDexPc) {
381    // Try to find an existing constant of the given value.
382    InstructionType* constant = nullptr;
383    auto cached_constant = cache->find(value);
384    if (cached_constant != cache->end()) {
385      constant = cached_constant->second;
386    }
387
388    // If not found or previously deleted, create and cache a new instruction.
389    // Don't bother reviving a previously deleted instruction, for simplicity.
390    if (constant == nullptr || constant->GetBlock() == nullptr) {
391      constant = new (arena_) InstructionType(value, dex_pc);
392      cache->Overwrite(value, constant);
393      InsertConstant(constant);
394    }
395    return constant;
396  }
397
398  void InsertConstant(HConstant* instruction);
399
400  // Cache a float constant into the graph. This method should only be
401  // called by the SsaBuilder when creating "equivalent" instructions.
402  void CacheFloatConstant(HFloatConstant* constant);
403
404  // See CacheFloatConstant comment.
405  void CacheDoubleConstant(HDoubleConstant* constant);
406
407  ArenaAllocator* const arena_;
408
409  // List of blocks in insertion order.
410  ArenaVector<HBasicBlock*> blocks_;
411
412  // List of blocks to perform a reverse post order tree traversal.
413  ArenaVector<HBasicBlock*> reverse_post_order_;
414
415  // List of blocks to perform a linear order tree traversal.
416  ArenaVector<HBasicBlock*> linear_order_;
417
418  HBasicBlock* entry_block_;
419  HBasicBlock* exit_block_;
420
421  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
422  uint16_t maximum_number_of_out_vregs_;
423
424  // The number of virtual registers in this method. Contains the parameters.
425  uint16_t number_of_vregs_;
426
427  // The number of virtual registers used by parameters of this method.
428  uint16_t number_of_in_vregs_;
429
430  // Number of vreg size slots that the temporaries use (used in baseline compiler).
431  size_t temporaries_vreg_slots_;
432
433  // Has bounds checks. We can totally skip BCE if it's false.
434  bool has_bounds_checks_;
435
436  // Flag whether there are any try/catch blocks in the graph. We will skip
437  // try/catch-related passes if false.
438  bool has_try_catch_;
439
440  // Indicates whether the graph should be compiled in a way that
441  // ensures full debuggability. If false, we can apply more
442  // aggressive optimizations that may limit the level of debugging.
443  const bool debuggable_;
444
445  // The current id to assign to a newly added instruction. See HInstruction.id_.
446  int32_t current_instruction_id_;
447
448  // The dex file from which the method is from.
449  const DexFile& dex_file_;
450
451  // The method index in the dex file.
452  const uint32_t method_idx_;
453
454  // If inlined, this encodes how the callee is being invoked.
455  const InvokeType invoke_type_;
456
457  // Whether the graph has been transformed to SSA form. Only used
458  // in debug mode to ensure we are not using properties only valid
459  // for non-SSA form (like the number of temporaries).
460  bool in_ssa_form_;
461
462  const bool should_generate_constructor_barrier_;
463
464  const InstructionSet instruction_set_;
465
466  // Cached constants.
467  HNullConstant* cached_null_constant_;
468  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
469  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
470  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
471  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
472
473  HCurrentMethod* cached_current_method_;
474
475  friend class SsaBuilder;           // For caching constants.
476  friend class SsaLivenessAnalysis;  // For the linear order.
477  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
478  DISALLOW_COPY_AND_ASSIGN(HGraph);
479};
480
481class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
482 public:
483  HLoopInformation(HBasicBlock* header, HGraph* graph)
484      : header_(header),
485        suspend_check_(nullptr),
486        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
487        // Make bit vector growable, as the number of blocks may change.
488        blocks_(graph->GetArena(), graph->GetBlocks().size(), true) {
489    back_edges_.reserve(kDefaultNumberOfBackEdges);
490  }
491
492  HBasicBlock* GetHeader() const {
493    return header_;
494  }
495
496  void SetHeader(HBasicBlock* block) {
497    header_ = block;
498  }
499
500  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
501  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
502  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
503
504  void AddBackEdge(HBasicBlock* back_edge) {
505    back_edges_.push_back(back_edge);
506  }
507
508  void RemoveBackEdge(HBasicBlock* back_edge) {
509    RemoveElement(back_edges_, back_edge);
510  }
511
512  bool IsBackEdge(const HBasicBlock& block) const {
513    return ContainsElement(back_edges_, &block);
514  }
515
516  size_t NumberOfBackEdges() const {
517    return back_edges_.size();
518  }
519
520  HBasicBlock* GetPreHeader() const;
521
522  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
523    return back_edges_;
524  }
525
526  // Returns the lifetime position of the back edge that has the
527  // greatest lifetime position.
528  size_t GetLifetimeEnd() const;
529
530  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
531    ReplaceElement(back_edges_, existing, new_back_edge);
532  }
533
534  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
535  // that is the header dominates the back edge.
536  bool Populate();
537
538  // Reanalyzes the loop by removing loop info from its blocks and re-running
539  // Populate(). If there are no back edges left, the loop info is completely
540  // removed as well as its SuspendCheck instruction. It must be run on nested
541  // inner loops first.
542  void Update();
543
544  // Returns whether this loop information contains `block`.
545  // Note that this loop information *must* be populated before entering this function.
546  bool Contains(const HBasicBlock& block) const;
547
548  // Returns whether this loop information is an inner loop of `other`.
549  // Note that `other` *must* be populated before entering this function.
550  bool IsIn(const HLoopInformation& other) const;
551
552  // Returns true if instruction is not defined within this loop or any loop nested inside
553  // this loop. If must_dominate is set, only definitions that actually dominate the loop
554  // header can be invariant. Otherwise, any definition outside the loop, including
555  // definitions that appear after the loop, is invariant.
556  bool IsLoopInvariant(HInstruction* instruction, bool must_dominate) const;
557
558  const ArenaBitVector& GetBlocks() const { return blocks_; }
559
560  void Add(HBasicBlock* block);
561  void Remove(HBasicBlock* block);
562
563 private:
564  // Internal recursive implementation of `Populate`.
565  void PopulateRecursive(HBasicBlock* block);
566
567  HBasicBlock* header_;
568  HSuspendCheck* suspend_check_;
569  ArenaVector<HBasicBlock*> back_edges_;
570  ArenaBitVector blocks_;
571
572  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
573};
574
575// Stores try/catch information for basic blocks.
576// Note that HGraph is constructed so that catch blocks cannot simultaneously
577// be try blocks.
578class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
579 public:
580  // Try block information constructor.
581  explicit TryCatchInformation(const HTryBoundary& try_entry)
582      : try_entry_(&try_entry),
583        catch_dex_file_(nullptr),
584        catch_type_index_(DexFile::kDexNoIndex16) {
585    DCHECK(try_entry_ != nullptr);
586  }
587
588  // Catch block information constructor.
589  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
590      : try_entry_(nullptr),
591        catch_dex_file_(&dex_file),
592        catch_type_index_(catch_type_index) {}
593
594  bool IsTryBlock() const { return try_entry_ != nullptr; }
595
596  const HTryBoundary& GetTryEntry() const {
597    DCHECK(IsTryBlock());
598    return *try_entry_;
599  }
600
601  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
602
603  bool IsCatchAllTypeIndex() const {
604    DCHECK(IsCatchBlock());
605    return catch_type_index_ == DexFile::kDexNoIndex16;
606  }
607
608  uint16_t GetCatchTypeIndex() const {
609    DCHECK(IsCatchBlock());
610    return catch_type_index_;
611  }
612
613  const DexFile& GetCatchDexFile() const {
614    DCHECK(IsCatchBlock());
615    return *catch_dex_file_;
616  }
617
618 private:
619  // One of possibly several TryBoundary instructions entering the block's try.
620  // Only set for try blocks.
621  const HTryBoundary* try_entry_;
622
623  // Exception type information. Only set for catch blocks.
624  const DexFile* catch_dex_file_;
625  const uint16_t catch_type_index_;
626};
627
628static constexpr size_t kNoLifetime = -1;
629static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
630
631// A block in a method. Contains the list of instructions represented
632// as a double linked list. Each block knows its predecessors and
633// successors.
634
635class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
636 public:
637  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
638      : graph_(graph),
639        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
640        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
641        loop_information_(nullptr),
642        dominator_(nullptr),
643        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
644        block_id_(kInvalidBlockId),
645        dex_pc_(dex_pc),
646        lifetime_start_(kNoLifetime),
647        lifetime_end_(kNoLifetime),
648        try_catch_information_(nullptr) {
649    predecessors_.reserve(kDefaultNumberOfPredecessors);
650    successors_.reserve(kDefaultNumberOfSuccessors);
651    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
652  }
653
654  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
655    return predecessors_;
656  }
657
658  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
659    return successors_;
660  }
661
662  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
663    return ContainsElement(successors_, block, start_from);
664  }
665
666  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
667    return dominated_blocks_;
668  }
669
670  bool IsEntryBlock() const {
671    return graph_->GetEntryBlock() == this;
672  }
673
674  bool IsExitBlock() const {
675    return graph_->GetExitBlock() == this;
676  }
677
678  bool IsSingleGoto() const;
679  bool IsSingleTryBoundary() const;
680
681  // Returns true if this block emits nothing but a jump.
682  bool IsSingleJump() const {
683    HLoopInformation* loop_info = GetLoopInformation();
684    return (IsSingleGoto() || IsSingleTryBoundary())
685           // Back edges generate a suspend check.
686           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
687  }
688
689  void AddBackEdge(HBasicBlock* back_edge) {
690    if (loop_information_ == nullptr) {
691      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
692    }
693    DCHECK_EQ(loop_information_->GetHeader(), this);
694    loop_information_->AddBackEdge(back_edge);
695  }
696
697  HGraph* GetGraph() const { return graph_; }
698  void SetGraph(HGraph* graph) { graph_ = graph; }
699
700  uint32_t GetBlockId() const { return block_id_; }
701  void SetBlockId(int id) { block_id_ = id; }
702  uint32_t GetDexPc() const { return dex_pc_; }
703
704  HBasicBlock* GetDominator() const { return dominator_; }
705  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
706  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
707
708  void RemoveDominatedBlock(HBasicBlock* block) {
709    RemoveElement(dominated_blocks_, block);
710  }
711
712  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
713    ReplaceElement(dominated_blocks_, existing, new_block);
714  }
715
716  void ClearDominanceInformation();
717
718  int NumberOfBackEdges() const {
719    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
720  }
721
722  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
723  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
724  const HInstructionList& GetInstructions() const { return instructions_; }
725  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
726  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
727  const HInstructionList& GetPhis() const { return phis_; }
728
729  void AddSuccessor(HBasicBlock* block) {
730    successors_.push_back(block);
731    block->predecessors_.push_back(this);
732  }
733
734  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
735    size_t successor_index = GetSuccessorIndexOf(existing);
736    existing->RemovePredecessor(this);
737    new_block->predecessors_.push_back(this);
738    successors_[successor_index] = new_block;
739  }
740
741  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
742    size_t predecessor_index = GetPredecessorIndexOf(existing);
743    existing->RemoveSuccessor(this);
744    new_block->successors_.push_back(this);
745    predecessors_[predecessor_index] = new_block;
746  }
747
748  // Insert `this` between `predecessor` and `successor. This method
749  // preserves the indicies, and will update the first edge found between
750  // `predecessor` and `successor`.
751  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
752    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
753    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
754    successor->predecessors_[predecessor_index] = this;
755    predecessor->successors_[successor_index] = this;
756    successors_.push_back(successor);
757    predecessors_.push_back(predecessor);
758  }
759
760  void RemovePredecessor(HBasicBlock* block) {
761    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
762  }
763
764  void RemoveSuccessor(HBasicBlock* block) {
765    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
766  }
767
768  void ClearAllPredecessors() {
769    predecessors_.clear();
770  }
771
772  void AddPredecessor(HBasicBlock* block) {
773    predecessors_.push_back(block);
774    block->successors_.push_back(this);
775  }
776
777  void SwapPredecessors() {
778    DCHECK_EQ(predecessors_.size(), 2u);
779    std::swap(predecessors_[0], predecessors_[1]);
780  }
781
782  void SwapSuccessors() {
783    DCHECK_EQ(successors_.size(), 2u);
784    std::swap(successors_[0], successors_[1]);
785  }
786
787  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
788    return IndexOfElement(predecessors_, predecessor);
789  }
790
791  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
792    return IndexOfElement(successors_, successor);
793  }
794
795  HBasicBlock* GetSinglePredecessor() const {
796    DCHECK_EQ(GetPredecessors().size(), 1u);
797    return GetPredecessors()[0];
798  }
799
800  HBasicBlock* GetSingleSuccessor() const {
801    DCHECK_EQ(GetSuccessors().size(), 1u);
802    return GetSuccessors()[0];
803  }
804
805  // Returns whether the first occurrence of `predecessor` in the list of
806  // predecessors is at index `idx`.
807  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
808    DCHECK_EQ(GetPredecessors()[idx], predecessor);
809    return GetPredecessorIndexOf(predecessor) == idx;
810  }
811
812  // Returns the number of non-exceptional successors. SsaChecker ensures that
813  // these are stored at the beginning of the successor list.
814  size_t NumberOfNormalSuccessors() const {
815    return EndsWithTryBoundary() ? 1 : GetSuccessors().size();
816  }
817
818  // Create a new block between this block and its predecessors. The new block
819  // is added to the graph, all predecessor edges are relinked to it and an edge
820  // is created to `this`. Returns the new empty block. Reverse post order or
821  // loop and try/catch information are not updated.
822  HBasicBlock* CreateImmediateDominator();
823
824  // Split the block into two blocks just before `cursor`. Returns the newly
825  // created, latter block. Note that this method will add the block to the
826  // graph, create a Goto at the end of the former block and will create an edge
827  // between the blocks. It will not, however, update the reverse post order or
828  // loop and try/catch information.
829  HBasicBlock* SplitBefore(HInstruction* cursor);
830
831  // Split the block into two blocks just after `cursor`. Returns the newly
832  // created block. Note that this method just updates raw block information,
833  // like predecessors, successors, dominators, and instruction list. It does not
834  // update the graph, reverse post order, loop information, nor make sure the
835  // blocks are consistent (for example ending with a control flow instruction).
836  HBasicBlock* SplitAfter(HInstruction* cursor);
837
838  // Split catch block into two blocks after the original move-exception bytecode
839  // instruction, or at the beginning if not present. Returns the newly created,
840  // latter block, or nullptr if such block could not be created (must be dead
841  // in that case). Note that this method just updates raw block information,
842  // like predecessors, successors, dominators, and instruction list. It does not
843  // update the graph, reverse post order, loop information, nor make sure the
844  // blocks are consistent (for example ending with a control flow instruction).
845  HBasicBlock* SplitCatchBlockAfterMoveException();
846
847  // Merge `other` at the end of `this`. Successors and dominated blocks of
848  // `other` are changed to be successors and dominated blocks of `this`. Note
849  // that this method does not update the graph, reverse post order, loop
850  // information, nor make sure the blocks are consistent (for example ending
851  // with a control flow instruction).
852  void MergeWithInlined(HBasicBlock* other);
853
854  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
855  // of `this` are moved to `other`.
856  // Note that this method does not update the graph, reverse post order, loop
857  // information, nor make sure the blocks are consistent (for example ending
858  // with a control flow instruction).
859  void ReplaceWith(HBasicBlock* other);
860
861  // Merge `other` at the end of `this`. This method updates loops, reverse post
862  // order, links to predecessors, successors, dominators and deletes the block
863  // from the graph. The two blocks must be successive, i.e. `this` the only
864  // predecessor of `other` and vice versa.
865  void MergeWith(HBasicBlock* other);
866
867  // Disconnects `this` from all its predecessors, successors and dominator,
868  // removes it from all loops it is included in and eventually from the graph.
869  // The block must not dominate any other block. Predecessors and successors
870  // are safely updated.
871  void DisconnectAndDelete();
872
873  void AddInstruction(HInstruction* instruction);
874  // Insert `instruction` before/after an existing instruction `cursor`.
875  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
876  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
877  // Replace instruction `initial` with `replacement` within this block.
878  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
879                                       HInstruction* replacement);
880  void AddPhi(HPhi* phi);
881  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
882  // RemoveInstruction and RemovePhi delete a given instruction from the respective
883  // instruction list. With 'ensure_safety' set to true, it verifies that the
884  // instruction is not in use and removes it from the use lists of its inputs.
885  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
886  void RemovePhi(HPhi* phi, bool ensure_safety = true);
887  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
888
889  bool IsLoopHeader() const {
890    return IsInLoop() && (loop_information_->GetHeader() == this);
891  }
892
893  bool IsLoopPreHeaderFirstPredecessor() const {
894    DCHECK(IsLoopHeader());
895    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
896  }
897
898  HLoopInformation* GetLoopInformation() const {
899    return loop_information_;
900  }
901
902  // Set the loop_information_ on this block. Overrides the current
903  // loop_information if it is an outer loop of the passed loop information.
904  // Note that this method is called while creating the loop information.
905  void SetInLoop(HLoopInformation* info) {
906    if (IsLoopHeader()) {
907      // Nothing to do. This just means `info` is an outer loop.
908    } else if (!IsInLoop()) {
909      loop_information_ = info;
910    } else if (loop_information_->Contains(*info->GetHeader())) {
911      // Block is currently part of an outer loop. Make it part of this inner loop.
912      // Note that a non loop header having a loop information means this loop information
913      // has already been populated
914      loop_information_ = info;
915    } else {
916      // Block is part of an inner loop. Do not update the loop information.
917      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
918      // at this point, because this method is being called while populating `info`.
919    }
920  }
921
922  // Raw update of the loop information.
923  void SetLoopInformation(HLoopInformation* info) {
924    loop_information_ = info;
925  }
926
927  bool IsInLoop() const { return loop_information_ != nullptr; }
928
929  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
930
931  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
932    try_catch_information_ = try_catch_information;
933  }
934
935  bool IsTryBlock() const {
936    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
937  }
938
939  bool IsCatchBlock() const {
940    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
941  }
942
943  // Returns the try entry that this block's successors should have. They will
944  // be in the same try, unless the block ends in a try boundary. In that case,
945  // the appropriate try entry will be returned.
946  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
947
948  bool HasThrowingInstructions() const;
949
950  // Returns whether this block dominates the blocked passed as parameter.
951  bool Dominates(HBasicBlock* block) const;
952
953  size_t GetLifetimeStart() const { return lifetime_start_; }
954  size_t GetLifetimeEnd() const { return lifetime_end_; }
955
956  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
957  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
958
959  bool EndsWithControlFlowInstruction() const;
960  bool EndsWithIf() const;
961  bool EndsWithTryBoundary() const;
962  bool HasSinglePhi() const;
963
964 private:
965  HGraph* graph_;
966  ArenaVector<HBasicBlock*> predecessors_;
967  ArenaVector<HBasicBlock*> successors_;
968  HInstructionList instructions_;
969  HInstructionList phis_;
970  HLoopInformation* loop_information_;
971  HBasicBlock* dominator_;
972  ArenaVector<HBasicBlock*> dominated_blocks_;
973  uint32_t block_id_;
974  // The dex program counter of the first instruction of this block.
975  const uint32_t dex_pc_;
976  size_t lifetime_start_;
977  size_t lifetime_end_;
978  TryCatchInformation* try_catch_information_;
979
980  friend class HGraph;
981  friend class HInstruction;
982
983  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
984};
985
986// Iterates over the LoopInformation of all loops which contain 'block'
987// from the innermost to the outermost.
988class HLoopInformationOutwardIterator : public ValueObject {
989 public:
990  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
991      : current_(block.GetLoopInformation()) {}
992
993  bool Done() const { return current_ == nullptr; }
994
995  void Advance() {
996    DCHECK(!Done());
997    current_ = current_->GetPreHeader()->GetLoopInformation();
998  }
999
1000  HLoopInformation* Current() const {
1001    DCHECK(!Done());
1002    return current_;
1003  }
1004
1005 private:
1006  HLoopInformation* current_;
1007
1008  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1009};
1010
1011#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1012  M(Above, Condition)                                                   \
1013  M(AboveOrEqual, Condition)                                            \
1014  M(Add, BinaryOperation)                                               \
1015  M(And, BinaryOperation)                                               \
1016  M(ArrayGet, Instruction)                                              \
1017  M(ArrayLength, Instruction)                                           \
1018  M(ArraySet, Instruction)                                              \
1019  M(Below, Condition)                                                   \
1020  M(BelowOrEqual, Condition)                                            \
1021  M(BooleanNot, UnaryOperation)                                         \
1022  M(BoundsCheck, Instruction)                                           \
1023  M(BoundType, Instruction)                                             \
1024  M(CheckCast, Instruction)                                             \
1025  M(ClearException, Instruction)                                        \
1026  M(ClinitCheck, Instruction)                                           \
1027  M(Compare, BinaryOperation)                                           \
1028  M(Condition, BinaryOperation)                                         \
1029  M(CurrentMethod, Instruction)                                         \
1030  M(Deoptimize, Instruction)                                            \
1031  M(Div, BinaryOperation)                                               \
1032  M(DivZeroCheck, Instruction)                                          \
1033  M(DoubleConstant, Constant)                                           \
1034  M(Equal, Condition)                                                   \
1035  M(Exit, Instruction)                                                  \
1036  M(FakeString, Instruction)                                            \
1037  M(FloatConstant, Constant)                                            \
1038  M(Goto, Instruction)                                                  \
1039  M(GreaterThan, Condition)                                             \
1040  M(GreaterThanOrEqual, Condition)                                      \
1041  M(If, Instruction)                                                    \
1042  M(InstanceFieldGet, Instruction)                                      \
1043  M(InstanceFieldSet, Instruction)                                      \
1044  M(InstanceOf, Instruction)                                            \
1045  M(IntConstant, Constant)                                              \
1046  M(InvokeUnresolved, Invoke)                                           \
1047  M(InvokeInterface, Invoke)                                            \
1048  M(InvokeStaticOrDirect, Invoke)                                       \
1049  M(InvokeVirtual, Invoke)                                              \
1050  M(LessThan, Condition)                                                \
1051  M(LessThanOrEqual, Condition)                                         \
1052  M(LoadClass, Instruction)                                             \
1053  M(LoadException, Instruction)                                         \
1054  M(LoadLocal, Instruction)                                             \
1055  M(LoadString, Instruction)                                            \
1056  M(Local, Instruction)                                                 \
1057  M(LongConstant, Constant)                                             \
1058  M(MemoryBarrier, Instruction)                                         \
1059  M(MonitorOperation, Instruction)                                      \
1060  M(Mul, BinaryOperation)                                               \
1061  M(Neg, UnaryOperation)                                                \
1062  M(NewArray, Instruction)                                              \
1063  M(NewInstance, Instruction)                                           \
1064  M(Not, UnaryOperation)                                                \
1065  M(NotEqual, Condition)                                                \
1066  M(NullConstant, Instruction)                                          \
1067  M(NullCheck, Instruction)                                             \
1068  M(Or, BinaryOperation)                                                \
1069  M(PackedSwitch, Instruction)                                          \
1070  M(ParallelMove, Instruction)                                          \
1071  M(ParameterValue, Instruction)                                        \
1072  M(Phi, Instruction)                                                   \
1073  M(Rem, BinaryOperation)                                               \
1074  M(Return, Instruction)                                                \
1075  M(ReturnVoid, Instruction)                                            \
1076  M(Shl, BinaryOperation)                                               \
1077  M(Shr, BinaryOperation)                                               \
1078  M(StaticFieldGet, Instruction)                                        \
1079  M(StaticFieldSet, Instruction)                                        \
1080  M(UnresolvedInstanceFieldGet, Instruction)                            \
1081  M(UnresolvedInstanceFieldSet, Instruction)                            \
1082  M(UnresolvedStaticFieldGet, Instruction)                              \
1083  M(UnresolvedStaticFieldSet, Instruction)                              \
1084  M(StoreLocal, Instruction)                                            \
1085  M(Sub, BinaryOperation)                                               \
1086  M(SuspendCheck, Instruction)                                          \
1087  M(Temporary, Instruction)                                             \
1088  M(Throw, Instruction)                                                 \
1089  M(TryBoundary, Instruction)                                           \
1090  M(TypeConversion, Instruction)                                        \
1091  M(UShr, BinaryOperation)                                              \
1092  M(Xor, BinaryOperation)                                               \
1093
1094#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1095
1096#ifndef ART_ENABLE_CODEGEN_arm64
1097#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1098#else
1099#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1100  M(Arm64IntermediateAddress, Instruction)
1101#endif
1102
1103#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1104
1105#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1106
1107#ifndef ART_ENABLE_CODEGEN_x86
1108#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1109#else
1110#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1111  M(X86ComputeBaseMethodAddress, Instruction)                           \
1112  M(X86LoadFromConstantTable, Instruction)                              \
1113  M(X86PackedSwitch, Instruction)
1114#endif
1115
1116#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1117
1118#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1119  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1120  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1121  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1122  FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
1123  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1124  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1125  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1126
1127#define FOR_EACH_INSTRUCTION(M)                                         \
1128  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1129  M(Constant, Instruction)                                              \
1130  M(UnaryOperation, Instruction)                                        \
1131  M(BinaryOperation, Instruction)                                       \
1132  M(Invoke, Instruction)
1133
1134#define FORWARD_DECLARATION(type, super) class H##type;
1135FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1136#undef FORWARD_DECLARATION
1137
1138#define DECLARE_INSTRUCTION(type)                                       \
1139  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
1140  const char* DebugName() const OVERRIDE { return #type; }              \
1141  const H##type* As##type() const OVERRIDE { return this; }             \
1142  H##type* As##type() OVERRIDE { return this; }                         \
1143  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1144    return other->Is##type();                                           \
1145  }                                                                     \
1146  void Accept(HGraphVisitor* visitor) OVERRIDE
1147
1148template <typename T> class HUseList;
1149
1150template <typename T>
1151class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1152 public:
1153  HUseListNode* GetPrevious() const { return prev_; }
1154  HUseListNode* GetNext() const { return next_; }
1155  T GetUser() const { return user_; }
1156  size_t GetIndex() const { return index_; }
1157  void SetIndex(size_t index) { index_ = index; }
1158
1159 private:
1160  HUseListNode(T user, size_t index)
1161      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1162
1163  T const user_;
1164  size_t index_;
1165  HUseListNode<T>* prev_;
1166  HUseListNode<T>* next_;
1167
1168  friend class HUseList<T>;
1169
1170  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1171};
1172
1173template <typename T>
1174class HUseList : public ValueObject {
1175 public:
1176  HUseList() : first_(nullptr) {}
1177
1178  void Clear() {
1179    first_ = nullptr;
1180  }
1181
1182  // Adds a new entry at the beginning of the use list and returns
1183  // the newly created node.
1184  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1185    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1186    if (IsEmpty()) {
1187      first_ = new_node;
1188    } else {
1189      first_->prev_ = new_node;
1190      new_node->next_ = first_;
1191      first_ = new_node;
1192    }
1193    return new_node;
1194  }
1195
1196  HUseListNode<T>* GetFirst() const {
1197    return first_;
1198  }
1199
1200  void Remove(HUseListNode<T>* node) {
1201    DCHECK(node != nullptr);
1202    DCHECK(Contains(node));
1203
1204    if (node->prev_ != nullptr) {
1205      node->prev_->next_ = node->next_;
1206    }
1207    if (node->next_ != nullptr) {
1208      node->next_->prev_ = node->prev_;
1209    }
1210    if (node == first_) {
1211      first_ = node->next_;
1212    }
1213  }
1214
1215  bool Contains(const HUseListNode<T>* node) const {
1216    if (node == nullptr) {
1217      return false;
1218    }
1219    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1220      if (current == node) {
1221        return true;
1222      }
1223    }
1224    return false;
1225  }
1226
1227  bool IsEmpty() const {
1228    return first_ == nullptr;
1229  }
1230
1231  bool HasOnlyOneUse() const {
1232    return first_ != nullptr && first_->next_ == nullptr;
1233  }
1234
1235  size_t SizeSlow() const {
1236    size_t count = 0;
1237    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1238      ++count;
1239    }
1240    return count;
1241  }
1242
1243 private:
1244  HUseListNode<T>* first_;
1245};
1246
1247template<typename T>
1248class HUseIterator : public ValueObject {
1249 public:
1250  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1251
1252  bool Done() const { return current_ == nullptr; }
1253
1254  void Advance() {
1255    DCHECK(!Done());
1256    current_ = current_->GetNext();
1257  }
1258
1259  HUseListNode<T>* Current() const {
1260    DCHECK(!Done());
1261    return current_;
1262  }
1263
1264 private:
1265  HUseListNode<T>* current_;
1266
1267  friend class HValue;
1268};
1269
1270// This class is used by HEnvironment and HInstruction classes to record the
1271// instructions they use and pointers to the corresponding HUseListNodes kept
1272// by the used instructions.
1273template <typename T>
1274class HUserRecord : public ValueObject {
1275 public:
1276  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1277  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1278
1279  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1280    : instruction_(old_record.instruction_), use_node_(use_node) {
1281    DCHECK(instruction_ != nullptr);
1282    DCHECK(use_node_ != nullptr);
1283    DCHECK(old_record.use_node_ == nullptr);
1284  }
1285
1286  HInstruction* GetInstruction() const { return instruction_; }
1287  HUseListNode<T>* GetUseNode() const { return use_node_; }
1288
1289 private:
1290  // Instruction used by the user.
1291  HInstruction* instruction_;
1292
1293  // Corresponding entry in the use list kept by 'instruction_'.
1294  HUseListNode<T>* use_node_;
1295};
1296
1297/**
1298 * Side-effects representation.
1299 *
1300 * For write/read dependences on fields/arrays, the dependence analysis uses
1301 * type disambiguation (e.g. a float field write cannot modify the value of an
1302 * integer field read) and the access type (e.g.  a reference array write cannot
1303 * modify the value of a reference field read [although it may modify the
1304 * reference fetch prior to reading the field, which is represented by its own
1305 * write/read dependence]). The analysis makes conservative points-to
1306 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1307 * the same, and any reference read depends on any reference read without
1308 * further regard of its type).
1309 *
1310 * The internal representation uses 38-bit and is described in the table below.
1311 * The first line indicates the side effect, and for field/array accesses the
1312 * second line indicates the type of the access (in the order of the
1313 * Primitive::Type enum).
1314 * The two numbered lines below indicate the bit position in the bitfield (read
1315 * vertically).
1316 *
1317 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1318 *   +-------------+---------+---------+--------------+---------+---------+
1319 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1320 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1321 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1322 *
1323 * Note that, to ease the implementation, 'changes' bits are least significant
1324 * bits, while 'dependency' bits are most significant bits.
1325 */
1326class SideEffects : public ValueObject {
1327 public:
1328  SideEffects() : flags_(0) {}
1329
1330  static SideEffects None() {
1331    return SideEffects(0);
1332  }
1333
1334  static SideEffects All() {
1335    return SideEffects(kAllChangeBits | kAllDependOnBits);
1336  }
1337
1338  static SideEffects AllChanges() {
1339    return SideEffects(kAllChangeBits);
1340  }
1341
1342  static SideEffects AllDependencies() {
1343    return SideEffects(kAllDependOnBits);
1344  }
1345
1346  static SideEffects AllExceptGCDependency() {
1347    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1348  }
1349
1350  static SideEffects AllWritesAndReads() {
1351    return SideEffects(kAllWrites | kAllReads);
1352  }
1353
1354  static SideEffects AllWrites() {
1355    return SideEffects(kAllWrites);
1356  }
1357
1358  static SideEffects AllReads() {
1359    return SideEffects(kAllReads);
1360  }
1361
1362  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1363    return is_volatile
1364        ? AllWritesAndReads()
1365        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1366  }
1367
1368  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1369    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1370  }
1371
1372  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1373    return is_volatile
1374        ? AllWritesAndReads()
1375        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1376  }
1377
1378  static SideEffects ArrayReadOfType(Primitive::Type type) {
1379    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1380  }
1381
1382  static SideEffects CanTriggerGC() {
1383    return SideEffects(1ULL << kCanTriggerGCBit);
1384  }
1385
1386  static SideEffects DependsOnGC() {
1387    return SideEffects(1ULL << kDependsOnGCBit);
1388  }
1389
1390  // Combines the side-effects of this and the other.
1391  SideEffects Union(SideEffects other) const {
1392    return SideEffects(flags_ | other.flags_);
1393  }
1394
1395  SideEffects Exclusion(SideEffects other) const {
1396    return SideEffects(flags_ & ~other.flags_);
1397  }
1398
1399  void Add(SideEffects other) {
1400    flags_ |= other.flags_;
1401  }
1402
1403  bool Includes(SideEffects other) const {
1404    return (other.flags_ & flags_) == other.flags_;
1405  }
1406
1407  bool HasSideEffects() const {
1408    return (flags_ & kAllChangeBits);
1409  }
1410
1411  bool HasDependencies() const {
1412    return (flags_ & kAllDependOnBits);
1413  }
1414
1415  // Returns true if there are no side effects or dependencies.
1416  bool DoesNothing() const {
1417    return flags_ == 0;
1418  }
1419
1420  // Returns true if something is written.
1421  bool DoesAnyWrite() const {
1422    return (flags_ & kAllWrites);
1423  }
1424
1425  // Returns true if something is read.
1426  bool DoesAnyRead() const {
1427    return (flags_ & kAllReads);
1428  }
1429
1430  // Returns true if potentially everything is written and read
1431  // (every type and every kind of access).
1432  bool DoesAllReadWrite() const {
1433    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1434  }
1435
1436  bool DoesAll() const {
1437    return flags_ == (kAllChangeBits | kAllDependOnBits);
1438  }
1439
1440  // Returns true if this may read something written by other.
1441  bool MayDependOn(SideEffects other) const {
1442    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1443    return (other.flags_ & depends_on_flags);
1444  }
1445
1446  // Returns string representation of flags (for debugging only).
1447  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1448  std::string ToString() const {
1449    std::string flags = "|";
1450    for (int s = kLastBit; s >= 0; s--) {
1451      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1452      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1453        // This is a bit for the GC side effect.
1454        if (current_bit_is_set) {
1455          flags += "GC";
1456        }
1457        flags += "|";
1458      } else {
1459        // This is a bit for the array/field analysis.
1460        // The underscore character stands for the 'can trigger GC' bit.
1461        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1462        if (current_bit_is_set) {
1463          flags += kDebug[s];
1464        }
1465        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1466            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1467          flags += "|";
1468        }
1469      }
1470    }
1471    return flags;
1472  }
1473
1474  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1475
1476 private:
1477  static constexpr int kFieldArrayAnalysisBits = 9;
1478
1479  static constexpr int kFieldWriteOffset = 0;
1480  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1481  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1482  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1483
1484  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1485
1486  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1487  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1488  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1489  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1490
1491  static constexpr int kLastBit = kDependsOnGCBit;
1492  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1493
1494  // Aliases.
1495
1496  static_assert(kChangeBits == kDependOnBits,
1497                "the 'change' bits should match the 'depend on' bits.");
1498
1499  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1500  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1501  static constexpr uint64_t kAllWrites =
1502      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1503  static constexpr uint64_t kAllReads =
1504      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1505
1506  // Work around the fact that HIR aliases I/F and J/D.
1507  // TODO: remove this interceptor once HIR types are clean
1508  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1509    switch (type) {
1510      case Primitive::kPrimInt:
1511      case Primitive::kPrimFloat:
1512        return TypeFlag(Primitive::kPrimInt, offset) |
1513               TypeFlag(Primitive::kPrimFloat, offset);
1514      case Primitive::kPrimLong:
1515      case Primitive::kPrimDouble:
1516        return TypeFlag(Primitive::kPrimLong, offset) |
1517               TypeFlag(Primitive::kPrimDouble, offset);
1518      default:
1519        return TypeFlag(type, offset);
1520    }
1521  }
1522
1523  // Translates type to bit flag.
1524  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1525    CHECK_NE(type, Primitive::kPrimVoid);
1526    const uint64_t one = 1;
1527    const int shift = type;  // 0-based consecutive enum
1528    DCHECK_LE(kFieldWriteOffset, shift);
1529    DCHECK_LT(shift, kArrayWriteOffset);
1530    return one << (type + offset);
1531  }
1532
1533  // Private constructor on direct flags value.
1534  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1535
1536  uint64_t flags_;
1537};
1538
1539// A HEnvironment object contains the values of virtual registers at a given location.
1540class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1541 public:
1542  HEnvironment(ArenaAllocator* arena,
1543               size_t number_of_vregs,
1544               const DexFile& dex_file,
1545               uint32_t method_idx,
1546               uint32_t dex_pc,
1547               InvokeType invoke_type,
1548               HInstruction* holder)
1549     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1550       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1551       parent_(nullptr),
1552       dex_file_(dex_file),
1553       method_idx_(method_idx),
1554       dex_pc_(dex_pc),
1555       invoke_type_(invoke_type),
1556       holder_(holder) {
1557  }
1558
1559  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1560      : HEnvironment(arena,
1561                     to_copy.Size(),
1562                     to_copy.GetDexFile(),
1563                     to_copy.GetMethodIdx(),
1564                     to_copy.GetDexPc(),
1565                     to_copy.GetInvokeType(),
1566                     holder) {}
1567
1568  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1569    if (parent_ != nullptr) {
1570      parent_->SetAndCopyParentChain(allocator, parent);
1571    } else {
1572      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1573      parent_->CopyFrom(parent);
1574      if (parent->GetParent() != nullptr) {
1575        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1576      }
1577    }
1578  }
1579
1580  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1581  void CopyFrom(HEnvironment* environment);
1582
1583  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1584  // input to the loop phi instead. This is for inserting instructions that
1585  // require an environment (like HDeoptimization) in the loop pre-header.
1586  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1587
1588  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1589    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1590  }
1591
1592  HInstruction* GetInstructionAt(size_t index) const {
1593    return vregs_[index].GetInstruction();
1594  }
1595
1596  void RemoveAsUserOfInput(size_t index) const;
1597
1598  size_t Size() const { return vregs_.size(); }
1599
1600  HEnvironment* GetParent() const { return parent_; }
1601
1602  void SetLocationAt(size_t index, Location location) {
1603    locations_[index] = location;
1604  }
1605
1606  Location GetLocationAt(size_t index) const {
1607    return locations_[index];
1608  }
1609
1610  uint32_t GetDexPc() const {
1611    return dex_pc_;
1612  }
1613
1614  uint32_t GetMethodIdx() const {
1615    return method_idx_;
1616  }
1617
1618  InvokeType GetInvokeType() const {
1619    return invoke_type_;
1620  }
1621
1622  const DexFile& GetDexFile() const {
1623    return dex_file_;
1624  }
1625
1626  HInstruction* GetHolder() const {
1627    return holder_;
1628  }
1629
1630 private:
1631  // Record instructions' use entries of this environment for constant-time removal.
1632  // It should only be called by HInstruction when a new environment use is added.
1633  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1634    DCHECK(env_use->GetUser() == this);
1635    size_t index = env_use->GetIndex();
1636    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1637  }
1638
1639  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1640  ArenaVector<Location> locations_;
1641  HEnvironment* parent_;
1642  const DexFile& dex_file_;
1643  const uint32_t method_idx_;
1644  const uint32_t dex_pc_;
1645  const InvokeType invoke_type_;
1646
1647  // The instruction that holds this environment.
1648  HInstruction* const holder_;
1649
1650  friend class HInstruction;
1651
1652  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1653};
1654
1655class ReferenceTypeInfo : ValueObject {
1656 public:
1657  typedef Handle<mirror::Class> TypeHandle;
1658
1659  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1660    // The constructor will check that the type_handle is valid.
1661    return ReferenceTypeInfo(type_handle, is_exact);
1662  }
1663
1664  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1665
1666  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1667    return handle.GetReference() != nullptr;
1668  }
1669
1670  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1671    return IsValidHandle(type_handle_);
1672  }
1673
1674  bool IsExact() const { return is_exact_; }
1675
1676  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1677    DCHECK(IsValid());
1678    return GetTypeHandle()->IsObjectClass();
1679  }
1680
1681  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1682    DCHECK(IsValid());
1683    return GetTypeHandle()->IsStringClass();
1684  }
1685
1686  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
1687    DCHECK(IsValid());
1688    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
1689  }
1690
1691  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1692    DCHECK(IsValid());
1693    return GetTypeHandle()->IsInterface();
1694  }
1695
1696  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1697    DCHECK(IsValid());
1698    return GetTypeHandle()->IsArrayClass();
1699  }
1700
1701  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1702    DCHECK(IsValid());
1703    return GetTypeHandle()->IsPrimitiveArray();
1704  }
1705
1706  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1707    DCHECK(IsValid());
1708    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
1709  }
1710
1711  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1712    DCHECK(IsValid());
1713    if (!IsExact()) return false;
1714    if (!IsArrayClass()) return false;
1715    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
1716  }
1717
1718  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1719    DCHECK(IsValid());
1720    if (!IsExact()) return false;
1721    if (!IsArrayClass()) return false;
1722    if (!rti.IsArrayClass()) return false;
1723    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
1724        rti.GetTypeHandle()->GetComponentType());
1725  }
1726
1727  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1728
1729  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1730    DCHECK(IsValid());
1731    DCHECK(rti.IsValid());
1732    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1733  }
1734
1735  // Returns true if the type information provide the same amount of details.
1736  // Note that it does not mean that the instructions have the same actual type
1737  // (because the type can be the result of a merge).
1738  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1739    if (!IsValid() && !rti.IsValid()) {
1740      // Invalid types are equal.
1741      return true;
1742    }
1743    if (!IsValid() || !rti.IsValid()) {
1744      // One is valid, the other not.
1745      return false;
1746    }
1747    return IsExact() == rti.IsExact()
1748        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1749  }
1750
1751 private:
1752  ReferenceTypeInfo();
1753  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1754
1755  // The class of the object.
1756  TypeHandle type_handle_;
1757  // Whether or not the type is exact or a superclass of the actual type.
1758  // Whether or not we have any information about this type.
1759  bool is_exact_;
1760};
1761
1762std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1763
1764class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1765 public:
1766  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1767      : previous_(nullptr),
1768        next_(nullptr),
1769        block_(nullptr),
1770        dex_pc_(dex_pc),
1771        id_(-1),
1772        ssa_index_(-1),
1773        environment_(nullptr),
1774        locations_(nullptr),
1775        live_interval_(nullptr),
1776        lifetime_position_(kNoLifetime),
1777        side_effects_(side_effects),
1778        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1779
1780  virtual ~HInstruction() {}
1781
1782#define DECLARE_KIND(type, super) k##type,
1783  enum InstructionKind {
1784    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1785  };
1786#undef DECLARE_KIND
1787
1788  HInstruction* GetNext() const { return next_; }
1789  HInstruction* GetPrevious() const { return previous_; }
1790
1791  HInstruction* GetNextDisregardingMoves() const;
1792  HInstruction* GetPreviousDisregardingMoves() const;
1793
1794  HBasicBlock* GetBlock() const { return block_; }
1795  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1796  void SetBlock(HBasicBlock* block) { block_ = block; }
1797  bool IsInBlock() const { return block_ != nullptr; }
1798  bool IsInLoop() const { return block_->IsInLoop(); }
1799  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1800
1801  virtual size_t InputCount() const = 0;
1802  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1803
1804  virtual void Accept(HGraphVisitor* visitor) = 0;
1805  virtual const char* DebugName() const = 0;
1806
1807  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1808  void SetRawInputAt(size_t index, HInstruction* input) {
1809    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1810  }
1811
1812  virtual bool NeedsEnvironment() const { return false; }
1813
1814  uint32_t GetDexPc() const { return dex_pc_; }
1815
1816  virtual bool IsControlFlow() const { return false; }
1817
1818  virtual bool CanThrow() const { return false; }
1819  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1820
1821  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1822  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1823
1824  // Does not apply for all instructions, but having this at top level greatly
1825  // simplifies the null check elimination.
1826  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1827  virtual bool CanBeNull() const {
1828    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1829    return true;
1830  }
1831
1832  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1833    return false;
1834  }
1835
1836  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1837
1838  ReferenceTypeInfo GetReferenceTypeInfo() const {
1839    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1840    return reference_type_info_;
1841  }
1842
1843  void AddUseAt(HInstruction* user, size_t index) {
1844    DCHECK(user != nullptr);
1845    HUseListNode<HInstruction*>* use =
1846        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1847    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1848  }
1849
1850  void AddEnvUseAt(HEnvironment* user, size_t index) {
1851    DCHECK(user != nullptr);
1852    HUseListNode<HEnvironment*>* env_use =
1853        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1854    user->RecordEnvUse(env_use);
1855  }
1856
1857  void RemoveAsUserOfInput(size_t input) {
1858    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1859    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1860  }
1861
1862  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1863  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1864
1865  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1866  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1867  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1868  bool HasOnlyOneNonEnvironmentUse() const {
1869    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1870  }
1871
1872  // Does this instruction strictly dominate `other_instruction`?
1873  // Returns false if this instruction and `other_instruction` are the same.
1874  // Aborts if this instruction and `other_instruction` are both phis.
1875  bool StrictlyDominates(HInstruction* other_instruction) const;
1876
1877  int GetId() const { return id_; }
1878  void SetId(int id) { id_ = id; }
1879
1880  int GetSsaIndex() const { return ssa_index_; }
1881  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1882  bool HasSsaIndex() const { return ssa_index_ != -1; }
1883
1884  bool HasEnvironment() const { return environment_ != nullptr; }
1885  HEnvironment* GetEnvironment() const { return environment_; }
1886  // Set the `environment_` field. Raw because this method does not
1887  // update the uses lists.
1888  void SetRawEnvironment(HEnvironment* environment) {
1889    DCHECK(environment_ == nullptr);
1890    DCHECK_EQ(environment->GetHolder(), this);
1891    environment_ = environment;
1892  }
1893
1894  // Set the environment of this instruction, copying it from `environment`. While
1895  // copying, the uses lists are being updated.
1896  void CopyEnvironmentFrom(HEnvironment* environment) {
1897    DCHECK(environment_ == nullptr);
1898    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1899    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1900    environment_->CopyFrom(environment);
1901    if (environment->GetParent() != nullptr) {
1902      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1903    }
1904  }
1905
1906  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1907                                                HBasicBlock* block) {
1908    DCHECK(environment_ == nullptr);
1909    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1910    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1911    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1912    if (environment->GetParent() != nullptr) {
1913      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1914    }
1915  }
1916
1917  // Returns the number of entries in the environment. Typically, that is the
1918  // number of dex registers in a method. It could be more in case of inlining.
1919  size_t EnvironmentSize() const;
1920
1921  LocationSummary* GetLocations() const { return locations_; }
1922  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1923
1924  void ReplaceWith(HInstruction* instruction);
1925  void ReplaceInput(HInstruction* replacement, size_t index);
1926
1927  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1928  // uses of this instruction by `other` are *not* updated.
1929  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1930    ReplaceWith(other);
1931    other->ReplaceInput(this, use_index);
1932  }
1933
1934  // Move `this` instruction before `cursor`.
1935  void MoveBefore(HInstruction* cursor);
1936
1937#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1938  bool Is##type() const { return (As##type() != nullptr); }                    \
1939  virtual const H##type* As##type() const { return nullptr; }                  \
1940  virtual H##type* As##type() { return nullptr; }
1941
1942  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1943#undef INSTRUCTION_TYPE_CHECK
1944
1945  // Returns whether the instruction can be moved within the graph.
1946  virtual bool CanBeMoved() const { return false; }
1947
1948  // Returns whether the two instructions are of the same kind.
1949  virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1950    return false;
1951  }
1952
1953  // Returns whether any data encoded in the two instructions is equal.
1954  // This method does not look at the inputs. Both instructions must be
1955  // of the same type, otherwise the method has undefined behavior.
1956  virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1957    return false;
1958  }
1959
1960  // Returns whether two instructions are equal, that is:
1961  // 1) They have the same type and contain the same data (InstructionDataEquals).
1962  // 2) Their inputs are identical.
1963  bool Equals(HInstruction* other) const;
1964
1965  virtual InstructionKind GetKind() const = 0;
1966
1967  virtual size_t ComputeHashCode() const {
1968    size_t result = GetKind();
1969    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1970      result = (result * 31) + InputAt(i)->GetId();
1971    }
1972    return result;
1973  }
1974
1975  SideEffects GetSideEffects() const { return side_effects_; }
1976  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
1977
1978  size_t GetLifetimePosition() const { return lifetime_position_; }
1979  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1980  LiveInterval* GetLiveInterval() const { return live_interval_; }
1981  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1982  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1983
1984  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1985
1986  // Returns whether the code generation of the instruction will require to have access
1987  // to the current method. Such instructions are:
1988  // (1): Instructions that require an environment, as calling the runtime requires
1989  //      to walk the stack and have the current method stored at a specific stack address.
1990  // (2): Object literals like classes and strings, that are loaded from the dex cache
1991  //      fields of the current method.
1992  bool NeedsCurrentMethod() const {
1993    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1994  }
1995
1996  // Returns whether the code generation of the instruction will require to have access
1997  // to the dex cache of the current method's declaring class via the current method.
1998  virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
1999
2000  // Does this instruction have any use in an environment before
2001  // control flow hits 'other'?
2002  bool HasAnyEnvironmentUseBefore(HInstruction* other);
2003
2004  // Remove all references to environment uses of this instruction.
2005  // The caller must ensure that this is safe to do.
2006  void RemoveEnvironmentUsers();
2007
2008 protected:
2009  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
2010  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
2011
2012 private:
2013  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
2014
2015  HInstruction* previous_;
2016  HInstruction* next_;
2017  HBasicBlock* block_;
2018  const uint32_t dex_pc_;
2019
2020  // An instruction gets an id when it is added to the graph.
2021  // It reflects creation order. A negative id means the instruction
2022  // has not been added to the graph.
2023  int id_;
2024
2025  // When doing liveness analysis, instructions that have uses get an SSA index.
2026  int ssa_index_;
2027
2028  // List of instructions that have this instruction as input.
2029  HUseList<HInstruction*> uses_;
2030
2031  // List of environments that contain this instruction.
2032  HUseList<HEnvironment*> env_uses_;
2033
2034  // The environment associated with this instruction. Not null if the instruction
2035  // might jump out of the method.
2036  HEnvironment* environment_;
2037
2038  // Set by the code generator.
2039  LocationSummary* locations_;
2040
2041  // Set by the liveness analysis.
2042  LiveInterval* live_interval_;
2043
2044  // Set by the liveness analysis, this is the position in a linear
2045  // order of blocks where this instruction's live interval start.
2046  size_t lifetime_position_;
2047
2048  SideEffects side_effects_;
2049
2050  // TODO: for primitive types this should be marked as invalid.
2051  ReferenceTypeInfo reference_type_info_;
2052
2053  friend class GraphChecker;
2054  friend class HBasicBlock;
2055  friend class HEnvironment;
2056  friend class HGraph;
2057  friend class HInstructionList;
2058
2059  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2060};
2061std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2062
2063class HInputIterator : public ValueObject {
2064 public:
2065  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2066
2067  bool Done() const { return index_ == instruction_->InputCount(); }
2068  HInstruction* Current() const { return instruction_->InputAt(index_); }
2069  void Advance() { index_++; }
2070
2071 private:
2072  HInstruction* instruction_;
2073  size_t index_;
2074
2075  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2076};
2077
2078class HInstructionIterator : public ValueObject {
2079 public:
2080  explicit HInstructionIterator(const HInstructionList& instructions)
2081      : instruction_(instructions.first_instruction_) {
2082    next_ = Done() ? nullptr : instruction_->GetNext();
2083  }
2084
2085  bool Done() const { return instruction_ == nullptr; }
2086  HInstruction* Current() const { return instruction_; }
2087  void Advance() {
2088    instruction_ = next_;
2089    next_ = Done() ? nullptr : instruction_->GetNext();
2090  }
2091
2092 private:
2093  HInstruction* instruction_;
2094  HInstruction* next_;
2095
2096  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2097};
2098
2099class HBackwardInstructionIterator : public ValueObject {
2100 public:
2101  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2102      : instruction_(instructions.last_instruction_) {
2103    next_ = Done() ? nullptr : instruction_->GetPrevious();
2104  }
2105
2106  bool Done() const { return instruction_ == nullptr; }
2107  HInstruction* Current() const { return instruction_; }
2108  void Advance() {
2109    instruction_ = next_;
2110    next_ = Done() ? nullptr : instruction_->GetPrevious();
2111  }
2112
2113 private:
2114  HInstruction* instruction_;
2115  HInstruction* next_;
2116
2117  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2118};
2119
2120template<size_t N>
2121class HTemplateInstruction: public HInstruction {
2122 public:
2123  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2124      : HInstruction(side_effects, dex_pc), inputs_() {}
2125  virtual ~HTemplateInstruction() {}
2126
2127  size_t InputCount() const OVERRIDE { return N; }
2128
2129 protected:
2130  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2131    DCHECK_LT(i, N);
2132    return inputs_[i];
2133  }
2134
2135  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2136    DCHECK_LT(i, N);
2137    inputs_[i] = input;
2138  }
2139
2140 private:
2141  std::array<HUserRecord<HInstruction*>, N> inputs_;
2142
2143  friend class SsaBuilder;
2144};
2145
2146// HTemplateInstruction specialization for N=0.
2147template<>
2148class HTemplateInstruction<0>: public HInstruction {
2149 public:
2150  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2151      : HInstruction(side_effects, dex_pc) {}
2152
2153  virtual ~HTemplateInstruction() {}
2154
2155  size_t InputCount() const OVERRIDE { return 0; }
2156
2157 protected:
2158  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2159    LOG(FATAL) << "Unreachable";
2160    UNREACHABLE();
2161  }
2162
2163  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2164                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2165    LOG(FATAL) << "Unreachable";
2166    UNREACHABLE();
2167  }
2168
2169 private:
2170  friend class SsaBuilder;
2171};
2172
2173template<intptr_t N>
2174class HExpression : public HTemplateInstruction<N> {
2175 public:
2176  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2177      : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {}
2178  virtual ~HExpression() {}
2179
2180  Primitive::Type GetType() const OVERRIDE { return type_; }
2181
2182 protected:
2183  Primitive::Type type_;
2184};
2185
2186// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2187// instruction that branches to the exit block.
2188class HReturnVoid : public HTemplateInstruction<0> {
2189 public:
2190  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2191      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2192
2193  bool IsControlFlow() const OVERRIDE { return true; }
2194
2195  DECLARE_INSTRUCTION(ReturnVoid);
2196
2197 private:
2198  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2199};
2200
2201// Represents dex's RETURN opcodes. A HReturn is a control flow
2202// instruction that branches to the exit block.
2203class HReturn : public HTemplateInstruction<1> {
2204 public:
2205  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2206      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2207    SetRawInputAt(0, value);
2208  }
2209
2210  bool IsControlFlow() const OVERRIDE { return true; }
2211
2212  DECLARE_INSTRUCTION(Return);
2213
2214 private:
2215  DISALLOW_COPY_AND_ASSIGN(HReturn);
2216};
2217
2218// The exit instruction is the only instruction of the exit block.
2219// Instructions aborting the method (HThrow and HReturn) must branch to the
2220// exit block.
2221class HExit : public HTemplateInstruction<0> {
2222 public:
2223  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2224
2225  bool IsControlFlow() const OVERRIDE { return true; }
2226
2227  DECLARE_INSTRUCTION(Exit);
2228
2229 private:
2230  DISALLOW_COPY_AND_ASSIGN(HExit);
2231};
2232
2233// Jumps from one block to another.
2234class HGoto : public HTemplateInstruction<0> {
2235 public:
2236  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2237
2238  bool IsControlFlow() const OVERRIDE { return true; }
2239
2240  HBasicBlock* GetSuccessor() const {
2241    return GetBlock()->GetSingleSuccessor();
2242  }
2243
2244  DECLARE_INSTRUCTION(Goto);
2245
2246 private:
2247  DISALLOW_COPY_AND_ASSIGN(HGoto);
2248};
2249
2250class HConstant : public HExpression<0> {
2251 public:
2252  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2253      : HExpression(type, SideEffects::None(), dex_pc) {}
2254
2255  bool CanBeMoved() const OVERRIDE { return true; }
2256
2257  virtual bool IsMinusOne() const { return false; }
2258  virtual bool IsZero() const { return false; }
2259  virtual bool IsOne() const { return false; }
2260
2261  virtual uint64_t GetValueAsUint64() const = 0;
2262
2263  DECLARE_INSTRUCTION(Constant);
2264
2265 private:
2266  DISALLOW_COPY_AND_ASSIGN(HConstant);
2267};
2268
2269class HNullConstant : public HConstant {
2270 public:
2271  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2272    return true;
2273  }
2274
2275  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2276
2277  size_t ComputeHashCode() const OVERRIDE { return 0; }
2278
2279  DECLARE_INSTRUCTION(NullConstant);
2280
2281 private:
2282  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2283
2284  friend class HGraph;
2285  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2286};
2287
2288// Constants of the type int. Those can be from Dex instructions, or
2289// synthesized (for example with the if-eqz instruction).
2290class HIntConstant : public HConstant {
2291 public:
2292  int32_t GetValue() const { return value_; }
2293
2294  uint64_t GetValueAsUint64() const OVERRIDE {
2295    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2296  }
2297
2298  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2299    DCHECK(other->IsIntConstant());
2300    return other->AsIntConstant()->value_ == value_;
2301  }
2302
2303  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2304
2305  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2306  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2307  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2308
2309  DECLARE_INSTRUCTION(IntConstant);
2310
2311 private:
2312  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2313      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2314  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2315      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2316
2317  const int32_t value_;
2318
2319  friend class HGraph;
2320  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2321  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2322  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2323};
2324
2325class HLongConstant : public HConstant {
2326 public:
2327  int64_t GetValue() const { return value_; }
2328
2329  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2330
2331  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2332    DCHECK(other->IsLongConstant());
2333    return other->AsLongConstant()->value_ == value_;
2334  }
2335
2336  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2337
2338  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2339  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2340  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2341
2342  DECLARE_INSTRUCTION(LongConstant);
2343
2344 private:
2345  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2346      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2347
2348  const int64_t value_;
2349
2350  friend class HGraph;
2351  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2352};
2353
2354// Conditional branch. A block ending with an HIf instruction must have
2355// two successors.
2356class HIf : public HTemplateInstruction<1> {
2357 public:
2358  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2359      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2360    SetRawInputAt(0, input);
2361  }
2362
2363  bool IsControlFlow() const OVERRIDE { return true; }
2364
2365  HBasicBlock* IfTrueSuccessor() const {
2366    return GetBlock()->GetSuccessors()[0];
2367  }
2368
2369  HBasicBlock* IfFalseSuccessor() const {
2370    return GetBlock()->GetSuccessors()[1];
2371  }
2372
2373  DECLARE_INSTRUCTION(If);
2374
2375 private:
2376  DISALLOW_COPY_AND_ASSIGN(HIf);
2377};
2378
2379
2380// Abstract instruction which marks the beginning and/or end of a try block and
2381// links it to the respective exception handlers. Behaves the same as a Goto in
2382// non-exceptional control flow.
2383// Normal-flow successor is stored at index zero, exception handlers under
2384// higher indices in no particular order.
2385class HTryBoundary : public HTemplateInstruction<0> {
2386 public:
2387  enum BoundaryKind {
2388    kEntry,
2389    kExit,
2390  };
2391
2392  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2393      : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {}
2394
2395  bool IsControlFlow() const OVERRIDE { return true; }
2396
2397  // Returns the block's non-exceptional successor (index zero).
2398  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2399
2400  // Returns whether `handler` is among its exception handlers (non-zero index
2401  // successors).
2402  bool HasExceptionHandler(const HBasicBlock& handler) const {
2403    DCHECK(handler.IsCatchBlock());
2404    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2405  }
2406
2407  // If not present already, adds `handler` to its block's list of exception
2408  // handlers.
2409  void AddExceptionHandler(HBasicBlock* handler) {
2410    if (!HasExceptionHandler(*handler)) {
2411      GetBlock()->AddSuccessor(handler);
2412    }
2413  }
2414
2415  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2416
2417  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2418
2419  DECLARE_INSTRUCTION(TryBoundary);
2420
2421 private:
2422  const BoundaryKind kind_;
2423
2424  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2425};
2426
2427// Iterator over exception handlers of a given HTryBoundary, i.e. over
2428// exceptional successors of its basic block.
2429class HExceptionHandlerIterator : public ValueObject {
2430 public:
2431  explicit HExceptionHandlerIterator(const HTryBoundary& try_boundary)
2432    : block_(*try_boundary.GetBlock()), index_(block_.NumberOfNormalSuccessors()) {}
2433
2434  bool Done() const { return index_ == block_.GetSuccessors().size(); }
2435  HBasicBlock* Current() const { return block_.GetSuccessors()[index_]; }
2436  size_t CurrentSuccessorIndex() const { return index_; }
2437  void Advance() { ++index_; }
2438
2439 private:
2440  const HBasicBlock& block_;
2441  size_t index_;
2442
2443  DISALLOW_COPY_AND_ASSIGN(HExceptionHandlerIterator);
2444};
2445
2446// Deoptimize to interpreter, upon checking a condition.
2447class HDeoptimize : public HTemplateInstruction<1> {
2448 public:
2449  explicit HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2450      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2451    SetRawInputAt(0, cond);
2452  }
2453
2454  bool NeedsEnvironment() const OVERRIDE { return true; }
2455  bool CanThrow() const OVERRIDE { return true; }
2456
2457  DECLARE_INSTRUCTION(Deoptimize);
2458
2459 private:
2460  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2461};
2462
2463// Represents the ArtMethod that was passed as a first argument to
2464// the method. It is used by instructions that depend on it, like
2465// instructions that work with the dex cache.
2466class HCurrentMethod : public HExpression<0> {
2467 public:
2468  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2469      : HExpression(type, SideEffects::None(), dex_pc) {}
2470
2471  DECLARE_INSTRUCTION(CurrentMethod);
2472
2473 private:
2474  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2475};
2476
2477// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2478// have one successor for each entry in the switch table, and the final successor
2479// will be the block containing the next Dex opcode.
2480class HPackedSwitch : public HTemplateInstruction<1> {
2481 public:
2482  HPackedSwitch(int32_t start_value,
2483                uint32_t num_entries,
2484                HInstruction* input,
2485                uint32_t dex_pc = kNoDexPc)
2486    : HTemplateInstruction(SideEffects::None(), dex_pc),
2487      start_value_(start_value),
2488      num_entries_(num_entries) {
2489    SetRawInputAt(0, input);
2490  }
2491
2492  bool IsControlFlow() const OVERRIDE { return true; }
2493
2494  int32_t GetStartValue() const { return start_value_; }
2495
2496  uint32_t GetNumEntries() const { return num_entries_; }
2497
2498  HBasicBlock* GetDefaultBlock() const {
2499    // Last entry is the default block.
2500    return GetBlock()->GetSuccessors()[num_entries_];
2501  }
2502  DECLARE_INSTRUCTION(PackedSwitch);
2503
2504 private:
2505  const int32_t start_value_;
2506  const uint32_t num_entries_;
2507
2508  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2509};
2510
2511class HUnaryOperation : public HExpression<1> {
2512 public:
2513  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2514      : HExpression(result_type, SideEffects::None(), dex_pc) {
2515    SetRawInputAt(0, input);
2516  }
2517
2518  HInstruction* GetInput() const { return InputAt(0); }
2519  Primitive::Type GetResultType() const { return GetType(); }
2520
2521  bool CanBeMoved() const OVERRIDE { return true; }
2522  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2523    return true;
2524  }
2525
2526  // Try to statically evaluate `operation` and return a HConstant
2527  // containing the result of this evaluation.  If `operation` cannot
2528  // be evaluated as a constant, return null.
2529  HConstant* TryStaticEvaluation() const;
2530
2531  // Apply this operation to `x`.
2532  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2533  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2534
2535  DECLARE_INSTRUCTION(UnaryOperation);
2536
2537 private:
2538  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2539};
2540
2541class HBinaryOperation : public HExpression<2> {
2542 public:
2543  HBinaryOperation(Primitive::Type result_type,
2544                   HInstruction* left,
2545                   HInstruction* right,
2546                   SideEffects side_effects = SideEffects::None(),
2547                   uint32_t dex_pc = kNoDexPc)
2548      : HExpression(result_type, side_effects, dex_pc) {
2549    SetRawInputAt(0, left);
2550    SetRawInputAt(1, right);
2551  }
2552
2553  HInstruction* GetLeft() const { return InputAt(0); }
2554  HInstruction* GetRight() const { return InputAt(1); }
2555  Primitive::Type GetResultType() const { return GetType(); }
2556
2557  virtual bool IsCommutative() const { return false; }
2558
2559  // Put constant on the right.
2560  // Returns whether order is changed.
2561  bool OrderInputsWithConstantOnTheRight() {
2562    HInstruction* left = InputAt(0);
2563    HInstruction* right = InputAt(1);
2564    if (left->IsConstant() && !right->IsConstant()) {
2565      ReplaceInput(right, 0);
2566      ReplaceInput(left, 1);
2567      return true;
2568    }
2569    return false;
2570  }
2571
2572  // Order inputs by instruction id, but favor constant on the right side.
2573  // This helps GVN for commutative ops.
2574  void OrderInputs() {
2575    DCHECK(IsCommutative());
2576    HInstruction* left = InputAt(0);
2577    HInstruction* right = InputAt(1);
2578    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2579      return;
2580    }
2581    if (OrderInputsWithConstantOnTheRight()) {
2582      return;
2583    }
2584    // Order according to instruction id.
2585    if (left->GetId() > right->GetId()) {
2586      ReplaceInput(right, 0);
2587      ReplaceInput(left, 1);
2588    }
2589  }
2590
2591  bool CanBeMoved() const OVERRIDE { return true; }
2592  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2593    return true;
2594  }
2595
2596  // Try to statically evaluate `operation` and return a HConstant
2597  // containing the result of this evaluation.  If `operation` cannot
2598  // be evaluated as a constant, return null.
2599  HConstant* TryStaticEvaluation() const;
2600
2601  // Apply this operation to `x` and `y`.
2602  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2603  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2604  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2605                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2606    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2607    return nullptr;
2608  }
2609  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2610                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2611    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2612    return nullptr;
2613  }
2614
2615  // Returns an input that can legally be used as the right input and is
2616  // constant, or null.
2617  HConstant* GetConstantRight() const;
2618
2619  // If `GetConstantRight()` returns one of the input, this returns the other
2620  // one. Otherwise it returns null.
2621  HInstruction* GetLeastConstantLeft() const;
2622
2623  DECLARE_INSTRUCTION(BinaryOperation);
2624
2625 private:
2626  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2627};
2628
2629// The comparison bias applies for floating point operations and indicates how NaN
2630// comparisons are treated:
2631enum class ComparisonBias {
2632  kNoBias,  // bias is not applicable (i.e. for long operation)
2633  kGtBias,  // return 1 for NaN comparisons
2634  kLtBias,  // return -1 for NaN comparisons
2635};
2636
2637class HCondition : public HBinaryOperation {
2638 public:
2639  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2640      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc),
2641        needs_materialization_(true),
2642        bias_(ComparisonBias::kNoBias) {}
2643
2644  bool NeedsMaterialization() const { return needs_materialization_; }
2645  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2646
2647  // For code generation purposes, returns whether this instruction is just before
2648  // `instruction`, and disregard moves in between.
2649  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2650
2651  DECLARE_INSTRUCTION(Condition);
2652
2653  virtual IfCondition GetCondition() const = 0;
2654
2655  virtual IfCondition GetOppositeCondition() const = 0;
2656
2657  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2658
2659  void SetBias(ComparisonBias bias) { bias_ = bias; }
2660
2661  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2662    return bias_ == other->AsCondition()->bias_;
2663  }
2664
2665  bool IsFPConditionTrueIfNaN() const {
2666    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2667    IfCondition if_cond = GetCondition();
2668    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2669  }
2670
2671  bool IsFPConditionFalseIfNaN() const {
2672    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2673    IfCondition if_cond = GetCondition();
2674    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2675  }
2676
2677 private:
2678  // For register allocation purposes, returns whether this instruction needs to be
2679  // materialized (that is, not just be in the processor flags).
2680  bool needs_materialization_;
2681
2682  // Needed if we merge a HCompare into a HCondition.
2683  ComparisonBias bias_;
2684
2685  DISALLOW_COPY_AND_ASSIGN(HCondition);
2686};
2687
2688// Instruction to check if two inputs are equal to each other.
2689class HEqual : public HCondition {
2690 public:
2691  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2692      : HCondition(first, second, dex_pc) {}
2693
2694  bool IsCommutative() const OVERRIDE { return true; }
2695
2696  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2697    return GetBlock()->GetGraph()->GetIntConstant(
2698        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2699  }
2700  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2701    return GetBlock()->GetGraph()->GetIntConstant(
2702        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2703  }
2704
2705  DECLARE_INSTRUCTION(Equal);
2706
2707  IfCondition GetCondition() const OVERRIDE {
2708    return kCondEQ;
2709  }
2710
2711  IfCondition GetOppositeCondition() const OVERRIDE {
2712    return kCondNE;
2713  }
2714
2715 private:
2716  template <typename T> bool Compute(T x, T y) const { return x == y; }
2717
2718  DISALLOW_COPY_AND_ASSIGN(HEqual);
2719};
2720
2721class HNotEqual : public HCondition {
2722 public:
2723  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2724      : HCondition(first, second, dex_pc) {}
2725
2726  bool IsCommutative() const OVERRIDE { return true; }
2727
2728  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2729    return GetBlock()->GetGraph()->GetIntConstant(
2730        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2731  }
2732  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2733    return GetBlock()->GetGraph()->GetIntConstant(
2734        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2735  }
2736
2737  DECLARE_INSTRUCTION(NotEqual);
2738
2739  IfCondition GetCondition() const OVERRIDE {
2740    return kCondNE;
2741  }
2742
2743  IfCondition GetOppositeCondition() const OVERRIDE {
2744    return kCondEQ;
2745  }
2746
2747 private:
2748  template <typename T> bool Compute(T x, T y) const { return x != y; }
2749
2750  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2751};
2752
2753class HLessThan : public HCondition {
2754 public:
2755  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2756      : HCondition(first, second, dex_pc) {}
2757
2758  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2759    return GetBlock()->GetGraph()->GetIntConstant(
2760        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2761  }
2762  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2763    return GetBlock()->GetGraph()->GetIntConstant(
2764        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2765  }
2766
2767  DECLARE_INSTRUCTION(LessThan);
2768
2769  IfCondition GetCondition() const OVERRIDE {
2770    return kCondLT;
2771  }
2772
2773  IfCondition GetOppositeCondition() const OVERRIDE {
2774    return kCondGE;
2775  }
2776
2777 private:
2778  template <typename T> bool Compute(T x, T y) const { return x < y; }
2779
2780  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2781};
2782
2783class HLessThanOrEqual : public HCondition {
2784 public:
2785  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2786      : HCondition(first, second, dex_pc) {}
2787
2788  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2789    return GetBlock()->GetGraph()->GetIntConstant(
2790        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2791  }
2792  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2793    return GetBlock()->GetGraph()->GetIntConstant(
2794        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2795  }
2796
2797  DECLARE_INSTRUCTION(LessThanOrEqual);
2798
2799  IfCondition GetCondition() const OVERRIDE {
2800    return kCondLE;
2801  }
2802
2803  IfCondition GetOppositeCondition() const OVERRIDE {
2804    return kCondGT;
2805  }
2806
2807 private:
2808  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2809
2810  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2811};
2812
2813class HGreaterThan : public HCondition {
2814 public:
2815  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2816      : HCondition(first, second, dex_pc) {}
2817
2818  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2819    return GetBlock()->GetGraph()->GetIntConstant(
2820        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2821  }
2822  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2823    return GetBlock()->GetGraph()->GetIntConstant(
2824        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2825  }
2826
2827  DECLARE_INSTRUCTION(GreaterThan);
2828
2829  IfCondition GetCondition() const OVERRIDE {
2830    return kCondGT;
2831  }
2832
2833  IfCondition GetOppositeCondition() const OVERRIDE {
2834    return kCondLE;
2835  }
2836
2837 private:
2838  template <typename T> bool Compute(T x, T y) const { return x > y; }
2839
2840  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2841};
2842
2843class HGreaterThanOrEqual : public HCondition {
2844 public:
2845  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2846      : HCondition(first, second, dex_pc) {}
2847
2848  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2849    return GetBlock()->GetGraph()->GetIntConstant(
2850        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2851  }
2852  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2853    return GetBlock()->GetGraph()->GetIntConstant(
2854        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2855  }
2856
2857  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2858
2859  IfCondition GetCondition() const OVERRIDE {
2860    return kCondGE;
2861  }
2862
2863  IfCondition GetOppositeCondition() const OVERRIDE {
2864    return kCondLT;
2865  }
2866
2867 private:
2868  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2869
2870  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2871};
2872
2873class HBelow : public HCondition {
2874 public:
2875  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2876      : HCondition(first, second, dex_pc) {}
2877
2878  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2879    return GetBlock()->GetGraph()->GetIntConstant(
2880        Compute(static_cast<uint32_t>(x->GetValue()),
2881                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2882  }
2883  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2884    return GetBlock()->GetGraph()->GetIntConstant(
2885        Compute(static_cast<uint64_t>(x->GetValue()),
2886                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2887  }
2888
2889  DECLARE_INSTRUCTION(Below);
2890
2891  IfCondition GetCondition() const OVERRIDE {
2892    return kCondB;
2893  }
2894
2895  IfCondition GetOppositeCondition() const OVERRIDE {
2896    return kCondAE;
2897  }
2898
2899 private:
2900  template <typename T> bool Compute(T x, T y) const { return x < y; }
2901
2902  DISALLOW_COPY_AND_ASSIGN(HBelow);
2903};
2904
2905class HBelowOrEqual : public HCondition {
2906 public:
2907  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2908      : HCondition(first, second, dex_pc) {}
2909
2910  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2911    return GetBlock()->GetGraph()->GetIntConstant(
2912        Compute(static_cast<uint32_t>(x->GetValue()),
2913                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2914  }
2915  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2916    return GetBlock()->GetGraph()->GetIntConstant(
2917        Compute(static_cast<uint64_t>(x->GetValue()),
2918                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2919  }
2920
2921  DECLARE_INSTRUCTION(BelowOrEqual);
2922
2923  IfCondition GetCondition() const OVERRIDE {
2924    return kCondBE;
2925  }
2926
2927  IfCondition GetOppositeCondition() const OVERRIDE {
2928    return kCondA;
2929  }
2930
2931 private:
2932  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2933
2934  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
2935};
2936
2937class HAbove : public HCondition {
2938 public:
2939  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2940      : HCondition(first, second, dex_pc) {}
2941
2942  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2943    return GetBlock()->GetGraph()->GetIntConstant(
2944        Compute(static_cast<uint32_t>(x->GetValue()),
2945                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2946  }
2947  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2948    return GetBlock()->GetGraph()->GetIntConstant(
2949        Compute(static_cast<uint64_t>(x->GetValue()),
2950                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2951  }
2952
2953  DECLARE_INSTRUCTION(Above);
2954
2955  IfCondition GetCondition() const OVERRIDE {
2956    return kCondA;
2957  }
2958
2959  IfCondition GetOppositeCondition() const OVERRIDE {
2960    return kCondBE;
2961  }
2962
2963 private:
2964  template <typename T> bool Compute(T x, T y) const { return x > y; }
2965
2966  DISALLOW_COPY_AND_ASSIGN(HAbove);
2967};
2968
2969class HAboveOrEqual : public HCondition {
2970 public:
2971  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2972      : HCondition(first, second, dex_pc) {}
2973
2974  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2975    return GetBlock()->GetGraph()->GetIntConstant(
2976        Compute(static_cast<uint32_t>(x->GetValue()),
2977                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2978  }
2979  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2980    return GetBlock()->GetGraph()->GetIntConstant(
2981        Compute(static_cast<uint64_t>(x->GetValue()),
2982                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2983  }
2984
2985  DECLARE_INSTRUCTION(AboveOrEqual);
2986
2987  IfCondition GetCondition() const OVERRIDE {
2988    return kCondAE;
2989  }
2990
2991  IfCondition GetOppositeCondition() const OVERRIDE {
2992    return kCondB;
2993  }
2994
2995 private:
2996  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2997
2998  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
2999};
3000
3001// Instruction to check how two inputs compare to each other.
3002// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
3003class HCompare : public HBinaryOperation {
3004 public:
3005  HCompare(Primitive::Type type,
3006           HInstruction* first,
3007           HInstruction* second,
3008           ComparisonBias bias,
3009           uint32_t dex_pc)
3010      : HBinaryOperation(Primitive::kPrimInt,
3011                         first,
3012                         second,
3013                         SideEffectsForArchRuntimeCalls(type),
3014                         dex_pc),
3015        bias_(bias) {
3016    DCHECK_EQ(type, first->GetType());
3017    DCHECK_EQ(type, second->GetType());
3018  }
3019
3020  template <typename T>
3021  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
3022
3023  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3024    return GetBlock()->GetGraph()->GetIntConstant(
3025        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3026  }
3027  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3028    return GetBlock()->GetGraph()->GetIntConstant(
3029        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3030  }
3031
3032  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3033    return bias_ == other->AsCompare()->bias_;
3034  }
3035
3036  ComparisonBias GetBias() const { return bias_; }
3037
3038  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
3039
3040
3041  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
3042    // MIPS64 uses a runtime call for FP comparisons.
3043    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
3044  }
3045
3046  DECLARE_INSTRUCTION(Compare);
3047
3048 private:
3049  const ComparisonBias bias_;
3050
3051  DISALLOW_COPY_AND_ASSIGN(HCompare);
3052};
3053
3054// A local in the graph. Corresponds to a Dex register.
3055class HLocal : public HTemplateInstruction<0> {
3056 public:
3057  explicit HLocal(uint16_t reg_number)
3058      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
3059
3060  DECLARE_INSTRUCTION(Local);
3061
3062  uint16_t GetRegNumber() const { return reg_number_; }
3063
3064 private:
3065  // The Dex register number.
3066  const uint16_t reg_number_;
3067
3068  DISALLOW_COPY_AND_ASSIGN(HLocal);
3069};
3070
3071// Load a given local. The local is an input of this instruction.
3072class HLoadLocal : public HExpression<1> {
3073 public:
3074  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
3075      : HExpression(type, SideEffects::None(), dex_pc) {
3076    SetRawInputAt(0, local);
3077  }
3078
3079  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3080
3081  DECLARE_INSTRUCTION(LoadLocal);
3082
3083 private:
3084  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
3085};
3086
3087// Store a value in a given local. This instruction has two inputs: the value
3088// and the local.
3089class HStoreLocal : public HTemplateInstruction<2> {
3090 public:
3091  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
3092      : HTemplateInstruction(SideEffects::None(), dex_pc) {
3093    SetRawInputAt(0, local);
3094    SetRawInputAt(1, value);
3095  }
3096
3097  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3098
3099  DECLARE_INSTRUCTION(StoreLocal);
3100
3101 private:
3102  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
3103};
3104
3105class HFloatConstant : public HConstant {
3106 public:
3107  float GetValue() const { return value_; }
3108
3109  uint64_t GetValueAsUint64() const OVERRIDE {
3110    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3111  }
3112
3113  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3114    DCHECK(other->IsFloatConstant());
3115    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3116  }
3117
3118  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3119
3120  bool IsMinusOne() const OVERRIDE {
3121    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3122  }
3123  bool IsZero() const OVERRIDE {
3124    return value_ == 0.0f;
3125  }
3126  bool IsOne() const OVERRIDE {
3127    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3128  }
3129  bool IsNaN() const {
3130    return std::isnan(value_);
3131  }
3132
3133  DECLARE_INSTRUCTION(FloatConstant);
3134
3135 private:
3136  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3137      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
3138  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3139      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
3140
3141  const float value_;
3142
3143  // Only the SsaBuilder and HGraph can create floating-point constants.
3144  friend class SsaBuilder;
3145  friend class HGraph;
3146  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
3147};
3148
3149class HDoubleConstant : public HConstant {
3150 public:
3151  double GetValue() const { return value_; }
3152
3153  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
3154
3155  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3156    DCHECK(other->IsDoubleConstant());
3157    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3158  }
3159
3160  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3161
3162  bool IsMinusOne() const OVERRIDE {
3163    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3164  }
3165  bool IsZero() const OVERRIDE {
3166    return value_ == 0.0;
3167  }
3168  bool IsOne() const OVERRIDE {
3169    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3170  }
3171  bool IsNaN() const {
3172    return std::isnan(value_);
3173  }
3174
3175  DECLARE_INSTRUCTION(DoubleConstant);
3176
3177 private:
3178  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3179      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
3180  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3181      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
3182
3183  const double value_;
3184
3185  // Only the SsaBuilder and HGraph can create floating-point constants.
3186  friend class SsaBuilder;
3187  friend class HGraph;
3188  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
3189};
3190
3191enum class Intrinsics {
3192#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache) k ## Name,
3193#include "intrinsics_list.h"
3194  kNone,
3195  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3196#undef INTRINSICS_LIST
3197#undef OPTIMIZING_INTRINSICS
3198};
3199std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3200
3201enum IntrinsicNeedsEnvironmentOrCache {
3202  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3203  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3204};
3205
3206class HInvoke : public HInstruction {
3207 public:
3208  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3209
3210  bool NeedsEnvironment() const OVERRIDE;
3211
3212  void SetArgumentAt(size_t index, HInstruction* argument) {
3213    SetRawInputAt(index, argument);
3214  }
3215
3216  // Return the number of arguments.  This number can be lower than
3217  // the number of inputs returned by InputCount(), as some invoke
3218  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3219  // inputs at the end of their list of inputs.
3220  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3221
3222  Primitive::Type GetType() const OVERRIDE { return return_type_; }
3223
3224
3225  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3226  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3227
3228  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
3229
3230  Intrinsics GetIntrinsic() const {
3231    return intrinsic_;
3232  }
3233
3234  void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache);
3235
3236  bool IsFromInlinedInvoke() const {
3237    return GetEnvironment()->GetParent() != nullptr;
3238  }
3239
3240  bool CanThrow() const OVERRIDE { return true; }
3241
3242  uint32_t* GetIntrinsicOptimizations() {
3243    return &intrinsic_optimizations_;
3244  }
3245
3246  const uint32_t* GetIntrinsicOptimizations() const {
3247    return &intrinsic_optimizations_;
3248  }
3249
3250  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3251
3252  DECLARE_INSTRUCTION(Invoke);
3253
3254 protected:
3255  HInvoke(ArenaAllocator* arena,
3256          uint32_t number_of_arguments,
3257          uint32_t number_of_other_inputs,
3258          Primitive::Type return_type,
3259          uint32_t dex_pc,
3260          uint32_t dex_method_index,
3261          InvokeType original_invoke_type)
3262    : HInstruction(
3263          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3264      number_of_arguments_(number_of_arguments),
3265      inputs_(number_of_arguments + number_of_other_inputs,
3266              arena->Adapter(kArenaAllocInvokeInputs)),
3267      return_type_(return_type),
3268      dex_method_index_(dex_method_index),
3269      original_invoke_type_(original_invoke_type),
3270      intrinsic_(Intrinsics::kNone),
3271      intrinsic_optimizations_(0) {
3272  }
3273
3274  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3275    return inputs_[index];
3276  }
3277
3278  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3279    inputs_[index] = input;
3280  }
3281
3282  uint32_t number_of_arguments_;
3283  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3284  const Primitive::Type return_type_;
3285  const uint32_t dex_method_index_;
3286  const InvokeType original_invoke_type_;
3287  Intrinsics intrinsic_;
3288
3289  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3290  uint32_t intrinsic_optimizations_;
3291
3292 private:
3293  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3294};
3295
3296class HInvokeUnresolved : public HInvoke {
3297 public:
3298  HInvokeUnresolved(ArenaAllocator* arena,
3299                    uint32_t number_of_arguments,
3300                    Primitive::Type return_type,
3301                    uint32_t dex_pc,
3302                    uint32_t dex_method_index,
3303                    InvokeType invoke_type)
3304      : HInvoke(arena,
3305                number_of_arguments,
3306                0u /* number_of_other_inputs */,
3307                return_type,
3308                dex_pc,
3309                dex_method_index,
3310                invoke_type) {
3311  }
3312
3313  DECLARE_INSTRUCTION(InvokeUnresolved);
3314
3315 private:
3316  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3317};
3318
3319class HInvokeStaticOrDirect : public HInvoke {
3320 public:
3321  // Requirements of this method call regarding the class
3322  // initialization (clinit) check of its declaring class.
3323  enum class ClinitCheckRequirement {
3324    kNone,      // Class already initialized.
3325    kExplicit,  // Static call having explicit clinit check as last input.
3326    kImplicit,  // Static call implicitly requiring a clinit check.
3327  };
3328
3329  // Determines how to load the target ArtMethod*.
3330  enum class MethodLoadKind {
3331    // Use a String init ArtMethod* loaded from Thread entrypoints.
3332    kStringInit,
3333
3334    // Use the method's own ArtMethod* loaded by the register allocator.
3335    kRecursive,
3336
3337    // Use ArtMethod* at a known address, embed the direct address in the code.
3338    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3339    kDirectAddress,
3340
3341    // Use ArtMethod* at an address that will be known at link time, embed the direct
3342    // address in the code. If the image is relocatable, emit .patch_oat entry.
3343    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3344    // the image relocatable or not.
3345    kDirectAddressWithFixup,
3346
3347    // Load from resoved methods array in the dex cache using a PC-relative load.
3348    // Used when we need to use the dex cache, for example for invoke-static that
3349    // may cause class initialization (the entry may point to a resolution method),
3350    // and we know that we can access the dex cache arrays using a PC-relative load.
3351    kDexCachePcRelative,
3352
3353    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3354    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3355    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3356    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3357    kDexCacheViaMethod,
3358  };
3359
3360  // Determines the location of the code pointer.
3361  enum class CodePtrLocation {
3362    // Recursive call, use local PC-relative call instruction.
3363    kCallSelf,
3364
3365    // Use PC-relative call instruction patched at link time.
3366    // Used for calls within an oat file, boot->boot or app->app.
3367    kCallPCRelative,
3368
3369    // Call to a known target address, embed the direct address in code.
3370    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3371    kCallDirect,
3372
3373    // Call to a target address that will be known at link time, embed the direct
3374    // address in code. If the image is relocatable, emit .patch_oat entry.
3375    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3376    // the image relocatable or not.
3377    kCallDirectWithFixup,
3378
3379    // Use code pointer from the ArtMethod*.
3380    // Used when we don't know the target code. This is also the last-resort-kind used when
3381    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3382    kCallArtMethod,
3383  };
3384
3385  struct DispatchInfo {
3386    MethodLoadKind method_load_kind;
3387    CodePtrLocation code_ptr_location;
3388    // The method load data holds
3389    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3390    //     Note that there are multiple string init methods, each having its own offset.
3391    //   - the method address for kDirectAddress
3392    //   - the dex cache arrays offset for kDexCachePcRel.
3393    uint64_t method_load_data;
3394    uint64_t direct_code_ptr;
3395  };
3396
3397  HInvokeStaticOrDirect(ArenaAllocator* arena,
3398                        uint32_t number_of_arguments,
3399                        Primitive::Type return_type,
3400                        uint32_t dex_pc,
3401                        uint32_t method_index,
3402                        MethodReference target_method,
3403                        DispatchInfo dispatch_info,
3404                        InvokeType original_invoke_type,
3405                        InvokeType invoke_type,
3406                        ClinitCheckRequirement clinit_check_requirement)
3407      : HInvoke(arena,
3408                number_of_arguments,
3409                // There is potentially one extra argument for the HCurrentMethod node, and
3410                // potentially one other if the clinit check is explicit, and potentially
3411                // one other if the method is a string factory.
3412                (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
3413                    (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u) +
3414                    (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3415                return_type,
3416                dex_pc,
3417                method_index,
3418                original_invoke_type),
3419        invoke_type_(invoke_type),
3420        clinit_check_requirement_(clinit_check_requirement),
3421        target_method_(target_method),
3422        dispatch_info_(dispatch_info) { }
3423
3424  void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3425    bool had_current_method_input = HasCurrentMethodInput();
3426    bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
3427
3428    // Using the current method is the default and once we find a better
3429    // method load kind, we should not go back to using the current method.
3430    DCHECK(had_current_method_input || !needs_current_method_input);
3431
3432    if (had_current_method_input && !needs_current_method_input) {
3433      DCHECK_EQ(InputAt(GetCurrentMethodInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
3434      RemoveInputAt(GetCurrentMethodInputIndex());
3435    }
3436    dispatch_info_ = dispatch_info;
3437  }
3438
3439  void InsertInputAt(size_t index, HInstruction* input);
3440  void RemoveInputAt(size_t index);
3441
3442  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3443    // We access the method via the dex cache so we can't do an implicit null check.
3444    // TODO: for intrinsics we can generate implicit null checks.
3445    return false;
3446  }
3447
3448  bool CanBeNull() const OVERRIDE {
3449    return return_type_ == Primitive::kPrimNot && !IsStringInit();
3450  }
3451
3452  InvokeType GetInvokeType() const { return invoke_type_; }
3453  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3454  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3455  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3456  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
3457  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3458  uint32_t GetCurrentMethodInputIndex() const { return GetNumberOfArguments(); }
3459  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3460  bool HasPcRelativeDexCache() const {
3461    return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
3462  }
3463  bool HasCurrentMethodInput() const {
3464    // This function can be called only after the invoke has been fully initialized by the builder.
3465    if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
3466      DCHECK(InputAt(GetCurrentMethodInputIndex())->IsCurrentMethod());
3467      return true;
3468    } else {
3469      DCHECK(InputCount() == GetCurrentMethodInputIndex() ||
3470             !InputAt(GetCurrentMethodInputIndex())->IsCurrentMethod());
3471      return false;
3472    }
3473  }
3474  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3475  MethodReference GetTargetMethod() const { return target_method_; }
3476
3477  int32_t GetStringInitOffset() const {
3478    DCHECK(IsStringInit());
3479    return dispatch_info_.method_load_data;
3480  }
3481
3482  uint64_t GetMethodAddress() const {
3483    DCHECK(HasMethodAddress());
3484    return dispatch_info_.method_load_data;
3485  }
3486
3487  uint32_t GetDexCacheArrayOffset() const {
3488    DCHECK(HasPcRelativeDexCache());
3489    return dispatch_info_.method_load_data;
3490  }
3491
3492  uint64_t GetDirectCodePtr() const {
3493    DCHECK(HasDirectCodePtr());
3494    return dispatch_info_.direct_code_ptr;
3495  }
3496
3497  ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; }
3498
3499  // Is this instruction a call to a static method?
3500  bool IsStatic() const {
3501    return GetInvokeType() == kStatic;
3502  }
3503
3504  // Remove the art::HLoadClass instruction set as last input by
3505  // art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of
3506  // the initial art::HClinitCheck instruction (only relevant for
3507  // static calls with explicit clinit check).
3508  void RemoveLoadClassAsLastInput() {
3509    DCHECK(IsStaticWithExplicitClinitCheck());
3510    size_t last_input_index = InputCount() - 1;
3511    HInstruction* last_input = InputAt(last_input_index);
3512    DCHECK(last_input != nullptr);
3513    DCHECK(last_input->IsLoadClass()) << last_input->DebugName();
3514    RemoveAsUserOfInput(last_input_index);
3515    inputs_.pop_back();
3516    clinit_check_requirement_ = ClinitCheckRequirement::kImplicit;
3517    DCHECK(IsStaticWithImplicitClinitCheck());
3518  }
3519
3520  bool IsStringFactoryFor(HFakeString* str) const {
3521    if (!IsStringInit()) return false;
3522    DCHECK(!HasCurrentMethodInput());
3523    if (InputCount() == (number_of_arguments_)) return false;
3524    return InputAt(InputCount() - 1)->AsFakeString() == str;
3525  }
3526
3527  void RemoveFakeStringArgumentAsLastInput() {
3528    DCHECK(IsStringInit());
3529    size_t last_input_index = InputCount() - 1;
3530    HInstruction* last_input = InputAt(last_input_index);
3531    DCHECK(last_input != nullptr);
3532    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
3533    RemoveAsUserOfInput(last_input_index);
3534    inputs_.pop_back();
3535  }
3536
3537  // Is this a call to a static method whose declaring class has an
3538  // explicit intialization check in the graph?
3539  bool IsStaticWithExplicitClinitCheck() const {
3540    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3541  }
3542
3543  // Is this a call to a static method whose declaring class has an
3544  // implicit intialization check requirement?
3545  bool IsStaticWithImplicitClinitCheck() const {
3546    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3547  }
3548
3549  // Does this method load kind need the current method as an input?
3550  static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
3551    return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod;
3552  }
3553
3554  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3555
3556 protected:
3557  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3558    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3559    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3560      HInstruction* input = input_record.GetInstruction();
3561      // `input` is the last input of a static invoke marked as having
3562      // an explicit clinit check. It must either be:
3563      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3564      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3565      DCHECK(input != nullptr);
3566      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3567    }
3568    return input_record;
3569  }
3570
3571 private:
3572  const InvokeType invoke_type_;
3573  ClinitCheckRequirement clinit_check_requirement_;
3574  // The target method may refer to different dex file or method index than the original
3575  // invoke. This happens for sharpened calls and for calls where a method was redeclared
3576  // in derived class to increase visibility.
3577  MethodReference target_method_;
3578  DispatchInfo dispatch_info_;
3579
3580  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3581};
3582
3583class HInvokeVirtual : public HInvoke {
3584 public:
3585  HInvokeVirtual(ArenaAllocator* arena,
3586                 uint32_t number_of_arguments,
3587                 Primitive::Type return_type,
3588                 uint32_t dex_pc,
3589                 uint32_t dex_method_index,
3590                 uint32_t vtable_index)
3591      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3592        vtable_index_(vtable_index) {}
3593
3594  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3595    // TODO: Add implicit null checks in intrinsics.
3596    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3597  }
3598
3599  uint32_t GetVTableIndex() const { return vtable_index_; }
3600
3601  DECLARE_INSTRUCTION(InvokeVirtual);
3602
3603 private:
3604  const uint32_t vtable_index_;
3605
3606  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3607};
3608
3609class HInvokeInterface : public HInvoke {
3610 public:
3611  HInvokeInterface(ArenaAllocator* arena,
3612                   uint32_t number_of_arguments,
3613                   Primitive::Type return_type,
3614                   uint32_t dex_pc,
3615                   uint32_t dex_method_index,
3616                   uint32_t imt_index)
3617      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3618        imt_index_(imt_index) {}
3619
3620  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3621    // TODO: Add implicit null checks in intrinsics.
3622    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3623  }
3624
3625  uint32_t GetImtIndex() const { return imt_index_; }
3626  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3627
3628  DECLARE_INSTRUCTION(InvokeInterface);
3629
3630 private:
3631  const uint32_t imt_index_;
3632
3633  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3634};
3635
3636class HNewInstance : public HExpression<1> {
3637 public:
3638  HNewInstance(HCurrentMethod* current_method,
3639               uint32_t dex_pc,
3640               uint16_t type_index,
3641               const DexFile& dex_file,
3642               QuickEntrypointEnum entrypoint)
3643      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3644        type_index_(type_index),
3645        dex_file_(dex_file),
3646        entrypoint_(entrypoint) {
3647    SetRawInputAt(0, current_method);
3648  }
3649
3650  uint16_t GetTypeIndex() const { return type_index_; }
3651  const DexFile& GetDexFile() const { return dex_file_; }
3652
3653  // Calls runtime so needs an environment.
3654  bool NeedsEnvironment() const OVERRIDE { return true; }
3655  // It may throw when called on:
3656  //   - interfaces
3657  //   - abstract/innaccessible/unknown classes
3658  // TODO: optimize when possible.
3659  bool CanThrow() const OVERRIDE { return true; }
3660
3661  bool CanBeNull() const OVERRIDE { return false; }
3662
3663  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3664
3665  DECLARE_INSTRUCTION(NewInstance);
3666
3667 private:
3668  const uint16_t type_index_;
3669  const DexFile& dex_file_;
3670  const QuickEntrypointEnum entrypoint_;
3671
3672  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3673};
3674
3675class HNeg : public HUnaryOperation {
3676 public:
3677  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3678      : HUnaryOperation(result_type, input, dex_pc) {}
3679
3680  template <typename T> T Compute(T x) const { return -x; }
3681
3682  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3683    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3684  }
3685  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3686    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3687  }
3688
3689  DECLARE_INSTRUCTION(Neg);
3690
3691 private:
3692  DISALLOW_COPY_AND_ASSIGN(HNeg);
3693};
3694
3695class HNewArray : public HExpression<2> {
3696 public:
3697  HNewArray(HInstruction* length,
3698            HCurrentMethod* current_method,
3699            uint32_t dex_pc,
3700            uint16_t type_index,
3701            const DexFile& dex_file,
3702            QuickEntrypointEnum entrypoint)
3703      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3704        type_index_(type_index),
3705        dex_file_(dex_file),
3706        entrypoint_(entrypoint) {
3707    SetRawInputAt(0, length);
3708    SetRawInputAt(1, current_method);
3709  }
3710
3711  uint16_t GetTypeIndex() const { return type_index_; }
3712  const DexFile& GetDexFile() const { return dex_file_; }
3713
3714  // Calls runtime so needs an environment.
3715  bool NeedsEnvironment() const OVERRIDE { return true; }
3716
3717  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3718  bool CanThrow() const OVERRIDE { return true; }
3719
3720  bool CanBeNull() const OVERRIDE { return false; }
3721
3722  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3723
3724  DECLARE_INSTRUCTION(NewArray);
3725
3726 private:
3727  const uint16_t type_index_;
3728  const DexFile& dex_file_;
3729  const QuickEntrypointEnum entrypoint_;
3730
3731  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3732};
3733
3734class HAdd : public HBinaryOperation {
3735 public:
3736  HAdd(Primitive::Type result_type,
3737       HInstruction* left,
3738       HInstruction* right,
3739       uint32_t dex_pc = kNoDexPc)
3740      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3741
3742  bool IsCommutative() const OVERRIDE { return true; }
3743
3744  template <typename T> T Compute(T x, T y) const { return x + y; }
3745
3746  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3747    return GetBlock()->GetGraph()->GetIntConstant(
3748        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3749  }
3750  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3751    return GetBlock()->GetGraph()->GetLongConstant(
3752        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3753  }
3754
3755  DECLARE_INSTRUCTION(Add);
3756
3757 private:
3758  DISALLOW_COPY_AND_ASSIGN(HAdd);
3759};
3760
3761class HSub : public HBinaryOperation {
3762 public:
3763  HSub(Primitive::Type result_type,
3764       HInstruction* left,
3765       HInstruction* right,
3766       uint32_t dex_pc = kNoDexPc)
3767      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3768
3769  template <typename T> T Compute(T x, T y) const { return x - y; }
3770
3771  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3772    return GetBlock()->GetGraph()->GetIntConstant(
3773        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3774  }
3775  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3776    return GetBlock()->GetGraph()->GetLongConstant(
3777        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3778  }
3779
3780  DECLARE_INSTRUCTION(Sub);
3781
3782 private:
3783  DISALLOW_COPY_AND_ASSIGN(HSub);
3784};
3785
3786class HMul : public HBinaryOperation {
3787 public:
3788  HMul(Primitive::Type result_type,
3789       HInstruction* left,
3790       HInstruction* right,
3791       uint32_t dex_pc = kNoDexPc)
3792      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3793
3794  bool IsCommutative() const OVERRIDE { return true; }
3795
3796  template <typename T> T Compute(T x, T y) const { return x * y; }
3797
3798  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3799    return GetBlock()->GetGraph()->GetIntConstant(
3800        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3801  }
3802  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3803    return GetBlock()->GetGraph()->GetLongConstant(
3804        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3805  }
3806
3807  DECLARE_INSTRUCTION(Mul);
3808
3809 private:
3810  DISALLOW_COPY_AND_ASSIGN(HMul);
3811};
3812
3813class HDiv : public HBinaryOperation {
3814 public:
3815  HDiv(Primitive::Type result_type,
3816       HInstruction* left,
3817       HInstruction* right,
3818       uint32_t dex_pc)
3819      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3820
3821  template <typename T>
3822  T Compute(T x, T y) const {
3823    // Our graph structure ensures we never have 0 for `y` during
3824    // constant folding.
3825    DCHECK_NE(y, 0);
3826    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3827    return (y == -1) ? -x : x / y;
3828  }
3829
3830  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3831    return GetBlock()->GetGraph()->GetIntConstant(
3832        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3833  }
3834  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3835    return GetBlock()->GetGraph()->GetLongConstant(
3836        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3837  }
3838
3839  static SideEffects SideEffectsForArchRuntimeCalls() {
3840    // The generated code can use a runtime call.
3841    return SideEffects::CanTriggerGC();
3842  }
3843
3844  DECLARE_INSTRUCTION(Div);
3845
3846 private:
3847  DISALLOW_COPY_AND_ASSIGN(HDiv);
3848};
3849
3850class HRem : public HBinaryOperation {
3851 public:
3852  HRem(Primitive::Type result_type,
3853       HInstruction* left,
3854       HInstruction* right,
3855       uint32_t dex_pc)
3856      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3857
3858  template <typename T>
3859  T Compute(T x, T y) const {
3860    // Our graph structure ensures we never have 0 for `y` during
3861    // constant folding.
3862    DCHECK_NE(y, 0);
3863    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3864    return (y == -1) ? 0 : x % y;
3865  }
3866
3867  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3868    return GetBlock()->GetGraph()->GetIntConstant(
3869        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3870  }
3871  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3872    return GetBlock()->GetGraph()->GetLongConstant(
3873        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3874  }
3875
3876
3877  static SideEffects SideEffectsForArchRuntimeCalls() {
3878    return SideEffects::CanTriggerGC();
3879  }
3880
3881  DECLARE_INSTRUCTION(Rem);
3882
3883 private:
3884  DISALLOW_COPY_AND_ASSIGN(HRem);
3885};
3886
3887class HDivZeroCheck : public HExpression<1> {
3888 public:
3889  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
3890      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
3891    SetRawInputAt(0, value);
3892  }
3893
3894  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
3895
3896  bool CanBeMoved() const OVERRIDE { return true; }
3897
3898  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3899    return true;
3900  }
3901
3902  bool NeedsEnvironment() const OVERRIDE { return true; }
3903  bool CanThrow() const OVERRIDE { return true; }
3904
3905  DECLARE_INSTRUCTION(DivZeroCheck);
3906
3907 private:
3908  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
3909};
3910
3911class HShl : public HBinaryOperation {
3912 public:
3913  HShl(Primitive::Type result_type,
3914       HInstruction* left,
3915       HInstruction* right,
3916       uint32_t dex_pc = kNoDexPc)
3917      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3918
3919  template <typename T, typename U, typename V>
3920  T Compute(T x, U y, V max_shift_value) const {
3921    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3922                  "V is not the unsigned integer type corresponding to T");
3923    return x << (y & max_shift_value);
3924  }
3925
3926  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3927    return GetBlock()->GetGraph()->GetIntConstant(
3928        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3929  }
3930  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3931  // case is handled as `x << static_cast<int>(y)`.
3932  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3933    return GetBlock()->GetGraph()->GetLongConstant(
3934        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3935  }
3936  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3937    return GetBlock()->GetGraph()->GetLongConstant(
3938        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3939  }
3940
3941  DECLARE_INSTRUCTION(Shl);
3942
3943 private:
3944  DISALLOW_COPY_AND_ASSIGN(HShl);
3945};
3946
3947class HShr : public HBinaryOperation {
3948 public:
3949  HShr(Primitive::Type result_type,
3950       HInstruction* left,
3951       HInstruction* right,
3952       uint32_t dex_pc = kNoDexPc)
3953      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3954
3955  template <typename T, typename U, typename V>
3956  T Compute(T x, U y, V max_shift_value) const {
3957    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3958                  "V is not the unsigned integer type corresponding to T");
3959    return x >> (y & max_shift_value);
3960  }
3961
3962  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3963    return GetBlock()->GetGraph()->GetIntConstant(
3964        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3965  }
3966  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3967  // case is handled as `x >> static_cast<int>(y)`.
3968  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3969    return GetBlock()->GetGraph()->GetLongConstant(
3970        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3971  }
3972  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3973    return GetBlock()->GetGraph()->GetLongConstant(
3974        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3975  }
3976
3977  DECLARE_INSTRUCTION(Shr);
3978
3979 private:
3980  DISALLOW_COPY_AND_ASSIGN(HShr);
3981};
3982
3983class HUShr : public HBinaryOperation {
3984 public:
3985  HUShr(Primitive::Type result_type,
3986        HInstruction* left,
3987        HInstruction* right,
3988        uint32_t dex_pc = kNoDexPc)
3989      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3990
3991  template <typename T, typename U, typename V>
3992  T Compute(T x, U y, V max_shift_value) const {
3993    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3994                  "V is not the unsigned integer type corresponding to T");
3995    V ux = static_cast<V>(x);
3996    return static_cast<T>(ux >> (y & max_shift_value));
3997  }
3998
3999  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4000    return GetBlock()->GetGraph()->GetIntConstant(
4001        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4002  }
4003  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4004  // case is handled as `x >>> static_cast<int>(y)`.
4005  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4006    return GetBlock()->GetGraph()->GetLongConstant(
4007        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4008  }
4009  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4010    return GetBlock()->GetGraph()->GetLongConstant(
4011        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4012  }
4013
4014  DECLARE_INSTRUCTION(UShr);
4015
4016 private:
4017  DISALLOW_COPY_AND_ASSIGN(HUShr);
4018};
4019
4020class HAnd : public HBinaryOperation {
4021 public:
4022  HAnd(Primitive::Type result_type,
4023       HInstruction* left,
4024       HInstruction* right,
4025       uint32_t dex_pc = kNoDexPc)
4026      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4027
4028  bool IsCommutative() const OVERRIDE { return true; }
4029
4030  template <typename T, typename U>
4031  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
4032
4033  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4034    return GetBlock()->GetGraph()->GetIntConstant(
4035        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4036  }
4037  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4038    return GetBlock()->GetGraph()->GetLongConstant(
4039        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4040  }
4041  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4042    return GetBlock()->GetGraph()->GetLongConstant(
4043        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4044  }
4045  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4046    return GetBlock()->GetGraph()->GetLongConstant(
4047        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4048  }
4049
4050  DECLARE_INSTRUCTION(And);
4051
4052 private:
4053  DISALLOW_COPY_AND_ASSIGN(HAnd);
4054};
4055
4056class HOr : public HBinaryOperation {
4057 public:
4058  HOr(Primitive::Type result_type,
4059      HInstruction* left,
4060      HInstruction* right,
4061      uint32_t dex_pc = kNoDexPc)
4062      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4063
4064  bool IsCommutative() const OVERRIDE { return true; }
4065
4066  template <typename T, typename U>
4067  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
4068
4069  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4070    return GetBlock()->GetGraph()->GetIntConstant(
4071        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4072  }
4073  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4074    return GetBlock()->GetGraph()->GetLongConstant(
4075        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4076  }
4077  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4078    return GetBlock()->GetGraph()->GetLongConstant(
4079        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4080  }
4081  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4082    return GetBlock()->GetGraph()->GetLongConstant(
4083        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4084  }
4085
4086  DECLARE_INSTRUCTION(Or);
4087
4088 private:
4089  DISALLOW_COPY_AND_ASSIGN(HOr);
4090};
4091
4092class HXor : public HBinaryOperation {
4093 public:
4094  HXor(Primitive::Type result_type,
4095       HInstruction* left,
4096       HInstruction* right,
4097       uint32_t dex_pc = kNoDexPc)
4098      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4099
4100  bool IsCommutative() const OVERRIDE { return true; }
4101
4102  template <typename T, typename U>
4103  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
4104
4105  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4106    return GetBlock()->GetGraph()->GetIntConstant(
4107        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4108  }
4109  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4110    return GetBlock()->GetGraph()->GetLongConstant(
4111        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4112  }
4113  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4114    return GetBlock()->GetGraph()->GetLongConstant(
4115        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4116  }
4117  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4118    return GetBlock()->GetGraph()->GetLongConstant(
4119        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4120  }
4121
4122  DECLARE_INSTRUCTION(Xor);
4123
4124 private:
4125  DISALLOW_COPY_AND_ASSIGN(HXor);
4126};
4127
4128// The value of a parameter in this method. Its location depends on
4129// the calling convention.
4130class HParameterValue : public HExpression<0> {
4131 public:
4132  HParameterValue(const DexFile& dex_file,
4133                  uint16_t type_index,
4134                  uint8_t index,
4135                  Primitive::Type parameter_type,
4136                  bool is_this = false)
4137      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4138        dex_file_(dex_file),
4139        type_index_(type_index),
4140        index_(index),
4141        is_this_(is_this),
4142        can_be_null_(!is_this) {}
4143
4144  const DexFile& GetDexFile() const { return dex_file_; }
4145  uint16_t GetTypeIndex() const { return type_index_; }
4146  uint8_t GetIndex() const { return index_; }
4147  bool IsThis() const { return is_this_; }
4148
4149  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4150  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4151
4152  DECLARE_INSTRUCTION(ParameterValue);
4153
4154 private:
4155  const DexFile& dex_file_;
4156  const uint16_t type_index_;
4157  // The index of this parameter in the parameters list. Must be less
4158  // than HGraph::number_of_in_vregs_.
4159  const uint8_t index_;
4160
4161  // Whether or not the parameter value corresponds to 'this' argument.
4162  const bool is_this_;
4163
4164  bool can_be_null_;
4165
4166  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4167};
4168
4169class HNot : public HUnaryOperation {
4170 public:
4171  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4172      : HUnaryOperation(result_type, input, dex_pc) {}
4173
4174  bool CanBeMoved() const OVERRIDE { return true; }
4175  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4176    return true;
4177  }
4178
4179  template <typename T> T Compute(T x) const { return ~x; }
4180
4181  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4182    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4183  }
4184  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4185    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4186  }
4187
4188  DECLARE_INSTRUCTION(Not);
4189
4190 private:
4191  DISALLOW_COPY_AND_ASSIGN(HNot);
4192};
4193
4194class HBooleanNot : public HUnaryOperation {
4195 public:
4196  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4197      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4198
4199  bool CanBeMoved() const OVERRIDE { return true; }
4200  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4201    return true;
4202  }
4203
4204  template <typename T> bool Compute(T x) const {
4205    DCHECK(IsUint<1>(x));
4206    return !x;
4207  }
4208
4209  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4210    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4211  }
4212  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4213    LOG(FATAL) << DebugName() << " is not defined for long values";
4214    UNREACHABLE();
4215  }
4216
4217  DECLARE_INSTRUCTION(BooleanNot);
4218
4219 private:
4220  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4221};
4222
4223class HTypeConversion : public HExpression<1> {
4224 public:
4225  // Instantiate a type conversion of `input` to `result_type`.
4226  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4227      : HExpression(result_type,
4228                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4229                    dex_pc) {
4230    SetRawInputAt(0, input);
4231    DCHECK_NE(input->GetType(), result_type);
4232  }
4233
4234  HInstruction* GetInput() const { return InputAt(0); }
4235  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4236  Primitive::Type GetResultType() const { return GetType(); }
4237
4238  // Required by the x86, ARM, MIPS and MIPS64 code generators when producing calls
4239  // to the runtime.
4240
4241  bool CanBeMoved() const OVERRIDE { return true; }
4242  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4243
4244  // Try to statically evaluate the conversion and return a HConstant
4245  // containing the result.  If the input cannot be converted, return nullptr.
4246  HConstant* TryStaticEvaluation() const;
4247
4248  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4249                                                    Primitive::Type result_type) {
4250    // Some architectures may not require the 'GC' side effects, but at this point
4251    // in the compilation process we do not know what architecture we will
4252    // generate code for, so we must be conservative.
4253    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4254        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4255      return SideEffects::CanTriggerGC();
4256    }
4257    return SideEffects::None();
4258  }
4259
4260  DECLARE_INSTRUCTION(TypeConversion);
4261
4262 private:
4263  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4264};
4265
4266static constexpr uint32_t kNoRegNumber = -1;
4267
4268class HPhi : public HInstruction {
4269 public:
4270  HPhi(ArenaAllocator* arena,
4271       uint32_t reg_number,
4272       size_t number_of_inputs,
4273       Primitive::Type type,
4274       uint32_t dex_pc = kNoDexPc)
4275      : HInstruction(SideEffects::None(), dex_pc),
4276        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4277        reg_number_(reg_number),
4278        type_(type),
4279        is_live_(false),
4280        can_be_null_(true) {
4281  }
4282
4283  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4284  static Primitive::Type ToPhiType(Primitive::Type type) {
4285    switch (type) {
4286      case Primitive::kPrimBoolean:
4287      case Primitive::kPrimByte:
4288      case Primitive::kPrimShort:
4289      case Primitive::kPrimChar:
4290        return Primitive::kPrimInt;
4291      default:
4292        return type;
4293    }
4294  }
4295
4296  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4297
4298  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4299
4300  void AddInput(HInstruction* input);
4301  void RemoveInputAt(size_t index);
4302
4303  Primitive::Type GetType() const OVERRIDE { return type_; }
4304  void SetType(Primitive::Type type) { type_ = type; }
4305
4306  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4307  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4308
4309  uint32_t GetRegNumber() const { return reg_number_; }
4310
4311  void SetDead() { is_live_ = false; }
4312  void SetLive() { is_live_ = true; }
4313  bool IsDead() const { return !is_live_; }
4314  bool IsLive() const { return is_live_; }
4315
4316  bool IsVRegEquivalentOf(HInstruction* other) const {
4317    return other != nullptr
4318        && other->IsPhi()
4319        && other->AsPhi()->GetBlock() == GetBlock()
4320        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4321  }
4322
4323  // Returns the next equivalent phi (starting from the current one) or null if there is none.
4324  // An equivalent phi is a phi having the same dex register and type.
4325  // It assumes that phis with the same dex register are adjacent.
4326  HPhi* GetNextEquivalentPhiWithSameType() {
4327    HInstruction* next = GetNext();
4328    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
4329      if (next->GetType() == GetType()) {
4330        return next->AsPhi();
4331      }
4332      next = next->GetNext();
4333    }
4334    return nullptr;
4335  }
4336
4337  DECLARE_INSTRUCTION(Phi);
4338
4339 protected:
4340  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
4341    return inputs_[index];
4342  }
4343
4344  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
4345    inputs_[index] = input;
4346  }
4347
4348 private:
4349  ArenaVector<HUserRecord<HInstruction*> > inputs_;
4350  const uint32_t reg_number_;
4351  Primitive::Type type_;
4352  bool is_live_;
4353  bool can_be_null_;
4354
4355  DISALLOW_COPY_AND_ASSIGN(HPhi);
4356};
4357
4358class HNullCheck : public HExpression<1> {
4359 public:
4360  HNullCheck(HInstruction* value, uint32_t dex_pc)
4361      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
4362    SetRawInputAt(0, value);
4363  }
4364
4365  bool CanBeMoved() const OVERRIDE { return true; }
4366  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4367    return true;
4368  }
4369
4370  bool NeedsEnvironment() const OVERRIDE { return true; }
4371
4372  bool CanThrow() const OVERRIDE { return true; }
4373
4374  bool CanBeNull() const OVERRIDE { return false; }
4375
4376
4377  DECLARE_INSTRUCTION(NullCheck);
4378
4379 private:
4380  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4381};
4382
4383class FieldInfo : public ValueObject {
4384 public:
4385  FieldInfo(MemberOffset field_offset,
4386            Primitive::Type field_type,
4387            bool is_volatile,
4388            uint32_t index,
4389            uint16_t declaring_class_def_index,
4390            const DexFile& dex_file,
4391            Handle<mirror::DexCache> dex_cache)
4392      : field_offset_(field_offset),
4393        field_type_(field_type),
4394        is_volatile_(is_volatile),
4395        index_(index),
4396        declaring_class_def_index_(declaring_class_def_index),
4397        dex_file_(dex_file),
4398        dex_cache_(dex_cache) {}
4399
4400  MemberOffset GetFieldOffset() const { return field_offset_; }
4401  Primitive::Type GetFieldType() const { return field_type_; }
4402  uint32_t GetFieldIndex() const { return index_; }
4403  uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
4404  const DexFile& GetDexFile() const { return dex_file_; }
4405  bool IsVolatile() const { return is_volatile_; }
4406  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4407
4408 private:
4409  const MemberOffset field_offset_;
4410  const Primitive::Type field_type_;
4411  const bool is_volatile_;
4412  const uint32_t index_;
4413  const uint16_t declaring_class_def_index_;
4414  const DexFile& dex_file_;
4415  const Handle<mirror::DexCache> dex_cache_;
4416};
4417
4418class HInstanceFieldGet : public HExpression<1> {
4419 public:
4420  HInstanceFieldGet(HInstruction* value,
4421                    Primitive::Type field_type,
4422                    MemberOffset field_offset,
4423                    bool is_volatile,
4424                    uint32_t field_idx,
4425                    uint16_t declaring_class_def_index,
4426                    const DexFile& dex_file,
4427                    Handle<mirror::DexCache> dex_cache,
4428                    uint32_t dex_pc)
4429      : HExpression(field_type,
4430                    SideEffects::FieldReadOfType(field_type, is_volatile),
4431                    dex_pc),
4432        field_info_(field_offset,
4433                    field_type,
4434                    is_volatile,
4435                    field_idx,
4436                    declaring_class_def_index,
4437                    dex_file,
4438                    dex_cache) {
4439    SetRawInputAt(0, value);
4440  }
4441
4442  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4443
4444  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4445    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
4446    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4447  }
4448
4449  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4450    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4451  }
4452
4453  size_t ComputeHashCode() const OVERRIDE {
4454    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4455  }
4456
4457  const FieldInfo& GetFieldInfo() const { return field_info_; }
4458  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4459  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4460  bool IsVolatile() const { return field_info_.IsVolatile(); }
4461
4462  DECLARE_INSTRUCTION(InstanceFieldGet);
4463
4464 private:
4465  const FieldInfo field_info_;
4466
4467  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
4468};
4469
4470class HInstanceFieldSet : public HTemplateInstruction<2> {
4471 public:
4472  HInstanceFieldSet(HInstruction* object,
4473                    HInstruction* value,
4474                    Primitive::Type field_type,
4475                    MemberOffset field_offset,
4476                    bool is_volatile,
4477                    uint32_t field_idx,
4478                    uint16_t declaring_class_def_index,
4479                    const DexFile& dex_file,
4480                    Handle<mirror::DexCache> dex_cache,
4481                    uint32_t dex_pc)
4482      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4483                             dex_pc),
4484        field_info_(field_offset,
4485                    field_type,
4486                    is_volatile,
4487                    field_idx,
4488                    declaring_class_def_index,
4489                    dex_file,
4490                    dex_cache),
4491        value_can_be_null_(true) {
4492    SetRawInputAt(0, object);
4493    SetRawInputAt(1, value);
4494  }
4495
4496  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4497    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4498  }
4499
4500  const FieldInfo& GetFieldInfo() const { return field_info_; }
4501  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4502  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4503  bool IsVolatile() const { return field_info_.IsVolatile(); }
4504  HInstruction* GetValue() const { return InputAt(1); }
4505  bool GetValueCanBeNull() const { return value_can_be_null_; }
4506  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4507
4508  DECLARE_INSTRUCTION(InstanceFieldSet);
4509
4510 private:
4511  const FieldInfo field_info_;
4512  bool value_can_be_null_;
4513
4514  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
4515};
4516
4517class HArrayGet : public HExpression<2> {
4518 public:
4519  HArrayGet(HInstruction* array,
4520            HInstruction* index,
4521            Primitive::Type type,
4522            uint32_t dex_pc,
4523            SideEffects additional_side_effects = SideEffects::None())
4524      : HExpression(type,
4525                    SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
4526                    dex_pc) {
4527    SetRawInputAt(0, array);
4528    SetRawInputAt(1, index);
4529  }
4530
4531  bool CanBeMoved() const OVERRIDE { return true; }
4532  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4533    return true;
4534  }
4535  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4536    // TODO: We can be smarter here.
4537    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
4538    // which generates the implicit null check. There are cases when these can be removed
4539    // to produce better code. If we ever add optimizations to do so we should allow an
4540    // implicit check here (as long as the address falls in the first page).
4541    return false;
4542  }
4543
4544  void SetType(Primitive::Type type) { type_ = type; }
4545
4546  HInstruction* GetArray() const { return InputAt(0); }
4547  HInstruction* GetIndex() const { return InputAt(1); }
4548
4549  DECLARE_INSTRUCTION(ArrayGet);
4550
4551 private:
4552  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4553};
4554
4555class HArraySet : public HTemplateInstruction<3> {
4556 public:
4557  HArraySet(HInstruction* array,
4558            HInstruction* index,
4559            HInstruction* value,
4560            Primitive::Type expected_component_type,
4561            uint32_t dex_pc,
4562            SideEffects additional_side_effects = SideEffects::None())
4563      : HTemplateInstruction(
4564            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4565                SideEffectsForArchRuntimeCalls(value->GetType())).Union(
4566                    additional_side_effects),
4567            dex_pc),
4568        expected_component_type_(expected_component_type),
4569        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4570        value_can_be_null_(true),
4571        static_type_of_array_is_object_array_(false) {
4572    SetRawInputAt(0, array);
4573    SetRawInputAt(1, index);
4574    SetRawInputAt(2, value);
4575  }
4576
4577  bool NeedsEnvironment() const OVERRIDE {
4578    // We currently always call a runtime method to catch array store
4579    // exceptions.
4580    return needs_type_check_;
4581  }
4582
4583  // Can throw ArrayStoreException.
4584  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4585
4586  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4587    // TODO: Same as for ArrayGet.
4588    return false;
4589  }
4590
4591  void ClearNeedsTypeCheck() {
4592    needs_type_check_ = false;
4593  }
4594
4595  void ClearValueCanBeNull() {
4596    value_can_be_null_ = false;
4597  }
4598
4599  void SetStaticTypeOfArrayIsObjectArray() {
4600    static_type_of_array_is_object_array_ = true;
4601  }
4602
4603  bool GetValueCanBeNull() const { return value_can_be_null_; }
4604  bool NeedsTypeCheck() const { return needs_type_check_; }
4605  bool StaticTypeOfArrayIsObjectArray() const { return static_type_of_array_is_object_array_; }
4606
4607  HInstruction* GetArray() const { return InputAt(0); }
4608  HInstruction* GetIndex() const { return InputAt(1); }
4609  HInstruction* GetValue() const { return InputAt(2); }
4610
4611  Primitive::Type GetComponentType() const {
4612    // The Dex format does not type floating point index operations. Since the
4613    // `expected_component_type_` is set during building and can therefore not
4614    // be correct, we also check what is the value type. If it is a floating
4615    // point type, we must use that type.
4616    Primitive::Type value_type = GetValue()->GetType();
4617    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4618        ? value_type
4619        : expected_component_type_;
4620  }
4621
4622  Primitive::Type GetRawExpectedComponentType() const {
4623    return expected_component_type_;
4624  }
4625
4626  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4627    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4628  }
4629
4630  DECLARE_INSTRUCTION(ArraySet);
4631
4632 private:
4633  const Primitive::Type expected_component_type_;
4634  bool needs_type_check_;
4635  bool value_can_be_null_;
4636  // Cached information for the reference_type_info_ so that codegen
4637  // does not need to inspect the static type.
4638  bool static_type_of_array_is_object_array_;
4639
4640  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4641};
4642
4643class HArrayLength : public HExpression<1> {
4644 public:
4645  HArrayLength(HInstruction* array, uint32_t dex_pc)
4646      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
4647    // Note that arrays do not change length, so the instruction does not
4648    // depend on any write.
4649    SetRawInputAt(0, array);
4650  }
4651
4652  bool CanBeMoved() const OVERRIDE { return true; }
4653  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4654    return true;
4655  }
4656  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4657    return obj == InputAt(0);
4658  }
4659
4660  DECLARE_INSTRUCTION(ArrayLength);
4661
4662 private:
4663  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4664};
4665
4666class HBoundsCheck : public HExpression<2> {
4667 public:
4668  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4669      : HExpression(index->GetType(), SideEffects::None(), dex_pc) {
4670    DCHECK(index->GetType() == Primitive::kPrimInt);
4671    SetRawInputAt(0, index);
4672    SetRawInputAt(1, length);
4673  }
4674
4675  bool CanBeMoved() const OVERRIDE { return true; }
4676  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4677    return true;
4678  }
4679
4680  bool NeedsEnvironment() const OVERRIDE { return true; }
4681
4682  bool CanThrow() const OVERRIDE { return true; }
4683
4684  HInstruction* GetIndex() const { return InputAt(0); }
4685
4686  DECLARE_INSTRUCTION(BoundsCheck);
4687
4688 private:
4689  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4690};
4691
4692/**
4693 * Some DEX instructions are folded into multiple HInstructions that need
4694 * to stay live until the last HInstruction. This class
4695 * is used as a marker for the baseline compiler to ensure its preceding
4696 * HInstruction stays live. `index` represents the stack location index of the
4697 * instruction (the actual offset is computed as index * vreg_size).
4698 */
4699class HTemporary : public HTemplateInstruction<0> {
4700 public:
4701  explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc)
4702      : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {}
4703
4704  size_t GetIndex() const { return index_; }
4705
4706  Primitive::Type GetType() const OVERRIDE {
4707    // The previous instruction is the one that will be stored in the temporary location.
4708    DCHECK(GetPrevious() != nullptr);
4709    return GetPrevious()->GetType();
4710  }
4711
4712  DECLARE_INSTRUCTION(Temporary);
4713
4714 private:
4715  const size_t index_;
4716  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4717};
4718
4719class HSuspendCheck : public HTemplateInstruction<0> {
4720 public:
4721  explicit HSuspendCheck(uint32_t dex_pc)
4722      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
4723
4724  bool NeedsEnvironment() const OVERRIDE {
4725    return true;
4726  }
4727
4728  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4729  SlowPathCode* GetSlowPath() const { return slow_path_; }
4730
4731  DECLARE_INSTRUCTION(SuspendCheck);
4732
4733 private:
4734  // Only used for code generation, in order to share the same slow path between back edges
4735  // of a same loop.
4736  SlowPathCode* slow_path_;
4737
4738  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4739};
4740
4741/**
4742 * Instruction to load a Class object.
4743 */
4744class HLoadClass : public HExpression<1> {
4745 public:
4746  HLoadClass(HCurrentMethod* current_method,
4747             uint16_t type_index,
4748             const DexFile& dex_file,
4749             bool is_referrers_class,
4750             uint32_t dex_pc,
4751             bool needs_access_check)
4752      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4753        type_index_(type_index),
4754        dex_file_(dex_file),
4755        is_referrers_class_(is_referrers_class),
4756        generate_clinit_check_(false),
4757        needs_access_check_(needs_access_check),
4758        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4759    // Referrers class should not need access check. We never inline unverified
4760    // methods so we can't possibly end up in this situation.
4761    DCHECK(!is_referrers_class_ || !needs_access_check_);
4762    SetRawInputAt(0, current_method);
4763  }
4764
4765  bool CanBeMoved() const OVERRIDE { return true; }
4766
4767  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4768    // Note that we don't need to test for generate_clinit_check_.
4769    // Whether or not we need to generate the clinit check is processed in
4770    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
4771    return other->AsLoadClass()->type_index_ == type_index_ &&
4772        other->AsLoadClass()->needs_access_check_ == needs_access_check_;
4773  }
4774
4775  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4776
4777  uint16_t GetTypeIndex() const { return type_index_; }
4778  bool IsReferrersClass() const { return is_referrers_class_; }
4779  bool CanBeNull() const OVERRIDE { return false; }
4780
4781  bool NeedsEnvironment() const OVERRIDE {
4782    // Will call runtime and load the class if the class is not loaded yet.
4783    // TODO: finer grain decision.
4784    return !is_referrers_class_;
4785  }
4786
4787  bool MustGenerateClinitCheck() const {
4788    return generate_clinit_check_;
4789  }
4790  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4791    // The entrypoint the code generator is going to call does not do
4792    // clinit of the class.
4793    DCHECK(!NeedsAccessCheck());
4794    generate_clinit_check_ = generate_clinit_check;
4795  }
4796
4797  bool CanCallRuntime() const {
4798    return MustGenerateClinitCheck() || !is_referrers_class_ || needs_access_check_;
4799  }
4800
4801  bool NeedsAccessCheck() const {
4802    return needs_access_check_;
4803  }
4804
4805  bool CanThrow() const OVERRIDE {
4806    // May call runtime and and therefore can throw.
4807    // TODO: finer grain decision.
4808    return CanCallRuntime();
4809  }
4810
4811  ReferenceTypeInfo GetLoadedClassRTI() {
4812    return loaded_class_rti_;
4813  }
4814
4815  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4816    // Make sure we only set exact types (the loaded class should never be merged).
4817    DCHECK(rti.IsExact());
4818    loaded_class_rti_ = rti;
4819  }
4820
4821  const DexFile& GetDexFile() { return dex_file_; }
4822
4823  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !is_referrers_class_; }
4824
4825  static SideEffects SideEffectsForArchRuntimeCalls() {
4826    return SideEffects::CanTriggerGC();
4827  }
4828
4829  DECLARE_INSTRUCTION(LoadClass);
4830
4831 private:
4832  const uint16_t type_index_;
4833  const DexFile& dex_file_;
4834  const bool is_referrers_class_;
4835  // Whether this instruction must generate the initialization check.
4836  // Used for code generation.
4837  bool generate_clinit_check_;
4838  bool needs_access_check_;
4839
4840  ReferenceTypeInfo loaded_class_rti_;
4841
4842  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
4843};
4844
4845class HLoadString : public HExpression<1> {
4846 public:
4847  HLoadString(HCurrentMethod* current_method, uint32_t string_index, uint32_t dex_pc)
4848      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4849        string_index_(string_index) {
4850    SetRawInputAt(0, current_method);
4851  }
4852
4853  bool CanBeMoved() const OVERRIDE { return true; }
4854
4855  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4856    return other->AsLoadString()->string_index_ == string_index_;
4857  }
4858
4859  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
4860
4861  uint32_t GetStringIndex() const { return string_index_; }
4862
4863  // TODO: Can we deopt or debug when we resolve a string?
4864  bool NeedsEnvironment() const OVERRIDE { return false; }
4865  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return true; }
4866  bool CanBeNull() const OVERRIDE { return false; }
4867
4868  static SideEffects SideEffectsForArchRuntimeCalls() {
4869    return SideEffects::CanTriggerGC();
4870  }
4871
4872  DECLARE_INSTRUCTION(LoadString);
4873
4874 private:
4875  const uint32_t string_index_;
4876
4877  DISALLOW_COPY_AND_ASSIGN(HLoadString);
4878};
4879
4880/**
4881 * Performs an initialization check on its Class object input.
4882 */
4883class HClinitCheck : public HExpression<1> {
4884 public:
4885  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
4886      : HExpression(
4887            Primitive::kPrimNot,
4888            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
4889            dex_pc) {
4890    SetRawInputAt(0, constant);
4891  }
4892
4893  bool CanBeMoved() const OVERRIDE { return true; }
4894  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4895    return true;
4896  }
4897
4898  bool NeedsEnvironment() const OVERRIDE {
4899    // May call runtime to initialize the class.
4900    return true;
4901  }
4902
4903
4904  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
4905
4906  DECLARE_INSTRUCTION(ClinitCheck);
4907
4908 private:
4909  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
4910};
4911
4912class HStaticFieldGet : public HExpression<1> {
4913 public:
4914  HStaticFieldGet(HInstruction* cls,
4915                  Primitive::Type field_type,
4916                  MemberOffset field_offset,
4917                  bool is_volatile,
4918                  uint32_t field_idx,
4919                  uint16_t declaring_class_def_index,
4920                  const DexFile& dex_file,
4921                  Handle<mirror::DexCache> dex_cache,
4922                  uint32_t dex_pc)
4923      : HExpression(field_type,
4924                    SideEffects::FieldReadOfType(field_type, is_volatile),
4925                    dex_pc),
4926        field_info_(field_offset,
4927                    field_type,
4928                    is_volatile,
4929                    field_idx,
4930                    declaring_class_def_index,
4931                    dex_file,
4932                    dex_cache) {
4933    SetRawInputAt(0, cls);
4934  }
4935
4936
4937  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4938
4939  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4940    HStaticFieldGet* other_get = other->AsStaticFieldGet();
4941    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4942  }
4943
4944  size_t ComputeHashCode() const OVERRIDE {
4945    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4946  }
4947
4948  const FieldInfo& GetFieldInfo() const { return field_info_; }
4949  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4950  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4951  bool IsVolatile() const { return field_info_.IsVolatile(); }
4952
4953  DECLARE_INSTRUCTION(StaticFieldGet);
4954
4955 private:
4956  const FieldInfo field_info_;
4957
4958  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
4959};
4960
4961class HStaticFieldSet : public HTemplateInstruction<2> {
4962 public:
4963  HStaticFieldSet(HInstruction* cls,
4964                  HInstruction* value,
4965                  Primitive::Type field_type,
4966                  MemberOffset field_offset,
4967                  bool is_volatile,
4968                  uint32_t field_idx,
4969                  uint16_t declaring_class_def_index,
4970                  const DexFile& dex_file,
4971                  Handle<mirror::DexCache> dex_cache,
4972                  uint32_t dex_pc)
4973      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4974                             dex_pc),
4975        field_info_(field_offset,
4976                    field_type,
4977                    is_volatile,
4978                    field_idx,
4979                    declaring_class_def_index,
4980                    dex_file,
4981                    dex_cache),
4982        value_can_be_null_(true) {
4983    SetRawInputAt(0, cls);
4984    SetRawInputAt(1, value);
4985  }
4986
4987  const FieldInfo& GetFieldInfo() const { return field_info_; }
4988  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4989  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4990  bool IsVolatile() const { return field_info_.IsVolatile(); }
4991
4992  HInstruction* GetValue() const { return InputAt(1); }
4993  bool GetValueCanBeNull() const { return value_can_be_null_; }
4994  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4995
4996  DECLARE_INSTRUCTION(StaticFieldSet);
4997
4998 private:
4999  const FieldInfo field_info_;
5000  bool value_can_be_null_;
5001
5002  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
5003};
5004
5005class HUnresolvedInstanceFieldGet : public HExpression<1> {
5006 public:
5007  HUnresolvedInstanceFieldGet(HInstruction* obj,
5008                              Primitive::Type field_type,
5009                              uint32_t field_index,
5010                              uint32_t dex_pc)
5011      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5012        field_index_(field_index) {
5013    SetRawInputAt(0, obj);
5014  }
5015
5016  bool NeedsEnvironment() const OVERRIDE { return true; }
5017  bool CanThrow() const OVERRIDE { return true; }
5018
5019  Primitive::Type GetFieldType() const { return GetType(); }
5020  uint32_t GetFieldIndex() const { return field_index_; }
5021
5022  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
5023
5024 private:
5025  const uint32_t field_index_;
5026
5027  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
5028};
5029
5030class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
5031 public:
5032  HUnresolvedInstanceFieldSet(HInstruction* obj,
5033                              HInstruction* value,
5034                              Primitive::Type field_type,
5035                              uint32_t field_index,
5036                              uint32_t dex_pc)
5037      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5038        field_type_(field_type),
5039        field_index_(field_index) {
5040    DCHECK_EQ(field_type, value->GetType());
5041    SetRawInputAt(0, obj);
5042    SetRawInputAt(1, value);
5043  }
5044
5045  bool NeedsEnvironment() const OVERRIDE { return true; }
5046  bool CanThrow() const OVERRIDE { return true; }
5047
5048  Primitive::Type GetFieldType() const { return field_type_; }
5049  uint32_t GetFieldIndex() const { return field_index_; }
5050
5051  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
5052
5053 private:
5054  const Primitive::Type field_type_;
5055  const uint32_t field_index_;
5056
5057  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
5058};
5059
5060class HUnresolvedStaticFieldGet : public HExpression<0> {
5061 public:
5062  HUnresolvedStaticFieldGet(Primitive::Type field_type,
5063                            uint32_t field_index,
5064                            uint32_t dex_pc)
5065      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5066        field_index_(field_index) {
5067  }
5068
5069  bool NeedsEnvironment() const OVERRIDE { return true; }
5070  bool CanThrow() const OVERRIDE { return true; }
5071
5072  Primitive::Type GetFieldType() const { return GetType(); }
5073  uint32_t GetFieldIndex() const { return field_index_; }
5074
5075  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
5076
5077 private:
5078  const uint32_t field_index_;
5079
5080  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
5081};
5082
5083class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
5084 public:
5085  HUnresolvedStaticFieldSet(HInstruction* value,
5086                            Primitive::Type field_type,
5087                            uint32_t field_index,
5088                            uint32_t dex_pc)
5089      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5090        field_type_(field_type),
5091        field_index_(field_index) {
5092    DCHECK_EQ(field_type, value->GetType());
5093    SetRawInputAt(0, value);
5094  }
5095
5096  bool NeedsEnvironment() const OVERRIDE { return true; }
5097  bool CanThrow() const OVERRIDE { return true; }
5098
5099  Primitive::Type GetFieldType() const { return field_type_; }
5100  uint32_t GetFieldIndex() const { return field_index_; }
5101
5102  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
5103
5104 private:
5105  const Primitive::Type field_type_;
5106  const uint32_t field_index_;
5107
5108  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
5109};
5110
5111// Implement the move-exception DEX instruction.
5112class HLoadException : public HExpression<0> {
5113 public:
5114  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
5115      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
5116
5117  bool CanBeNull() const OVERRIDE { return false; }
5118
5119  DECLARE_INSTRUCTION(LoadException);
5120
5121 private:
5122  DISALLOW_COPY_AND_ASSIGN(HLoadException);
5123};
5124
5125// Implicit part of move-exception which clears thread-local exception storage.
5126// Must not be removed because the runtime expects the TLS to get cleared.
5127class HClearException : public HTemplateInstruction<0> {
5128 public:
5129  explicit HClearException(uint32_t dex_pc = kNoDexPc)
5130      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
5131
5132  DECLARE_INSTRUCTION(ClearException);
5133
5134 private:
5135  DISALLOW_COPY_AND_ASSIGN(HClearException);
5136};
5137
5138class HThrow : public HTemplateInstruction<1> {
5139 public:
5140  HThrow(HInstruction* exception, uint32_t dex_pc)
5141      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
5142    SetRawInputAt(0, exception);
5143  }
5144
5145  bool IsControlFlow() const OVERRIDE { return true; }
5146
5147  bool NeedsEnvironment() const OVERRIDE { return true; }
5148
5149  bool CanThrow() const OVERRIDE { return true; }
5150
5151
5152  DECLARE_INSTRUCTION(Throw);
5153
5154 private:
5155  DISALLOW_COPY_AND_ASSIGN(HThrow);
5156};
5157
5158/**
5159 * Implementation strategies for the code generator of a HInstanceOf
5160 * or `HCheckCast`.
5161 */
5162enum class TypeCheckKind {
5163  kUnresolvedCheck,       // Check against an unresolved type.
5164  kExactCheck,            // Can do a single class compare.
5165  kClassHierarchyCheck,   // Can just walk the super class chain.
5166  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
5167  kInterfaceCheck,        // No optimization yet when checking against an interface.
5168  kArrayObjectCheck,      // Can just check if the array is not primitive.
5169  kArrayCheck             // No optimization yet when checking against a generic array.
5170};
5171
5172class HInstanceOf : public HExpression<2> {
5173 public:
5174  HInstanceOf(HInstruction* object,
5175              HLoadClass* constant,
5176              TypeCheckKind check_kind,
5177              uint32_t dex_pc)
5178      : HExpression(Primitive::kPrimBoolean,
5179                    SideEffectsForArchRuntimeCalls(check_kind),
5180                    dex_pc),
5181        check_kind_(check_kind),
5182        must_do_null_check_(true) {
5183    SetRawInputAt(0, object);
5184    SetRawInputAt(1, constant);
5185  }
5186
5187  bool CanBeMoved() const OVERRIDE { return true; }
5188
5189  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5190    return true;
5191  }
5192
5193  bool NeedsEnvironment() const OVERRIDE {
5194    return false;
5195  }
5196
5197  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5198
5199  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5200
5201  // Used only in code generation.
5202  bool MustDoNullCheck() const { return must_do_null_check_; }
5203  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5204
5205  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
5206    return (check_kind == TypeCheckKind::kExactCheck)
5207        ? SideEffects::None()
5208        // Mips currently does runtime calls for any other checks.
5209        : SideEffects::CanTriggerGC();
5210  }
5211
5212  DECLARE_INSTRUCTION(InstanceOf);
5213
5214 private:
5215  const TypeCheckKind check_kind_;
5216  bool must_do_null_check_;
5217
5218  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
5219};
5220
5221class HBoundType : public HExpression<1> {
5222 public:
5223  // Constructs an HBoundType with the given upper_bound.
5224  // Ensures that the upper_bound is valid.
5225  HBoundType(HInstruction* input,
5226             ReferenceTypeInfo upper_bound,
5227             bool upper_can_be_null,
5228             uint32_t dex_pc = kNoDexPc)
5229      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
5230        upper_bound_(upper_bound),
5231        upper_can_be_null_(upper_can_be_null),
5232        can_be_null_(upper_can_be_null) {
5233    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
5234    SetRawInputAt(0, input);
5235    SetReferenceTypeInfo(upper_bound_);
5236  }
5237
5238  // GetUpper* should only be used in reference type propagation.
5239  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
5240  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
5241
5242  void SetCanBeNull(bool can_be_null) {
5243    DCHECK(upper_can_be_null_ || !can_be_null);
5244    can_be_null_ = can_be_null;
5245  }
5246
5247  bool CanBeNull() const OVERRIDE { return can_be_null_; }
5248
5249  DECLARE_INSTRUCTION(BoundType);
5250
5251 private:
5252  // Encodes the most upper class that this instruction can have. In other words
5253  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
5254  // It is used to bound the type in cases like:
5255  //   if (x instanceof ClassX) {
5256  //     // uper_bound_ will be ClassX
5257  //   }
5258  const ReferenceTypeInfo upper_bound_;
5259  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
5260  // is false then can_be_null_ cannot be true).
5261  const bool upper_can_be_null_;
5262  bool can_be_null_;
5263
5264  DISALLOW_COPY_AND_ASSIGN(HBoundType);
5265};
5266
5267class HCheckCast : public HTemplateInstruction<2> {
5268 public:
5269  HCheckCast(HInstruction* object,
5270             HLoadClass* constant,
5271             TypeCheckKind check_kind,
5272             uint32_t dex_pc)
5273      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc),
5274        check_kind_(check_kind),
5275        must_do_null_check_(true) {
5276    SetRawInputAt(0, object);
5277    SetRawInputAt(1, constant);
5278  }
5279
5280  bool CanBeMoved() const OVERRIDE { return true; }
5281
5282  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5283    return true;
5284  }
5285
5286  bool NeedsEnvironment() const OVERRIDE {
5287    // Instruction may throw a CheckCastError.
5288    return true;
5289  }
5290
5291  bool CanThrow() const OVERRIDE { return true; }
5292
5293  bool MustDoNullCheck() const { return must_do_null_check_; }
5294  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5295  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5296
5297  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5298
5299  DECLARE_INSTRUCTION(CheckCast);
5300
5301 private:
5302  const TypeCheckKind check_kind_;
5303  bool must_do_null_check_;
5304
5305  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
5306};
5307
5308class HMemoryBarrier : public HTemplateInstruction<0> {
5309 public:
5310  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
5311      : HTemplateInstruction(
5312            SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays.
5313        barrier_kind_(barrier_kind) {}
5314
5315  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
5316
5317  DECLARE_INSTRUCTION(MemoryBarrier);
5318
5319 private:
5320  const MemBarrierKind barrier_kind_;
5321
5322  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
5323};
5324
5325class HMonitorOperation : public HTemplateInstruction<1> {
5326 public:
5327  enum OperationKind {
5328    kEnter,
5329    kExit,
5330  };
5331
5332  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
5333    : HTemplateInstruction(
5334          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
5335      kind_(kind) {
5336    SetRawInputAt(0, object);
5337  }
5338
5339  // Instruction may throw a Java exception, so we need an environment.
5340  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
5341
5342  bool CanThrow() const OVERRIDE {
5343    // Verifier guarantees that monitor-exit cannot throw.
5344    // This is important because it allows the HGraphBuilder to remove
5345    // a dead throw-catch loop generated for `synchronized` blocks/methods.
5346    return IsEnter();
5347  }
5348
5349
5350  bool IsEnter() const { return kind_ == kEnter; }
5351
5352  DECLARE_INSTRUCTION(MonitorOperation);
5353
5354 private:
5355  const OperationKind kind_;
5356
5357 private:
5358  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
5359};
5360
5361/**
5362 * A HInstruction used as a marker for the replacement of new + <init>
5363 * of a String to a call to a StringFactory. Only baseline will see
5364 * the node at code generation, where it will be be treated as null.
5365 * When compiling non-baseline, `HFakeString` instructions are being removed
5366 * in the instruction simplifier.
5367 */
5368class HFakeString : public HTemplateInstruction<0> {
5369 public:
5370  explicit HFakeString(uint32_t dex_pc = kNoDexPc)
5371      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
5372
5373  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
5374
5375  DECLARE_INSTRUCTION(FakeString);
5376
5377 private:
5378  DISALLOW_COPY_AND_ASSIGN(HFakeString);
5379};
5380
5381class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
5382 public:
5383  MoveOperands(Location source,
5384               Location destination,
5385               Primitive::Type type,
5386               HInstruction* instruction)
5387      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
5388
5389  Location GetSource() const { return source_; }
5390  Location GetDestination() const { return destination_; }
5391
5392  void SetSource(Location value) { source_ = value; }
5393  void SetDestination(Location value) { destination_ = value; }
5394
5395  // The parallel move resolver marks moves as "in-progress" by clearing the
5396  // destination (but not the source).
5397  Location MarkPending() {
5398    DCHECK(!IsPending());
5399    Location dest = destination_;
5400    destination_ = Location::NoLocation();
5401    return dest;
5402  }
5403
5404  void ClearPending(Location dest) {
5405    DCHECK(IsPending());
5406    destination_ = dest;
5407  }
5408
5409  bool IsPending() const {
5410    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5411    return destination_.IsInvalid() && !source_.IsInvalid();
5412  }
5413
5414  // True if this blocks a move from the given location.
5415  bool Blocks(Location loc) const {
5416    return !IsEliminated() && source_.OverlapsWith(loc);
5417  }
5418
5419  // A move is redundant if it's been eliminated, if its source and
5420  // destination are the same, or if its destination is unneeded.
5421  bool IsRedundant() const {
5422    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
5423  }
5424
5425  // We clear both operands to indicate move that's been eliminated.
5426  void Eliminate() {
5427    source_ = destination_ = Location::NoLocation();
5428  }
5429
5430  bool IsEliminated() const {
5431    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5432    return source_.IsInvalid();
5433  }
5434
5435  Primitive::Type GetType() const { return type_; }
5436
5437  bool Is64BitMove() const {
5438    return Primitive::Is64BitType(type_);
5439  }
5440
5441  HInstruction* GetInstruction() const { return instruction_; }
5442
5443 private:
5444  Location source_;
5445  Location destination_;
5446  // The type this move is for.
5447  Primitive::Type type_;
5448  // The instruction this move is assocatied with. Null when this move is
5449  // for moving an input in the expected locations of user (including a phi user).
5450  // This is only used in debug mode, to ensure we do not connect interval siblings
5451  // in the same parallel move.
5452  HInstruction* instruction_;
5453};
5454
5455static constexpr size_t kDefaultNumberOfMoves = 4;
5456
5457class HParallelMove : public HTemplateInstruction<0> {
5458 public:
5459  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
5460      : HTemplateInstruction(SideEffects::None(), dex_pc),
5461        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
5462    moves_.reserve(kDefaultNumberOfMoves);
5463  }
5464
5465  void AddMove(Location source,
5466               Location destination,
5467               Primitive::Type type,
5468               HInstruction* instruction) {
5469    DCHECK(source.IsValid());
5470    DCHECK(destination.IsValid());
5471    if (kIsDebugBuild) {
5472      if (instruction != nullptr) {
5473        for (const MoveOperands& move : moves_) {
5474          if (move.GetInstruction() == instruction) {
5475            // Special case the situation where the move is for the spill slot
5476            // of the instruction.
5477            if ((GetPrevious() == instruction)
5478                || ((GetPrevious() == nullptr)
5479                    && instruction->IsPhi()
5480                    && instruction->GetBlock() == GetBlock())) {
5481              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
5482                  << "Doing parallel moves for the same instruction.";
5483            } else {
5484              DCHECK(false) << "Doing parallel moves for the same instruction.";
5485            }
5486          }
5487        }
5488      }
5489      for (const MoveOperands& move : moves_) {
5490        DCHECK(!destination.OverlapsWith(move.GetDestination()))
5491            << "Overlapped destination for two moves in a parallel move: "
5492            << move.GetSource() << " ==> " << move.GetDestination() << " and "
5493            << source << " ==> " << destination;
5494      }
5495    }
5496    moves_.emplace_back(source, destination, type, instruction);
5497  }
5498
5499  MoveOperands* MoveOperandsAt(size_t index) {
5500    return &moves_[index];
5501  }
5502
5503  size_t NumMoves() const { return moves_.size(); }
5504
5505  DECLARE_INSTRUCTION(ParallelMove);
5506
5507 private:
5508  ArenaVector<MoveOperands> moves_;
5509
5510  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
5511};
5512
5513}  // namespace art
5514
5515#ifdef ART_ENABLE_CODEGEN_arm64
5516#include "nodes_arm64.h"
5517#endif
5518#ifdef ART_ENABLE_CODEGEN_x86
5519#include "nodes_x86.h"
5520#endif
5521
5522namespace art {
5523
5524class HGraphVisitor : public ValueObject {
5525 public:
5526  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
5527  virtual ~HGraphVisitor() {}
5528
5529  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
5530  virtual void VisitBasicBlock(HBasicBlock* block);
5531
5532  // Visit the graph following basic block insertion order.
5533  void VisitInsertionOrder();
5534
5535  // Visit the graph following dominator tree reverse post-order.
5536  void VisitReversePostOrder();
5537
5538  HGraph* GetGraph() const { return graph_; }
5539
5540  // Visit functions for instruction classes.
5541#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5542  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
5543
5544  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5545
5546#undef DECLARE_VISIT_INSTRUCTION
5547
5548 private:
5549  HGraph* const graph_;
5550
5551  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
5552};
5553
5554class HGraphDelegateVisitor : public HGraphVisitor {
5555 public:
5556  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
5557  virtual ~HGraphDelegateVisitor() {}
5558
5559  // Visit functions that delegate to to super class.
5560#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5561  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
5562
5563  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5564
5565#undef DECLARE_VISIT_INSTRUCTION
5566
5567 private:
5568  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
5569};
5570
5571class HInsertionOrderIterator : public ValueObject {
5572 public:
5573  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
5574
5575  bool Done() const { return index_ == graph_.GetBlocks().size(); }
5576  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
5577  void Advance() { ++index_; }
5578
5579 private:
5580  const HGraph& graph_;
5581  size_t index_;
5582
5583  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
5584};
5585
5586class HReversePostOrderIterator : public ValueObject {
5587 public:
5588  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
5589    // Check that reverse post order of the graph has been built.
5590    DCHECK(!graph.GetReversePostOrder().empty());
5591  }
5592
5593  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
5594  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
5595  void Advance() { ++index_; }
5596
5597 private:
5598  const HGraph& graph_;
5599  size_t index_;
5600
5601  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
5602};
5603
5604class HPostOrderIterator : public ValueObject {
5605 public:
5606  explicit HPostOrderIterator(const HGraph& graph)
5607      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
5608    // Check that reverse post order of the graph has been built.
5609    DCHECK(!graph.GetReversePostOrder().empty());
5610  }
5611
5612  bool Done() const { return index_ == 0; }
5613  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
5614  void Advance() { --index_; }
5615
5616 private:
5617  const HGraph& graph_;
5618  size_t index_;
5619
5620  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
5621};
5622
5623class HLinearPostOrderIterator : public ValueObject {
5624 public:
5625  explicit HLinearPostOrderIterator(const HGraph& graph)
5626      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
5627
5628  bool Done() const { return index_ == 0; }
5629
5630  HBasicBlock* Current() const { return order_[index_ - 1u]; }
5631
5632  void Advance() {
5633    --index_;
5634    DCHECK_GE(index_, 0U);
5635  }
5636
5637 private:
5638  const ArenaVector<HBasicBlock*>& order_;
5639  size_t index_;
5640
5641  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
5642};
5643
5644class HLinearOrderIterator : public ValueObject {
5645 public:
5646  explicit HLinearOrderIterator(const HGraph& graph)
5647      : order_(graph.GetLinearOrder()), index_(0) {}
5648
5649  bool Done() const { return index_ == order_.size(); }
5650  HBasicBlock* Current() const { return order_[index_]; }
5651  void Advance() { ++index_; }
5652
5653 private:
5654  const ArenaVector<HBasicBlock*>& order_;
5655  size_t index_;
5656
5657  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
5658};
5659
5660// Iterator over the blocks that art part of the loop. Includes blocks part
5661// of an inner loop. The order in which the blocks are iterated is on their
5662// block id.
5663class HBlocksInLoopIterator : public ValueObject {
5664 public:
5665  explicit HBlocksInLoopIterator(const HLoopInformation& info)
5666      : blocks_in_loop_(info.GetBlocks()),
5667        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
5668        index_(0) {
5669    if (!blocks_in_loop_.IsBitSet(index_)) {
5670      Advance();
5671    }
5672  }
5673
5674  bool Done() const { return index_ == blocks_.size(); }
5675  HBasicBlock* Current() const { return blocks_[index_]; }
5676  void Advance() {
5677    ++index_;
5678    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5679      if (blocks_in_loop_.IsBitSet(index_)) {
5680        break;
5681      }
5682    }
5683  }
5684
5685 private:
5686  const BitVector& blocks_in_loop_;
5687  const ArenaVector<HBasicBlock*>& blocks_;
5688  size_t index_;
5689
5690  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
5691};
5692
5693// Iterator over the blocks that art part of the loop. Includes blocks part
5694// of an inner loop. The order in which the blocks are iterated is reverse
5695// post order.
5696class HBlocksInLoopReversePostOrderIterator : public ValueObject {
5697 public:
5698  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
5699      : blocks_in_loop_(info.GetBlocks()),
5700        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
5701        index_(0) {
5702    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5703      Advance();
5704    }
5705  }
5706
5707  bool Done() const { return index_ == blocks_.size(); }
5708  HBasicBlock* Current() const { return blocks_[index_]; }
5709  void Advance() {
5710    ++index_;
5711    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5712      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5713        break;
5714      }
5715    }
5716  }
5717
5718 private:
5719  const BitVector& blocks_in_loop_;
5720  const ArenaVector<HBasicBlock*>& blocks_;
5721  size_t index_;
5722
5723  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
5724};
5725
5726inline int64_t Int64FromConstant(HConstant* constant) {
5727  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
5728  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
5729                                   : constant->AsLongConstant()->GetValue();
5730}
5731
5732inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
5733  // For the purposes of the compiler, the dex files must actually be the same object
5734  // if we want to safely treat them as the same. This is especially important for JIT
5735  // as custom class loaders can open the same underlying file (or memory) multiple
5736  // times and provide different class resolution but no two class loaders should ever
5737  // use the same DexFile object - doing so is an unsupported hack that can lead to
5738  // all sorts of weird failures.
5739  return &lhs == &rhs;
5740}
5741
5742}  // namespace art
5743
5744#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
5745