nodes.h revision 805b3b56c6eb542298db33e0181f135dc9fed3d9
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_containers.h"
25#include "base/arena_object.h"
26#include "base/stl_util.h"
27#include "dex/compiler_enums.h"
28#include "entrypoints/quick/quick_entrypoints_enum.h"
29#include "handle.h"
30#include "handle_scope.h"
31#include "invoke_type.h"
32#include "locations.h"
33#include "method_reference.h"
34#include "mirror/class.h"
35#include "offsets.h"
36#include "primitive.h"
37#include "utils/arena_bit_vector.h"
38
39namespace art {
40
41class GraphChecker;
42class HBasicBlock;
43class HCurrentMethod;
44class HDoubleConstant;
45class HEnvironment;
46class HFakeString;
47class HFloatConstant;
48class HGraphBuilder;
49class HGraphVisitor;
50class HInstruction;
51class HIntConstant;
52class HInvoke;
53class HLongConstant;
54class HNullConstant;
55class HPhi;
56class HSuspendCheck;
57class HTryBoundary;
58class LiveInterval;
59class LocationSummary;
60class SlowPathCode;
61class SsaBuilder;
62
63namespace mirror {
64class DexCache;
65}  // namespace mirror
66
67static const int kDefaultNumberOfBlocks = 8;
68static const int kDefaultNumberOfSuccessors = 2;
69static const int kDefaultNumberOfPredecessors = 2;
70static const int kDefaultNumberOfExceptionalPredecessors = 0;
71static const int kDefaultNumberOfDominatedBlocks = 1;
72static const int kDefaultNumberOfBackEdges = 1;
73
74static constexpr uint32_t kMaxIntShiftValue = 0x1f;
75static constexpr uint64_t kMaxLongShiftValue = 0x3f;
76
77static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
78
79static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
80
81static constexpr uint32_t kNoDexPc = -1;
82
83enum IfCondition {
84  kCondEQ,
85  kCondNE,
86  kCondLT,
87  kCondLE,
88  kCondGT,
89  kCondGE,
90};
91
92class HInstructionList : public ValueObject {
93 public:
94  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
95
96  void AddInstruction(HInstruction* instruction);
97  void RemoveInstruction(HInstruction* instruction);
98
99  // Insert `instruction` before/after an existing instruction `cursor`.
100  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
101  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
102
103  // Return true if this list contains `instruction`.
104  bool Contains(HInstruction* instruction) const;
105
106  // Return true if `instruction1` is found before `instruction2` in
107  // this instruction list and false otherwise.  Abort if none
108  // of these instructions is found.
109  bool FoundBefore(const HInstruction* instruction1,
110                   const HInstruction* instruction2) const;
111
112  bool IsEmpty() const { return first_instruction_ == nullptr; }
113  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
114
115  // Update the block of all instructions to be `block`.
116  void SetBlockOfInstructions(HBasicBlock* block) const;
117
118  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
119  void Add(const HInstructionList& instruction_list);
120
121  // Return the number of instructions in the list. This is an expensive operation.
122  size_t CountSize() const;
123
124 private:
125  HInstruction* first_instruction_;
126  HInstruction* last_instruction_;
127
128  friend class HBasicBlock;
129  friend class HGraph;
130  friend class HInstruction;
131  friend class HInstructionIterator;
132  friend class HBackwardInstructionIterator;
133
134  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
135};
136
137// Control-flow graph of a method. Contains a list of basic blocks.
138class HGraph : public ArenaObject<kArenaAllocGraph> {
139 public:
140  HGraph(ArenaAllocator* arena,
141         const DexFile& dex_file,
142         uint32_t method_idx,
143         bool should_generate_constructor_barrier,
144         InstructionSet instruction_set,
145         InvokeType invoke_type = kInvalidInvokeType,
146         bool debuggable = false,
147         int start_instruction_id = 0)
148      : arena_(arena),
149        blocks_(arena->Adapter(kArenaAllocBlockList)),
150        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
151        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
152        entry_block_(nullptr),
153        exit_block_(nullptr),
154        maximum_number_of_out_vregs_(0),
155        number_of_vregs_(0),
156        number_of_in_vregs_(0),
157        temporaries_vreg_slots_(0),
158        has_bounds_checks_(false),
159        has_try_catch_(false),
160        debuggable_(debuggable),
161        current_instruction_id_(start_instruction_id),
162        dex_file_(dex_file),
163        method_idx_(method_idx),
164        invoke_type_(invoke_type),
165        in_ssa_form_(false),
166        should_generate_constructor_barrier_(should_generate_constructor_barrier),
167        instruction_set_(instruction_set),
168        cached_null_constant_(nullptr),
169        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
170        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
171        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
172        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
173        cached_current_method_(nullptr) {
174    blocks_.reserve(kDefaultNumberOfBlocks);
175  }
176
177  ArenaAllocator* GetArena() const { return arena_; }
178  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
179
180  bool IsInSsaForm() const { return in_ssa_form_; }
181
182  HBasicBlock* GetEntryBlock() const { return entry_block_; }
183  HBasicBlock* GetExitBlock() const { return exit_block_; }
184  bool HasExitBlock() const { return exit_block_ != nullptr; }
185
186  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
187  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
188
189  void AddBlock(HBasicBlock* block);
190
191  // Try building the SSA form of this graph, with dominance computation and loop
192  // recognition. Returns whether it was successful in doing all these steps.
193  bool TryBuildingSsa() {
194    BuildDominatorTree();
195    // The SSA builder requires loops to all be natural. Specifically, the dead phi
196    // elimination phase checks the consistency of the graph when doing a post-order
197    // visit for eliminating dead phis: a dead phi can only have loop header phi
198    // users remaining when being visited.
199    if (!AnalyzeNaturalLoops()) return false;
200    // Precompute per-block try membership before entering the SSA builder,
201    // which needs the information to build catch block phis from values of
202    // locals at throwing instructions inside try blocks.
203    ComputeTryBlockInformation();
204    TransformToSsa();
205    in_ssa_form_ = true;
206    return true;
207  }
208
209  void ComputeDominanceInformation();
210  void ClearDominanceInformation();
211
212  void BuildDominatorTree();
213  void TransformToSsa();
214  void SimplifyCFG();
215  void SimplifyCatchBlocks();
216
217  // Analyze all natural loops in this graph. Returns false if one
218  // loop is not natural, that is the header does not dominate the
219  // back edge.
220  bool AnalyzeNaturalLoops() const;
221
222  // Iterate over blocks to compute try block membership. Needs reverse post
223  // order and loop information.
224  void ComputeTryBlockInformation();
225
226  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
227  // Returns the instruction used to replace the invoke expression or null if the
228  // invoke is for a void method.
229  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
230
231  // Need to add a couple of blocks to test if the loop body is entered and
232  // put deoptimization instructions, etc.
233  void TransformLoopHeaderForBCE(HBasicBlock* header);
234
235  // Removes `block` from the graph.
236  void DeleteDeadBlock(HBasicBlock* block);
237
238  // Splits the edge between `block` and `successor` while preserving the
239  // indices in the predecessor/successor lists. If there are multiple edges
240  // between the blocks, the lowest indices are used.
241  // Returns the new block which is empty and has the same dex pc as `successor`.
242  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
243
244  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
245  void SimplifyLoop(HBasicBlock* header);
246
247  int32_t GetNextInstructionId() {
248    DCHECK_NE(current_instruction_id_, INT32_MAX);
249    return current_instruction_id_++;
250  }
251
252  int32_t GetCurrentInstructionId() const {
253    return current_instruction_id_;
254  }
255
256  void SetCurrentInstructionId(int32_t id) {
257    current_instruction_id_ = id;
258  }
259
260  uint16_t GetMaximumNumberOfOutVRegs() const {
261    return maximum_number_of_out_vregs_;
262  }
263
264  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
265    maximum_number_of_out_vregs_ = new_value;
266  }
267
268  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
269    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
270  }
271
272  void UpdateTemporariesVRegSlots(size_t slots) {
273    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
274  }
275
276  size_t GetTemporariesVRegSlots() const {
277    DCHECK(!in_ssa_form_);
278    return temporaries_vreg_slots_;
279  }
280
281  void SetNumberOfVRegs(uint16_t number_of_vregs) {
282    number_of_vregs_ = number_of_vregs;
283  }
284
285  uint16_t GetNumberOfVRegs() const {
286    return number_of_vregs_;
287  }
288
289  void SetNumberOfInVRegs(uint16_t value) {
290    number_of_in_vregs_ = value;
291  }
292
293  uint16_t GetNumberOfLocalVRegs() const {
294    DCHECK(!in_ssa_form_);
295    return number_of_vregs_ - number_of_in_vregs_;
296  }
297
298  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
299    return reverse_post_order_;
300  }
301
302  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
303    return linear_order_;
304  }
305
306  bool HasBoundsChecks() const {
307    return has_bounds_checks_;
308  }
309
310  void SetHasBoundsChecks(bool value) {
311    has_bounds_checks_ = value;
312  }
313
314  bool ShouldGenerateConstructorBarrier() const {
315    return should_generate_constructor_barrier_;
316  }
317
318  bool IsDebuggable() const { return debuggable_; }
319
320  // Returns a constant of the given type and value. If it does not exist
321  // already, it is created and inserted into the graph. This method is only for
322  // integral types.
323  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
324
325  // TODO: This is problematic for the consistency of reference type propagation
326  // because it can be created anytime after the pass and thus it will be left
327  // with an invalid type.
328  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
329
330  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
331    return CreateConstant(value, &cached_int_constants_, dex_pc);
332  }
333  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
334    return CreateConstant(value, &cached_long_constants_, dex_pc);
335  }
336  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
337    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
338  }
339  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
340    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
341  }
342
343  HCurrentMethod* GetCurrentMethod();
344
345  HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
346
347  const DexFile& GetDexFile() const {
348    return dex_file_;
349  }
350
351  uint32_t GetMethodIdx() const {
352    return method_idx_;
353  }
354
355  InvokeType GetInvokeType() const {
356    return invoke_type_;
357  }
358
359  InstructionSet GetInstructionSet() const {
360    return instruction_set_;
361  }
362
363  bool HasTryCatch() const { return has_try_catch_; }
364  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
365
366 private:
367  void FindBackEdges(ArenaBitVector* visited);
368  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
369  void RemoveDeadBlocks(const ArenaBitVector& visited);
370
371  template <class InstructionType, typename ValueType>
372  InstructionType* CreateConstant(ValueType value,
373                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
374                                  uint32_t dex_pc = kNoDexPc) {
375    // Try to find an existing constant of the given value.
376    InstructionType* constant = nullptr;
377    auto cached_constant = cache->find(value);
378    if (cached_constant != cache->end()) {
379      constant = cached_constant->second;
380    }
381
382    // If not found or previously deleted, create and cache a new instruction.
383    // Don't bother reviving a previously deleted instruction, for simplicity.
384    if (constant == nullptr || constant->GetBlock() == nullptr) {
385      constant = new (arena_) InstructionType(value, dex_pc);
386      cache->Overwrite(value, constant);
387      InsertConstant(constant);
388    }
389    return constant;
390  }
391
392  void InsertConstant(HConstant* instruction);
393
394  // Cache a float constant into the graph. This method should only be
395  // called by the SsaBuilder when creating "equivalent" instructions.
396  void CacheFloatConstant(HFloatConstant* constant);
397
398  // See CacheFloatConstant comment.
399  void CacheDoubleConstant(HDoubleConstant* constant);
400
401  ArenaAllocator* const arena_;
402
403  // List of blocks in insertion order.
404  ArenaVector<HBasicBlock*> blocks_;
405
406  // List of blocks to perform a reverse post order tree traversal.
407  ArenaVector<HBasicBlock*> reverse_post_order_;
408
409  // List of blocks to perform a linear order tree traversal.
410  ArenaVector<HBasicBlock*> linear_order_;
411
412  HBasicBlock* entry_block_;
413  HBasicBlock* exit_block_;
414
415  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
416  uint16_t maximum_number_of_out_vregs_;
417
418  // The number of virtual registers in this method. Contains the parameters.
419  uint16_t number_of_vregs_;
420
421  // The number of virtual registers used by parameters of this method.
422  uint16_t number_of_in_vregs_;
423
424  // Number of vreg size slots that the temporaries use (used in baseline compiler).
425  size_t temporaries_vreg_slots_;
426
427  // Has bounds checks. We can totally skip BCE if it's false.
428  bool has_bounds_checks_;
429
430  // Flag whether there are any try/catch blocks in the graph. We will skip
431  // try/catch-related passes if false.
432  bool has_try_catch_;
433
434  // Indicates whether the graph should be compiled in a way that
435  // ensures full debuggability. If false, we can apply more
436  // aggressive optimizations that may limit the level of debugging.
437  const bool debuggable_;
438
439  // The current id to assign to a newly added instruction. See HInstruction.id_.
440  int32_t current_instruction_id_;
441
442  // The dex file from which the method is from.
443  const DexFile& dex_file_;
444
445  // The method index in the dex file.
446  const uint32_t method_idx_;
447
448  // If inlined, this encodes how the callee is being invoked.
449  const InvokeType invoke_type_;
450
451  // Whether the graph has been transformed to SSA form. Only used
452  // in debug mode to ensure we are not using properties only valid
453  // for non-SSA form (like the number of temporaries).
454  bool in_ssa_form_;
455
456  const bool should_generate_constructor_barrier_;
457
458  const InstructionSet instruction_set_;
459
460  // Cached constants.
461  HNullConstant* cached_null_constant_;
462  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
463  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
464  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
465  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
466
467  HCurrentMethod* cached_current_method_;
468
469  friend class SsaBuilder;           // For caching constants.
470  friend class SsaLivenessAnalysis;  // For the linear order.
471  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
472  DISALLOW_COPY_AND_ASSIGN(HGraph);
473};
474
475class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
476 public:
477  HLoopInformation(HBasicBlock* header, HGraph* graph)
478      : header_(header),
479        suspend_check_(nullptr),
480        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
481        // Make bit vector growable, as the number of blocks may change.
482        blocks_(graph->GetArena(), graph->GetBlocks().size(), true) {
483    back_edges_.reserve(kDefaultNumberOfBackEdges);
484  }
485
486  HBasicBlock* GetHeader() const {
487    return header_;
488  }
489
490  void SetHeader(HBasicBlock* block) {
491    header_ = block;
492  }
493
494  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
495  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
496  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
497
498  void AddBackEdge(HBasicBlock* back_edge) {
499    back_edges_.push_back(back_edge);
500  }
501
502  void RemoveBackEdge(HBasicBlock* back_edge) {
503    RemoveElement(back_edges_, back_edge);
504  }
505
506  bool IsBackEdge(const HBasicBlock& block) const {
507    return ContainsElement(back_edges_, &block);
508  }
509
510  size_t NumberOfBackEdges() const {
511    return back_edges_.size();
512  }
513
514  HBasicBlock* GetPreHeader() const;
515
516  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
517    return back_edges_;
518  }
519
520  // Returns the lifetime position of the back edge that has the
521  // greatest lifetime position.
522  size_t GetLifetimeEnd() const;
523
524  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
525    ReplaceElement(back_edges_, existing, new_back_edge);
526  }
527
528  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
529  // that is the header dominates the back edge.
530  bool Populate();
531
532  // Reanalyzes the loop by removing loop info from its blocks and re-running
533  // Populate(). If there are no back edges left, the loop info is completely
534  // removed as well as its SuspendCheck instruction. It must be run on nested
535  // inner loops first.
536  void Update();
537
538  // Returns whether this loop information contains `block`.
539  // Note that this loop information *must* be populated before entering this function.
540  bool Contains(const HBasicBlock& block) const;
541
542  // Returns whether this loop information is an inner loop of `other`.
543  // Note that `other` *must* be populated before entering this function.
544  bool IsIn(const HLoopInformation& other) const;
545
546  const ArenaBitVector& GetBlocks() const { return blocks_; }
547
548  void Add(HBasicBlock* block);
549  void Remove(HBasicBlock* block);
550
551 private:
552  // Internal recursive implementation of `Populate`.
553  void PopulateRecursive(HBasicBlock* block);
554
555  HBasicBlock* header_;
556  HSuspendCheck* suspend_check_;
557  ArenaVector<HBasicBlock*> back_edges_;
558  ArenaBitVector blocks_;
559
560  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
561};
562
563// Stores try/catch information for basic blocks.
564// Note that HGraph is constructed so that catch blocks cannot simultaneously
565// be try blocks.
566class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
567 public:
568  // Try block information constructor.
569  explicit TryCatchInformation(const HTryBoundary& try_entry)
570      : try_entry_(&try_entry),
571        catch_dex_file_(nullptr),
572        catch_type_index_(DexFile::kDexNoIndex16) {
573    DCHECK(try_entry_ != nullptr);
574  }
575
576  // Catch block information constructor.
577  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
578      : try_entry_(nullptr),
579        catch_dex_file_(&dex_file),
580        catch_type_index_(catch_type_index) {}
581
582  bool IsTryBlock() const { return try_entry_ != nullptr; }
583
584  const HTryBoundary& GetTryEntry() const {
585    DCHECK(IsTryBlock());
586    return *try_entry_;
587  }
588
589  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
590
591  bool IsCatchAllTypeIndex() const {
592    DCHECK(IsCatchBlock());
593    return catch_type_index_ == DexFile::kDexNoIndex16;
594  }
595
596  uint16_t GetCatchTypeIndex() const {
597    DCHECK(IsCatchBlock());
598    return catch_type_index_;
599  }
600
601  const DexFile& GetCatchDexFile() const {
602    DCHECK(IsCatchBlock());
603    return *catch_dex_file_;
604  }
605
606 private:
607  // One of possibly several TryBoundary instructions entering the block's try.
608  // Only set for try blocks.
609  const HTryBoundary* try_entry_;
610
611  // Exception type information. Only set for catch blocks.
612  const DexFile* catch_dex_file_;
613  const uint16_t catch_type_index_;
614};
615
616static constexpr size_t kNoLifetime = -1;
617static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
618
619// A block in a method. Contains the list of instructions represented
620// as a double linked list. Each block knows its predecessors and
621// successors.
622
623class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
624 public:
625  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
626      : graph_(graph),
627        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
628        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
629        loop_information_(nullptr),
630        dominator_(nullptr),
631        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
632        block_id_(kInvalidBlockId),
633        dex_pc_(dex_pc),
634        lifetime_start_(kNoLifetime),
635        lifetime_end_(kNoLifetime),
636        try_catch_information_(nullptr) {
637    predecessors_.reserve(kDefaultNumberOfPredecessors);
638    successors_.reserve(kDefaultNumberOfSuccessors);
639    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
640  }
641
642  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
643    return predecessors_;
644  }
645
646  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
647    return successors_;
648  }
649
650  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
651    return ContainsElement(successors_, block, start_from);
652  }
653
654  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
655    return dominated_blocks_;
656  }
657
658  bool IsEntryBlock() const {
659    return graph_->GetEntryBlock() == this;
660  }
661
662  bool IsExitBlock() const {
663    return graph_->GetExitBlock() == this;
664  }
665
666  bool IsSingleGoto() const;
667  bool IsSingleTryBoundary() const;
668
669  // Returns true if this block emits nothing but a jump.
670  bool IsSingleJump() const {
671    HLoopInformation* loop_info = GetLoopInformation();
672    return (IsSingleGoto() || IsSingleTryBoundary())
673           // Back edges generate a suspend check.
674           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
675  }
676
677  void AddBackEdge(HBasicBlock* back_edge) {
678    if (loop_information_ == nullptr) {
679      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
680    }
681    DCHECK_EQ(loop_information_->GetHeader(), this);
682    loop_information_->AddBackEdge(back_edge);
683  }
684
685  HGraph* GetGraph() const { return graph_; }
686  void SetGraph(HGraph* graph) { graph_ = graph; }
687
688  uint32_t GetBlockId() const { return block_id_; }
689  void SetBlockId(int id) { block_id_ = id; }
690  uint32_t GetDexPc() const { return dex_pc_; }
691
692  HBasicBlock* GetDominator() const { return dominator_; }
693  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
694  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
695
696  void RemoveDominatedBlock(HBasicBlock* block) {
697    RemoveElement(dominated_blocks_, block);
698  }
699
700  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
701    ReplaceElement(dominated_blocks_, existing, new_block);
702  }
703
704  void ClearDominanceInformation();
705
706  int NumberOfBackEdges() const {
707    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
708  }
709
710  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
711  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
712  const HInstructionList& GetInstructions() const { return instructions_; }
713  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
714  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
715  const HInstructionList& GetPhis() const { return phis_; }
716
717  void AddSuccessor(HBasicBlock* block) {
718    successors_.push_back(block);
719    block->predecessors_.push_back(this);
720  }
721
722  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
723    size_t successor_index = GetSuccessorIndexOf(existing);
724    existing->RemovePredecessor(this);
725    new_block->predecessors_.push_back(this);
726    successors_[successor_index] = new_block;
727  }
728
729  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
730    size_t predecessor_index = GetPredecessorIndexOf(existing);
731    existing->RemoveSuccessor(this);
732    new_block->successors_.push_back(this);
733    predecessors_[predecessor_index] = new_block;
734  }
735
736  // Insert `this` between `predecessor` and `successor. This method
737  // preserves the indicies, and will update the first edge found between
738  // `predecessor` and `successor`.
739  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
740    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
741    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
742    successor->predecessors_[predecessor_index] = this;
743    predecessor->successors_[successor_index] = this;
744    successors_.push_back(successor);
745    predecessors_.push_back(predecessor);
746  }
747
748  void RemovePredecessor(HBasicBlock* block) {
749    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
750  }
751
752  void RemoveSuccessor(HBasicBlock* block) {
753    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
754  }
755
756  void ClearAllPredecessors() {
757    predecessors_.clear();
758  }
759
760  void AddPredecessor(HBasicBlock* block) {
761    predecessors_.push_back(block);
762    block->successors_.push_back(this);
763  }
764
765  void SwapPredecessors() {
766    DCHECK_EQ(predecessors_.size(), 2u);
767    std::swap(predecessors_[0], predecessors_[1]);
768  }
769
770  void SwapSuccessors() {
771    DCHECK_EQ(successors_.size(), 2u);
772    std::swap(successors_[0], successors_[1]);
773  }
774
775  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
776    return IndexOfElement(predecessors_, predecessor);
777  }
778
779  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
780    return IndexOfElement(successors_, successor);
781  }
782
783  HBasicBlock* GetSinglePredecessor() const {
784    DCHECK_EQ(GetPredecessors().size(), 1u);
785    return GetPredecessors()[0];
786  }
787
788  HBasicBlock* GetSingleSuccessor() const {
789    DCHECK_EQ(GetSuccessors().size(), 1u);
790    return GetSuccessors()[0];
791  }
792
793  // Returns whether the first occurrence of `predecessor` in the list of
794  // predecessors is at index `idx`.
795  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
796    DCHECK_EQ(GetPredecessors()[idx], predecessor);
797    return GetPredecessorIndexOf(predecessor) == idx;
798  }
799
800  // Returns the number of non-exceptional successors. SsaChecker ensures that
801  // these are stored at the beginning of the successor list.
802  size_t NumberOfNormalSuccessors() const {
803    return EndsWithTryBoundary() ? 1 : GetSuccessors().size();
804  }
805
806  // Create a new block between this block and its predecessors. The new block
807  // is added to the graph, all predecessor edges are relinked to it and an edge
808  // is created to `this`. Returns the new empty block. Reverse post order or
809  // loop and try/catch information are not updated.
810  HBasicBlock* CreateImmediateDominator();
811
812  // Split the block into two blocks just before `cursor`. Returns the newly
813  // created, latter block. Note that this method will add the block to the
814  // graph, create a Goto at the end of the former block and will create an edge
815  // between the blocks. It will not, however, update the reverse post order or
816  // loop and try/catch information.
817  HBasicBlock* SplitBefore(HInstruction* cursor);
818
819  // Split the block into two blocks just after `cursor`. Returns the newly
820  // created block. Note that this method just updates raw block information,
821  // like predecessors, successors, dominators, and instruction list. It does not
822  // update the graph, reverse post order, loop information, nor make sure the
823  // blocks are consistent (for example ending with a control flow instruction).
824  HBasicBlock* SplitAfter(HInstruction* cursor);
825
826  // Merge `other` at the end of `this`. Successors and dominated blocks of
827  // `other` are changed to be successors and dominated blocks of `this`. Note
828  // that this method does not update the graph, reverse post order, loop
829  // information, nor make sure the blocks are consistent (for example ending
830  // with a control flow instruction).
831  void MergeWithInlined(HBasicBlock* other);
832
833  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
834  // of `this` are moved to `other`.
835  // Note that this method does not update the graph, reverse post order, loop
836  // information, nor make sure the blocks are consistent (for example ending
837  // with a control flow instruction).
838  void ReplaceWith(HBasicBlock* other);
839
840  // Merge `other` at the end of `this`. This method updates loops, reverse post
841  // order, links to predecessors, successors, dominators and deletes the block
842  // from the graph. The two blocks must be successive, i.e. `this` the only
843  // predecessor of `other` and vice versa.
844  void MergeWith(HBasicBlock* other);
845
846  // Disconnects `this` from all its predecessors, successors and dominator,
847  // removes it from all loops it is included in and eventually from the graph.
848  // The block must not dominate any other block. Predecessors and successors
849  // are safely updated.
850  void DisconnectAndDelete();
851
852  void AddInstruction(HInstruction* instruction);
853  // Insert `instruction` before/after an existing instruction `cursor`.
854  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
855  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
856  // Replace instruction `initial` with `replacement` within this block.
857  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
858                                       HInstruction* replacement);
859  void AddPhi(HPhi* phi);
860  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
861  // RemoveInstruction and RemovePhi delete a given instruction from the respective
862  // instruction list. With 'ensure_safety' set to true, it verifies that the
863  // instruction is not in use and removes it from the use lists of its inputs.
864  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
865  void RemovePhi(HPhi* phi, bool ensure_safety = true);
866  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
867
868  bool IsLoopHeader() const {
869    return IsInLoop() && (loop_information_->GetHeader() == this);
870  }
871
872  bool IsLoopPreHeaderFirstPredecessor() const {
873    DCHECK(IsLoopHeader());
874    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
875  }
876
877  HLoopInformation* GetLoopInformation() const {
878    return loop_information_;
879  }
880
881  // Set the loop_information_ on this block. Overrides the current
882  // loop_information if it is an outer loop of the passed loop information.
883  // Note that this method is called while creating the loop information.
884  void SetInLoop(HLoopInformation* info) {
885    if (IsLoopHeader()) {
886      // Nothing to do. This just means `info` is an outer loop.
887    } else if (!IsInLoop()) {
888      loop_information_ = info;
889    } else if (loop_information_->Contains(*info->GetHeader())) {
890      // Block is currently part of an outer loop. Make it part of this inner loop.
891      // Note that a non loop header having a loop information means this loop information
892      // has already been populated
893      loop_information_ = info;
894    } else {
895      // Block is part of an inner loop. Do not update the loop information.
896      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
897      // at this point, because this method is being called while populating `info`.
898    }
899  }
900
901  // Raw update of the loop information.
902  void SetLoopInformation(HLoopInformation* info) {
903    loop_information_ = info;
904  }
905
906  bool IsInLoop() const { return loop_information_ != nullptr; }
907
908  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
909
910  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
911    try_catch_information_ = try_catch_information;
912  }
913
914  bool IsTryBlock() const {
915    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
916  }
917
918  bool IsCatchBlock() const {
919    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
920  }
921
922  // Returns the try entry that this block's successors should have. They will
923  // be in the same try, unless the block ends in a try boundary. In that case,
924  // the appropriate try entry will be returned.
925  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
926
927  bool HasThrowingInstructions() const;
928
929  // Returns whether this block dominates the blocked passed as parameter.
930  bool Dominates(HBasicBlock* block) const;
931
932  size_t GetLifetimeStart() const { return lifetime_start_; }
933  size_t GetLifetimeEnd() const { return lifetime_end_; }
934
935  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
936  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
937
938  bool EndsWithControlFlowInstruction() const;
939  bool EndsWithIf() const;
940  bool EndsWithTryBoundary() const;
941  bool HasSinglePhi() const;
942
943 private:
944  HGraph* graph_;
945  ArenaVector<HBasicBlock*> predecessors_;
946  ArenaVector<HBasicBlock*> successors_;
947  HInstructionList instructions_;
948  HInstructionList phis_;
949  HLoopInformation* loop_information_;
950  HBasicBlock* dominator_;
951  ArenaVector<HBasicBlock*> dominated_blocks_;
952  uint32_t block_id_;
953  // The dex program counter of the first instruction of this block.
954  const uint32_t dex_pc_;
955  size_t lifetime_start_;
956  size_t lifetime_end_;
957  TryCatchInformation* try_catch_information_;
958
959  friend class HGraph;
960  friend class HInstruction;
961
962  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
963};
964
965// Iterates over the LoopInformation of all loops which contain 'block'
966// from the innermost to the outermost.
967class HLoopInformationOutwardIterator : public ValueObject {
968 public:
969  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
970      : current_(block.GetLoopInformation()) {}
971
972  bool Done() const { return current_ == nullptr; }
973
974  void Advance() {
975    DCHECK(!Done());
976    current_ = current_->GetPreHeader()->GetLoopInformation();
977  }
978
979  HLoopInformation* Current() const {
980    DCHECK(!Done());
981    return current_;
982  }
983
984 private:
985  HLoopInformation* current_;
986
987  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
988};
989
990#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
991  M(Add, BinaryOperation)                                               \
992  M(And, BinaryOperation)                                               \
993  M(ArrayGet, Instruction)                                              \
994  M(ArrayLength, Instruction)                                           \
995  M(ArraySet, Instruction)                                              \
996  M(BooleanNot, UnaryOperation)                                         \
997  M(BoundsCheck, Instruction)                                           \
998  M(BoundType, Instruction)                                             \
999  M(CheckCast, Instruction)                                             \
1000  M(ClearException, Instruction)                                        \
1001  M(ClinitCheck, Instruction)                                           \
1002  M(Compare, BinaryOperation)                                           \
1003  M(Condition, BinaryOperation)                                         \
1004  M(CurrentMethod, Instruction)                                         \
1005  M(Deoptimize, Instruction)                                            \
1006  M(Div, BinaryOperation)                                               \
1007  M(DivZeroCheck, Instruction)                                          \
1008  M(DoubleConstant, Constant)                                           \
1009  M(Equal, Condition)                                                   \
1010  M(Exit, Instruction)                                                  \
1011  M(FakeString, Instruction)                                            \
1012  M(FloatConstant, Constant)                                            \
1013  M(Goto, Instruction)                                                  \
1014  M(GreaterThan, Condition)                                             \
1015  M(GreaterThanOrEqual, Condition)                                      \
1016  M(If, Instruction)                                                    \
1017  M(InstanceFieldGet, Instruction)                                      \
1018  M(InstanceFieldSet, Instruction)                                      \
1019  M(InstanceOf, Instruction)                                            \
1020  M(IntConstant, Constant)                                              \
1021  M(InvokeUnresolved, Invoke)                                           \
1022  M(InvokeInterface, Invoke)                                            \
1023  M(InvokeStaticOrDirect, Invoke)                                       \
1024  M(InvokeVirtual, Invoke)                                              \
1025  M(LessThan, Condition)                                                \
1026  M(LessThanOrEqual, Condition)                                         \
1027  M(LoadClass, Instruction)                                             \
1028  M(LoadException, Instruction)                                         \
1029  M(LoadLocal, Instruction)                                             \
1030  M(LoadString, Instruction)                                            \
1031  M(Local, Instruction)                                                 \
1032  M(LongConstant, Constant)                                             \
1033  M(MemoryBarrier, Instruction)                                         \
1034  M(MonitorOperation, Instruction)                                      \
1035  M(Mul, BinaryOperation)                                               \
1036  M(Neg, UnaryOperation)                                                \
1037  M(NewArray, Instruction)                                              \
1038  M(NewInstance, Instruction)                                           \
1039  M(Not, UnaryOperation)                                                \
1040  M(NotEqual, Condition)                                                \
1041  M(NullConstant, Instruction)                                          \
1042  M(NullCheck, Instruction)                                             \
1043  M(Or, BinaryOperation)                                                \
1044  M(PackedSwitch, Instruction)                                          \
1045  M(ParallelMove, Instruction)                                          \
1046  M(ParameterValue, Instruction)                                        \
1047  M(Phi, Instruction)                                                   \
1048  M(Rem, BinaryOperation)                                               \
1049  M(Return, Instruction)                                                \
1050  M(ReturnVoid, Instruction)                                            \
1051  M(Shl, BinaryOperation)                                               \
1052  M(Shr, BinaryOperation)                                               \
1053  M(StaticFieldGet, Instruction)                                        \
1054  M(StaticFieldSet, Instruction)                                        \
1055  M(UnresolvedInstanceFieldGet, Instruction)                            \
1056  M(UnresolvedInstanceFieldSet, Instruction)                            \
1057  M(UnresolvedStaticFieldGet, Instruction)                              \
1058  M(UnresolvedStaticFieldSet, Instruction)                              \
1059  M(StoreLocal, Instruction)                                            \
1060  M(Sub, BinaryOperation)                                               \
1061  M(SuspendCheck, Instruction)                                          \
1062  M(Temporary, Instruction)                                             \
1063  M(Throw, Instruction)                                                 \
1064  M(TryBoundary, Instruction)                                           \
1065  M(TypeConversion, Instruction)                                        \
1066  M(UShr, BinaryOperation)                                              \
1067  M(Xor, BinaryOperation)                                               \
1068
1069#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1070
1071#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1072
1073#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1074
1075#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1076  M(X86ComputeBaseMethodAddress, Instruction)                           \
1077  M(X86LoadFromConstantTable, Instruction)                              \
1078  M(X86PackedSwitch, Instruction)
1079
1080#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1081
1082#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1083  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1084  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1085  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1086  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1087  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1088  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1089
1090#define FOR_EACH_INSTRUCTION(M)                                         \
1091  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1092  M(Constant, Instruction)                                              \
1093  M(UnaryOperation, Instruction)                                        \
1094  M(BinaryOperation, Instruction)                                       \
1095  M(Invoke, Instruction)
1096
1097#define FORWARD_DECLARATION(type, super) class H##type;
1098FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1099#undef FORWARD_DECLARATION
1100
1101#define DECLARE_INSTRUCTION(type)                                       \
1102  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
1103  const char* DebugName() const OVERRIDE { return #type; }              \
1104  const H##type* As##type() const OVERRIDE { return this; }             \
1105  H##type* As##type() OVERRIDE { return this; }                         \
1106  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1107    return other->Is##type();                                           \
1108  }                                                                     \
1109  void Accept(HGraphVisitor* visitor) OVERRIDE
1110
1111template <typename T> class HUseList;
1112
1113template <typename T>
1114class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1115 public:
1116  HUseListNode* GetPrevious() const { return prev_; }
1117  HUseListNode* GetNext() const { return next_; }
1118  T GetUser() const { return user_; }
1119  size_t GetIndex() const { return index_; }
1120  void SetIndex(size_t index) { index_ = index; }
1121
1122 private:
1123  HUseListNode(T user, size_t index)
1124      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1125
1126  T const user_;
1127  size_t index_;
1128  HUseListNode<T>* prev_;
1129  HUseListNode<T>* next_;
1130
1131  friend class HUseList<T>;
1132
1133  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1134};
1135
1136template <typename T>
1137class HUseList : public ValueObject {
1138 public:
1139  HUseList() : first_(nullptr) {}
1140
1141  void Clear() {
1142    first_ = nullptr;
1143  }
1144
1145  // Adds a new entry at the beginning of the use list and returns
1146  // the newly created node.
1147  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1148    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1149    if (IsEmpty()) {
1150      first_ = new_node;
1151    } else {
1152      first_->prev_ = new_node;
1153      new_node->next_ = first_;
1154      first_ = new_node;
1155    }
1156    return new_node;
1157  }
1158
1159  HUseListNode<T>* GetFirst() const {
1160    return first_;
1161  }
1162
1163  void Remove(HUseListNode<T>* node) {
1164    DCHECK(node != nullptr);
1165    DCHECK(Contains(node));
1166
1167    if (node->prev_ != nullptr) {
1168      node->prev_->next_ = node->next_;
1169    }
1170    if (node->next_ != nullptr) {
1171      node->next_->prev_ = node->prev_;
1172    }
1173    if (node == first_) {
1174      first_ = node->next_;
1175    }
1176  }
1177
1178  bool Contains(const HUseListNode<T>* node) const {
1179    if (node == nullptr) {
1180      return false;
1181    }
1182    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1183      if (current == node) {
1184        return true;
1185      }
1186    }
1187    return false;
1188  }
1189
1190  bool IsEmpty() const {
1191    return first_ == nullptr;
1192  }
1193
1194  bool HasOnlyOneUse() const {
1195    return first_ != nullptr && first_->next_ == nullptr;
1196  }
1197
1198  size_t SizeSlow() const {
1199    size_t count = 0;
1200    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1201      ++count;
1202    }
1203    return count;
1204  }
1205
1206 private:
1207  HUseListNode<T>* first_;
1208};
1209
1210template<typename T>
1211class HUseIterator : public ValueObject {
1212 public:
1213  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1214
1215  bool Done() const { return current_ == nullptr; }
1216
1217  void Advance() {
1218    DCHECK(!Done());
1219    current_ = current_->GetNext();
1220  }
1221
1222  HUseListNode<T>* Current() const {
1223    DCHECK(!Done());
1224    return current_;
1225  }
1226
1227 private:
1228  HUseListNode<T>* current_;
1229
1230  friend class HValue;
1231};
1232
1233// This class is used by HEnvironment and HInstruction classes to record the
1234// instructions they use and pointers to the corresponding HUseListNodes kept
1235// by the used instructions.
1236template <typename T>
1237class HUserRecord : public ValueObject {
1238 public:
1239  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1240  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1241
1242  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1243    : instruction_(old_record.instruction_), use_node_(use_node) {
1244    DCHECK(instruction_ != nullptr);
1245    DCHECK(use_node_ != nullptr);
1246    DCHECK(old_record.use_node_ == nullptr);
1247  }
1248
1249  HInstruction* GetInstruction() const { return instruction_; }
1250  HUseListNode<T>* GetUseNode() const { return use_node_; }
1251
1252 private:
1253  // Instruction used by the user.
1254  HInstruction* instruction_;
1255
1256  // Corresponding entry in the use list kept by 'instruction_'.
1257  HUseListNode<T>* use_node_;
1258};
1259
1260/**
1261 * Side-effects representation.
1262 *
1263 * For write/read dependences on fields/arrays, the dependence analysis uses
1264 * type disambiguation (e.g. a float field write cannot modify the value of an
1265 * integer field read) and the access type (e.g.  a reference array write cannot
1266 * modify the value of a reference field read [although it may modify the
1267 * reference fetch prior to reading the field, which is represented by its own
1268 * write/read dependence]). The analysis makes conservative points-to
1269 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1270 * the same, and any reference read depends on any reference read without
1271 * further regard of its type).
1272 *
1273 * The internal representation uses 38-bit and is described in the table below.
1274 * The first line indicates the side effect, and for field/array accesses the
1275 * second line indicates the type of the access (in the order of the
1276 * Primitive::Type enum).
1277 * The two numbered lines below indicate the bit position in the bitfield (read
1278 * vertically).
1279 *
1280 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1281 *   +-------------+---------+---------+--------------+---------+---------+
1282 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1283 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1284 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1285 *
1286 * Note that, to ease the implementation, 'changes' bits are least significant
1287 * bits, while 'dependency' bits are most significant bits.
1288 */
1289class SideEffects : public ValueObject {
1290 public:
1291  SideEffects() : flags_(0) {}
1292
1293  static SideEffects None() {
1294    return SideEffects(0);
1295  }
1296
1297  static SideEffects All() {
1298    return SideEffects(kAllChangeBits | kAllDependOnBits);
1299  }
1300
1301  static SideEffects AllChanges() {
1302    return SideEffects(kAllChangeBits);
1303  }
1304
1305  static SideEffects AllDependencies() {
1306    return SideEffects(kAllDependOnBits);
1307  }
1308
1309  static SideEffects AllExceptGCDependency() {
1310    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1311  }
1312
1313  static SideEffects AllWritesAndReads() {
1314    return SideEffects(kAllWrites | kAllReads);
1315  }
1316
1317  static SideEffects AllWrites() {
1318    return SideEffects(kAllWrites);
1319  }
1320
1321  static SideEffects AllReads() {
1322    return SideEffects(kAllReads);
1323  }
1324
1325  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1326    return is_volatile
1327        ? AllWritesAndReads()
1328        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1329  }
1330
1331  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1332    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1333  }
1334
1335  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1336    return is_volatile
1337        ? AllWritesAndReads()
1338        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1339  }
1340
1341  static SideEffects ArrayReadOfType(Primitive::Type type) {
1342    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1343  }
1344
1345  static SideEffects CanTriggerGC() {
1346    return SideEffects(1ULL << kCanTriggerGCBit);
1347  }
1348
1349  static SideEffects DependsOnGC() {
1350    return SideEffects(1ULL << kDependsOnGCBit);
1351  }
1352
1353  // Combines the side-effects of this and the other.
1354  SideEffects Union(SideEffects other) const {
1355    return SideEffects(flags_ | other.flags_);
1356  }
1357
1358  SideEffects Exclusion(SideEffects other) const {
1359    return SideEffects(flags_ & ~other.flags_);
1360  }
1361
1362  bool Includes(SideEffects other) const {
1363    return (other.flags_ & flags_) == other.flags_;
1364  }
1365
1366  bool HasSideEffects() const {
1367    return (flags_ & kAllChangeBits);
1368  }
1369
1370  bool HasDependencies() const {
1371    return (flags_ & kAllDependOnBits);
1372  }
1373
1374  // Returns true if there are no side effects or dependencies.
1375  bool DoesNothing() const {
1376    return flags_ == 0;
1377  }
1378
1379  // Returns true if something is written.
1380  bool DoesAnyWrite() const {
1381    return (flags_ & kAllWrites);
1382  }
1383
1384  // Returns true if something is read.
1385  bool DoesAnyRead() const {
1386    return (flags_ & kAllReads);
1387  }
1388
1389  // Returns true if potentially everything is written and read
1390  // (every type and every kind of access).
1391  bool DoesAllReadWrite() const {
1392    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1393  }
1394
1395  bool DoesAll() const {
1396    return flags_ == (kAllChangeBits | kAllDependOnBits);
1397  }
1398
1399  // Returns true if this may read something written by other.
1400  bool MayDependOn(SideEffects other) const {
1401    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1402    return (other.flags_ & depends_on_flags);
1403  }
1404
1405  // Returns string representation of flags (for debugging only).
1406  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1407  std::string ToString() const {
1408    std::string flags = "|";
1409    for (int s = kLastBit; s >= 0; s--) {
1410      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1411      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1412        // This is a bit for the GC side effect.
1413        if (current_bit_is_set) {
1414          flags += "GC";
1415        }
1416        flags += "|";
1417      } else {
1418        // This is a bit for the array/field analysis.
1419        // The underscore character stands for the 'can trigger GC' bit.
1420        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1421        if (current_bit_is_set) {
1422          flags += kDebug[s];
1423        }
1424        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1425            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1426          flags += "|";
1427        }
1428      }
1429    }
1430    return flags;
1431  }
1432
1433  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1434
1435 private:
1436  static constexpr int kFieldArrayAnalysisBits = 9;
1437
1438  static constexpr int kFieldWriteOffset = 0;
1439  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1440  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1441  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1442
1443  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1444
1445  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1446  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1447  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1448  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1449
1450  static constexpr int kLastBit = kDependsOnGCBit;
1451  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1452
1453  // Aliases.
1454
1455  static_assert(kChangeBits == kDependOnBits,
1456                "the 'change' bits should match the 'depend on' bits.");
1457
1458  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1459  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1460  static constexpr uint64_t kAllWrites =
1461      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1462  static constexpr uint64_t kAllReads =
1463      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1464
1465  // Work around the fact that HIR aliases I/F and J/D.
1466  // TODO: remove this interceptor once HIR types are clean
1467  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1468    switch (type) {
1469      case Primitive::kPrimInt:
1470      case Primitive::kPrimFloat:
1471        return TypeFlag(Primitive::kPrimInt, offset) |
1472               TypeFlag(Primitive::kPrimFloat, offset);
1473      case Primitive::kPrimLong:
1474      case Primitive::kPrimDouble:
1475        return TypeFlag(Primitive::kPrimLong, offset) |
1476               TypeFlag(Primitive::kPrimDouble, offset);
1477      default:
1478        return TypeFlag(type, offset);
1479    }
1480  }
1481
1482  // Translates type to bit flag.
1483  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1484    CHECK_NE(type, Primitive::kPrimVoid);
1485    const uint64_t one = 1;
1486    const int shift = type;  // 0-based consecutive enum
1487    DCHECK_LE(kFieldWriteOffset, shift);
1488    DCHECK_LT(shift, kArrayWriteOffset);
1489    return one << (type + offset);
1490  }
1491
1492  // Private constructor on direct flags value.
1493  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1494
1495  uint64_t flags_;
1496};
1497
1498// A HEnvironment object contains the values of virtual registers at a given location.
1499class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1500 public:
1501  HEnvironment(ArenaAllocator* arena,
1502               size_t number_of_vregs,
1503               const DexFile& dex_file,
1504               uint32_t method_idx,
1505               uint32_t dex_pc,
1506               InvokeType invoke_type,
1507               HInstruction* holder)
1508     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1509       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1510       parent_(nullptr),
1511       dex_file_(dex_file),
1512       method_idx_(method_idx),
1513       dex_pc_(dex_pc),
1514       invoke_type_(invoke_type),
1515       holder_(holder) {
1516  }
1517
1518  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1519      : HEnvironment(arena,
1520                     to_copy.Size(),
1521                     to_copy.GetDexFile(),
1522                     to_copy.GetMethodIdx(),
1523                     to_copy.GetDexPc(),
1524                     to_copy.GetInvokeType(),
1525                     holder) {}
1526
1527  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1528    if (parent_ != nullptr) {
1529      parent_->SetAndCopyParentChain(allocator, parent);
1530    } else {
1531      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1532      parent_->CopyFrom(parent);
1533      if (parent->GetParent() != nullptr) {
1534        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1535      }
1536    }
1537  }
1538
1539  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1540  void CopyFrom(HEnvironment* environment);
1541
1542  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1543  // input to the loop phi instead. This is for inserting instructions that
1544  // require an environment (like HDeoptimization) in the loop pre-header.
1545  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1546
1547  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1548    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1549  }
1550
1551  HInstruction* GetInstructionAt(size_t index) const {
1552    return vregs_[index].GetInstruction();
1553  }
1554
1555  void RemoveAsUserOfInput(size_t index) const;
1556
1557  size_t Size() const { return vregs_.size(); }
1558
1559  HEnvironment* GetParent() const { return parent_; }
1560
1561  void SetLocationAt(size_t index, Location location) {
1562    locations_[index] = location;
1563  }
1564
1565  Location GetLocationAt(size_t index) const {
1566    return locations_[index];
1567  }
1568
1569  uint32_t GetDexPc() const {
1570    return dex_pc_;
1571  }
1572
1573  uint32_t GetMethodIdx() const {
1574    return method_idx_;
1575  }
1576
1577  InvokeType GetInvokeType() const {
1578    return invoke_type_;
1579  }
1580
1581  const DexFile& GetDexFile() const {
1582    return dex_file_;
1583  }
1584
1585  HInstruction* GetHolder() const {
1586    return holder_;
1587  }
1588
1589 private:
1590  // Record instructions' use entries of this environment for constant-time removal.
1591  // It should only be called by HInstruction when a new environment use is added.
1592  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1593    DCHECK(env_use->GetUser() == this);
1594    size_t index = env_use->GetIndex();
1595    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1596  }
1597
1598  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1599  ArenaVector<Location> locations_;
1600  HEnvironment* parent_;
1601  const DexFile& dex_file_;
1602  const uint32_t method_idx_;
1603  const uint32_t dex_pc_;
1604  const InvokeType invoke_type_;
1605
1606  // The instruction that holds this environment.
1607  HInstruction* const holder_;
1608
1609  friend class HInstruction;
1610
1611  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1612};
1613
1614class ReferenceTypeInfo : ValueObject {
1615 public:
1616  typedef Handle<mirror::Class> TypeHandle;
1617
1618  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1619    // The constructor will check that the type_handle is valid.
1620    return ReferenceTypeInfo(type_handle, is_exact);
1621  }
1622
1623  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1624
1625  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1626    return handle.GetReference() != nullptr;
1627  }
1628
1629  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1630    return IsValidHandle(type_handle_);
1631  }
1632
1633  bool IsExact() const { return is_exact_; }
1634
1635  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1636    DCHECK(IsValid());
1637    return GetTypeHandle()->IsObjectClass();
1638  }
1639
1640  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1641    DCHECK(IsValid());
1642    return GetTypeHandle()->IsStringClass();
1643  }
1644
1645  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
1646    DCHECK(IsValid());
1647    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
1648  }
1649
1650  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1651    DCHECK(IsValid());
1652    return GetTypeHandle()->IsInterface();
1653  }
1654
1655  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1656    DCHECK(IsValid());
1657    return GetTypeHandle()->IsArrayClass();
1658  }
1659
1660  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1661    DCHECK(IsValid());
1662    return GetTypeHandle()->IsPrimitiveArray();
1663  }
1664
1665  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1666    DCHECK(IsValid());
1667    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
1668  }
1669
1670  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1671    DCHECK(IsValid());
1672    if (!IsExact()) return false;
1673    if (!IsArrayClass()) return false;
1674    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
1675  }
1676
1677  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1678    DCHECK(IsValid());
1679    if (!IsExact()) return false;
1680    if (!IsArrayClass()) return false;
1681    if (!rti.IsArrayClass()) return false;
1682    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
1683        rti.GetTypeHandle()->GetComponentType());
1684  }
1685
1686  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1687
1688  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1689    DCHECK(IsValid());
1690    DCHECK(rti.IsValid());
1691    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1692  }
1693
1694  // Returns true if the type information provide the same amount of details.
1695  // Note that it does not mean that the instructions have the same actual type
1696  // (because the type can be the result of a merge).
1697  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1698    if (!IsValid() && !rti.IsValid()) {
1699      // Invalid types are equal.
1700      return true;
1701    }
1702    if (!IsValid() || !rti.IsValid()) {
1703      // One is valid, the other not.
1704      return false;
1705    }
1706    return IsExact() == rti.IsExact()
1707        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1708  }
1709
1710 private:
1711  ReferenceTypeInfo();
1712  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1713
1714  // The class of the object.
1715  TypeHandle type_handle_;
1716  // Whether or not the type is exact or a superclass of the actual type.
1717  // Whether or not we have any information about this type.
1718  bool is_exact_;
1719};
1720
1721std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1722
1723class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1724 public:
1725  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1726      : previous_(nullptr),
1727        next_(nullptr),
1728        block_(nullptr),
1729        dex_pc_(dex_pc),
1730        id_(-1),
1731        ssa_index_(-1),
1732        environment_(nullptr),
1733        locations_(nullptr),
1734        live_interval_(nullptr),
1735        lifetime_position_(kNoLifetime),
1736        side_effects_(side_effects),
1737        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1738
1739  virtual ~HInstruction() {}
1740
1741#define DECLARE_KIND(type, super) k##type,
1742  enum InstructionKind {
1743    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1744  };
1745#undef DECLARE_KIND
1746
1747  HInstruction* GetNext() const { return next_; }
1748  HInstruction* GetPrevious() const { return previous_; }
1749
1750  HInstruction* GetNextDisregardingMoves() const;
1751  HInstruction* GetPreviousDisregardingMoves() const;
1752
1753  HBasicBlock* GetBlock() const { return block_; }
1754  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1755  void SetBlock(HBasicBlock* block) { block_ = block; }
1756  bool IsInBlock() const { return block_ != nullptr; }
1757  bool IsInLoop() const { return block_->IsInLoop(); }
1758  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1759
1760  virtual size_t InputCount() const = 0;
1761  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1762
1763  virtual void Accept(HGraphVisitor* visitor) = 0;
1764  virtual const char* DebugName() const = 0;
1765
1766  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1767  void SetRawInputAt(size_t index, HInstruction* input) {
1768    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1769  }
1770
1771  virtual bool NeedsEnvironment() const { return false; }
1772
1773  uint32_t GetDexPc() const { return dex_pc_; }
1774
1775  virtual bool IsControlFlow() const { return false; }
1776
1777  virtual bool CanThrow() const { return false; }
1778  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1779
1780  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1781  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1782
1783  // Does not apply for all instructions, but having this at top level greatly
1784  // simplifies the null check elimination.
1785  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1786  virtual bool CanBeNull() const {
1787    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1788    return true;
1789  }
1790
1791  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj) const {
1792    UNUSED(obj);
1793    return false;
1794  }
1795
1796  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1797
1798  ReferenceTypeInfo GetReferenceTypeInfo() const {
1799    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1800    return reference_type_info_;
1801  }
1802
1803  void AddUseAt(HInstruction* user, size_t index) {
1804    DCHECK(user != nullptr);
1805    HUseListNode<HInstruction*>* use =
1806        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1807    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1808  }
1809
1810  void AddEnvUseAt(HEnvironment* user, size_t index) {
1811    DCHECK(user != nullptr);
1812    HUseListNode<HEnvironment*>* env_use =
1813        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1814    user->RecordEnvUse(env_use);
1815  }
1816
1817  void RemoveAsUserOfInput(size_t input) {
1818    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1819    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1820  }
1821
1822  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1823  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1824
1825  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1826  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1827  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1828  bool HasOnlyOneNonEnvironmentUse() const {
1829    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1830  }
1831
1832  // Does this instruction strictly dominate `other_instruction`?
1833  // Returns false if this instruction and `other_instruction` are the same.
1834  // Aborts if this instruction and `other_instruction` are both phis.
1835  bool StrictlyDominates(HInstruction* other_instruction) const;
1836
1837  int GetId() const { return id_; }
1838  void SetId(int id) { id_ = id; }
1839
1840  int GetSsaIndex() const { return ssa_index_; }
1841  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1842  bool HasSsaIndex() const { return ssa_index_ != -1; }
1843
1844  bool HasEnvironment() const { return environment_ != nullptr; }
1845  HEnvironment* GetEnvironment() const { return environment_; }
1846  // Set the `environment_` field. Raw because this method does not
1847  // update the uses lists.
1848  void SetRawEnvironment(HEnvironment* environment) {
1849    DCHECK(environment_ == nullptr);
1850    DCHECK_EQ(environment->GetHolder(), this);
1851    environment_ = environment;
1852  }
1853
1854  // Set the environment of this instruction, copying it from `environment`. While
1855  // copying, the uses lists are being updated.
1856  void CopyEnvironmentFrom(HEnvironment* environment) {
1857    DCHECK(environment_ == nullptr);
1858    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1859    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1860    environment_->CopyFrom(environment);
1861    if (environment->GetParent() != nullptr) {
1862      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1863    }
1864  }
1865
1866  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1867                                                HBasicBlock* block) {
1868    DCHECK(environment_ == nullptr);
1869    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1870    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1871    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1872    if (environment->GetParent() != nullptr) {
1873      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1874    }
1875  }
1876
1877  // Returns the number of entries in the environment. Typically, that is the
1878  // number of dex registers in a method. It could be more in case of inlining.
1879  size_t EnvironmentSize() const;
1880
1881  LocationSummary* GetLocations() const { return locations_; }
1882  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1883
1884  void ReplaceWith(HInstruction* instruction);
1885  void ReplaceInput(HInstruction* replacement, size_t index);
1886
1887  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1888  // uses of this instruction by `other` are *not* updated.
1889  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1890    ReplaceWith(other);
1891    other->ReplaceInput(this, use_index);
1892  }
1893
1894  // Move `this` instruction before `cursor`.
1895  void MoveBefore(HInstruction* cursor);
1896
1897#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1898  bool Is##type() const { return (As##type() != nullptr); }                    \
1899  virtual const H##type* As##type() const { return nullptr; }                  \
1900  virtual H##type* As##type() { return nullptr; }
1901
1902  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1903#undef INSTRUCTION_TYPE_CHECK
1904
1905  // Returns whether the instruction can be moved within the graph.
1906  virtual bool CanBeMoved() const { return false; }
1907
1908  // Returns whether the two instructions are of the same kind.
1909  virtual bool InstructionTypeEquals(HInstruction* other) const {
1910    UNUSED(other);
1911    return false;
1912  }
1913
1914  // Returns whether any data encoded in the two instructions is equal.
1915  // This method does not look at the inputs. Both instructions must be
1916  // of the same type, otherwise the method has undefined behavior.
1917  virtual bool InstructionDataEquals(HInstruction* other) const {
1918    UNUSED(other);
1919    return false;
1920  }
1921
1922  // Returns whether two instructions are equal, that is:
1923  // 1) They have the same type and contain the same data (InstructionDataEquals).
1924  // 2) Their inputs are identical.
1925  bool Equals(HInstruction* other) const;
1926
1927  virtual InstructionKind GetKind() const = 0;
1928
1929  virtual size_t ComputeHashCode() const {
1930    size_t result = GetKind();
1931    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1932      result = (result * 31) + InputAt(i)->GetId();
1933    }
1934    return result;
1935  }
1936
1937  SideEffects GetSideEffects() const { return side_effects_; }
1938
1939  size_t GetLifetimePosition() const { return lifetime_position_; }
1940  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1941  LiveInterval* GetLiveInterval() const { return live_interval_; }
1942  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1943  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1944
1945  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1946
1947  // Returns whether the code generation of the instruction will require to have access
1948  // to the current method. Such instructions are:
1949  // (1): Instructions that require an environment, as calling the runtime requires
1950  //      to walk the stack and have the current method stored at a specific stack address.
1951  // (2): Object literals like classes and strings, that are loaded from the dex cache
1952  //      fields of the current method.
1953  bool NeedsCurrentMethod() const {
1954    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1955  }
1956
1957  virtual bool NeedsDexCache() const { return false; }
1958
1959  // Does this instruction have any use in an environment before
1960  // control flow hits 'other'?
1961  bool HasAnyEnvironmentUseBefore(HInstruction* other);
1962
1963  // Remove all references to environment uses of this instruction.
1964  // The caller must ensure that this is safe to do.
1965  void RemoveEnvironmentUsers();
1966
1967 protected:
1968  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
1969  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
1970
1971 private:
1972  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
1973
1974  HInstruction* previous_;
1975  HInstruction* next_;
1976  HBasicBlock* block_;
1977  const uint32_t dex_pc_;
1978
1979  // An instruction gets an id when it is added to the graph.
1980  // It reflects creation order. A negative id means the instruction
1981  // has not been added to the graph.
1982  int id_;
1983
1984  // When doing liveness analysis, instructions that have uses get an SSA index.
1985  int ssa_index_;
1986
1987  // List of instructions that have this instruction as input.
1988  HUseList<HInstruction*> uses_;
1989
1990  // List of environments that contain this instruction.
1991  HUseList<HEnvironment*> env_uses_;
1992
1993  // The environment associated with this instruction. Not null if the instruction
1994  // might jump out of the method.
1995  HEnvironment* environment_;
1996
1997  // Set by the code generator.
1998  LocationSummary* locations_;
1999
2000  // Set by the liveness analysis.
2001  LiveInterval* live_interval_;
2002
2003  // Set by the liveness analysis, this is the position in a linear
2004  // order of blocks where this instruction's live interval start.
2005  size_t lifetime_position_;
2006
2007  const SideEffects side_effects_;
2008
2009  // TODO: for primitive types this should be marked as invalid.
2010  ReferenceTypeInfo reference_type_info_;
2011
2012  friend class GraphChecker;
2013  friend class HBasicBlock;
2014  friend class HEnvironment;
2015  friend class HGraph;
2016  friend class HInstructionList;
2017
2018  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2019};
2020std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2021
2022class HInputIterator : public ValueObject {
2023 public:
2024  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2025
2026  bool Done() const { return index_ == instruction_->InputCount(); }
2027  HInstruction* Current() const { return instruction_->InputAt(index_); }
2028  void Advance() { index_++; }
2029
2030 private:
2031  HInstruction* instruction_;
2032  size_t index_;
2033
2034  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2035};
2036
2037class HInstructionIterator : public ValueObject {
2038 public:
2039  explicit HInstructionIterator(const HInstructionList& instructions)
2040      : instruction_(instructions.first_instruction_) {
2041    next_ = Done() ? nullptr : instruction_->GetNext();
2042  }
2043
2044  bool Done() const { return instruction_ == nullptr; }
2045  HInstruction* Current() const { return instruction_; }
2046  void Advance() {
2047    instruction_ = next_;
2048    next_ = Done() ? nullptr : instruction_->GetNext();
2049  }
2050
2051 private:
2052  HInstruction* instruction_;
2053  HInstruction* next_;
2054
2055  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2056};
2057
2058class HBackwardInstructionIterator : public ValueObject {
2059 public:
2060  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2061      : instruction_(instructions.last_instruction_) {
2062    next_ = Done() ? nullptr : instruction_->GetPrevious();
2063  }
2064
2065  bool Done() const { return instruction_ == nullptr; }
2066  HInstruction* Current() const { return instruction_; }
2067  void Advance() {
2068    instruction_ = next_;
2069    next_ = Done() ? nullptr : instruction_->GetPrevious();
2070  }
2071
2072 private:
2073  HInstruction* instruction_;
2074  HInstruction* next_;
2075
2076  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2077};
2078
2079template<size_t N>
2080class HTemplateInstruction: public HInstruction {
2081 public:
2082  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2083      : HInstruction(side_effects, dex_pc), inputs_() {}
2084  virtual ~HTemplateInstruction() {}
2085
2086  size_t InputCount() const OVERRIDE { return N; }
2087
2088 protected:
2089  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2090    DCHECK_LT(i, N);
2091    return inputs_[i];
2092  }
2093
2094  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2095    DCHECK_LT(i, N);
2096    inputs_[i] = input;
2097  }
2098
2099 private:
2100  std::array<HUserRecord<HInstruction*>, N> inputs_;
2101
2102  friend class SsaBuilder;
2103};
2104
2105// HTemplateInstruction specialization for N=0.
2106template<>
2107class HTemplateInstruction<0>: public HInstruction {
2108 public:
2109  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2110      : HInstruction(side_effects, dex_pc) {}
2111
2112  virtual ~HTemplateInstruction() {}
2113
2114  size_t InputCount() const OVERRIDE { return 0; }
2115
2116 protected:
2117  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2118    LOG(FATAL) << "Unreachable";
2119    UNREACHABLE();
2120  }
2121
2122  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2123                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2124    LOG(FATAL) << "Unreachable";
2125    UNREACHABLE();
2126  }
2127
2128 private:
2129  friend class SsaBuilder;
2130};
2131
2132template<intptr_t N>
2133class HExpression : public HTemplateInstruction<N> {
2134 public:
2135  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2136      : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {}
2137  virtual ~HExpression() {}
2138
2139  Primitive::Type GetType() const OVERRIDE { return type_; }
2140
2141 protected:
2142  Primitive::Type type_;
2143};
2144
2145// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2146// instruction that branches to the exit block.
2147class HReturnVoid : public HTemplateInstruction<0> {
2148 public:
2149  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2150      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2151
2152  bool IsControlFlow() const OVERRIDE { return true; }
2153
2154  DECLARE_INSTRUCTION(ReturnVoid);
2155
2156 private:
2157  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2158};
2159
2160// Represents dex's RETURN opcodes. A HReturn is a control flow
2161// instruction that branches to the exit block.
2162class HReturn : public HTemplateInstruction<1> {
2163 public:
2164  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2165      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2166    SetRawInputAt(0, value);
2167  }
2168
2169  bool IsControlFlow() const OVERRIDE { return true; }
2170
2171  DECLARE_INSTRUCTION(Return);
2172
2173 private:
2174  DISALLOW_COPY_AND_ASSIGN(HReturn);
2175};
2176
2177// The exit instruction is the only instruction of the exit block.
2178// Instructions aborting the method (HThrow and HReturn) must branch to the
2179// exit block.
2180class HExit : public HTemplateInstruction<0> {
2181 public:
2182  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2183
2184  bool IsControlFlow() const OVERRIDE { return true; }
2185
2186  DECLARE_INSTRUCTION(Exit);
2187
2188 private:
2189  DISALLOW_COPY_AND_ASSIGN(HExit);
2190};
2191
2192// Jumps from one block to another.
2193class HGoto : public HTemplateInstruction<0> {
2194 public:
2195  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2196
2197  bool IsControlFlow() const OVERRIDE { return true; }
2198
2199  HBasicBlock* GetSuccessor() const {
2200    return GetBlock()->GetSingleSuccessor();
2201  }
2202
2203  DECLARE_INSTRUCTION(Goto);
2204
2205 private:
2206  DISALLOW_COPY_AND_ASSIGN(HGoto);
2207};
2208
2209class HConstant : public HExpression<0> {
2210 public:
2211  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2212      : HExpression(type, SideEffects::None(), dex_pc) {}
2213
2214  bool CanBeMoved() const OVERRIDE { return true; }
2215
2216  virtual bool IsMinusOne() const { return false; }
2217  virtual bool IsZero() const { return false; }
2218  virtual bool IsOne() const { return false; }
2219
2220  virtual uint64_t GetValueAsUint64() const = 0;
2221
2222  DECLARE_INSTRUCTION(Constant);
2223
2224 private:
2225  DISALLOW_COPY_AND_ASSIGN(HConstant);
2226};
2227
2228class HNullConstant : public HConstant {
2229 public:
2230  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2231    return true;
2232  }
2233
2234  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2235
2236  size_t ComputeHashCode() const OVERRIDE { return 0; }
2237
2238  DECLARE_INSTRUCTION(NullConstant);
2239
2240 private:
2241  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2242
2243  friend class HGraph;
2244  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2245};
2246
2247// Constants of the type int. Those can be from Dex instructions, or
2248// synthesized (for example with the if-eqz instruction).
2249class HIntConstant : public HConstant {
2250 public:
2251  int32_t GetValue() const { return value_; }
2252
2253  uint64_t GetValueAsUint64() const OVERRIDE {
2254    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2255  }
2256
2257  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2258    DCHECK(other->IsIntConstant());
2259    return other->AsIntConstant()->value_ == value_;
2260  }
2261
2262  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2263
2264  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2265  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2266  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2267
2268  DECLARE_INSTRUCTION(IntConstant);
2269
2270 private:
2271  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2272      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2273  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2274      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2275
2276  const int32_t value_;
2277
2278  friend class HGraph;
2279  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2280  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2281  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2282};
2283
2284class HLongConstant : public HConstant {
2285 public:
2286  int64_t GetValue() const { return value_; }
2287
2288  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2289
2290  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2291    DCHECK(other->IsLongConstant());
2292    return other->AsLongConstant()->value_ == value_;
2293  }
2294
2295  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2296
2297  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2298  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2299  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2300
2301  DECLARE_INSTRUCTION(LongConstant);
2302
2303 private:
2304  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2305      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2306
2307  const int64_t value_;
2308
2309  friend class HGraph;
2310  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2311};
2312
2313// Conditional branch. A block ending with an HIf instruction must have
2314// two successors.
2315class HIf : public HTemplateInstruction<1> {
2316 public:
2317  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2318      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2319    SetRawInputAt(0, input);
2320  }
2321
2322  bool IsControlFlow() const OVERRIDE { return true; }
2323
2324  HBasicBlock* IfTrueSuccessor() const {
2325    return GetBlock()->GetSuccessors()[0];
2326  }
2327
2328  HBasicBlock* IfFalseSuccessor() const {
2329    return GetBlock()->GetSuccessors()[1];
2330  }
2331
2332  DECLARE_INSTRUCTION(If);
2333
2334 private:
2335  DISALLOW_COPY_AND_ASSIGN(HIf);
2336};
2337
2338
2339// Abstract instruction which marks the beginning and/or end of a try block and
2340// links it to the respective exception handlers. Behaves the same as a Goto in
2341// non-exceptional control flow.
2342// Normal-flow successor is stored at index zero, exception handlers under
2343// higher indices in no particular order.
2344class HTryBoundary : public HTemplateInstruction<0> {
2345 public:
2346  enum BoundaryKind {
2347    kEntry,
2348    kExit,
2349  };
2350
2351  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2352      : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {}
2353
2354  bool IsControlFlow() const OVERRIDE { return true; }
2355
2356  // Returns the block's non-exceptional successor (index zero).
2357  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2358
2359  // Returns whether `handler` is among its exception handlers (non-zero index
2360  // successors).
2361  bool HasExceptionHandler(const HBasicBlock& handler) const {
2362    DCHECK(handler.IsCatchBlock());
2363    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2364  }
2365
2366  // If not present already, adds `handler` to its block's list of exception
2367  // handlers.
2368  void AddExceptionHandler(HBasicBlock* handler) {
2369    if (!HasExceptionHandler(*handler)) {
2370      GetBlock()->AddSuccessor(handler);
2371    }
2372  }
2373
2374  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2375
2376  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2377
2378  DECLARE_INSTRUCTION(TryBoundary);
2379
2380 private:
2381  const BoundaryKind kind_;
2382
2383  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2384};
2385
2386// Iterator over exception handlers of a given HTryBoundary, i.e. over
2387// exceptional successors of its basic block.
2388class HExceptionHandlerIterator : public ValueObject {
2389 public:
2390  explicit HExceptionHandlerIterator(const HTryBoundary& try_boundary)
2391    : block_(*try_boundary.GetBlock()), index_(block_.NumberOfNormalSuccessors()) {}
2392
2393  bool Done() const { return index_ == block_.GetSuccessors().size(); }
2394  HBasicBlock* Current() const { return block_.GetSuccessors()[index_]; }
2395  size_t CurrentSuccessorIndex() const { return index_; }
2396  void Advance() { ++index_; }
2397
2398 private:
2399  const HBasicBlock& block_;
2400  size_t index_;
2401
2402  DISALLOW_COPY_AND_ASSIGN(HExceptionHandlerIterator);
2403};
2404
2405// Deoptimize to interpreter, upon checking a condition.
2406class HDeoptimize : public HTemplateInstruction<1> {
2407 public:
2408  explicit HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2409      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2410    SetRawInputAt(0, cond);
2411  }
2412
2413  bool NeedsEnvironment() const OVERRIDE { return true; }
2414  bool CanThrow() const OVERRIDE { return true; }
2415
2416  DECLARE_INSTRUCTION(Deoptimize);
2417
2418 private:
2419  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2420};
2421
2422// Represents the ArtMethod that was passed as a first argument to
2423// the method. It is used by instructions that depend on it, like
2424// instructions that work with the dex cache.
2425class HCurrentMethod : public HExpression<0> {
2426 public:
2427  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2428      : HExpression(type, SideEffects::None(), dex_pc) {}
2429
2430  DECLARE_INSTRUCTION(CurrentMethod);
2431
2432 private:
2433  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2434};
2435
2436// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2437// have one successor for each entry in the switch table, and the final successor
2438// will be the block containing the next Dex opcode.
2439class HPackedSwitch : public HTemplateInstruction<1> {
2440 public:
2441  HPackedSwitch(int32_t start_value,
2442                uint32_t num_entries,
2443                HInstruction* input,
2444                uint32_t dex_pc = kNoDexPc)
2445    : HTemplateInstruction(SideEffects::None(), dex_pc),
2446      start_value_(start_value),
2447      num_entries_(num_entries) {
2448    SetRawInputAt(0, input);
2449  }
2450
2451  bool IsControlFlow() const OVERRIDE { return true; }
2452
2453  int32_t GetStartValue() const { return start_value_; }
2454
2455  uint32_t GetNumEntries() const { return num_entries_; }
2456
2457  HBasicBlock* GetDefaultBlock() const {
2458    // Last entry is the default block.
2459    return GetBlock()->GetSuccessors()[num_entries_];
2460  }
2461  DECLARE_INSTRUCTION(PackedSwitch);
2462
2463 private:
2464  const int32_t start_value_;
2465  const uint32_t num_entries_;
2466
2467  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2468};
2469
2470class HUnaryOperation : public HExpression<1> {
2471 public:
2472  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2473      : HExpression(result_type, SideEffects::None(), dex_pc) {
2474    SetRawInputAt(0, input);
2475  }
2476
2477  HInstruction* GetInput() const { return InputAt(0); }
2478  Primitive::Type GetResultType() const { return GetType(); }
2479
2480  bool CanBeMoved() const OVERRIDE { return true; }
2481  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2482    UNUSED(other);
2483    return true;
2484  }
2485
2486  // Try to statically evaluate `operation` and return a HConstant
2487  // containing the result of this evaluation.  If `operation` cannot
2488  // be evaluated as a constant, return null.
2489  HConstant* TryStaticEvaluation() const;
2490
2491  // Apply this operation to `x`.
2492  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2493  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2494
2495  DECLARE_INSTRUCTION(UnaryOperation);
2496
2497 private:
2498  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2499};
2500
2501class HBinaryOperation : public HExpression<2> {
2502 public:
2503  HBinaryOperation(Primitive::Type result_type,
2504                   HInstruction* left,
2505                   HInstruction* right,
2506                   SideEffects side_effects = SideEffects::None(),
2507                   uint32_t dex_pc = kNoDexPc)
2508      : HExpression(result_type, side_effects, dex_pc) {
2509    SetRawInputAt(0, left);
2510    SetRawInputAt(1, right);
2511  }
2512
2513  HInstruction* GetLeft() const { return InputAt(0); }
2514  HInstruction* GetRight() const { return InputAt(1); }
2515  Primitive::Type GetResultType() const { return GetType(); }
2516
2517  virtual bool IsCommutative() const { return false; }
2518
2519  // Put constant on the right.
2520  // Returns whether order is changed.
2521  bool OrderInputsWithConstantOnTheRight() {
2522    HInstruction* left = InputAt(0);
2523    HInstruction* right = InputAt(1);
2524    if (left->IsConstant() && !right->IsConstant()) {
2525      ReplaceInput(right, 0);
2526      ReplaceInput(left, 1);
2527      return true;
2528    }
2529    return false;
2530  }
2531
2532  // Order inputs by instruction id, but favor constant on the right side.
2533  // This helps GVN for commutative ops.
2534  void OrderInputs() {
2535    DCHECK(IsCommutative());
2536    HInstruction* left = InputAt(0);
2537    HInstruction* right = InputAt(1);
2538    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2539      return;
2540    }
2541    if (OrderInputsWithConstantOnTheRight()) {
2542      return;
2543    }
2544    // Order according to instruction id.
2545    if (left->GetId() > right->GetId()) {
2546      ReplaceInput(right, 0);
2547      ReplaceInput(left, 1);
2548    }
2549  }
2550
2551  bool CanBeMoved() const OVERRIDE { return true; }
2552  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2553    UNUSED(other);
2554    return true;
2555  }
2556
2557  // Try to statically evaluate `operation` and return a HConstant
2558  // containing the result of this evaluation.  If `operation` cannot
2559  // be evaluated as a constant, return null.
2560  HConstant* TryStaticEvaluation() const;
2561
2562  // Apply this operation to `x` and `y`.
2563  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2564  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2565  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2566                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2567    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2568    return nullptr;
2569  }
2570  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2571                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2572    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2573    return nullptr;
2574  }
2575
2576  // Returns an input that can legally be used as the right input and is
2577  // constant, or null.
2578  HConstant* GetConstantRight() const;
2579
2580  // If `GetConstantRight()` returns one of the input, this returns the other
2581  // one. Otherwise it returns null.
2582  HInstruction* GetLeastConstantLeft() const;
2583
2584  DECLARE_INSTRUCTION(BinaryOperation);
2585
2586 private:
2587  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2588};
2589
2590// The comparison bias applies for floating point operations and indicates how NaN
2591// comparisons are treated:
2592enum class ComparisonBias {
2593  kNoBias,  // bias is not applicable (i.e. for long operation)
2594  kGtBias,  // return 1 for NaN comparisons
2595  kLtBias,  // return -1 for NaN comparisons
2596};
2597
2598class HCondition : public HBinaryOperation {
2599 public:
2600  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2601      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc),
2602        needs_materialization_(true),
2603        bias_(ComparisonBias::kNoBias) {}
2604
2605  bool NeedsMaterialization() const { return needs_materialization_; }
2606  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2607
2608  // For code generation purposes, returns whether this instruction is just before
2609  // `instruction`, and disregard moves in between.
2610  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2611
2612  DECLARE_INSTRUCTION(Condition);
2613
2614  virtual IfCondition GetCondition() const = 0;
2615
2616  virtual IfCondition GetOppositeCondition() const = 0;
2617
2618  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2619
2620  void SetBias(ComparisonBias bias) { bias_ = bias; }
2621
2622  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2623    return bias_ == other->AsCondition()->bias_;
2624  }
2625
2626  bool IsFPConditionTrueIfNaN() const {
2627    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2628    IfCondition if_cond = GetCondition();
2629    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2630  }
2631
2632  bool IsFPConditionFalseIfNaN() const {
2633    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2634    IfCondition if_cond = GetCondition();
2635    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2636  }
2637
2638 private:
2639  // For register allocation purposes, returns whether this instruction needs to be
2640  // materialized (that is, not just be in the processor flags).
2641  bool needs_materialization_;
2642
2643  // Needed if we merge a HCompare into a HCondition.
2644  ComparisonBias bias_;
2645
2646  DISALLOW_COPY_AND_ASSIGN(HCondition);
2647};
2648
2649// Instruction to check if two inputs are equal to each other.
2650class HEqual : public HCondition {
2651 public:
2652  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2653      : HCondition(first, second, dex_pc) {}
2654
2655  bool IsCommutative() const OVERRIDE { return true; }
2656
2657  template <typename T> bool Compute(T x, T y) const { return x == y; }
2658
2659  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2660    return GetBlock()->GetGraph()->GetIntConstant(
2661        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2662  }
2663  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2664    return GetBlock()->GetGraph()->GetIntConstant(
2665        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2666  }
2667
2668  DECLARE_INSTRUCTION(Equal);
2669
2670  IfCondition GetCondition() const OVERRIDE {
2671    return kCondEQ;
2672  }
2673
2674  IfCondition GetOppositeCondition() const OVERRIDE {
2675    return kCondNE;
2676  }
2677
2678 private:
2679  DISALLOW_COPY_AND_ASSIGN(HEqual);
2680};
2681
2682class HNotEqual : public HCondition {
2683 public:
2684  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2685      : HCondition(first, second, dex_pc) {}
2686
2687  bool IsCommutative() const OVERRIDE { return true; }
2688
2689  template <typename T> bool Compute(T x, T y) const { return x != y; }
2690
2691  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2692    return GetBlock()->GetGraph()->GetIntConstant(
2693        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2694  }
2695  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2696    return GetBlock()->GetGraph()->GetIntConstant(
2697        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2698  }
2699
2700  DECLARE_INSTRUCTION(NotEqual);
2701
2702  IfCondition GetCondition() const OVERRIDE {
2703    return kCondNE;
2704  }
2705
2706  IfCondition GetOppositeCondition() const OVERRIDE {
2707    return kCondEQ;
2708  }
2709
2710 private:
2711  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2712};
2713
2714class HLessThan : public HCondition {
2715 public:
2716  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2717      : HCondition(first, second, dex_pc) {}
2718
2719  template <typename T> bool Compute(T x, T y) const { return x < y; }
2720
2721  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2722    return GetBlock()->GetGraph()->GetIntConstant(
2723        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2724  }
2725  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2726    return GetBlock()->GetGraph()->GetIntConstant(
2727        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2728  }
2729
2730  DECLARE_INSTRUCTION(LessThan);
2731
2732  IfCondition GetCondition() const OVERRIDE {
2733    return kCondLT;
2734  }
2735
2736  IfCondition GetOppositeCondition() const OVERRIDE {
2737    return kCondGE;
2738  }
2739
2740 private:
2741  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2742};
2743
2744class HLessThanOrEqual : public HCondition {
2745 public:
2746  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2747      : HCondition(first, second, dex_pc) {}
2748
2749  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2750
2751  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2752    return GetBlock()->GetGraph()->GetIntConstant(
2753        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2754  }
2755  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2756    return GetBlock()->GetGraph()->GetIntConstant(
2757        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2758  }
2759
2760  DECLARE_INSTRUCTION(LessThanOrEqual);
2761
2762  IfCondition GetCondition() const OVERRIDE {
2763    return kCondLE;
2764  }
2765
2766  IfCondition GetOppositeCondition() const OVERRIDE {
2767    return kCondGT;
2768  }
2769
2770 private:
2771  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2772};
2773
2774class HGreaterThan : public HCondition {
2775 public:
2776  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2777      : HCondition(first, second, dex_pc) {}
2778
2779  template <typename T> bool Compute(T x, T y) const { return x > y; }
2780
2781  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2782    return GetBlock()->GetGraph()->GetIntConstant(
2783        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2784  }
2785  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2786    return GetBlock()->GetGraph()->GetIntConstant(
2787        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2788  }
2789
2790  DECLARE_INSTRUCTION(GreaterThan);
2791
2792  IfCondition GetCondition() const OVERRIDE {
2793    return kCondGT;
2794  }
2795
2796  IfCondition GetOppositeCondition() const OVERRIDE {
2797    return kCondLE;
2798  }
2799
2800 private:
2801  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2802};
2803
2804class HGreaterThanOrEqual : public HCondition {
2805 public:
2806  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2807      : HCondition(first, second, dex_pc) {}
2808
2809  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2810
2811  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2812    return GetBlock()->GetGraph()->GetIntConstant(
2813        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2814  }
2815  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2816    return GetBlock()->GetGraph()->GetIntConstant(
2817        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2818  }
2819
2820  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2821
2822  IfCondition GetCondition() const OVERRIDE {
2823    return kCondGE;
2824  }
2825
2826  IfCondition GetOppositeCondition() const OVERRIDE {
2827    return kCondLT;
2828  }
2829
2830 private:
2831  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2832};
2833
2834
2835// Instruction to check how two inputs compare to each other.
2836// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
2837class HCompare : public HBinaryOperation {
2838 public:
2839  HCompare(Primitive::Type type,
2840           HInstruction* first,
2841           HInstruction* second,
2842           ComparisonBias bias,
2843           uint32_t dex_pc)
2844      : HBinaryOperation(Primitive::kPrimInt,
2845                         first,
2846                         second,
2847                         SideEffectsForArchRuntimeCalls(type),
2848                         dex_pc),
2849        bias_(bias) {
2850    DCHECK_EQ(type, first->GetType());
2851    DCHECK_EQ(type, second->GetType());
2852  }
2853
2854  template <typename T>
2855  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
2856
2857  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2858    return GetBlock()->GetGraph()->GetIntConstant(
2859        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2860  }
2861  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2862    return GetBlock()->GetGraph()->GetIntConstant(
2863        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2864  }
2865
2866  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2867    return bias_ == other->AsCompare()->bias_;
2868  }
2869
2870  ComparisonBias GetBias() const { return bias_; }
2871
2872  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
2873
2874
2875  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
2876    // MIPS64 uses a runtime call for FP comparisons.
2877    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
2878  }
2879
2880  DECLARE_INSTRUCTION(Compare);
2881
2882 private:
2883  const ComparisonBias bias_;
2884
2885  DISALLOW_COPY_AND_ASSIGN(HCompare);
2886};
2887
2888// A local in the graph. Corresponds to a Dex register.
2889class HLocal : public HTemplateInstruction<0> {
2890 public:
2891  explicit HLocal(uint16_t reg_number)
2892      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
2893
2894  DECLARE_INSTRUCTION(Local);
2895
2896  uint16_t GetRegNumber() const { return reg_number_; }
2897
2898 private:
2899  // The Dex register number.
2900  const uint16_t reg_number_;
2901
2902  DISALLOW_COPY_AND_ASSIGN(HLocal);
2903};
2904
2905// Load a given local. The local is an input of this instruction.
2906class HLoadLocal : public HExpression<1> {
2907 public:
2908  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2909      : HExpression(type, SideEffects::None(), dex_pc) {
2910    SetRawInputAt(0, local);
2911  }
2912
2913  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
2914
2915  DECLARE_INSTRUCTION(LoadLocal);
2916
2917 private:
2918  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
2919};
2920
2921// Store a value in a given local. This instruction has two inputs: the value
2922// and the local.
2923class HStoreLocal : public HTemplateInstruction<2> {
2924 public:
2925  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
2926      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2927    SetRawInputAt(0, local);
2928    SetRawInputAt(1, value);
2929  }
2930
2931  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
2932
2933  DECLARE_INSTRUCTION(StoreLocal);
2934
2935 private:
2936  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
2937};
2938
2939class HFloatConstant : public HConstant {
2940 public:
2941  float GetValue() const { return value_; }
2942
2943  uint64_t GetValueAsUint64() const OVERRIDE {
2944    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
2945  }
2946
2947  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2948    DCHECK(other->IsFloatConstant());
2949    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
2950  }
2951
2952  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2953
2954  bool IsMinusOne() const OVERRIDE {
2955    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
2956  }
2957  bool IsZero() const OVERRIDE {
2958    return value_ == 0.0f;
2959  }
2960  bool IsOne() const OVERRIDE {
2961    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
2962  }
2963  bool IsNaN() const {
2964    return std::isnan(value_);
2965  }
2966
2967  DECLARE_INSTRUCTION(FloatConstant);
2968
2969 private:
2970  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
2971      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
2972  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2973      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
2974
2975  const float value_;
2976
2977  // Only the SsaBuilder and HGraph can create floating-point constants.
2978  friend class SsaBuilder;
2979  friend class HGraph;
2980  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2981};
2982
2983class HDoubleConstant : public HConstant {
2984 public:
2985  double GetValue() const { return value_; }
2986
2987  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
2988
2989  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2990    DCHECK(other->IsDoubleConstant());
2991    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
2992  }
2993
2994  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2995
2996  bool IsMinusOne() const OVERRIDE {
2997    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
2998  }
2999  bool IsZero() const OVERRIDE {
3000    return value_ == 0.0;
3001  }
3002  bool IsOne() const OVERRIDE {
3003    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3004  }
3005  bool IsNaN() const {
3006    return std::isnan(value_);
3007  }
3008
3009  DECLARE_INSTRUCTION(DoubleConstant);
3010
3011 private:
3012  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3013      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
3014  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3015      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
3016
3017  const double value_;
3018
3019  // Only the SsaBuilder and HGraph can create floating-point constants.
3020  friend class SsaBuilder;
3021  friend class HGraph;
3022  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
3023};
3024
3025enum class Intrinsics {
3026#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache) k ## Name,
3027#include "intrinsics_list.h"
3028  kNone,
3029  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3030#undef INTRINSICS_LIST
3031#undef OPTIMIZING_INTRINSICS
3032};
3033std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3034
3035enum IntrinsicNeedsEnvironmentOrCache {
3036  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3037  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3038};
3039
3040class HInvoke : public HInstruction {
3041 public:
3042  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3043
3044  bool NeedsEnvironment() const OVERRIDE;
3045
3046  void SetArgumentAt(size_t index, HInstruction* argument) {
3047    SetRawInputAt(index, argument);
3048  }
3049
3050  // Return the number of arguments.  This number can be lower than
3051  // the number of inputs returned by InputCount(), as some invoke
3052  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3053  // inputs at the end of their list of inputs.
3054  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3055
3056  Primitive::Type GetType() const OVERRIDE { return return_type_; }
3057
3058
3059  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3060  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3061
3062  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
3063
3064  Intrinsics GetIntrinsic() const {
3065    return intrinsic_;
3066  }
3067
3068  void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache);
3069
3070  bool IsFromInlinedInvoke() const {
3071    return GetEnvironment()->GetParent() != nullptr;
3072  }
3073
3074  bool CanThrow() const OVERRIDE { return true; }
3075
3076  uint32_t* GetIntrinsicOptimizations() {
3077    return &intrinsic_optimizations_;
3078  }
3079
3080  const uint32_t* GetIntrinsicOptimizations() const {
3081    return &intrinsic_optimizations_;
3082  }
3083
3084  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3085
3086  DECLARE_INSTRUCTION(Invoke);
3087
3088 protected:
3089  HInvoke(ArenaAllocator* arena,
3090          uint32_t number_of_arguments,
3091          uint32_t number_of_other_inputs,
3092          Primitive::Type return_type,
3093          uint32_t dex_pc,
3094          uint32_t dex_method_index,
3095          InvokeType original_invoke_type)
3096    : HInstruction(
3097          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3098      number_of_arguments_(number_of_arguments),
3099      inputs_(number_of_arguments + number_of_other_inputs,
3100              arena->Adapter(kArenaAllocInvokeInputs)),
3101      return_type_(return_type),
3102      dex_method_index_(dex_method_index),
3103      original_invoke_type_(original_invoke_type),
3104      intrinsic_(Intrinsics::kNone),
3105      intrinsic_optimizations_(0) {
3106  }
3107
3108  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3109    return inputs_[index];
3110  }
3111
3112  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3113    inputs_[index] = input;
3114  }
3115
3116  uint32_t number_of_arguments_;
3117  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3118  const Primitive::Type return_type_;
3119  const uint32_t dex_method_index_;
3120  const InvokeType original_invoke_type_;
3121  Intrinsics intrinsic_;
3122
3123  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3124  uint32_t intrinsic_optimizations_;
3125
3126 private:
3127  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3128};
3129
3130class HInvokeUnresolved : public HInvoke {
3131 public:
3132  HInvokeUnresolved(ArenaAllocator* arena,
3133                    uint32_t number_of_arguments,
3134                    Primitive::Type return_type,
3135                    uint32_t dex_pc,
3136                    uint32_t dex_method_index,
3137                    InvokeType invoke_type)
3138      : HInvoke(arena,
3139                number_of_arguments,
3140                0u /* number_of_other_inputs */,
3141                return_type,
3142                dex_pc,
3143                dex_method_index,
3144                invoke_type) {
3145  }
3146
3147  DECLARE_INSTRUCTION(InvokeUnresolved);
3148
3149 private:
3150  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3151};
3152
3153class HInvokeStaticOrDirect : public HInvoke {
3154 public:
3155  // Requirements of this method call regarding the class
3156  // initialization (clinit) check of its declaring class.
3157  enum class ClinitCheckRequirement {
3158    kNone,      // Class already initialized.
3159    kExplicit,  // Static call having explicit clinit check as last input.
3160    kImplicit,  // Static call implicitly requiring a clinit check.
3161  };
3162
3163  // Determines how to load the target ArtMethod*.
3164  enum class MethodLoadKind {
3165    // Use a String init ArtMethod* loaded from Thread entrypoints.
3166    kStringInit,
3167
3168    // Use the method's own ArtMethod* loaded by the register allocator.
3169    kRecursive,
3170
3171    // Use ArtMethod* at a known address, embed the direct address in the code.
3172    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3173    kDirectAddress,
3174
3175    // Use ArtMethod* at an address that will be known at link time, embed the direct
3176    // address in the code. If the image is relocatable, emit .patch_oat entry.
3177    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3178    // the image relocatable or not.
3179    kDirectAddressWithFixup,
3180
3181    // Load from resoved methods array in the dex cache using a PC-relative load.
3182    // Used when we need to use the dex cache, for example for invoke-static that
3183    // may cause class initialization (the entry may point to a resolution method),
3184    // and we know that we can access the dex cache arrays using a PC-relative load.
3185    kDexCachePcRelative,
3186
3187    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3188    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3189    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3190    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3191    kDexCacheViaMethod,
3192  };
3193
3194  // Determines the location of the code pointer.
3195  enum class CodePtrLocation {
3196    // Recursive call, use local PC-relative call instruction.
3197    kCallSelf,
3198
3199    // Use PC-relative call instruction patched at link time.
3200    // Used for calls within an oat file, boot->boot or app->app.
3201    kCallPCRelative,
3202
3203    // Call to a known target address, embed the direct address in code.
3204    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3205    kCallDirect,
3206
3207    // Call to a target address that will be known at link time, embed the direct
3208    // address in code. If the image is relocatable, emit .patch_oat entry.
3209    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3210    // the image relocatable or not.
3211    kCallDirectWithFixup,
3212
3213    // Use code pointer from the ArtMethod*.
3214    // Used when we don't know the target code. This is also the last-resort-kind used when
3215    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3216    kCallArtMethod,
3217  };
3218
3219  struct DispatchInfo {
3220    const MethodLoadKind method_load_kind;
3221    const CodePtrLocation code_ptr_location;
3222    // The method load data holds
3223    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3224    //     Note that there are multiple string init methods, each having its own offset.
3225    //   - the method address for kDirectAddress
3226    //   - the dex cache arrays offset for kDexCachePcRel.
3227    const uint64_t method_load_data;
3228    const uint64_t direct_code_ptr;
3229  };
3230
3231  HInvokeStaticOrDirect(ArenaAllocator* arena,
3232                        uint32_t number_of_arguments,
3233                        Primitive::Type return_type,
3234                        uint32_t dex_pc,
3235                        uint32_t method_index,
3236                        MethodReference target_method,
3237                        DispatchInfo dispatch_info,
3238                        InvokeType original_invoke_type,
3239                        InvokeType invoke_type,
3240                        ClinitCheckRequirement clinit_check_requirement)
3241      : HInvoke(arena,
3242                number_of_arguments,
3243                // There is one extra argument for the HCurrentMethod node, and
3244                // potentially one other if the clinit check is explicit, and one other
3245                // if the method is a string factory.
3246                1u + (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u)
3247                   + (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3248                return_type,
3249                dex_pc,
3250                method_index,
3251                original_invoke_type),
3252        invoke_type_(invoke_type),
3253        clinit_check_requirement_(clinit_check_requirement),
3254        target_method_(target_method),
3255        dispatch_info_(dispatch_info) {}
3256
3257  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3258    UNUSED(obj);
3259    // We access the method via the dex cache so we can't do an implicit null check.
3260    // TODO: for intrinsics we can generate implicit null checks.
3261    return false;
3262  }
3263
3264  bool CanBeNull() const OVERRIDE {
3265    return return_type_ == Primitive::kPrimNot && !IsStringInit();
3266  }
3267
3268  InvokeType GetInvokeType() const { return invoke_type_; }
3269  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3270  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3271  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3272  bool NeedsDexCache() const OVERRIDE;
3273  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3274  uint32_t GetCurrentMethodInputIndex() const { return GetNumberOfArguments(); }
3275  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3276  bool HasPcRelDexCache() const { return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative; }
3277  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3278  MethodReference GetTargetMethod() const { return target_method_; }
3279
3280  int32_t GetStringInitOffset() const {
3281    DCHECK(IsStringInit());
3282    return dispatch_info_.method_load_data;
3283  }
3284
3285  uint64_t GetMethodAddress() const {
3286    DCHECK(HasMethodAddress());
3287    return dispatch_info_.method_load_data;
3288  }
3289
3290  uint32_t GetDexCacheArrayOffset() const {
3291    DCHECK(HasPcRelDexCache());
3292    return dispatch_info_.method_load_data;
3293  }
3294
3295  uint64_t GetDirectCodePtr() const {
3296    DCHECK(HasDirectCodePtr());
3297    return dispatch_info_.direct_code_ptr;
3298  }
3299
3300  ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; }
3301
3302  // Is this instruction a call to a static method?
3303  bool IsStatic() const {
3304    return GetInvokeType() == kStatic;
3305  }
3306
3307  // Remove the art::HLoadClass instruction set as last input by
3308  // art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of
3309  // the initial art::HClinitCheck instruction (only relevant for
3310  // static calls with explicit clinit check).
3311  void RemoveLoadClassAsLastInput() {
3312    DCHECK(IsStaticWithExplicitClinitCheck());
3313    size_t last_input_index = InputCount() - 1;
3314    HInstruction* last_input = InputAt(last_input_index);
3315    DCHECK(last_input != nullptr);
3316    DCHECK(last_input->IsLoadClass()) << last_input->DebugName();
3317    RemoveAsUserOfInput(last_input_index);
3318    inputs_.pop_back();
3319    clinit_check_requirement_ = ClinitCheckRequirement::kImplicit;
3320    DCHECK(IsStaticWithImplicitClinitCheck());
3321  }
3322
3323  bool IsStringFactoryFor(HFakeString* str) const {
3324    if (!IsStringInit()) return false;
3325    // +1 for the current method.
3326    if (InputCount() == (number_of_arguments_ + 1)) return false;
3327    return InputAt(InputCount() - 1)->AsFakeString() == str;
3328  }
3329
3330  void RemoveFakeStringArgumentAsLastInput() {
3331    DCHECK(IsStringInit());
3332    size_t last_input_index = InputCount() - 1;
3333    HInstruction* last_input = InputAt(last_input_index);
3334    DCHECK(last_input != nullptr);
3335    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
3336    RemoveAsUserOfInput(last_input_index);
3337    inputs_.pop_back();
3338  }
3339
3340  // Is this a call to a static method whose declaring class has an
3341  // explicit intialization check in the graph?
3342  bool IsStaticWithExplicitClinitCheck() const {
3343    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3344  }
3345
3346  // Is this a call to a static method whose declaring class has an
3347  // implicit intialization check requirement?
3348  bool IsStaticWithImplicitClinitCheck() const {
3349    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3350  }
3351
3352  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3353
3354 protected:
3355  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3356    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3357    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3358      HInstruction* input = input_record.GetInstruction();
3359      // `input` is the last input of a static invoke marked as having
3360      // an explicit clinit check. It must either be:
3361      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3362      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3363      DCHECK(input != nullptr);
3364      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3365    }
3366    return input_record;
3367  }
3368
3369 private:
3370  const InvokeType invoke_type_;
3371  ClinitCheckRequirement clinit_check_requirement_;
3372  // The target method may refer to different dex file or method index than the original
3373  // invoke. This happens for sharpened calls and for calls where a method was redeclared
3374  // in derived class to increase visibility.
3375  MethodReference target_method_;
3376  DispatchInfo dispatch_info_;
3377
3378  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3379};
3380
3381class HInvokeVirtual : public HInvoke {
3382 public:
3383  HInvokeVirtual(ArenaAllocator* arena,
3384                 uint32_t number_of_arguments,
3385                 Primitive::Type return_type,
3386                 uint32_t dex_pc,
3387                 uint32_t dex_method_index,
3388                 uint32_t vtable_index)
3389      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3390        vtable_index_(vtable_index) {}
3391
3392  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3393    // TODO: Add implicit null checks in intrinsics.
3394    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3395  }
3396
3397  uint32_t GetVTableIndex() const { return vtable_index_; }
3398
3399  DECLARE_INSTRUCTION(InvokeVirtual);
3400
3401 private:
3402  const uint32_t vtable_index_;
3403
3404  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3405};
3406
3407class HInvokeInterface : public HInvoke {
3408 public:
3409  HInvokeInterface(ArenaAllocator* arena,
3410                   uint32_t number_of_arguments,
3411                   Primitive::Type return_type,
3412                   uint32_t dex_pc,
3413                   uint32_t dex_method_index,
3414                   uint32_t imt_index)
3415      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3416        imt_index_(imt_index) {}
3417
3418  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3419    // TODO: Add implicit null checks in intrinsics.
3420    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3421  }
3422
3423  uint32_t GetImtIndex() const { return imt_index_; }
3424  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3425
3426  DECLARE_INSTRUCTION(InvokeInterface);
3427
3428 private:
3429  const uint32_t imt_index_;
3430
3431  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3432};
3433
3434class HNewInstance : public HExpression<1> {
3435 public:
3436  HNewInstance(HCurrentMethod* current_method,
3437               uint32_t dex_pc,
3438               uint16_t type_index,
3439               const DexFile& dex_file,
3440               QuickEntrypointEnum entrypoint)
3441      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3442        type_index_(type_index),
3443        dex_file_(dex_file),
3444        entrypoint_(entrypoint) {
3445    SetRawInputAt(0, current_method);
3446  }
3447
3448  uint16_t GetTypeIndex() const { return type_index_; }
3449  const DexFile& GetDexFile() const { return dex_file_; }
3450
3451  // Calls runtime so needs an environment.
3452  bool NeedsEnvironment() const OVERRIDE { return true; }
3453  // It may throw when called on:
3454  //   - interfaces
3455  //   - abstract/innaccessible/unknown classes
3456  // TODO: optimize when possible.
3457  bool CanThrow() const OVERRIDE { return true; }
3458
3459  bool CanBeNull() const OVERRIDE { return false; }
3460
3461  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3462
3463  DECLARE_INSTRUCTION(NewInstance);
3464
3465 private:
3466  const uint16_t type_index_;
3467  const DexFile& dex_file_;
3468  const QuickEntrypointEnum entrypoint_;
3469
3470  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3471};
3472
3473class HNeg : public HUnaryOperation {
3474 public:
3475  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3476      : HUnaryOperation(result_type, input, dex_pc) {}
3477
3478  template <typename T> T Compute(T x) const { return -x; }
3479
3480  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3481    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3482  }
3483  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3484    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3485  }
3486
3487  DECLARE_INSTRUCTION(Neg);
3488
3489 private:
3490  DISALLOW_COPY_AND_ASSIGN(HNeg);
3491};
3492
3493class HNewArray : public HExpression<2> {
3494 public:
3495  HNewArray(HInstruction* length,
3496            HCurrentMethod* current_method,
3497            uint32_t dex_pc,
3498            uint16_t type_index,
3499            const DexFile& dex_file,
3500            QuickEntrypointEnum entrypoint)
3501      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3502        type_index_(type_index),
3503        dex_file_(dex_file),
3504        entrypoint_(entrypoint) {
3505    SetRawInputAt(0, length);
3506    SetRawInputAt(1, current_method);
3507  }
3508
3509  uint16_t GetTypeIndex() const { return type_index_; }
3510  const DexFile& GetDexFile() const { return dex_file_; }
3511
3512  // Calls runtime so needs an environment.
3513  bool NeedsEnvironment() const OVERRIDE { return true; }
3514
3515  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3516  bool CanThrow() const OVERRIDE { return true; }
3517
3518  bool CanBeNull() const OVERRIDE { return false; }
3519
3520  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3521
3522  DECLARE_INSTRUCTION(NewArray);
3523
3524 private:
3525  const uint16_t type_index_;
3526  const DexFile& dex_file_;
3527  const QuickEntrypointEnum entrypoint_;
3528
3529  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3530};
3531
3532class HAdd : public HBinaryOperation {
3533 public:
3534  HAdd(Primitive::Type result_type,
3535       HInstruction* left,
3536       HInstruction* right,
3537       uint32_t dex_pc = kNoDexPc)
3538      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3539
3540  bool IsCommutative() const OVERRIDE { return true; }
3541
3542  template <typename T> T Compute(T x, T y) const { return x + y; }
3543
3544  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3545    return GetBlock()->GetGraph()->GetIntConstant(
3546        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3547  }
3548  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3549    return GetBlock()->GetGraph()->GetLongConstant(
3550        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3551  }
3552
3553  DECLARE_INSTRUCTION(Add);
3554
3555 private:
3556  DISALLOW_COPY_AND_ASSIGN(HAdd);
3557};
3558
3559class HSub : public HBinaryOperation {
3560 public:
3561  HSub(Primitive::Type result_type,
3562       HInstruction* left,
3563       HInstruction* right,
3564       uint32_t dex_pc = kNoDexPc)
3565      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3566
3567  template <typename T> T Compute(T x, T y) const { return x - y; }
3568
3569  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3570    return GetBlock()->GetGraph()->GetIntConstant(
3571        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3572  }
3573  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3574    return GetBlock()->GetGraph()->GetLongConstant(
3575        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3576  }
3577
3578  DECLARE_INSTRUCTION(Sub);
3579
3580 private:
3581  DISALLOW_COPY_AND_ASSIGN(HSub);
3582};
3583
3584class HMul : public HBinaryOperation {
3585 public:
3586  HMul(Primitive::Type result_type,
3587       HInstruction* left,
3588       HInstruction* right,
3589       uint32_t dex_pc = kNoDexPc)
3590      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3591
3592  bool IsCommutative() const OVERRIDE { return true; }
3593
3594  template <typename T> T Compute(T x, T y) const { return x * y; }
3595
3596  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3597    return GetBlock()->GetGraph()->GetIntConstant(
3598        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3599  }
3600  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3601    return GetBlock()->GetGraph()->GetLongConstant(
3602        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3603  }
3604
3605  DECLARE_INSTRUCTION(Mul);
3606
3607 private:
3608  DISALLOW_COPY_AND_ASSIGN(HMul);
3609};
3610
3611class HDiv : public HBinaryOperation {
3612 public:
3613  HDiv(Primitive::Type result_type,
3614       HInstruction* left,
3615       HInstruction* right,
3616       uint32_t dex_pc)
3617      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3618
3619  template <typename T>
3620  T Compute(T x, T y) const {
3621    // Our graph structure ensures we never have 0 for `y` during
3622    // constant folding.
3623    DCHECK_NE(y, 0);
3624    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3625    return (y == -1) ? -x : x / y;
3626  }
3627
3628  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3629    return GetBlock()->GetGraph()->GetIntConstant(
3630        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3631  }
3632  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3633    return GetBlock()->GetGraph()->GetLongConstant(
3634        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3635  }
3636
3637  static SideEffects SideEffectsForArchRuntimeCalls() {
3638    // The generated code can use a runtime call.
3639    return SideEffects::CanTriggerGC();
3640  }
3641
3642  DECLARE_INSTRUCTION(Div);
3643
3644 private:
3645  DISALLOW_COPY_AND_ASSIGN(HDiv);
3646};
3647
3648class HRem : public HBinaryOperation {
3649 public:
3650  HRem(Primitive::Type result_type,
3651       HInstruction* left,
3652       HInstruction* right,
3653       uint32_t dex_pc)
3654      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3655
3656  template <typename T>
3657  T Compute(T x, T y) const {
3658    // Our graph structure ensures we never have 0 for `y` during
3659    // constant folding.
3660    DCHECK_NE(y, 0);
3661    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3662    return (y == -1) ? 0 : x % y;
3663  }
3664
3665  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3666    return GetBlock()->GetGraph()->GetIntConstant(
3667        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3668  }
3669  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3670    return GetBlock()->GetGraph()->GetLongConstant(
3671        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3672  }
3673
3674
3675  static SideEffects SideEffectsForArchRuntimeCalls() {
3676    return SideEffects::CanTriggerGC();
3677  }
3678
3679  DECLARE_INSTRUCTION(Rem);
3680
3681 private:
3682  DISALLOW_COPY_AND_ASSIGN(HRem);
3683};
3684
3685class HDivZeroCheck : public HExpression<1> {
3686 public:
3687  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
3688      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
3689    SetRawInputAt(0, value);
3690  }
3691
3692  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
3693
3694  bool CanBeMoved() const OVERRIDE { return true; }
3695
3696  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3697    UNUSED(other);
3698    return true;
3699  }
3700
3701  bool NeedsEnvironment() const OVERRIDE { return true; }
3702  bool CanThrow() const OVERRIDE { return true; }
3703
3704  DECLARE_INSTRUCTION(DivZeroCheck);
3705
3706 private:
3707  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
3708};
3709
3710class HShl : public HBinaryOperation {
3711 public:
3712  HShl(Primitive::Type result_type,
3713       HInstruction* left,
3714       HInstruction* right,
3715       uint32_t dex_pc = kNoDexPc)
3716      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3717
3718  template <typename T, typename U, typename V>
3719  T Compute(T x, U y, V max_shift_value) const {
3720    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3721                  "V is not the unsigned integer type corresponding to T");
3722    return x << (y & max_shift_value);
3723  }
3724
3725  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3726    return GetBlock()->GetGraph()->GetIntConstant(
3727        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3728  }
3729  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3730  // case is handled as `x << static_cast<int>(y)`.
3731  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3732    return GetBlock()->GetGraph()->GetLongConstant(
3733        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3734  }
3735  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3736    return GetBlock()->GetGraph()->GetLongConstant(
3737        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3738  }
3739
3740  DECLARE_INSTRUCTION(Shl);
3741
3742 private:
3743  DISALLOW_COPY_AND_ASSIGN(HShl);
3744};
3745
3746class HShr : public HBinaryOperation {
3747 public:
3748  HShr(Primitive::Type result_type,
3749       HInstruction* left,
3750       HInstruction* right,
3751       uint32_t dex_pc = kNoDexPc)
3752      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3753
3754  template <typename T, typename U, typename V>
3755  T Compute(T x, U y, V max_shift_value) const {
3756    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3757                  "V is not the unsigned integer type corresponding to T");
3758    return x >> (y & max_shift_value);
3759  }
3760
3761  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3762    return GetBlock()->GetGraph()->GetIntConstant(
3763        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3764  }
3765  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3766  // case is handled as `x >> static_cast<int>(y)`.
3767  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3768    return GetBlock()->GetGraph()->GetLongConstant(
3769        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3770  }
3771  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3772    return GetBlock()->GetGraph()->GetLongConstant(
3773        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3774  }
3775
3776  DECLARE_INSTRUCTION(Shr);
3777
3778 private:
3779  DISALLOW_COPY_AND_ASSIGN(HShr);
3780};
3781
3782class HUShr : public HBinaryOperation {
3783 public:
3784  HUShr(Primitive::Type result_type,
3785        HInstruction* left,
3786        HInstruction* right,
3787        uint32_t dex_pc = kNoDexPc)
3788      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3789
3790  template <typename T, typename U, typename V>
3791  T Compute(T x, U y, V max_shift_value) const {
3792    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3793                  "V is not the unsigned integer type corresponding to T");
3794    V ux = static_cast<V>(x);
3795    return static_cast<T>(ux >> (y & max_shift_value));
3796  }
3797
3798  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3799    return GetBlock()->GetGraph()->GetIntConstant(
3800        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3801  }
3802  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3803  // case is handled as `x >>> static_cast<int>(y)`.
3804  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3805    return GetBlock()->GetGraph()->GetLongConstant(
3806        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3807  }
3808  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3809    return GetBlock()->GetGraph()->GetLongConstant(
3810        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3811  }
3812
3813  DECLARE_INSTRUCTION(UShr);
3814
3815 private:
3816  DISALLOW_COPY_AND_ASSIGN(HUShr);
3817};
3818
3819class HAnd : public HBinaryOperation {
3820 public:
3821  HAnd(Primitive::Type result_type,
3822       HInstruction* left,
3823       HInstruction* right,
3824       uint32_t dex_pc = kNoDexPc)
3825      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3826
3827  bool IsCommutative() const OVERRIDE { return true; }
3828
3829  template <typename T, typename U>
3830  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
3831
3832  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3833    return GetBlock()->GetGraph()->GetIntConstant(
3834        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3835  }
3836  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
3837    return GetBlock()->GetGraph()->GetLongConstant(
3838        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3839  }
3840  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3841    return GetBlock()->GetGraph()->GetLongConstant(
3842        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3843  }
3844  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3845    return GetBlock()->GetGraph()->GetLongConstant(
3846        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3847  }
3848
3849  DECLARE_INSTRUCTION(And);
3850
3851 private:
3852  DISALLOW_COPY_AND_ASSIGN(HAnd);
3853};
3854
3855class HOr : public HBinaryOperation {
3856 public:
3857  HOr(Primitive::Type result_type,
3858      HInstruction* left,
3859      HInstruction* right,
3860      uint32_t dex_pc = kNoDexPc)
3861      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3862
3863  bool IsCommutative() const OVERRIDE { return true; }
3864
3865  template <typename T, typename U>
3866  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
3867
3868  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3869    return GetBlock()->GetGraph()->GetIntConstant(
3870        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3871  }
3872  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
3873    return GetBlock()->GetGraph()->GetLongConstant(
3874        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3875  }
3876  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3877    return GetBlock()->GetGraph()->GetLongConstant(
3878        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3879  }
3880  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3881    return GetBlock()->GetGraph()->GetLongConstant(
3882        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3883  }
3884
3885  DECLARE_INSTRUCTION(Or);
3886
3887 private:
3888  DISALLOW_COPY_AND_ASSIGN(HOr);
3889};
3890
3891class HXor : public HBinaryOperation {
3892 public:
3893  HXor(Primitive::Type result_type,
3894       HInstruction* left,
3895       HInstruction* right,
3896       uint32_t dex_pc = kNoDexPc)
3897      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3898
3899  bool IsCommutative() const OVERRIDE { return true; }
3900
3901  template <typename T, typename U>
3902  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
3903
3904  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3905    return GetBlock()->GetGraph()->GetIntConstant(
3906        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3907  }
3908  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
3909    return GetBlock()->GetGraph()->GetLongConstant(
3910        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3911  }
3912  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3913    return GetBlock()->GetGraph()->GetLongConstant(
3914        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3915  }
3916  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3917    return GetBlock()->GetGraph()->GetLongConstant(
3918        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3919  }
3920
3921  DECLARE_INSTRUCTION(Xor);
3922
3923 private:
3924  DISALLOW_COPY_AND_ASSIGN(HXor);
3925};
3926
3927// The value of a parameter in this method. Its location depends on
3928// the calling convention.
3929class HParameterValue : public HExpression<0> {
3930 public:
3931  HParameterValue(uint8_t index,
3932                  Primitive::Type parameter_type,
3933                  bool is_this = false)
3934      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
3935        index_(index),
3936        is_this_(is_this),
3937        can_be_null_(!is_this) {}
3938
3939  uint8_t GetIndex() const { return index_; }
3940
3941  bool CanBeNull() const OVERRIDE { return can_be_null_; }
3942  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
3943
3944  bool IsThis() const { return is_this_; }
3945
3946  DECLARE_INSTRUCTION(ParameterValue);
3947
3948 private:
3949  // The index of this parameter in the parameters list. Must be less
3950  // than HGraph::number_of_in_vregs_.
3951  const uint8_t index_;
3952
3953  // Whether or not the parameter value corresponds to 'this' argument.
3954  const bool is_this_;
3955
3956  bool can_be_null_;
3957
3958  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
3959};
3960
3961class HNot : public HUnaryOperation {
3962 public:
3963  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3964      : HUnaryOperation(result_type, input, dex_pc) {}
3965
3966  bool CanBeMoved() const OVERRIDE { return true; }
3967  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3968    UNUSED(other);
3969    return true;
3970  }
3971
3972  template <typename T> T Compute(T x) const { return ~x; }
3973
3974  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3975    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3976  }
3977  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3978    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3979  }
3980
3981  DECLARE_INSTRUCTION(Not);
3982
3983 private:
3984  DISALLOW_COPY_AND_ASSIGN(HNot);
3985};
3986
3987class HBooleanNot : public HUnaryOperation {
3988 public:
3989  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
3990      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
3991
3992  bool CanBeMoved() const OVERRIDE { return true; }
3993  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3994    UNUSED(other);
3995    return true;
3996  }
3997
3998  template <typename T> bool Compute(T x) const {
3999    DCHECK(IsUint<1>(x));
4000    return !x;
4001  }
4002
4003  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4004    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4005  }
4006  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4007    LOG(FATAL) << DebugName() << " is not defined for long values";
4008    UNREACHABLE();
4009  }
4010
4011  DECLARE_INSTRUCTION(BooleanNot);
4012
4013 private:
4014  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4015};
4016
4017class HTypeConversion : public HExpression<1> {
4018 public:
4019  // Instantiate a type conversion of `input` to `result_type`.
4020  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4021      : HExpression(result_type,
4022                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4023                    dex_pc) {
4024    SetRawInputAt(0, input);
4025    DCHECK_NE(input->GetType(), result_type);
4026  }
4027
4028  HInstruction* GetInput() const { return InputAt(0); }
4029  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4030  Primitive::Type GetResultType() const { return GetType(); }
4031
4032  // Required by the x86 and ARM code generators when producing calls
4033  // to the runtime.
4034
4035  bool CanBeMoved() const OVERRIDE { return true; }
4036  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4037
4038  // Try to statically evaluate the conversion and return a HConstant
4039  // containing the result.  If the input cannot be converted, return nullptr.
4040  HConstant* TryStaticEvaluation() const;
4041
4042  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4043                                                    Primitive::Type result_type) {
4044    // Some architectures may not require the 'GC' side effects, but at this point
4045    // in the compilation process we do not know what architecture we will
4046    // generate code for, so we must be conservative.
4047    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4048        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4049      return SideEffects::CanTriggerGC();
4050    }
4051    return SideEffects::None();
4052  }
4053
4054  DECLARE_INSTRUCTION(TypeConversion);
4055
4056 private:
4057  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4058};
4059
4060static constexpr uint32_t kNoRegNumber = -1;
4061
4062class HPhi : public HInstruction {
4063 public:
4064  HPhi(ArenaAllocator* arena,
4065       uint32_t reg_number,
4066       size_t number_of_inputs,
4067       Primitive::Type type,
4068       uint32_t dex_pc = kNoDexPc)
4069      : HInstruction(SideEffects::None(), dex_pc),
4070        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4071        reg_number_(reg_number),
4072        type_(type),
4073        is_live_(false),
4074        can_be_null_(true) {
4075  }
4076
4077  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4078  static Primitive::Type ToPhiType(Primitive::Type type) {
4079    switch (type) {
4080      case Primitive::kPrimBoolean:
4081      case Primitive::kPrimByte:
4082      case Primitive::kPrimShort:
4083      case Primitive::kPrimChar:
4084        return Primitive::kPrimInt;
4085      default:
4086        return type;
4087    }
4088  }
4089
4090  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4091
4092  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4093
4094  void AddInput(HInstruction* input);
4095  void RemoveInputAt(size_t index);
4096
4097  Primitive::Type GetType() const OVERRIDE { return type_; }
4098  void SetType(Primitive::Type type) { type_ = type; }
4099
4100  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4101  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4102
4103  uint32_t GetRegNumber() const { return reg_number_; }
4104
4105  void SetDead() { is_live_ = false; }
4106  void SetLive() { is_live_ = true; }
4107  bool IsDead() const { return !is_live_; }
4108  bool IsLive() const { return is_live_; }
4109
4110  bool IsVRegEquivalentOf(HInstruction* other) const {
4111    return other != nullptr
4112        && other->IsPhi()
4113        && other->AsPhi()->GetBlock() == GetBlock()
4114        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4115  }
4116
4117  // Returns the next equivalent phi (starting from the current one) or null if there is none.
4118  // An equivalent phi is a phi having the same dex register and type.
4119  // It assumes that phis with the same dex register are adjacent.
4120  HPhi* GetNextEquivalentPhiWithSameType() {
4121    HInstruction* next = GetNext();
4122    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
4123      if (next->GetType() == GetType()) {
4124        return next->AsPhi();
4125      }
4126      next = next->GetNext();
4127    }
4128    return nullptr;
4129  }
4130
4131  DECLARE_INSTRUCTION(Phi);
4132
4133 protected:
4134  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
4135    return inputs_[index];
4136  }
4137
4138  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
4139    inputs_[index] = input;
4140  }
4141
4142 private:
4143  ArenaVector<HUserRecord<HInstruction*> > inputs_;
4144  const uint32_t reg_number_;
4145  Primitive::Type type_;
4146  bool is_live_;
4147  bool can_be_null_;
4148
4149  DISALLOW_COPY_AND_ASSIGN(HPhi);
4150};
4151
4152class HNullCheck : public HExpression<1> {
4153 public:
4154  HNullCheck(HInstruction* value, uint32_t dex_pc)
4155      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
4156    SetRawInputAt(0, value);
4157  }
4158
4159  bool CanBeMoved() const OVERRIDE { return true; }
4160  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4161    UNUSED(other);
4162    return true;
4163  }
4164
4165  bool NeedsEnvironment() const OVERRIDE { return true; }
4166
4167  bool CanThrow() const OVERRIDE { return true; }
4168
4169  bool CanBeNull() const OVERRIDE { return false; }
4170
4171
4172  DECLARE_INSTRUCTION(NullCheck);
4173
4174 private:
4175  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4176};
4177
4178class FieldInfo : public ValueObject {
4179 public:
4180  FieldInfo(MemberOffset field_offset,
4181            Primitive::Type field_type,
4182            bool is_volatile,
4183            uint32_t index,
4184            const DexFile& dex_file,
4185            Handle<mirror::DexCache> dex_cache)
4186      : field_offset_(field_offset),
4187        field_type_(field_type),
4188        is_volatile_(is_volatile),
4189        index_(index),
4190        dex_file_(dex_file),
4191        dex_cache_(dex_cache) {}
4192
4193  MemberOffset GetFieldOffset() const { return field_offset_; }
4194  Primitive::Type GetFieldType() const { return field_type_; }
4195  uint32_t GetFieldIndex() const { return index_; }
4196  const DexFile& GetDexFile() const { return dex_file_; }
4197  bool IsVolatile() const { return is_volatile_; }
4198  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4199
4200 private:
4201  const MemberOffset field_offset_;
4202  const Primitive::Type field_type_;
4203  const bool is_volatile_;
4204  const uint32_t index_;
4205  const DexFile& dex_file_;
4206  const Handle<mirror::DexCache> dex_cache_;
4207};
4208
4209class HInstanceFieldGet : public HExpression<1> {
4210 public:
4211  HInstanceFieldGet(HInstruction* value,
4212                    Primitive::Type field_type,
4213                    MemberOffset field_offset,
4214                    bool is_volatile,
4215                    uint32_t field_idx,
4216                    const DexFile& dex_file,
4217                    Handle<mirror::DexCache> dex_cache,
4218                    uint32_t dex_pc)
4219      : HExpression(
4220            field_type,
4221            SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc),
4222        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file, dex_cache) {
4223    SetRawInputAt(0, value);
4224  }
4225
4226  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4227
4228  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4229    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
4230    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4231  }
4232
4233  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4234    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4235  }
4236
4237  size_t ComputeHashCode() const OVERRIDE {
4238    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4239  }
4240
4241  const FieldInfo& GetFieldInfo() const { return field_info_; }
4242  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4243  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4244  bool IsVolatile() const { return field_info_.IsVolatile(); }
4245
4246  DECLARE_INSTRUCTION(InstanceFieldGet);
4247
4248 private:
4249  const FieldInfo field_info_;
4250
4251  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
4252};
4253
4254class HInstanceFieldSet : public HTemplateInstruction<2> {
4255 public:
4256  HInstanceFieldSet(HInstruction* object,
4257                    HInstruction* value,
4258                    Primitive::Type field_type,
4259                    MemberOffset field_offset,
4260                    bool is_volatile,
4261                    uint32_t field_idx,
4262                    const DexFile& dex_file,
4263                    Handle<mirror::DexCache> dex_cache,
4264                    uint32_t dex_pc)
4265      : HTemplateInstruction(
4266          SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc),
4267        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file, dex_cache),
4268        value_can_be_null_(true) {
4269    SetRawInputAt(0, object);
4270    SetRawInputAt(1, value);
4271  }
4272
4273  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4274    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4275  }
4276
4277  const FieldInfo& GetFieldInfo() const { return field_info_; }
4278  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4279  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4280  bool IsVolatile() const { return field_info_.IsVolatile(); }
4281  HInstruction* GetValue() const { return InputAt(1); }
4282  bool GetValueCanBeNull() const { return value_can_be_null_; }
4283  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4284
4285  DECLARE_INSTRUCTION(InstanceFieldSet);
4286
4287 private:
4288  const FieldInfo field_info_;
4289  bool value_can_be_null_;
4290
4291  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
4292};
4293
4294class HArrayGet : public HExpression<2> {
4295 public:
4296  HArrayGet(HInstruction* array,
4297            HInstruction* index,
4298            Primitive::Type type,
4299            uint32_t dex_pc)
4300      : HExpression(type, SideEffects::ArrayReadOfType(type), dex_pc) {
4301    SetRawInputAt(0, array);
4302    SetRawInputAt(1, index);
4303  }
4304
4305  bool CanBeMoved() const OVERRIDE { return true; }
4306  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4307    UNUSED(other);
4308    return true;
4309  }
4310  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4311    UNUSED(obj);
4312    // TODO: We can be smarter here.
4313    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
4314    // which generates the implicit null check. There are cases when these can be removed
4315    // to produce better code. If we ever add optimizations to do so we should allow an
4316    // implicit check here (as long as the address falls in the first page).
4317    return false;
4318  }
4319
4320  void SetType(Primitive::Type type) { type_ = type; }
4321
4322  HInstruction* GetArray() const { return InputAt(0); }
4323  HInstruction* GetIndex() const { return InputAt(1); }
4324
4325  DECLARE_INSTRUCTION(ArrayGet);
4326
4327 private:
4328  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4329};
4330
4331class HArraySet : public HTemplateInstruction<3> {
4332 public:
4333  HArraySet(HInstruction* array,
4334            HInstruction* index,
4335            HInstruction* value,
4336            Primitive::Type expected_component_type,
4337            uint32_t dex_pc)
4338      : HTemplateInstruction(
4339            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4340                SideEffectsForArchRuntimeCalls(value->GetType())), dex_pc),
4341        expected_component_type_(expected_component_type),
4342        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4343        value_can_be_null_(true),
4344        static_type_of_array_is_object_array_(false) {
4345    SetRawInputAt(0, array);
4346    SetRawInputAt(1, index);
4347    SetRawInputAt(2, value);
4348  }
4349
4350  bool NeedsEnvironment() const OVERRIDE {
4351    // We currently always call a runtime method to catch array store
4352    // exceptions.
4353    return needs_type_check_;
4354  }
4355
4356  // Can throw ArrayStoreException.
4357  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4358
4359  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4360    UNUSED(obj);
4361    // TODO: Same as for ArrayGet.
4362    return false;
4363  }
4364
4365  void ClearNeedsTypeCheck() {
4366    needs_type_check_ = false;
4367  }
4368
4369  void ClearValueCanBeNull() {
4370    value_can_be_null_ = false;
4371  }
4372
4373  void SetStaticTypeOfArrayIsObjectArray() {
4374    static_type_of_array_is_object_array_ = true;
4375  }
4376
4377  bool GetValueCanBeNull() const { return value_can_be_null_; }
4378  bool NeedsTypeCheck() const { return needs_type_check_; }
4379  bool StaticTypeOfArrayIsObjectArray() const { return static_type_of_array_is_object_array_; }
4380
4381  HInstruction* GetArray() const { return InputAt(0); }
4382  HInstruction* GetIndex() const { return InputAt(1); }
4383  HInstruction* GetValue() const { return InputAt(2); }
4384
4385  Primitive::Type GetComponentType() const {
4386    // The Dex format does not type floating point index operations. Since the
4387    // `expected_component_type_` is set during building and can therefore not
4388    // be correct, we also check what is the value type. If it is a floating
4389    // point type, we must use that type.
4390    Primitive::Type value_type = GetValue()->GetType();
4391    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4392        ? value_type
4393        : expected_component_type_;
4394  }
4395
4396  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4397    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4398  }
4399
4400  DECLARE_INSTRUCTION(ArraySet);
4401
4402 private:
4403  const Primitive::Type expected_component_type_;
4404  bool needs_type_check_;
4405  bool value_can_be_null_;
4406  // Cached information for the reference_type_info_ so that codegen
4407  // does not need to inspect the static type.
4408  bool static_type_of_array_is_object_array_;
4409
4410  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4411};
4412
4413class HArrayLength : public HExpression<1> {
4414 public:
4415  HArrayLength(HInstruction* array, uint32_t dex_pc)
4416      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
4417    // Note that arrays do not change length, so the instruction does not
4418    // depend on any write.
4419    SetRawInputAt(0, array);
4420  }
4421
4422  bool CanBeMoved() const OVERRIDE { return true; }
4423  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4424    UNUSED(other);
4425    return true;
4426  }
4427  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4428    return obj == InputAt(0);
4429  }
4430
4431  DECLARE_INSTRUCTION(ArrayLength);
4432
4433 private:
4434  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4435};
4436
4437class HBoundsCheck : public HExpression<2> {
4438 public:
4439  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4440      : HExpression(index->GetType(), SideEffects::None(), dex_pc) {
4441    DCHECK(index->GetType() == Primitive::kPrimInt);
4442    SetRawInputAt(0, index);
4443    SetRawInputAt(1, length);
4444  }
4445
4446  bool CanBeMoved() const OVERRIDE { return true; }
4447  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4448    UNUSED(other);
4449    return true;
4450  }
4451
4452  bool NeedsEnvironment() const OVERRIDE { return true; }
4453
4454  bool CanThrow() const OVERRIDE { return true; }
4455
4456
4457  DECLARE_INSTRUCTION(BoundsCheck);
4458
4459 private:
4460  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4461};
4462
4463/**
4464 * Some DEX instructions are folded into multiple HInstructions that need
4465 * to stay live until the last HInstruction. This class
4466 * is used as a marker for the baseline compiler to ensure its preceding
4467 * HInstruction stays live. `index` represents the stack location index of the
4468 * instruction (the actual offset is computed as index * vreg_size).
4469 */
4470class HTemporary : public HTemplateInstruction<0> {
4471 public:
4472  explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc)
4473      : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {}
4474
4475  size_t GetIndex() const { return index_; }
4476
4477  Primitive::Type GetType() const OVERRIDE {
4478    // The previous instruction is the one that will be stored in the temporary location.
4479    DCHECK(GetPrevious() != nullptr);
4480    return GetPrevious()->GetType();
4481  }
4482
4483  DECLARE_INSTRUCTION(Temporary);
4484
4485 private:
4486  const size_t index_;
4487  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4488};
4489
4490class HSuspendCheck : public HTemplateInstruction<0> {
4491 public:
4492  explicit HSuspendCheck(uint32_t dex_pc)
4493      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
4494
4495  bool NeedsEnvironment() const OVERRIDE {
4496    return true;
4497  }
4498
4499  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4500  SlowPathCode* GetSlowPath() const { return slow_path_; }
4501
4502  DECLARE_INSTRUCTION(SuspendCheck);
4503
4504 private:
4505  // Only used for code generation, in order to share the same slow path between back edges
4506  // of a same loop.
4507  SlowPathCode* slow_path_;
4508
4509  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4510};
4511
4512/**
4513 * Instruction to load a Class object.
4514 */
4515class HLoadClass : public HExpression<1> {
4516 public:
4517  HLoadClass(HCurrentMethod* current_method,
4518             uint16_t type_index,
4519             const DexFile& dex_file,
4520             bool is_referrers_class,
4521             uint32_t dex_pc,
4522             bool needs_access_check)
4523      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4524        type_index_(type_index),
4525        dex_file_(dex_file),
4526        is_referrers_class_(is_referrers_class),
4527        generate_clinit_check_(false),
4528        needs_access_check_(needs_access_check),
4529        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4530    // Referrers class should not need access check. We never inline unverified
4531    // methods so we can't possibly end up in this situation.
4532    DCHECK(!is_referrers_class_ || !needs_access_check_);
4533    SetRawInputAt(0, current_method);
4534  }
4535
4536  bool CanBeMoved() const OVERRIDE { return true; }
4537
4538  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4539    // Note that we don't need to test for generate_clinit_check_.
4540    // Whether or not we need to generate the clinit check is processed in
4541    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
4542    return other->AsLoadClass()->type_index_ == type_index_ &&
4543        other->AsLoadClass()->needs_access_check_ == needs_access_check_;
4544  }
4545
4546  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4547
4548  uint16_t GetTypeIndex() const { return type_index_; }
4549  bool IsReferrersClass() const { return is_referrers_class_; }
4550  bool CanBeNull() const OVERRIDE { return false; }
4551
4552  bool NeedsEnvironment() const OVERRIDE {
4553    // Will call runtime and load the class if the class is not loaded yet.
4554    // TODO: finer grain decision.
4555    return !is_referrers_class_;
4556  }
4557
4558  bool MustGenerateClinitCheck() const {
4559    return generate_clinit_check_;
4560  }
4561  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4562    generate_clinit_check_ = generate_clinit_check;
4563  }
4564
4565  bool CanCallRuntime() const {
4566    return MustGenerateClinitCheck() || !is_referrers_class_ || needs_access_check_;
4567  }
4568
4569  bool NeedsAccessCheck() const {
4570    return needs_access_check_;
4571  }
4572
4573  bool CanThrow() const OVERRIDE {
4574    // May call runtime and and therefore can throw.
4575    // TODO: finer grain decision.
4576    return CanCallRuntime();
4577  }
4578
4579  ReferenceTypeInfo GetLoadedClassRTI() {
4580    return loaded_class_rti_;
4581  }
4582
4583  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4584    // Make sure we only set exact types (the loaded class should never be merged).
4585    DCHECK(rti.IsExact());
4586    loaded_class_rti_ = rti;
4587  }
4588
4589  const DexFile& GetDexFile() { return dex_file_; }
4590
4591  bool NeedsDexCache() const OVERRIDE { return !is_referrers_class_; }
4592
4593  static SideEffects SideEffectsForArchRuntimeCalls() {
4594    return SideEffects::CanTriggerGC();
4595  }
4596
4597  DECLARE_INSTRUCTION(LoadClass);
4598
4599 private:
4600  const uint16_t type_index_;
4601  const DexFile& dex_file_;
4602  const bool is_referrers_class_;
4603  // Whether this instruction must generate the initialization check.
4604  // Used for code generation.
4605  bool generate_clinit_check_;
4606  bool needs_access_check_;
4607
4608  ReferenceTypeInfo loaded_class_rti_;
4609
4610  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
4611};
4612
4613class HLoadString : public HExpression<1> {
4614 public:
4615  HLoadString(HCurrentMethod* current_method, uint32_t string_index, uint32_t dex_pc)
4616      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4617        string_index_(string_index) {
4618    SetRawInputAt(0, current_method);
4619  }
4620
4621  bool CanBeMoved() const OVERRIDE { return true; }
4622
4623  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4624    return other->AsLoadString()->string_index_ == string_index_;
4625  }
4626
4627  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
4628
4629  uint32_t GetStringIndex() const { return string_index_; }
4630
4631  // TODO: Can we deopt or debug when we resolve a string?
4632  bool NeedsEnvironment() const OVERRIDE { return false; }
4633  bool NeedsDexCache() const OVERRIDE { return true; }
4634  bool CanBeNull() const OVERRIDE { return false; }
4635
4636  static SideEffects SideEffectsForArchRuntimeCalls() {
4637    return SideEffects::CanTriggerGC();
4638  }
4639
4640  DECLARE_INSTRUCTION(LoadString);
4641
4642 private:
4643  const uint32_t string_index_;
4644
4645  DISALLOW_COPY_AND_ASSIGN(HLoadString);
4646};
4647
4648/**
4649 * Performs an initialization check on its Class object input.
4650 */
4651class HClinitCheck : public HExpression<1> {
4652 public:
4653  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
4654      : HExpression(
4655            Primitive::kPrimNot,
4656            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
4657            dex_pc) {
4658    SetRawInputAt(0, constant);
4659  }
4660
4661  bool CanBeMoved() const OVERRIDE { return true; }
4662  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4663    UNUSED(other);
4664    return true;
4665  }
4666
4667  bool NeedsEnvironment() const OVERRIDE {
4668    // May call runtime to initialize the class.
4669    return true;
4670  }
4671
4672
4673  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
4674
4675  DECLARE_INSTRUCTION(ClinitCheck);
4676
4677 private:
4678  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
4679};
4680
4681class HStaticFieldGet : public HExpression<1> {
4682 public:
4683  HStaticFieldGet(HInstruction* cls,
4684                  Primitive::Type field_type,
4685                  MemberOffset field_offset,
4686                  bool is_volatile,
4687                  uint32_t field_idx,
4688                  const DexFile& dex_file,
4689                  Handle<mirror::DexCache> dex_cache,
4690                  uint32_t dex_pc)
4691      : HExpression(
4692            field_type,
4693            SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc),
4694        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file, dex_cache) {
4695    SetRawInputAt(0, cls);
4696  }
4697
4698
4699  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4700
4701  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4702    HStaticFieldGet* other_get = other->AsStaticFieldGet();
4703    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4704  }
4705
4706  size_t ComputeHashCode() const OVERRIDE {
4707    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4708  }
4709
4710  const FieldInfo& GetFieldInfo() const { return field_info_; }
4711  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4712  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4713  bool IsVolatile() const { return field_info_.IsVolatile(); }
4714
4715  DECLARE_INSTRUCTION(StaticFieldGet);
4716
4717 private:
4718  const FieldInfo field_info_;
4719
4720  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
4721};
4722
4723class HStaticFieldSet : public HTemplateInstruction<2> {
4724 public:
4725  HStaticFieldSet(HInstruction* cls,
4726                  HInstruction* value,
4727                  Primitive::Type field_type,
4728                  MemberOffset field_offset,
4729                  bool is_volatile,
4730                  uint32_t field_idx,
4731                  const DexFile& dex_file,
4732                  Handle<mirror::DexCache> dex_cache,
4733                  uint32_t dex_pc)
4734      : HTemplateInstruction(
4735          SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc),
4736        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file, dex_cache),
4737        value_can_be_null_(true) {
4738    SetRawInputAt(0, cls);
4739    SetRawInputAt(1, value);
4740  }
4741
4742  const FieldInfo& GetFieldInfo() const { return field_info_; }
4743  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4744  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4745  bool IsVolatile() const { return field_info_.IsVolatile(); }
4746
4747  HInstruction* GetValue() const { return InputAt(1); }
4748  bool GetValueCanBeNull() const { return value_can_be_null_; }
4749  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4750
4751  DECLARE_INSTRUCTION(StaticFieldSet);
4752
4753 private:
4754  const FieldInfo field_info_;
4755  bool value_can_be_null_;
4756
4757  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
4758};
4759
4760class HUnresolvedInstanceFieldGet : public HExpression<1> {
4761 public:
4762  HUnresolvedInstanceFieldGet(HInstruction* obj,
4763                              Primitive::Type field_type,
4764                              uint32_t field_index,
4765                              uint32_t dex_pc)
4766      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
4767        field_index_(field_index) {
4768    SetRawInputAt(0, obj);
4769  }
4770
4771  bool NeedsEnvironment() const OVERRIDE { return true; }
4772  bool CanThrow() const OVERRIDE { return true; }
4773
4774  Primitive::Type GetFieldType() const { return GetType(); }
4775  uint32_t GetFieldIndex() const { return field_index_; }
4776
4777  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
4778
4779 private:
4780  const uint32_t field_index_;
4781
4782  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
4783};
4784
4785class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
4786 public:
4787  HUnresolvedInstanceFieldSet(HInstruction* obj,
4788                              HInstruction* value,
4789                              Primitive::Type field_type,
4790                              uint32_t field_index,
4791                              uint32_t dex_pc)
4792      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
4793        field_type_(field_type),
4794        field_index_(field_index) {
4795    DCHECK_EQ(field_type, value->GetType());
4796    SetRawInputAt(0, obj);
4797    SetRawInputAt(1, value);
4798  }
4799
4800  bool NeedsEnvironment() const OVERRIDE { return true; }
4801  bool CanThrow() const OVERRIDE { return true; }
4802
4803  Primitive::Type GetFieldType() const { return field_type_; }
4804  uint32_t GetFieldIndex() const { return field_index_; }
4805
4806  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
4807
4808 private:
4809  const Primitive::Type field_type_;
4810  const uint32_t field_index_;
4811
4812  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
4813};
4814
4815class HUnresolvedStaticFieldGet : public HExpression<0> {
4816 public:
4817  HUnresolvedStaticFieldGet(Primitive::Type field_type,
4818                            uint32_t field_index,
4819                            uint32_t dex_pc)
4820      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
4821        field_index_(field_index) {
4822  }
4823
4824  bool NeedsEnvironment() const OVERRIDE { return true; }
4825  bool CanThrow() const OVERRIDE { return true; }
4826
4827  Primitive::Type GetFieldType() const { return GetType(); }
4828  uint32_t GetFieldIndex() const { return field_index_; }
4829
4830  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
4831
4832 private:
4833  const uint32_t field_index_;
4834
4835  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
4836};
4837
4838class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
4839 public:
4840  HUnresolvedStaticFieldSet(HInstruction* value,
4841                            Primitive::Type field_type,
4842                            uint32_t field_index,
4843                            uint32_t dex_pc)
4844      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
4845        field_type_(field_type),
4846        field_index_(field_index) {
4847    DCHECK_EQ(field_type, value->GetType());
4848    SetRawInputAt(0, value);
4849  }
4850
4851  bool NeedsEnvironment() const OVERRIDE { return true; }
4852  bool CanThrow() const OVERRIDE { return true; }
4853
4854  Primitive::Type GetFieldType() const { return field_type_; }
4855  uint32_t GetFieldIndex() const { return field_index_; }
4856
4857  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
4858
4859 private:
4860  const Primitive::Type field_type_;
4861  const uint32_t field_index_;
4862
4863  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
4864};
4865
4866// Implement the move-exception DEX instruction.
4867class HLoadException : public HExpression<0> {
4868 public:
4869  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
4870      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
4871
4872  bool CanBeNull() const OVERRIDE { return false; }
4873
4874  DECLARE_INSTRUCTION(LoadException);
4875
4876 private:
4877  DISALLOW_COPY_AND_ASSIGN(HLoadException);
4878};
4879
4880// Implicit part of move-exception which clears thread-local exception storage.
4881// Must not be removed because the runtime expects the TLS to get cleared.
4882class HClearException : public HTemplateInstruction<0> {
4883 public:
4884  explicit HClearException(uint32_t dex_pc = kNoDexPc)
4885      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
4886
4887  DECLARE_INSTRUCTION(ClearException);
4888
4889 private:
4890  DISALLOW_COPY_AND_ASSIGN(HClearException);
4891};
4892
4893class HThrow : public HTemplateInstruction<1> {
4894 public:
4895  HThrow(HInstruction* exception, uint32_t dex_pc)
4896      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
4897    SetRawInputAt(0, exception);
4898  }
4899
4900  bool IsControlFlow() const OVERRIDE { return true; }
4901
4902  bool NeedsEnvironment() const OVERRIDE { return true; }
4903
4904  bool CanThrow() const OVERRIDE { return true; }
4905
4906
4907  DECLARE_INSTRUCTION(Throw);
4908
4909 private:
4910  DISALLOW_COPY_AND_ASSIGN(HThrow);
4911};
4912
4913/**
4914 * Implementation strategies for the code generator of a HInstanceOf
4915 * or `HCheckCast`.
4916 */
4917enum class TypeCheckKind {
4918  kUnresolvedCheck,       // Check against an unresolved type.
4919  kExactCheck,            // Can do a single class compare.
4920  kClassHierarchyCheck,   // Can just walk the super class chain.
4921  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
4922  kInterfaceCheck,        // No optimization yet when checking against an interface.
4923  kArrayObjectCheck,      // Can just check if the array is not primitive.
4924  kArrayCheck             // No optimization yet when checking against a generic array.
4925};
4926
4927class HInstanceOf : public HExpression<2> {
4928 public:
4929  HInstanceOf(HInstruction* object,
4930              HLoadClass* constant,
4931              TypeCheckKind check_kind,
4932              uint32_t dex_pc)
4933      : HExpression(Primitive::kPrimBoolean,
4934                    SideEffectsForArchRuntimeCalls(check_kind),
4935                    dex_pc),
4936        check_kind_(check_kind),
4937        must_do_null_check_(true) {
4938    SetRawInputAt(0, object);
4939    SetRawInputAt(1, constant);
4940  }
4941
4942  bool CanBeMoved() const OVERRIDE { return true; }
4943
4944  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4945    return true;
4946  }
4947
4948  bool NeedsEnvironment() const OVERRIDE {
4949    return false;
4950  }
4951
4952  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
4953
4954  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
4955
4956  // Used only in code generation.
4957  bool MustDoNullCheck() const { return must_do_null_check_; }
4958  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
4959
4960  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
4961    return (check_kind == TypeCheckKind::kExactCheck)
4962        ? SideEffects::None()
4963        // Mips currently does runtime calls for any other checks.
4964        : SideEffects::CanTriggerGC();
4965  }
4966
4967  DECLARE_INSTRUCTION(InstanceOf);
4968
4969 private:
4970  const TypeCheckKind check_kind_;
4971  bool must_do_null_check_;
4972
4973  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
4974};
4975
4976class HBoundType : public HExpression<1> {
4977 public:
4978  // Constructs an HBoundType with the given upper_bound.
4979  // Ensures that the upper_bound is valid.
4980  HBoundType(HInstruction* input,
4981             ReferenceTypeInfo upper_bound,
4982             bool upper_can_be_null,
4983             uint32_t dex_pc = kNoDexPc)
4984      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
4985        upper_bound_(upper_bound),
4986        upper_can_be_null_(upper_can_be_null),
4987        can_be_null_(upper_can_be_null) {
4988    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
4989    SetRawInputAt(0, input);
4990    SetReferenceTypeInfo(upper_bound_);
4991  }
4992
4993  // GetUpper* should only be used in reference type propagation.
4994  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
4995  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
4996
4997  void SetCanBeNull(bool can_be_null) {
4998    DCHECK(upper_can_be_null_ || !can_be_null);
4999    can_be_null_ = can_be_null;
5000  }
5001
5002  bool CanBeNull() const OVERRIDE { return can_be_null_; }
5003
5004  DECLARE_INSTRUCTION(BoundType);
5005
5006 private:
5007  // Encodes the most upper class that this instruction can have. In other words
5008  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
5009  // It is used to bound the type in cases like:
5010  //   if (x instanceof ClassX) {
5011  //     // uper_bound_ will be ClassX
5012  //   }
5013  const ReferenceTypeInfo upper_bound_;
5014  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
5015  // is false then can_be_null_ cannot be true).
5016  const bool upper_can_be_null_;
5017  bool can_be_null_;
5018
5019  DISALLOW_COPY_AND_ASSIGN(HBoundType);
5020};
5021
5022class HCheckCast : public HTemplateInstruction<2> {
5023 public:
5024  HCheckCast(HInstruction* object,
5025             HLoadClass* constant,
5026             TypeCheckKind check_kind,
5027             uint32_t dex_pc)
5028      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc),
5029        check_kind_(check_kind),
5030        must_do_null_check_(true) {
5031    SetRawInputAt(0, object);
5032    SetRawInputAt(1, constant);
5033  }
5034
5035  bool CanBeMoved() const OVERRIDE { return true; }
5036
5037  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5038    return true;
5039  }
5040
5041  bool NeedsEnvironment() const OVERRIDE {
5042    // Instruction may throw a CheckCastError.
5043    return true;
5044  }
5045
5046  bool CanThrow() const OVERRIDE { return true; }
5047
5048  bool MustDoNullCheck() const { return must_do_null_check_; }
5049  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5050  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5051
5052  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5053
5054  DECLARE_INSTRUCTION(CheckCast);
5055
5056 private:
5057  const TypeCheckKind check_kind_;
5058  bool must_do_null_check_;
5059
5060  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
5061};
5062
5063class HMemoryBarrier : public HTemplateInstruction<0> {
5064 public:
5065  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
5066      : HTemplateInstruction(
5067            SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays.
5068        barrier_kind_(barrier_kind) {}
5069
5070  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
5071
5072  DECLARE_INSTRUCTION(MemoryBarrier);
5073
5074 private:
5075  const MemBarrierKind barrier_kind_;
5076
5077  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
5078};
5079
5080class HMonitorOperation : public HTemplateInstruction<1> {
5081 public:
5082  enum OperationKind {
5083    kEnter,
5084    kExit,
5085  };
5086
5087  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
5088    : HTemplateInstruction(
5089          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
5090      kind_(kind) {
5091    SetRawInputAt(0, object);
5092  }
5093
5094  // Instruction may throw a Java exception, so we need an environment.
5095  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
5096
5097  bool CanThrow() const OVERRIDE {
5098    // Verifier guarantees that monitor-exit cannot throw.
5099    // This is important because it allows the HGraphBuilder to remove
5100    // a dead throw-catch loop generated for `synchronized` blocks/methods.
5101    return IsEnter();
5102  }
5103
5104
5105  bool IsEnter() const { return kind_ == kEnter; }
5106
5107  DECLARE_INSTRUCTION(MonitorOperation);
5108
5109 private:
5110  const OperationKind kind_;
5111
5112 private:
5113  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
5114};
5115
5116/**
5117 * A HInstruction used as a marker for the replacement of new + <init>
5118 * of a String to a call to a StringFactory. Only baseline will see
5119 * the node at code generation, where it will be be treated as null.
5120 * When compiling non-baseline, `HFakeString` instructions are being removed
5121 * in the instruction simplifier.
5122 */
5123class HFakeString : public HTemplateInstruction<0> {
5124 public:
5125  explicit HFakeString(uint32_t dex_pc = kNoDexPc)
5126      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
5127
5128  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
5129
5130  DECLARE_INSTRUCTION(FakeString);
5131
5132 private:
5133  DISALLOW_COPY_AND_ASSIGN(HFakeString);
5134};
5135
5136class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
5137 public:
5138  MoveOperands(Location source,
5139               Location destination,
5140               Primitive::Type type,
5141               HInstruction* instruction)
5142      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
5143
5144  Location GetSource() const { return source_; }
5145  Location GetDestination() const { return destination_; }
5146
5147  void SetSource(Location value) { source_ = value; }
5148  void SetDestination(Location value) { destination_ = value; }
5149
5150  // The parallel move resolver marks moves as "in-progress" by clearing the
5151  // destination (but not the source).
5152  Location MarkPending() {
5153    DCHECK(!IsPending());
5154    Location dest = destination_;
5155    destination_ = Location::NoLocation();
5156    return dest;
5157  }
5158
5159  void ClearPending(Location dest) {
5160    DCHECK(IsPending());
5161    destination_ = dest;
5162  }
5163
5164  bool IsPending() const {
5165    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5166    return destination_.IsInvalid() && !source_.IsInvalid();
5167  }
5168
5169  // True if this blocks a move from the given location.
5170  bool Blocks(Location loc) const {
5171    return !IsEliminated() && source_.OverlapsWith(loc);
5172  }
5173
5174  // A move is redundant if it's been eliminated, if its source and
5175  // destination are the same, or if its destination is unneeded.
5176  bool IsRedundant() const {
5177    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
5178  }
5179
5180  // We clear both operands to indicate move that's been eliminated.
5181  void Eliminate() {
5182    source_ = destination_ = Location::NoLocation();
5183  }
5184
5185  bool IsEliminated() const {
5186    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5187    return source_.IsInvalid();
5188  }
5189
5190  Primitive::Type GetType() const { return type_; }
5191
5192  bool Is64BitMove() const {
5193    return Primitive::Is64BitType(type_);
5194  }
5195
5196  HInstruction* GetInstruction() const { return instruction_; }
5197
5198 private:
5199  Location source_;
5200  Location destination_;
5201  // The type this move is for.
5202  Primitive::Type type_;
5203  // The instruction this move is assocatied with. Null when this move is
5204  // for moving an input in the expected locations of user (including a phi user).
5205  // This is only used in debug mode, to ensure we do not connect interval siblings
5206  // in the same parallel move.
5207  HInstruction* instruction_;
5208};
5209
5210static constexpr size_t kDefaultNumberOfMoves = 4;
5211
5212class HParallelMove : public HTemplateInstruction<0> {
5213 public:
5214  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
5215      : HTemplateInstruction(SideEffects::None(), dex_pc),
5216        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
5217    moves_.reserve(kDefaultNumberOfMoves);
5218  }
5219
5220  void AddMove(Location source,
5221               Location destination,
5222               Primitive::Type type,
5223               HInstruction* instruction) {
5224    DCHECK(source.IsValid());
5225    DCHECK(destination.IsValid());
5226    if (kIsDebugBuild) {
5227      if (instruction != nullptr) {
5228        for (const MoveOperands& move : moves_) {
5229          if (move.GetInstruction() == instruction) {
5230            // Special case the situation where the move is for the spill slot
5231            // of the instruction.
5232            if ((GetPrevious() == instruction)
5233                || ((GetPrevious() == nullptr)
5234                    && instruction->IsPhi()
5235                    && instruction->GetBlock() == GetBlock())) {
5236              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
5237                  << "Doing parallel moves for the same instruction.";
5238            } else {
5239              DCHECK(false) << "Doing parallel moves for the same instruction.";
5240            }
5241          }
5242        }
5243      }
5244      for (const MoveOperands& move : moves_) {
5245        DCHECK(!destination.OverlapsWith(move.GetDestination()))
5246            << "Overlapped destination for two moves in a parallel move: "
5247            << move.GetSource() << " ==> " << move.GetDestination() << " and "
5248            << source << " ==> " << destination;
5249      }
5250    }
5251    moves_.emplace_back(source, destination, type, instruction);
5252  }
5253
5254  MoveOperands* MoveOperandsAt(size_t index) {
5255    return &moves_[index];
5256  }
5257
5258  size_t NumMoves() const { return moves_.size(); }
5259
5260  DECLARE_INSTRUCTION(ParallelMove);
5261
5262 private:
5263  ArenaVector<MoveOperands> moves_;
5264
5265  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
5266};
5267
5268}  // namespace art
5269
5270#ifdef ART_ENABLE_CODEGEN_x86
5271#include "nodes_x86.h"
5272#endif
5273
5274namespace art {
5275
5276class HGraphVisitor : public ValueObject {
5277 public:
5278  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
5279  virtual ~HGraphVisitor() {}
5280
5281  virtual void VisitInstruction(HInstruction* instruction) { UNUSED(instruction); }
5282  virtual void VisitBasicBlock(HBasicBlock* block);
5283
5284  // Visit the graph following basic block insertion order.
5285  void VisitInsertionOrder();
5286
5287  // Visit the graph following dominator tree reverse post-order.
5288  void VisitReversePostOrder();
5289
5290  HGraph* GetGraph() const { return graph_; }
5291
5292  // Visit functions for instruction classes.
5293#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5294  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
5295
5296  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5297
5298#undef DECLARE_VISIT_INSTRUCTION
5299
5300 private:
5301  HGraph* const graph_;
5302
5303  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
5304};
5305
5306class HGraphDelegateVisitor : public HGraphVisitor {
5307 public:
5308  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
5309  virtual ~HGraphDelegateVisitor() {}
5310
5311  // Visit functions that delegate to to super class.
5312#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5313  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
5314
5315  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5316
5317#undef DECLARE_VISIT_INSTRUCTION
5318
5319 private:
5320  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
5321};
5322
5323class HInsertionOrderIterator : public ValueObject {
5324 public:
5325  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
5326
5327  bool Done() const { return index_ == graph_.GetBlocks().size(); }
5328  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
5329  void Advance() { ++index_; }
5330
5331 private:
5332  const HGraph& graph_;
5333  size_t index_;
5334
5335  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
5336};
5337
5338class HReversePostOrderIterator : public ValueObject {
5339 public:
5340  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
5341    // Check that reverse post order of the graph has been built.
5342    DCHECK(!graph.GetReversePostOrder().empty());
5343  }
5344
5345  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
5346  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
5347  void Advance() { ++index_; }
5348
5349 private:
5350  const HGraph& graph_;
5351  size_t index_;
5352
5353  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
5354};
5355
5356class HPostOrderIterator : public ValueObject {
5357 public:
5358  explicit HPostOrderIterator(const HGraph& graph)
5359      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
5360    // Check that reverse post order of the graph has been built.
5361    DCHECK(!graph.GetReversePostOrder().empty());
5362  }
5363
5364  bool Done() const { return index_ == 0; }
5365  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
5366  void Advance() { --index_; }
5367
5368 private:
5369  const HGraph& graph_;
5370  size_t index_;
5371
5372  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
5373};
5374
5375class HLinearPostOrderIterator : public ValueObject {
5376 public:
5377  explicit HLinearPostOrderIterator(const HGraph& graph)
5378      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
5379
5380  bool Done() const { return index_ == 0; }
5381
5382  HBasicBlock* Current() const { return order_[index_ - 1u]; }
5383
5384  void Advance() {
5385    --index_;
5386    DCHECK_GE(index_, 0U);
5387  }
5388
5389 private:
5390  const ArenaVector<HBasicBlock*>& order_;
5391  size_t index_;
5392
5393  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
5394};
5395
5396class HLinearOrderIterator : public ValueObject {
5397 public:
5398  explicit HLinearOrderIterator(const HGraph& graph)
5399      : order_(graph.GetLinearOrder()), index_(0) {}
5400
5401  bool Done() const { return index_ == order_.size(); }
5402  HBasicBlock* Current() const { return order_[index_]; }
5403  void Advance() { ++index_; }
5404
5405 private:
5406  const ArenaVector<HBasicBlock*>& order_;
5407  size_t index_;
5408
5409  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
5410};
5411
5412// Iterator over the blocks that art part of the loop. Includes blocks part
5413// of an inner loop. The order in which the blocks are iterated is on their
5414// block id.
5415class HBlocksInLoopIterator : public ValueObject {
5416 public:
5417  explicit HBlocksInLoopIterator(const HLoopInformation& info)
5418      : blocks_in_loop_(info.GetBlocks()),
5419        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
5420        index_(0) {
5421    if (!blocks_in_loop_.IsBitSet(index_)) {
5422      Advance();
5423    }
5424  }
5425
5426  bool Done() const { return index_ == blocks_.size(); }
5427  HBasicBlock* Current() const { return blocks_[index_]; }
5428  void Advance() {
5429    ++index_;
5430    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5431      if (blocks_in_loop_.IsBitSet(index_)) {
5432        break;
5433      }
5434    }
5435  }
5436
5437 private:
5438  const BitVector& blocks_in_loop_;
5439  const ArenaVector<HBasicBlock*>& blocks_;
5440  size_t index_;
5441
5442  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
5443};
5444
5445// Iterator over the blocks that art part of the loop. Includes blocks part
5446// of an inner loop. The order in which the blocks are iterated is reverse
5447// post order.
5448class HBlocksInLoopReversePostOrderIterator : public ValueObject {
5449 public:
5450  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
5451      : blocks_in_loop_(info.GetBlocks()),
5452        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
5453        index_(0) {
5454    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5455      Advance();
5456    }
5457  }
5458
5459  bool Done() const { return index_ == blocks_.size(); }
5460  HBasicBlock* Current() const { return blocks_[index_]; }
5461  void Advance() {
5462    ++index_;
5463    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5464      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5465        break;
5466      }
5467    }
5468  }
5469
5470 private:
5471  const BitVector& blocks_in_loop_;
5472  const ArenaVector<HBasicBlock*>& blocks_;
5473  size_t index_;
5474
5475  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
5476};
5477
5478inline int64_t Int64FromConstant(HConstant* constant) {
5479  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
5480  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
5481                                   : constant->AsLongConstant()->GetValue();
5482}
5483
5484inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
5485  // For the purposes of the compiler, the dex files must actually be the same object
5486  // if we want to safely treat them as the same. This is especially important for JIT
5487  // as custom class loaders can open the same underlying file (or memory) multiple
5488  // times and provide different class resolution but no two class loaders should ever
5489  // use the same DexFile object - doing so is an unsupported hack that can lead to
5490  // all sorts of weird failures.
5491  return &lhs == &rhs;
5492}
5493
5494}  // namespace art
5495
5496#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
5497