nodes.h revision 8c0676ce786f33b8f9c8eedf1ace48988c750932
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <type_traits>
21
22#include "base/arena_containers.h"
23#include "base/arena_object.h"
24#include "dex/compiler_enums.h"
25#include "entrypoints/quick/quick_entrypoints_enum.h"
26#include "handle.h"
27#include "handle_scope.h"
28#include "invoke_type.h"
29#include "locations.h"
30#include "mirror/class.h"
31#include "offsets.h"
32#include "primitive.h"
33#include "utils/arena_bit_vector.h"
34#include "utils/growable_array.h"
35
36namespace art {
37
38class GraphChecker;
39class HBasicBlock;
40class HCurrentMethod;
41class HDoubleConstant;
42class HEnvironment;
43class HFakeString;
44class HFloatConstant;
45class HGraphBuilder;
46class HGraphVisitor;
47class HInstruction;
48class HIntConstant;
49class HInvoke;
50class HLongConstant;
51class HNullConstant;
52class HPhi;
53class HSuspendCheck;
54class HTryBoundary;
55class LiveInterval;
56class LocationSummary;
57class SlowPathCode;
58class SsaBuilder;
59
60static const int kDefaultNumberOfBlocks = 8;
61static const int kDefaultNumberOfSuccessors = 2;
62static const int kDefaultNumberOfPredecessors = 2;
63static const int kDefaultNumberOfExceptionalPredecessors = 0;
64static const int kDefaultNumberOfDominatedBlocks = 1;
65static const int kDefaultNumberOfBackEdges = 1;
66
67static constexpr uint32_t kMaxIntShiftValue = 0x1f;
68static constexpr uint64_t kMaxLongShiftValue = 0x3f;
69
70static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
71
72static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
73
74enum IfCondition {
75  kCondEQ,
76  kCondNE,
77  kCondLT,
78  kCondLE,
79  kCondGT,
80  kCondGE,
81};
82
83class HInstructionList {
84 public:
85  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
86
87  void AddInstruction(HInstruction* instruction);
88  void RemoveInstruction(HInstruction* instruction);
89
90  // Insert `instruction` before/after an existing instruction `cursor`.
91  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
92  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
93
94  // Return true if this list contains `instruction`.
95  bool Contains(HInstruction* instruction) const;
96
97  // Return true if `instruction1` is found before `instruction2` in
98  // this instruction list and false otherwise.  Abort if none
99  // of these instructions is found.
100  bool FoundBefore(const HInstruction* instruction1,
101                   const HInstruction* instruction2) const;
102
103  bool IsEmpty() const { return first_instruction_ == nullptr; }
104  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
105
106  // Update the block of all instructions to be `block`.
107  void SetBlockOfInstructions(HBasicBlock* block) const;
108
109  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
110  void Add(const HInstructionList& instruction_list);
111
112  // Return the number of instructions in the list. This is an expensive operation.
113  size_t CountSize() const;
114
115 private:
116  HInstruction* first_instruction_;
117  HInstruction* last_instruction_;
118
119  friend class HBasicBlock;
120  friend class HGraph;
121  friend class HInstruction;
122  friend class HInstructionIterator;
123  friend class HBackwardInstructionIterator;
124
125  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
126};
127
128// Control-flow graph of a method. Contains a list of basic blocks.
129class HGraph : public ArenaObject<kArenaAllocMisc> {
130 public:
131  HGraph(ArenaAllocator* arena,
132         const DexFile& dex_file,
133         uint32_t method_idx,
134         bool should_generate_constructor_barrier,
135         InstructionSet instruction_set,
136         InvokeType invoke_type = kInvalidInvokeType,
137         bool debuggable = false,
138         int start_instruction_id = 0)
139      : arena_(arena),
140        blocks_(arena, kDefaultNumberOfBlocks),
141        reverse_post_order_(arena, kDefaultNumberOfBlocks),
142        linear_order_(arena, kDefaultNumberOfBlocks),
143        entry_block_(nullptr),
144        exit_block_(nullptr),
145        maximum_number_of_out_vregs_(0),
146        number_of_vregs_(0),
147        number_of_in_vregs_(0),
148        temporaries_vreg_slots_(0),
149        has_bounds_checks_(false),
150        debuggable_(debuggable),
151        current_instruction_id_(start_instruction_id),
152        dex_file_(dex_file),
153        method_idx_(method_idx),
154        invoke_type_(invoke_type),
155        in_ssa_form_(false),
156        should_generate_constructor_barrier_(should_generate_constructor_barrier),
157        instruction_set_(instruction_set),
158        cached_null_constant_(nullptr),
159        cached_int_constants_(std::less<int32_t>(), arena->Adapter()),
160        cached_float_constants_(std::less<int32_t>(), arena->Adapter()),
161        cached_long_constants_(std::less<int64_t>(), arena->Adapter()),
162        cached_double_constants_(std::less<int64_t>(), arena->Adapter()),
163        cached_current_method_(nullptr) {}
164
165  ArenaAllocator* GetArena() const { return arena_; }
166  const GrowableArray<HBasicBlock*>& GetBlocks() const { return blocks_; }
167  HBasicBlock* GetBlock(size_t id) const { return blocks_.Get(id); }
168
169  bool IsInSsaForm() const { return in_ssa_form_; }
170
171  HBasicBlock* GetEntryBlock() const { return entry_block_; }
172  HBasicBlock* GetExitBlock() const { return exit_block_; }
173  bool HasExitBlock() const { return exit_block_ != nullptr; }
174
175  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
176  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
177
178  void AddBlock(HBasicBlock* block);
179
180  // Try building the SSA form of this graph, with dominance computation and loop
181  // recognition. Returns whether it was successful in doing all these steps.
182  bool TryBuildingSsa() {
183    BuildDominatorTree();
184    // The SSA builder requires loops to all be natural. Specifically, the dead phi
185    // elimination phase checks the consistency of the graph when doing a post-order
186    // visit for eliminating dead phis: a dead phi can only have loop header phi
187    // users remaining when being visited.
188    if (!AnalyzeNaturalLoops()) return false;
189    // Precompute per-block try membership before entering the SSA builder,
190    // which needs the information to build catch block phis from values of
191    // locals at throwing instructions inside try blocks.
192    ComputeTryBlockInformation();
193    TransformToSsa();
194    in_ssa_form_ = true;
195    return true;
196  }
197
198  void ComputeDominanceInformation();
199  void ClearDominanceInformation();
200
201  void BuildDominatorTree();
202  void TransformToSsa();
203  void SimplifyCFG();
204  void SimplifyCatchBlocks();
205
206  // Analyze all natural loops in this graph. Returns false if one
207  // loop is not natural, that is the header does not dominate the
208  // back edge.
209  bool AnalyzeNaturalLoops() const;
210
211  // Iterate over blocks to compute try block membership. Needs reverse post
212  // order and loop information.
213  void ComputeTryBlockInformation();
214
215  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
216  // Returns the instruction used to replace the invoke expression or null if the
217  // invoke is for a void method.
218  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
219
220  // Need to add a couple of blocks to test if the loop body is entered and
221  // put deoptimization instructions, etc.
222  void TransformLoopHeaderForBCE(HBasicBlock* header);
223
224  // Removes `block` from the graph.
225  void DeleteDeadBlock(HBasicBlock* block);
226
227  // Splits the edge between `block` and `successor` while preserving the
228  // indices in the predecessor/successor lists. If there are multiple edges
229  // between the blocks, the lowest indices are used.
230  // Returns the new block which is empty and has the same dex pc as `successor`.
231  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
232
233  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
234  void SimplifyLoop(HBasicBlock* header);
235
236  int32_t GetNextInstructionId() {
237    DCHECK_NE(current_instruction_id_, INT32_MAX);
238    return current_instruction_id_++;
239  }
240
241  int32_t GetCurrentInstructionId() const {
242    return current_instruction_id_;
243  }
244
245  void SetCurrentInstructionId(int32_t id) {
246    current_instruction_id_ = id;
247  }
248
249  uint16_t GetMaximumNumberOfOutVRegs() const {
250    return maximum_number_of_out_vregs_;
251  }
252
253  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
254    maximum_number_of_out_vregs_ = new_value;
255  }
256
257  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
258    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
259  }
260
261  void UpdateTemporariesVRegSlots(size_t slots) {
262    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
263  }
264
265  size_t GetTemporariesVRegSlots() const {
266    DCHECK(!in_ssa_form_);
267    return temporaries_vreg_slots_;
268  }
269
270  void SetNumberOfVRegs(uint16_t number_of_vregs) {
271    number_of_vregs_ = number_of_vregs;
272  }
273
274  uint16_t GetNumberOfVRegs() const {
275    DCHECK(!in_ssa_form_);
276    return number_of_vregs_;
277  }
278
279  void SetNumberOfInVRegs(uint16_t value) {
280    number_of_in_vregs_ = value;
281  }
282
283  uint16_t GetNumberOfLocalVRegs() const {
284    DCHECK(!in_ssa_form_);
285    return number_of_vregs_ - number_of_in_vregs_;
286  }
287
288  const GrowableArray<HBasicBlock*>& GetReversePostOrder() const {
289    return reverse_post_order_;
290  }
291
292  const GrowableArray<HBasicBlock*>& GetLinearOrder() const {
293    return linear_order_;
294  }
295
296  bool HasBoundsChecks() const {
297    return has_bounds_checks_;
298  }
299
300  void SetHasBoundsChecks(bool value) {
301    has_bounds_checks_ = value;
302  }
303
304  bool ShouldGenerateConstructorBarrier() const {
305    return should_generate_constructor_barrier_;
306  }
307
308  bool IsDebuggable() const { return debuggable_; }
309
310  // Returns a constant of the given type and value. If it does not exist
311  // already, it is created and inserted into the graph. This method is only for
312  // integral types.
313  HConstant* GetConstant(Primitive::Type type, int64_t value);
314
315  // TODO: This is problematic for the consistency of reference type propagation
316  // because it can be created anytime after the pass and thus it will be left
317  // with an invalid type.
318  HNullConstant* GetNullConstant();
319
320  HIntConstant* GetIntConstant(int32_t value) {
321    return CreateConstant(value, &cached_int_constants_);
322  }
323  HLongConstant* GetLongConstant(int64_t value) {
324    return CreateConstant(value, &cached_long_constants_);
325  }
326  HFloatConstant* GetFloatConstant(float value) {
327    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_);
328  }
329  HDoubleConstant* GetDoubleConstant(double value) {
330    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_);
331  }
332
333  HCurrentMethod* GetCurrentMethod();
334
335  HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
336
337  const DexFile& GetDexFile() const {
338    return dex_file_;
339  }
340
341  uint32_t GetMethodIdx() const {
342    return method_idx_;
343  }
344
345  InvokeType GetInvokeType() const {
346    return invoke_type_;
347  }
348
349  InstructionSet GetInstructionSet() const {
350    return instruction_set_;
351  }
352
353 private:
354  void VisitBlockForDominatorTree(HBasicBlock* block,
355                                  HBasicBlock* predecessor,
356                                  GrowableArray<size_t>* visits);
357  void FindBackEdges(ArenaBitVector* visited);
358  void VisitBlockForBackEdges(HBasicBlock* block,
359                              ArenaBitVector* visited,
360                              ArenaBitVector* visiting);
361  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
362  void RemoveDeadBlocks(const ArenaBitVector& visited);
363
364  template <class InstructionType, typename ValueType>
365  InstructionType* CreateConstant(ValueType value,
366                                  ArenaSafeMap<ValueType, InstructionType*>* cache) {
367    // Try to find an existing constant of the given value.
368    InstructionType* constant = nullptr;
369    auto cached_constant = cache->find(value);
370    if (cached_constant != cache->end()) {
371      constant = cached_constant->second;
372    }
373
374    // If not found or previously deleted, create and cache a new instruction.
375    // Don't bother reviving a previously deleted instruction, for simplicity.
376    if (constant == nullptr || constant->GetBlock() == nullptr) {
377      constant = new (arena_) InstructionType(value);
378      cache->Overwrite(value, constant);
379      InsertConstant(constant);
380    }
381    return constant;
382  }
383
384  void InsertConstant(HConstant* instruction);
385
386  // Cache a float constant into the graph. This method should only be
387  // called by the SsaBuilder when creating "equivalent" instructions.
388  void CacheFloatConstant(HFloatConstant* constant);
389
390  // See CacheFloatConstant comment.
391  void CacheDoubleConstant(HDoubleConstant* constant);
392
393  ArenaAllocator* const arena_;
394
395  // List of blocks in insertion order.
396  GrowableArray<HBasicBlock*> blocks_;
397
398  // List of blocks to perform a reverse post order tree traversal.
399  GrowableArray<HBasicBlock*> reverse_post_order_;
400
401  // List of blocks to perform a linear order tree traversal.
402  GrowableArray<HBasicBlock*> linear_order_;
403
404  HBasicBlock* entry_block_;
405  HBasicBlock* exit_block_;
406
407  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
408  uint16_t maximum_number_of_out_vregs_;
409
410  // The number of virtual registers in this method. Contains the parameters.
411  uint16_t number_of_vregs_;
412
413  // The number of virtual registers used by parameters of this method.
414  uint16_t number_of_in_vregs_;
415
416  // Number of vreg size slots that the temporaries use (used in baseline compiler).
417  size_t temporaries_vreg_slots_;
418
419  // Has bounds checks. We can totally skip BCE if it's false.
420  bool has_bounds_checks_;
421
422  // Indicates whether the graph should be compiled in a way that
423  // ensures full debuggability. If false, we can apply more
424  // aggressive optimizations that may limit the level of debugging.
425  const bool debuggable_;
426
427  // The current id to assign to a newly added instruction. See HInstruction.id_.
428  int32_t current_instruction_id_;
429
430  // The dex file from which the method is from.
431  const DexFile& dex_file_;
432
433  // The method index in the dex file.
434  const uint32_t method_idx_;
435
436  // If inlined, this encodes how the callee is being invoked.
437  const InvokeType invoke_type_;
438
439  // Whether the graph has been transformed to SSA form. Only used
440  // in debug mode to ensure we are not using properties only valid
441  // for non-SSA form (like the number of temporaries).
442  bool in_ssa_form_;
443
444  const bool should_generate_constructor_barrier_;
445
446  const InstructionSet instruction_set_;
447
448  // Cached constants.
449  HNullConstant* cached_null_constant_;
450  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
451  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
452  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
453  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
454
455  HCurrentMethod* cached_current_method_;
456
457  friend class SsaBuilder;           // For caching constants.
458  friend class SsaLivenessAnalysis;  // For the linear order.
459  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
460  DISALLOW_COPY_AND_ASSIGN(HGraph);
461};
462
463class HLoopInformation : public ArenaObject<kArenaAllocMisc> {
464 public:
465  HLoopInformation(HBasicBlock* header, HGraph* graph)
466      : header_(header),
467        suspend_check_(nullptr),
468        back_edges_(graph->GetArena(), kDefaultNumberOfBackEdges),
469        // Make bit vector growable, as the number of blocks may change.
470        blocks_(graph->GetArena(), graph->GetBlocks().Size(), true) {}
471
472  HBasicBlock* GetHeader() const {
473    return header_;
474  }
475
476  void SetHeader(HBasicBlock* block) {
477    header_ = block;
478  }
479
480  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
481  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
482  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
483
484  void AddBackEdge(HBasicBlock* back_edge) {
485    back_edges_.Add(back_edge);
486  }
487
488  void RemoveBackEdge(HBasicBlock* back_edge) {
489    back_edges_.Delete(back_edge);
490  }
491
492  bool IsBackEdge(const HBasicBlock& block) const {
493    for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
494      if (back_edges_.Get(i) == &block) return true;
495    }
496    return false;
497  }
498
499  size_t NumberOfBackEdges() const {
500    return back_edges_.Size();
501  }
502
503  HBasicBlock* GetPreHeader() const;
504
505  const GrowableArray<HBasicBlock*>& GetBackEdges() const {
506    return back_edges_;
507  }
508
509  // Returns the lifetime position of the back edge that has the
510  // greatest lifetime position.
511  size_t GetLifetimeEnd() const;
512
513  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
514    for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
515      if (back_edges_.Get(i) == existing) {
516        back_edges_.Put(i, new_back_edge);
517        return;
518      }
519    }
520    UNREACHABLE();
521  }
522
523  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
524  // that is the header dominates the back edge.
525  bool Populate();
526
527  // Reanalyzes the loop by removing loop info from its blocks and re-running
528  // Populate(). If there are no back edges left, the loop info is completely
529  // removed as well as its SuspendCheck instruction. It must be run on nested
530  // inner loops first.
531  void Update();
532
533  // Returns whether this loop information contains `block`.
534  // Note that this loop information *must* be populated before entering this function.
535  bool Contains(const HBasicBlock& block) const;
536
537  // Returns whether this loop information is an inner loop of `other`.
538  // Note that `other` *must* be populated before entering this function.
539  bool IsIn(const HLoopInformation& other) const;
540
541  const ArenaBitVector& GetBlocks() const { return blocks_; }
542
543  void Add(HBasicBlock* block);
544  void Remove(HBasicBlock* block);
545
546 private:
547  // Internal recursive implementation of `Populate`.
548  void PopulateRecursive(HBasicBlock* block);
549
550  HBasicBlock* header_;
551  HSuspendCheck* suspend_check_;
552  GrowableArray<HBasicBlock*> back_edges_;
553  ArenaBitVector blocks_;
554
555  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
556};
557
558static constexpr size_t kNoLifetime = -1;
559static constexpr uint32_t kNoDexPc = -1;
560
561// A block in a method. Contains the list of instructions represented
562// as a double linked list. Each block knows its predecessors and
563// successors.
564
565class HBasicBlock : public ArenaObject<kArenaAllocMisc> {
566 public:
567  explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
568      : graph_(graph),
569        predecessors_(graph->GetArena(), kDefaultNumberOfPredecessors),
570        exceptional_predecessors_(graph->GetArena(), kDefaultNumberOfExceptionalPredecessors),
571        successors_(graph->GetArena(), kDefaultNumberOfSuccessors),
572        loop_information_(nullptr),
573        dominator_(nullptr),
574        dominated_blocks_(graph->GetArena(), kDefaultNumberOfDominatedBlocks),
575        block_id_(-1),
576        dex_pc_(dex_pc),
577        lifetime_start_(kNoLifetime),
578        lifetime_end_(kNoLifetime),
579        is_catch_block_(false) {}
580
581  const GrowableArray<HBasicBlock*>& GetPredecessors() const {
582    return predecessors_;
583  }
584
585  const GrowableArray<HInstruction*>& GetExceptionalPredecessors() const {
586    return exceptional_predecessors_;
587  }
588
589  const GrowableArray<HBasicBlock*>& GetSuccessors() const {
590    return successors_;
591  }
592
593  const GrowableArray<HBasicBlock*>& GetDominatedBlocks() const {
594    return dominated_blocks_;
595  }
596
597  bool IsEntryBlock() const {
598    return graph_->GetEntryBlock() == this;
599  }
600
601  bool IsExitBlock() const {
602    return graph_->GetExitBlock() == this;
603  }
604
605  bool IsSingleGoto() const;
606  bool IsSingleTryBoundary() const;
607
608  // Returns true if this block emits nothing but a jump.
609  bool IsSingleJump() const {
610    HLoopInformation* loop_info = GetLoopInformation();
611    return (IsSingleGoto() || IsSingleTryBoundary())
612           // Back edges generate a suspend check.
613           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
614  }
615
616  void AddBackEdge(HBasicBlock* back_edge) {
617    if (loop_information_ == nullptr) {
618      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
619    }
620    DCHECK_EQ(loop_information_->GetHeader(), this);
621    loop_information_->AddBackEdge(back_edge);
622  }
623
624  HGraph* GetGraph() const { return graph_; }
625  void SetGraph(HGraph* graph) { graph_ = graph; }
626
627  int GetBlockId() const { return block_id_; }
628  void SetBlockId(int id) { block_id_ = id; }
629
630  HBasicBlock* GetDominator() const { return dominator_; }
631  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
632  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.Add(block); }
633  void RemoveDominatedBlock(HBasicBlock* block) { dominated_blocks_.Delete(block); }
634  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
635    for (size_t i = 0, e = dominated_blocks_.Size(); i < e; ++i) {
636      if (dominated_blocks_.Get(i) == existing) {
637        dominated_blocks_.Put(i, new_block);
638        return;
639      }
640    }
641    LOG(FATAL) << "Unreachable";
642    UNREACHABLE();
643  }
644  void ClearDominanceInformation();
645
646  int NumberOfBackEdges() const {
647    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
648  }
649
650  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
651  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
652  const HInstructionList& GetInstructions() const { return instructions_; }
653  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
654  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
655  const HInstructionList& GetPhis() const { return phis_; }
656
657  void AddExceptionalPredecessor(HInstruction* exceptional_predecessor);
658
659  void AddSuccessor(HBasicBlock* block) {
660    successors_.Add(block);
661    block->predecessors_.Add(this);
662  }
663
664  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
665    size_t successor_index = GetSuccessorIndexOf(existing);
666    DCHECK_NE(successor_index, static_cast<size_t>(-1));
667    existing->RemovePredecessor(this);
668    new_block->predecessors_.Add(this);
669    successors_.Put(successor_index, new_block);
670  }
671
672  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
673    size_t predecessor_index = GetPredecessorIndexOf(existing);
674    DCHECK_NE(predecessor_index, static_cast<size_t>(-1));
675    existing->RemoveSuccessor(this);
676    new_block->successors_.Add(this);
677    predecessors_.Put(predecessor_index, new_block);
678  }
679
680  // Insert `this` between `predecessor` and `successor. This method
681  // preserves the indicies, and will update the first edge found between
682  // `predecessor` and `successor`.
683  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
684    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
685    DCHECK_NE(predecessor_index, static_cast<size_t>(-1));
686    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
687    DCHECK_NE(successor_index, static_cast<size_t>(-1));
688    successor->predecessors_.Put(predecessor_index, this);
689    predecessor->successors_.Put(successor_index, this);
690    successors_.Add(successor);
691    predecessors_.Add(predecessor);
692  }
693
694  void RemovePredecessor(HBasicBlock* block) {
695    predecessors_.Delete(block);
696  }
697
698  void RemoveExceptionalPredecessor(HInstruction* instruction) {
699    exceptional_predecessors_.Delete(instruction);
700  }
701
702  void RemoveSuccessor(HBasicBlock* block) {
703    successors_.Delete(block);
704  }
705
706  void ClearAllPredecessors() {
707    predecessors_.Reset();
708  }
709
710  void AddPredecessor(HBasicBlock* block) {
711    predecessors_.Add(block);
712    block->successors_.Add(this);
713  }
714
715  void SwapPredecessors() {
716    DCHECK_EQ(predecessors_.Size(), 2u);
717    HBasicBlock* temp = predecessors_.Get(0);
718    predecessors_.Put(0, predecessors_.Get(1));
719    predecessors_.Put(1, temp);
720  }
721
722  void SwapSuccessors() {
723    DCHECK_EQ(successors_.Size(), 2u);
724    HBasicBlock* temp = successors_.Get(0);
725    successors_.Put(0, successors_.Get(1));
726    successors_.Put(1, temp);
727  }
728
729  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
730    for (size_t i = 0, e = predecessors_.Size(); i < e; ++i) {
731      if (predecessors_.Get(i) == predecessor) {
732        return i;
733      }
734    }
735    return -1;
736  }
737
738  size_t GetExceptionalPredecessorIndexOf(HInstruction* exceptional_predecessor) const {
739    for (size_t i = 0, e = exceptional_predecessors_.Size(); i < e; ++i) {
740      if (exceptional_predecessors_.Get(i) == exceptional_predecessor) {
741        return i;
742      }
743    }
744    return -1;
745  }
746
747  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
748    for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
749      if (successors_.Get(i) == successor) {
750        return i;
751      }
752    }
753    return -1;
754  }
755
756  HBasicBlock* GetSinglePredecessor() const {
757    DCHECK_EQ(GetPredecessors().Size(), 1u);
758    return GetPredecessors().Get(0);
759  }
760
761  HBasicBlock* GetSingleSuccessor() const {
762    DCHECK_EQ(GetSuccessors().Size(), 1u);
763    return GetSuccessors().Get(0);
764  }
765
766  // Returns whether the first occurrence of `predecessor` in the list of
767  // predecessors is at index `idx`.
768  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
769    DCHECK_EQ(GetPredecessors().Get(idx), predecessor);
770    return GetPredecessorIndexOf(predecessor) == idx;
771  }
772
773  // Returns the number of non-exceptional successors. SsaChecker ensures that
774  // these are stored at the beginning of the successor list.
775  size_t NumberOfNormalSuccessors() const {
776    return EndsWithTryBoundary() ? 1 : GetSuccessors().Size();
777  }
778
779  // Split the block into two blocks just before `cursor`. Returns the newly
780  // created, latter block. Note that this method will add the block to the
781  // graph, create a Goto at the end of the former block and will create an edge
782  // between the blocks. It will not, however, update the reverse post order or
783  // loop information.
784  HBasicBlock* SplitBefore(HInstruction* cursor);
785
786  // Split the block into two blocks just after `cursor`. Returns the newly
787  // created block. Note that this method just updates raw block information,
788  // like predecessors, successors, dominators, and instruction list. It does not
789  // update the graph, reverse post order, loop information, nor make sure the
790  // blocks are consistent (for example ending with a control flow instruction).
791  HBasicBlock* SplitAfter(HInstruction* cursor);
792
793  // Merge `other` at the end of `this`. Successors and dominated blocks of
794  // `other` are changed to be successors and dominated blocks of `this`. Note
795  // that this method does not update the graph, reverse post order, loop
796  // information, nor make sure the blocks are consistent (for example ending
797  // with a control flow instruction).
798  void MergeWithInlined(HBasicBlock* other);
799
800  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
801  // of `this` are moved to `other`.
802  // Note that this method does not update the graph, reverse post order, loop
803  // information, nor make sure the blocks are consistent (for example ending
804  // with a control flow instruction).
805  void ReplaceWith(HBasicBlock* other);
806
807  // Merge `other` at the end of `this`. This method updates loops, reverse post
808  // order, links to predecessors, successors, dominators and deletes the block
809  // from the graph. The two blocks must be successive, i.e. `this` the only
810  // predecessor of `other` and vice versa.
811  void MergeWith(HBasicBlock* other);
812
813  // Disconnects `this` from all its predecessors, successors and dominator,
814  // removes it from all loops it is included in and eventually from the graph.
815  // The block must not dominate any other block. Predecessors and successors
816  // are safely updated.
817  void DisconnectAndDelete();
818
819  void AddInstruction(HInstruction* instruction);
820  // Insert `instruction` before/after an existing instruction `cursor`.
821  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
822  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
823  // Replace instruction `initial` with `replacement` within this block.
824  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
825                                       HInstruction* replacement);
826  void AddPhi(HPhi* phi);
827  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
828  // RemoveInstruction and RemovePhi delete a given instruction from the respective
829  // instruction list. With 'ensure_safety' set to true, it verifies that the
830  // instruction is not in use and removes it from the use lists of its inputs.
831  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
832  void RemovePhi(HPhi* phi, bool ensure_safety = true);
833  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
834
835  bool IsLoopHeader() const {
836    return IsInLoop() && (loop_information_->GetHeader() == this);
837  }
838
839  bool IsLoopPreHeaderFirstPredecessor() const {
840    DCHECK(IsLoopHeader());
841    DCHECK(!GetPredecessors().IsEmpty());
842    return GetPredecessors().Get(0) == GetLoopInformation()->GetPreHeader();
843  }
844
845  HLoopInformation* GetLoopInformation() const {
846    return loop_information_;
847  }
848
849  // Set the loop_information_ on this block. Overrides the current
850  // loop_information if it is an outer loop of the passed loop information.
851  // Note that this method is called while creating the loop information.
852  void SetInLoop(HLoopInformation* info) {
853    if (IsLoopHeader()) {
854      // Nothing to do. This just means `info` is an outer loop.
855    } else if (!IsInLoop()) {
856      loop_information_ = info;
857    } else if (loop_information_->Contains(*info->GetHeader())) {
858      // Block is currently part of an outer loop. Make it part of this inner loop.
859      // Note that a non loop header having a loop information means this loop information
860      // has already been populated
861      loop_information_ = info;
862    } else {
863      // Block is part of an inner loop. Do not update the loop information.
864      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
865      // at this point, because this method is being called while populating `info`.
866    }
867  }
868
869  // Raw update of the loop information.
870  void SetLoopInformation(HLoopInformation* info) {
871    loop_information_ = info;
872  }
873
874  bool IsInLoop() const { return loop_information_ != nullptr; }
875
876  HTryBoundary* GetTryEntry() const { return try_entry_; }
877  void SetTryEntry(HTryBoundary* try_entry) { try_entry_ = try_entry; }
878  bool IsInTry() const { return try_entry_ != nullptr; }
879
880  // Returns the try entry that this block's successors should have. They will
881  // be in the same try, unless the block ends in a try boundary. In that case,
882  // the appropriate try entry will be returned.
883  HTryBoundary* ComputeTryEntryOfSuccessors() const;
884
885  // Returns whether this block dominates the blocked passed as parameter.
886  bool Dominates(HBasicBlock* block) const;
887
888  size_t GetLifetimeStart() const { return lifetime_start_; }
889  size_t GetLifetimeEnd() const { return lifetime_end_; }
890
891  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
892  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
893
894  uint32_t GetDexPc() const { return dex_pc_; }
895
896  bool IsCatchBlock() const { return is_catch_block_; }
897  void SetIsCatchBlock() { is_catch_block_ = true; }
898
899  bool EndsWithControlFlowInstruction() const;
900  bool EndsWithIf() const;
901  bool EndsWithTryBoundary() const;
902  bool HasSinglePhi() const;
903
904 private:
905  HGraph* graph_;
906  GrowableArray<HBasicBlock*> predecessors_;
907  GrowableArray<HInstruction*> exceptional_predecessors_;
908  GrowableArray<HBasicBlock*> successors_;
909  HInstructionList instructions_;
910  HInstructionList phis_;
911  HLoopInformation* loop_information_;
912  HBasicBlock* dominator_;
913  GrowableArray<HBasicBlock*> dominated_blocks_;
914  int block_id_;
915  // The dex program counter of the first instruction of this block.
916  const uint32_t dex_pc_;
917  size_t lifetime_start_;
918  size_t lifetime_end_;
919  bool is_catch_block_;
920
921  // If this block is in a try block, `try_entry_` stores one of, possibly
922  // several, TryBoundary instructions entering it.
923  HTryBoundary* try_entry_;
924
925  friend class HGraph;
926  friend class HInstruction;
927
928  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
929};
930
931// Iterates over the LoopInformation of all loops which contain 'block'
932// from the innermost to the outermost.
933class HLoopInformationOutwardIterator : public ValueObject {
934 public:
935  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
936      : current_(block.GetLoopInformation()) {}
937
938  bool Done() const { return current_ == nullptr; }
939
940  void Advance() {
941    DCHECK(!Done());
942    current_ = current_->GetPreHeader()->GetLoopInformation();
943  }
944
945  HLoopInformation* Current() const {
946    DCHECK(!Done());
947    return current_;
948  }
949
950 private:
951  HLoopInformation* current_;
952
953  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
954};
955
956#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
957  M(Add, BinaryOperation)                                               \
958  M(And, BinaryOperation)                                               \
959  M(ArrayGet, Instruction)                                              \
960  M(ArrayLength, Instruction)                                           \
961  M(ArraySet, Instruction)                                              \
962  M(BooleanNot, UnaryOperation)                                         \
963  M(BoundsCheck, Instruction)                                           \
964  M(BoundType, Instruction)                                             \
965  M(CheckCast, Instruction)                                             \
966  M(ClearException, Instruction)                                        \
967  M(ClinitCheck, Instruction)                                           \
968  M(Compare, BinaryOperation)                                           \
969  M(Condition, BinaryOperation)                                         \
970  M(CurrentMethod, Instruction)                                         \
971  M(Deoptimize, Instruction)                                            \
972  M(Div, BinaryOperation)                                               \
973  M(DivZeroCheck, Instruction)                                          \
974  M(DoubleConstant, Constant)                                           \
975  M(Equal, Condition)                                                   \
976  M(Exit, Instruction)                                                  \
977  M(FakeString, Instruction)                                            \
978  M(FloatConstant, Constant)                                            \
979  M(Goto, Instruction)                                                  \
980  M(GreaterThan, Condition)                                             \
981  M(GreaterThanOrEqual, Condition)                                      \
982  M(If, Instruction)                                                    \
983  M(InstanceFieldGet, Instruction)                                      \
984  M(InstanceFieldSet, Instruction)                                      \
985  M(InstanceOf, Instruction)                                            \
986  M(IntConstant, Constant)                                              \
987  M(InvokeInterface, Invoke)                                            \
988  M(InvokeStaticOrDirect, Invoke)                                       \
989  M(InvokeVirtual, Invoke)                                              \
990  M(LessThan, Condition)                                                \
991  M(LessThanOrEqual, Condition)                                         \
992  M(LoadClass, Instruction)                                             \
993  M(LoadException, Instruction)                                         \
994  M(LoadLocal, Instruction)                                             \
995  M(LoadString, Instruction)                                            \
996  M(Local, Instruction)                                                 \
997  M(LongConstant, Constant)                                             \
998  M(MemoryBarrier, Instruction)                                         \
999  M(MonitorOperation, Instruction)                                      \
1000  M(Mul, BinaryOperation)                                               \
1001  M(Neg, UnaryOperation)                                                \
1002  M(NewArray, Instruction)                                              \
1003  M(NewInstance, Instruction)                                           \
1004  M(Not, UnaryOperation)                                                \
1005  M(NotEqual, Condition)                                                \
1006  M(NullConstant, Instruction)                                          \
1007  M(NullCheck, Instruction)                                             \
1008  M(Or, BinaryOperation)                                                \
1009  M(ParallelMove, Instruction)                                          \
1010  M(ParameterValue, Instruction)                                        \
1011  M(Phi, Instruction)                                                   \
1012  M(Rem, BinaryOperation)                                               \
1013  M(Return, Instruction)                                                \
1014  M(ReturnVoid, Instruction)                                            \
1015  M(Shl, BinaryOperation)                                               \
1016  M(Shr, BinaryOperation)                                               \
1017  M(StaticFieldGet, Instruction)                                        \
1018  M(StaticFieldSet, Instruction)                                        \
1019  M(StoreLocal, Instruction)                                            \
1020  M(Sub, BinaryOperation)                                               \
1021  M(SuspendCheck, Instruction)                                          \
1022  M(Temporary, Instruction)                                             \
1023  M(Throw, Instruction)                                                 \
1024  M(TryBoundary, Instruction)                                           \
1025  M(TypeConversion, Instruction)                                        \
1026  M(UShr, BinaryOperation)                                              \
1027  M(Xor, BinaryOperation)                                               \
1028
1029#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1030
1031#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1032
1033#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1034
1035#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1036
1037#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1038
1039#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1040  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1041  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1042  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1043  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1044  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1045  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1046
1047#define FOR_EACH_INSTRUCTION(M)                                         \
1048  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1049  M(Constant, Instruction)                                              \
1050  M(UnaryOperation, Instruction)                                        \
1051  M(BinaryOperation, Instruction)                                       \
1052  M(Invoke, Instruction)
1053
1054#define FORWARD_DECLARATION(type, super) class H##type;
1055FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1056#undef FORWARD_DECLARATION
1057
1058#define DECLARE_INSTRUCTION(type)                                       \
1059  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
1060  const char* DebugName() const OVERRIDE { return #type; }              \
1061  const H##type* As##type() const OVERRIDE { return this; }             \
1062  H##type* As##type() OVERRIDE { return this; }                         \
1063  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1064    return other->Is##type();                                           \
1065  }                                                                     \
1066  void Accept(HGraphVisitor* visitor) OVERRIDE
1067
1068template <typename T> class HUseList;
1069
1070template <typename T>
1071class HUseListNode : public ArenaObject<kArenaAllocMisc> {
1072 public:
1073  HUseListNode* GetPrevious() const { return prev_; }
1074  HUseListNode* GetNext() const { return next_; }
1075  T GetUser() const { return user_; }
1076  size_t GetIndex() const { return index_; }
1077  void SetIndex(size_t index) { index_ = index; }
1078
1079 private:
1080  HUseListNode(T user, size_t index)
1081      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1082
1083  T const user_;
1084  size_t index_;
1085  HUseListNode<T>* prev_;
1086  HUseListNode<T>* next_;
1087
1088  friend class HUseList<T>;
1089
1090  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1091};
1092
1093template <typename T>
1094class HUseList : public ValueObject {
1095 public:
1096  HUseList() : first_(nullptr) {}
1097
1098  void Clear() {
1099    first_ = nullptr;
1100  }
1101
1102  // Adds a new entry at the beginning of the use list and returns
1103  // the newly created node.
1104  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1105    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1106    if (IsEmpty()) {
1107      first_ = new_node;
1108    } else {
1109      first_->prev_ = new_node;
1110      new_node->next_ = first_;
1111      first_ = new_node;
1112    }
1113    return new_node;
1114  }
1115
1116  HUseListNode<T>* GetFirst() const {
1117    return first_;
1118  }
1119
1120  void Remove(HUseListNode<T>* node) {
1121    DCHECK(node != nullptr);
1122    DCHECK(Contains(node));
1123
1124    if (node->prev_ != nullptr) {
1125      node->prev_->next_ = node->next_;
1126    }
1127    if (node->next_ != nullptr) {
1128      node->next_->prev_ = node->prev_;
1129    }
1130    if (node == first_) {
1131      first_ = node->next_;
1132    }
1133  }
1134
1135  bool Contains(const HUseListNode<T>* node) const {
1136    if (node == nullptr) {
1137      return false;
1138    }
1139    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1140      if (current == node) {
1141        return true;
1142      }
1143    }
1144    return false;
1145  }
1146
1147  bool IsEmpty() const {
1148    return first_ == nullptr;
1149  }
1150
1151  bool HasOnlyOneUse() const {
1152    return first_ != nullptr && first_->next_ == nullptr;
1153  }
1154
1155  size_t SizeSlow() const {
1156    size_t count = 0;
1157    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1158      ++count;
1159    }
1160    return count;
1161  }
1162
1163 private:
1164  HUseListNode<T>* first_;
1165};
1166
1167template<typename T>
1168class HUseIterator : public ValueObject {
1169 public:
1170  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1171
1172  bool Done() const { return current_ == nullptr; }
1173
1174  void Advance() {
1175    DCHECK(!Done());
1176    current_ = current_->GetNext();
1177  }
1178
1179  HUseListNode<T>* Current() const {
1180    DCHECK(!Done());
1181    return current_;
1182  }
1183
1184 private:
1185  HUseListNode<T>* current_;
1186
1187  friend class HValue;
1188};
1189
1190// This class is used by HEnvironment and HInstruction classes to record the
1191// instructions they use and pointers to the corresponding HUseListNodes kept
1192// by the used instructions.
1193template <typename T>
1194class HUserRecord : public ValueObject {
1195 public:
1196  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1197  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1198
1199  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1200    : instruction_(old_record.instruction_), use_node_(use_node) {
1201    DCHECK(instruction_ != nullptr);
1202    DCHECK(use_node_ != nullptr);
1203    DCHECK(old_record.use_node_ == nullptr);
1204  }
1205
1206  HInstruction* GetInstruction() const { return instruction_; }
1207  HUseListNode<T>* GetUseNode() const { return use_node_; }
1208
1209 private:
1210  // Instruction used by the user.
1211  HInstruction* instruction_;
1212
1213  // Corresponding entry in the use list kept by 'instruction_'.
1214  HUseListNode<T>* use_node_;
1215};
1216
1217/**
1218 * Side-effects representation for write/read dependences on fields/arrays.
1219 *
1220 * The dependence analysis uses type disambiguation (e.g. a float field write
1221 * cannot modify the value of an integer field read) and the access type (e.g.
1222 * a reference array write cannot modify the value of a reference field read
1223 * [although it may modify the reference fetch prior to reading the field,
1224 * which is represented by its own write/read dependence]). The analysis
1225 * makes conservative points-to assumptions on reference types (e.g. two same
1226 * typed arrays are assumed to be the same, and any reference read depends
1227 * on any reference read without further regard of its type).
1228 *
1229 * The internal representation uses the following 36-bit flags assignments:
1230 *
1231 *   |ARRAY-R  |FIELD-R  |ARRAY-W  |FIELD-W  |
1232 *   +---------+---------+---------+---------+
1233 *   |543210987|654321098|765432109|876543210|
1234 *   |DFJISCBZL|DFJISCBZL|DFJISCBZL|DFJISCBZL|
1235 */
1236class SideEffects : public ValueObject {
1237 public:
1238  SideEffects() : flags_(0) {}
1239
1240  static SideEffects None() {
1241    return SideEffects(0);
1242  }
1243
1244  static SideEffects All() {
1245    return SideEffects(kAllWrites | kAllReads);
1246  }
1247
1248  static SideEffects AllWrites() {
1249    return SideEffects(kAllWrites);
1250  }
1251
1252  static SideEffects AllReads() {
1253    return SideEffects(kAllReads);
1254  }
1255
1256  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1257    return is_volatile
1258        ? All()
1259        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1260  }
1261
1262  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1263    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1264  }
1265
1266  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1267    return is_volatile
1268        ? All()
1269        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1270  }
1271
1272  static SideEffects ArrayReadOfType(Primitive::Type type) {
1273    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1274  }
1275
1276  // Combines the side-effects of this and the other.
1277  SideEffects Union(SideEffects other) const {
1278    return SideEffects(flags_ | other.flags_);
1279  }
1280
1281  // Returns true if something is written.
1282  bool DoesAnyWrite() const {
1283    return (flags_ & kAllWrites);
1284  }
1285
1286  // Returns true if something is read.
1287  bool DoesAnyRead() const {
1288    return (flags_ & kAllReads);
1289  }
1290
1291  // Returns true if nothing is written or read.
1292  bool DoesNothing() const {
1293    return flags_ == 0;
1294  }
1295
1296  // Returns true if potentially everything is written and read
1297  // (every type and every kind of access).
1298  bool DoesAll() const {
1299    return flags_ == (kAllWrites | kAllReads);
1300  }
1301
1302  // Returns true if this may read something written by other.
1303  bool MayDependOn(SideEffects other) const {
1304    const uint64_t reads = (flags_ & kAllReads) >> kFieldReadOffset;
1305    return (other.flags_ & reads);
1306  }
1307
1308  // Returns string representation of flags (for debugging only).
1309  // Format: |DFJISCBZL|DFJISCBZL|DFJISCBZL|DFJISCBZL|
1310  std::string ToString() const {
1311    static const char *kDebug = "LZBCSIJFD";
1312    std::string flags = "|";
1313    for (int s = 35; s >= 0; s--) {
1314      const int t = s % kBits;
1315      if ((flags_ >> s) & 1)
1316        flags += kDebug[t];
1317      if (t == 0)
1318        flags += "|";
1319    }
1320    return flags;
1321  }
1322
1323 private:
1324  static constexpr int kBits = 9;
1325  static constexpr int kFieldWriteOffset = 0 * kBits;
1326  static constexpr int kArrayWriteOffset = 1 * kBits;
1327  static constexpr int kFieldReadOffset  = 2 * kBits;
1328  static constexpr int kArrayReadOffset  = 3 * kBits;
1329
1330  static constexpr uint64_t kAllWrites = 0x0003ffff;
1331  static constexpr uint64_t kAllReads  = kAllWrites << kFieldReadOffset;
1332
1333  // Work around the fact that HIR aliases I/F and J/D.
1334  // TODO: remove this interceptor once HIR types are clean
1335  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1336    switch (type) {
1337      case Primitive::kPrimInt:
1338      case Primitive::kPrimFloat:
1339        return TypeFlag(Primitive::kPrimInt, offset) |
1340               TypeFlag(Primitive::kPrimFloat, offset);
1341      case Primitive::kPrimLong:
1342      case Primitive::kPrimDouble:
1343        return TypeFlag(Primitive::kPrimLong, offset) |
1344               TypeFlag(Primitive::kPrimDouble, offset);
1345      default:
1346        return TypeFlag(type, offset);
1347    }
1348  }
1349
1350  // Translates type to bit flag.
1351  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1352    CHECK_NE(type, Primitive::kPrimVoid);
1353    const uint64_t one = 1;
1354    const int shift = type;  // 0-based consecutive enum
1355    DCHECK_LE(kFieldWriteOffset, shift);
1356    DCHECK_LT(shift, kArrayWriteOffset);
1357    return one << (type + offset);
1358  }
1359
1360  // Private constructor on direct flags value.
1361  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1362
1363  uint64_t flags_;
1364};
1365
1366// A HEnvironment object contains the values of virtual registers at a given location.
1367class HEnvironment : public ArenaObject<kArenaAllocMisc> {
1368 public:
1369  HEnvironment(ArenaAllocator* arena,
1370               size_t number_of_vregs,
1371               const DexFile& dex_file,
1372               uint32_t method_idx,
1373               uint32_t dex_pc,
1374               InvokeType invoke_type,
1375               HInstruction* holder)
1376     : vregs_(arena, number_of_vregs),
1377       locations_(arena, number_of_vregs),
1378       parent_(nullptr),
1379       dex_file_(dex_file),
1380       method_idx_(method_idx),
1381       dex_pc_(dex_pc),
1382       invoke_type_(invoke_type),
1383       holder_(holder) {
1384    vregs_.SetSize(number_of_vregs);
1385    for (size_t i = 0; i < number_of_vregs; i++) {
1386      vregs_.Put(i, HUserRecord<HEnvironment*>());
1387    }
1388
1389    locations_.SetSize(number_of_vregs);
1390    for (size_t i = 0; i < number_of_vregs; ++i) {
1391      locations_.Put(i, Location());
1392    }
1393  }
1394
1395  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1396      : HEnvironment(arena,
1397                     to_copy.Size(),
1398                     to_copy.GetDexFile(),
1399                     to_copy.GetMethodIdx(),
1400                     to_copy.GetDexPc(),
1401                     to_copy.GetInvokeType(),
1402                     holder) {}
1403
1404  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1405    if (parent_ != nullptr) {
1406      parent_->SetAndCopyParentChain(allocator, parent);
1407    } else {
1408      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1409      parent_->CopyFrom(parent);
1410      if (parent->GetParent() != nullptr) {
1411        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1412      }
1413    }
1414  }
1415
1416  void CopyFrom(const GrowableArray<HInstruction*>& locals);
1417  void CopyFrom(HEnvironment* environment);
1418
1419  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1420  // input to the loop phi instead. This is for inserting instructions that
1421  // require an environment (like HDeoptimization) in the loop pre-header.
1422  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1423
1424  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1425    vregs_.Put(index, HUserRecord<HEnvironment*>(instruction));
1426  }
1427
1428  HInstruction* GetInstructionAt(size_t index) const {
1429    return vregs_.Get(index).GetInstruction();
1430  }
1431
1432  void RemoveAsUserOfInput(size_t index) const;
1433
1434  size_t Size() const { return vregs_.Size(); }
1435
1436  HEnvironment* GetParent() const { return parent_; }
1437
1438  void SetLocationAt(size_t index, Location location) {
1439    locations_.Put(index, location);
1440  }
1441
1442  Location GetLocationAt(size_t index) const {
1443    return locations_.Get(index);
1444  }
1445
1446  uint32_t GetDexPc() const {
1447    return dex_pc_;
1448  }
1449
1450  uint32_t GetMethodIdx() const {
1451    return method_idx_;
1452  }
1453
1454  InvokeType GetInvokeType() const {
1455    return invoke_type_;
1456  }
1457
1458  const DexFile& GetDexFile() const {
1459    return dex_file_;
1460  }
1461
1462  HInstruction* GetHolder() const {
1463    return holder_;
1464  }
1465
1466 private:
1467  // Record instructions' use entries of this environment for constant-time removal.
1468  // It should only be called by HInstruction when a new environment use is added.
1469  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1470    DCHECK(env_use->GetUser() == this);
1471    size_t index = env_use->GetIndex();
1472    vregs_.Put(index, HUserRecord<HEnvironment*>(vregs_.Get(index), env_use));
1473  }
1474
1475  GrowableArray<HUserRecord<HEnvironment*> > vregs_;
1476  GrowableArray<Location> locations_;
1477  HEnvironment* parent_;
1478  const DexFile& dex_file_;
1479  const uint32_t method_idx_;
1480  const uint32_t dex_pc_;
1481  const InvokeType invoke_type_;
1482
1483  // The instruction that holds this environment.
1484  HInstruction* const holder_;
1485
1486  friend class HInstruction;
1487
1488  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1489};
1490
1491class ReferenceTypeInfo : ValueObject {
1492 public:
1493  typedef Handle<mirror::Class> TypeHandle;
1494
1495  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1496    // The constructor will check that the type_handle is valid.
1497    return ReferenceTypeInfo(type_handle, is_exact);
1498  }
1499
1500  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1501
1502  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1503    return handle.GetReference() != nullptr;
1504  }
1505
1506  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1507    return IsValidHandle(type_handle_);
1508  }
1509  bool IsExact() const { return is_exact_; }
1510
1511  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1512    DCHECK(IsValid());
1513    return GetTypeHandle()->IsObjectClass();
1514  }
1515  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1516    DCHECK(IsValid());
1517    return GetTypeHandle()->IsInterface();
1518  }
1519
1520  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1521
1522  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1523    DCHECK(IsValid());
1524    DCHECK(rti.IsValid());
1525    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1526  }
1527
1528  // Returns true if the type information provide the same amount of details.
1529  // Note that it does not mean that the instructions have the same actual type
1530  // (because the type can be the result of a merge).
1531  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1532    if (!IsValid() && !rti.IsValid()) {
1533      // Invalid types are equal.
1534      return true;
1535    }
1536    if (!IsValid() || !rti.IsValid()) {
1537      // One is valid, the other not.
1538      return false;
1539    }
1540    return IsExact() == rti.IsExact()
1541        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1542  }
1543
1544 private:
1545  ReferenceTypeInfo();
1546  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1547
1548  // The class of the object.
1549  TypeHandle type_handle_;
1550  // Whether or not the type is exact or a superclass of the actual type.
1551  // Whether or not we have any information about this type.
1552  bool is_exact_;
1553};
1554
1555std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1556
1557class HInstruction : public ArenaObject<kArenaAllocMisc> {
1558 public:
1559  explicit HInstruction(SideEffects side_effects)
1560      : previous_(nullptr),
1561        next_(nullptr),
1562        block_(nullptr),
1563        id_(-1),
1564        ssa_index_(-1),
1565        environment_(nullptr),
1566        locations_(nullptr),
1567        live_interval_(nullptr),
1568        lifetime_position_(kNoLifetime),
1569        side_effects_(side_effects),
1570        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1571
1572  virtual ~HInstruction() {}
1573
1574#define DECLARE_KIND(type, super) k##type,
1575  enum InstructionKind {
1576    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1577  };
1578#undef DECLARE_KIND
1579
1580  HInstruction* GetNext() const { return next_; }
1581  HInstruction* GetPrevious() const { return previous_; }
1582
1583  HInstruction* GetNextDisregardingMoves() const;
1584  HInstruction* GetPreviousDisregardingMoves() const;
1585
1586  HBasicBlock* GetBlock() const { return block_; }
1587  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1588  void SetBlock(HBasicBlock* block) { block_ = block; }
1589  bool IsInBlock() const { return block_ != nullptr; }
1590  bool IsInLoop() const { return block_->IsInLoop(); }
1591  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1592
1593  virtual size_t InputCount() const = 0;
1594  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1595
1596  virtual void Accept(HGraphVisitor* visitor) = 0;
1597  virtual const char* DebugName() const = 0;
1598
1599  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1600  void SetRawInputAt(size_t index, HInstruction* input) {
1601    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1602  }
1603
1604  virtual bool NeedsEnvironment() const { return false; }
1605  virtual uint32_t GetDexPc() const {
1606    LOG(FATAL) << "GetDexPc() cannot be called on an instruction that"
1607                  " does not need an environment";
1608    UNREACHABLE();
1609  }
1610  virtual bool IsControlFlow() const { return false; }
1611  virtual bool CanThrow() const { return false; }
1612
1613  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1614
1615  // Does not apply for all instructions, but having this at top level greatly
1616  // simplifies the null check elimination.
1617  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1618  virtual bool CanBeNull() const {
1619    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1620    return true;
1621  }
1622
1623  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj) const {
1624    UNUSED(obj);
1625    return false;
1626  }
1627
1628  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1629
1630  ReferenceTypeInfo GetReferenceTypeInfo() const {
1631    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1632    return reference_type_info_;
1633  }
1634
1635  void AddUseAt(HInstruction* user, size_t index) {
1636    DCHECK(user != nullptr);
1637    HUseListNode<HInstruction*>* use =
1638        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1639    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1640  }
1641
1642  void AddEnvUseAt(HEnvironment* user, size_t index) {
1643    DCHECK(user != nullptr);
1644    HUseListNode<HEnvironment*>* env_use =
1645        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1646    user->RecordEnvUse(env_use);
1647  }
1648
1649  void RemoveAsUserOfInput(size_t input) {
1650    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1651    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1652  }
1653
1654  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1655  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1656
1657  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1658  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1659  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1660  bool HasOnlyOneNonEnvironmentUse() const {
1661    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1662  }
1663
1664  // Does this instruction strictly dominate `other_instruction`?
1665  // Returns false if this instruction and `other_instruction` are the same.
1666  // Aborts if this instruction and `other_instruction` are both phis.
1667  bool StrictlyDominates(HInstruction* other_instruction) const;
1668
1669  int GetId() const { return id_; }
1670  void SetId(int id) { id_ = id; }
1671
1672  int GetSsaIndex() const { return ssa_index_; }
1673  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1674  bool HasSsaIndex() const { return ssa_index_ != -1; }
1675
1676  bool HasEnvironment() const { return environment_ != nullptr; }
1677  HEnvironment* GetEnvironment() const { return environment_; }
1678  // Set the `environment_` field. Raw because this method does not
1679  // update the uses lists.
1680  void SetRawEnvironment(HEnvironment* environment) {
1681    DCHECK(environment_ == nullptr);
1682    DCHECK_EQ(environment->GetHolder(), this);
1683    environment_ = environment;
1684  }
1685
1686  // Set the environment of this instruction, copying it from `environment`. While
1687  // copying, the uses lists are being updated.
1688  void CopyEnvironmentFrom(HEnvironment* environment) {
1689    DCHECK(environment_ == nullptr);
1690    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1691    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1692    environment_->CopyFrom(environment);
1693    if (environment->GetParent() != nullptr) {
1694      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1695    }
1696  }
1697
1698  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1699                                                HBasicBlock* block) {
1700    DCHECK(environment_ == nullptr);
1701    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1702    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1703    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1704    if (environment->GetParent() != nullptr) {
1705      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1706    }
1707  }
1708
1709  // Returns the number of entries in the environment. Typically, that is the
1710  // number of dex registers in a method. It could be more in case of inlining.
1711  size_t EnvironmentSize() const;
1712
1713  LocationSummary* GetLocations() const { return locations_; }
1714  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1715
1716  void ReplaceWith(HInstruction* instruction);
1717  void ReplaceInput(HInstruction* replacement, size_t index);
1718
1719  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1720  // uses of this instruction by `other` are *not* updated.
1721  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1722    ReplaceWith(other);
1723    other->ReplaceInput(this, use_index);
1724  }
1725
1726  // Move `this` instruction before `cursor`.
1727  void MoveBefore(HInstruction* cursor);
1728
1729#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1730  bool Is##type() const { return (As##type() != nullptr); }                    \
1731  virtual const H##type* As##type() const { return nullptr; }                  \
1732  virtual H##type* As##type() { return nullptr; }
1733
1734  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1735#undef INSTRUCTION_TYPE_CHECK
1736
1737  // Returns whether the instruction can be moved within the graph.
1738  virtual bool CanBeMoved() const { return false; }
1739
1740  // Returns whether the two instructions are of the same kind.
1741  virtual bool InstructionTypeEquals(HInstruction* other) const {
1742    UNUSED(other);
1743    return false;
1744  }
1745
1746  // Returns whether any data encoded in the two instructions is equal.
1747  // This method does not look at the inputs. Both instructions must be
1748  // of the same type, otherwise the method has undefined behavior.
1749  virtual bool InstructionDataEquals(HInstruction* other) const {
1750    UNUSED(other);
1751    return false;
1752  }
1753
1754  // Returns whether two instructions are equal, that is:
1755  // 1) They have the same type and contain the same data (InstructionDataEquals).
1756  // 2) Their inputs are identical.
1757  bool Equals(HInstruction* other) const;
1758
1759  virtual InstructionKind GetKind() const = 0;
1760
1761  virtual size_t ComputeHashCode() const {
1762    size_t result = GetKind();
1763    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1764      result = (result * 31) + InputAt(i)->GetId();
1765    }
1766    return result;
1767  }
1768
1769  SideEffects GetSideEffects() const { return side_effects_; }
1770
1771  size_t GetLifetimePosition() const { return lifetime_position_; }
1772  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1773  LiveInterval* GetLiveInterval() const { return live_interval_; }
1774  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1775  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1776
1777  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1778
1779  // Returns whether the code generation of the instruction will require to have access
1780  // to the current method. Such instructions are:
1781  // (1): Instructions that require an environment, as calling the runtime requires
1782  //      to walk the stack and have the current method stored at a specific stack address.
1783  // (2): Object literals like classes and strings, that are loaded from the dex cache
1784  //      fields of the current method.
1785  bool NeedsCurrentMethod() const {
1786    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1787  }
1788
1789  virtual bool NeedsDexCache() const { return false; }
1790
1791  // Does this instruction have any use in an environment before
1792  // control flow hits 'other'?
1793  bool HasAnyEnvironmentUseBefore(HInstruction* other);
1794
1795  // Remove all references to environment uses of this instruction.
1796  // The caller must ensure that this is safe to do.
1797  void RemoveEnvironmentUsers();
1798
1799 protected:
1800  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
1801  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
1802
1803 private:
1804  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
1805
1806  HInstruction* previous_;
1807  HInstruction* next_;
1808  HBasicBlock* block_;
1809
1810  // An instruction gets an id when it is added to the graph.
1811  // It reflects creation order. A negative id means the instruction
1812  // has not been added to the graph.
1813  int id_;
1814
1815  // When doing liveness analysis, instructions that have uses get an SSA index.
1816  int ssa_index_;
1817
1818  // List of instructions that have this instruction as input.
1819  HUseList<HInstruction*> uses_;
1820
1821  // List of environments that contain this instruction.
1822  HUseList<HEnvironment*> env_uses_;
1823
1824  // The environment associated with this instruction. Not null if the instruction
1825  // might jump out of the method.
1826  HEnvironment* environment_;
1827
1828  // Set by the code generator.
1829  LocationSummary* locations_;
1830
1831  // Set by the liveness analysis.
1832  LiveInterval* live_interval_;
1833
1834  // Set by the liveness analysis, this is the position in a linear
1835  // order of blocks where this instruction's live interval start.
1836  size_t lifetime_position_;
1837
1838  const SideEffects side_effects_;
1839
1840  // TODO: for primitive types this should be marked as invalid.
1841  ReferenceTypeInfo reference_type_info_;
1842
1843  friend class GraphChecker;
1844  friend class HBasicBlock;
1845  friend class HEnvironment;
1846  friend class HGraph;
1847  friend class HInstructionList;
1848
1849  DISALLOW_COPY_AND_ASSIGN(HInstruction);
1850};
1851std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
1852
1853class HInputIterator : public ValueObject {
1854 public:
1855  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
1856
1857  bool Done() const { return index_ == instruction_->InputCount(); }
1858  HInstruction* Current() const { return instruction_->InputAt(index_); }
1859  void Advance() { index_++; }
1860
1861 private:
1862  HInstruction* instruction_;
1863  size_t index_;
1864
1865  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
1866};
1867
1868class HInstructionIterator : public ValueObject {
1869 public:
1870  explicit HInstructionIterator(const HInstructionList& instructions)
1871      : instruction_(instructions.first_instruction_) {
1872    next_ = Done() ? nullptr : instruction_->GetNext();
1873  }
1874
1875  bool Done() const { return instruction_ == nullptr; }
1876  HInstruction* Current() const { return instruction_; }
1877  void Advance() {
1878    instruction_ = next_;
1879    next_ = Done() ? nullptr : instruction_->GetNext();
1880  }
1881
1882 private:
1883  HInstruction* instruction_;
1884  HInstruction* next_;
1885
1886  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
1887};
1888
1889class HBackwardInstructionIterator : public ValueObject {
1890 public:
1891  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
1892      : instruction_(instructions.last_instruction_) {
1893    next_ = Done() ? nullptr : instruction_->GetPrevious();
1894  }
1895
1896  bool Done() const { return instruction_ == nullptr; }
1897  HInstruction* Current() const { return instruction_; }
1898  void Advance() {
1899    instruction_ = next_;
1900    next_ = Done() ? nullptr : instruction_->GetPrevious();
1901  }
1902
1903 private:
1904  HInstruction* instruction_;
1905  HInstruction* next_;
1906
1907  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
1908};
1909
1910// An embedded container with N elements of type T.  Used (with partial
1911// specialization for N=0) because embedded arrays cannot have size 0.
1912template<typename T, intptr_t N>
1913class EmbeddedArray {
1914 public:
1915  EmbeddedArray() : elements_() {}
1916
1917  intptr_t GetLength() const { return N; }
1918
1919  const T& operator[](intptr_t i) const {
1920    DCHECK_LT(i, GetLength());
1921    return elements_[i];
1922  }
1923
1924  T& operator[](intptr_t i) {
1925    DCHECK_LT(i, GetLength());
1926    return elements_[i];
1927  }
1928
1929  const T& At(intptr_t i) const {
1930    return (*this)[i];
1931  }
1932
1933  void SetAt(intptr_t i, const T& val) {
1934    (*this)[i] = val;
1935  }
1936
1937 private:
1938  T elements_[N];
1939};
1940
1941template<typename T>
1942class EmbeddedArray<T, 0> {
1943 public:
1944  intptr_t length() const { return 0; }
1945  const T& operator[](intptr_t i) const {
1946    UNUSED(i);
1947    LOG(FATAL) << "Unreachable";
1948    UNREACHABLE();
1949  }
1950  T& operator[](intptr_t i) {
1951    UNUSED(i);
1952    LOG(FATAL) << "Unreachable";
1953    UNREACHABLE();
1954  }
1955};
1956
1957template<intptr_t N>
1958class HTemplateInstruction: public HInstruction {
1959 public:
1960  HTemplateInstruction<N>(SideEffects side_effects)
1961      : HInstruction(side_effects), inputs_() {}
1962  virtual ~HTemplateInstruction() {}
1963
1964  size_t InputCount() const OVERRIDE { return N; }
1965
1966 protected:
1967  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_[i]; }
1968
1969  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
1970    inputs_[i] = input;
1971  }
1972
1973 private:
1974  EmbeddedArray<HUserRecord<HInstruction*>, N> inputs_;
1975
1976  friend class SsaBuilder;
1977};
1978
1979template<intptr_t N>
1980class HExpression : public HTemplateInstruction<N> {
1981 public:
1982  HExpression<N>(Primitive::Type type, SideEffects side_effects)
1983      : HTemplateInstruction<N>(side_effects), type_(type) {}
1984  virtual ~HExpression() {}
1985
1986  Primitive::Type GetType() const OVERRIDE { return type_; }
1987
1988 protected:
1989  Primitive::Type type_;
1990};
1991
1992// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
1993// instruction that branches to the exit block.
1994class HReturnVoid : public HTemplateInstruction<0> {
1995 public:
1996  HReturnVoid() : HTemplateInstruction(SideEffects::None()) {}
1997
1998  bool IsControlFlow() const OVERRIDE { return true; }
1999
2000  DECLARE_INSTRUCTION(ReturnVoid);
2001
2002 private:
2003  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2004};
2005
2006// Represents dex's RETURN opcodes. A HReturn is a control flow
2007// instruction that branches to the exit block.
2008class HReturn : public HTemplateInstruction<1> {
2009 public:
2010  explicit HReturn(HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
2011    SetRawInputAt(0, value);
2012  }
2013
2014  bool IsControlFlow() const OVERRIDE { return true; }
2015
2016  DECLARE_INSTRUCTION(Return);
2017
2018 private:
2019  DISALLOW_COPY_AND_ASSIGN(HReturn);
2020};
2021
2022// The exit instruction is the only instruction of the exit block.
2023// Instructions aborting the method (HThrow and HReturn) must branch to the
2024// exit block.
2025class HExit : public HTemplateInstruction<0> {
2026 public:
2027  HExit() : HTemplateInstruction(SideEffects::None()) {}
2028
2029  bool IsControlFlow() const OVERRIDE { return true; }
2030
2031  DECLARE_INSTRUCTION(Exit);
2032
2033 private:
2034  DISALLOW_COPY_AND_ASSIGN(HExit);
2035};
2036
2037// Jumps from one block to another.
2038class HGoto : public HTemplateInstruction<0> {
2039 public:
2040  HGoto() : HTemplateInstruction(SideEffects::None()) {}
2041
2042  bool IsControlFlow() const OVERRIDE { return true; }
2043
2044  HBasicBlock* GetSuccessor() const {
2045    return GetBlock()->GetSingleSuccessor();
2046  }
2047
2048  DECLARE_INSTRUCTION(Goto);
2049
2050 private:
2051  DISALLOW_COPY_AND_ASSIGN(HGoto);
2052};
2053
2054class HConstant : public HExpression<0> {
2055 public:
2056  explicit HConstant(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
2057
2058  bool CanBeMoved() const OVERRIDE { return true; }
2059
2060  virtual bool IsMinusOne() const { return false; }
2061  virtual bool IsZero() const { return false; }
2062  virtual bool IsOne() const { return false; }
2063
2064  DECLARE_INSTRUCTION(Constant);
2065
2066 private:
2067  DISALLOW_COPY_AND_ASSIGN(HConstant);
2068};
2069
2070class HNullConstant : public HConstant {
2071 public:
2072  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2073    return true;
2074  }
2075
2076  size_t ComputeHashCode() const OVERRIDE { return 0; }
2077
2078  DECLARE_INSTRUCTION(NullConstant);
2079
2080 private:
2081  HNullConstant() : HConstant(Primitive::kPrimNot) {}
2082
2083  friend class HGraph;
2084  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2085};
2086
2087// Constants of the type int. Those can be from Dex instructions, or
2088// synthesized (for example with the if-eqz instruction).
2089class HIntConstant : public HConstant {
2090 public:
2091  int32_t GetValue() const { return value_; }
2092
2093  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2094    DCHECK(other->IsIntConstant());
2095    return other->AsIntConstant()->value_ == value_;
2096  }
2097
2098  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2099
2100  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2101  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2102  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2103
2104  DECLARE_INSTRUCTION(IntConstant);
2105
2106 private:
2107  explicit HIntConstant(int32_t value) : HConstant(Primitive::kPrimInt), value_(value) {}
2108  explicit HIntConstant(bool value) : HConstant(Primitive::kPrimInt), value_(value ? 1 : 0) {}
2109
2110  const int32_t value_;
2111
2112  friend class HGraph;
2113  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2114  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2115  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2116};
2117
2118class HLongConstant : public HConstant {
2119 public:
2120  int64_t GetValue() const { return value_; }
2121
2122  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2123    DCHECK(other->IsLongConstant());
2124    return other->AsLongConstant()->value_ == value_;
2125  }
2126
2127  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2128
2129  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2130  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2131  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2132
2133  DECLARE_INSTRUCTION(LongConstant);
2134
2135 private:
2136  explicit HLongConstant(int64_t value) : HConstant(Primitive::kPrimLong), value_(value) {}
2137
2138  const int64_t value_;
2139
2140  friend class HGraph;
2141  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2142};
2143
2144// Conditional branch. A block ending with an HIf instruction must have
2145// two successors.
2146class HIf : public HTemplateInstruction<1> {
2147 public:
2148  explicit HIf(HInstruction* input) : HTemplateInstruction(SideEffects::None()) {
2149    SetRawInputAt(0, input);
2150  }
2151
2152  bool IsControlFlow() const OVERRIDE { return true; }
2153
2154  HBasicBlock* IfTrueSuccessor() const {
2155    return GetBlock()->GetSuccessors().Get(0);
2156  }
2157
2158  HBasicBlock* IfFalseSuccessor() const {
2159    return GetBlock()->GetSuccessors().Get(1);
2160  }
2161
2162  DECLARE_INSTRUCTION(If);
2163
2164 private:
2165  DISALLOW_COPY_AND_ASSIGN(HIf);
2166};
2167
2168
2169// Abstract instruction which marks the beginning and/or end of a try block and
2170// links it to the respective exception handlers. Behaves the same as a Goto in
2171// non-exceptional control flow.
2172// Normal-flow successor is stored at index zero, exception handlers under
2173// higher indices in no particular order.
2174class HTryBoundary : public HTemplateInstruction<0> {
2175 public:
2176  enum BoundaryKind {
2177    kEntry,
2178    kExit,
2179  };
2180
2181  explicit HTryBoundary(BoundaryKind kind)
2182      : HTemplateInstruction(SideEffects::None()), kind_(kind) {}
2183
2184  bool IsControlFlow() const OVERRIDE { return true; }
2185
2186  // Returns the block's non-exceptional successor (index zero).
2187  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors().Get(0); }
2188
2189  // Returns whether `handler` is among its exception handlers (non-zero index
2190  // successors).
2191  bool HasExceptionHandler(const HBasicBlock& handler) const {
2192    DCHECK(handler.IsCatchBlock());
2193    return GetBlock()->GetSuccessors().Contains(
2194        const_cast<HBasicBlock*>(&handler), /* start_from */ 1);
2195  }
2196
2197  // If not present already, adds `handler` to its block's list of exception
2198  // handlers.
2199  void AddExceptionHandler(HBasicBlock* handler) {
2200    if (!HasExceptionHandler(*handler)) {
2201      GetBlock()->AddSuccessor(handler);
2202    }
2203  }
2204
2205  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2206
2207  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2208
2209  DECLARE_INSTRUCTION(TryBoundary);
2210
2211 private:
2212  const BoundaryKind kind_;
2213
2214  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2215};
2216
2217// Iterator over exception handlers of a given HTryBoundary, i.e. over
2218// exceptional successors of its basic block.
2219class HExceptionHandlerIterator : public ValueObject {
2220 public:
2221  explicit HExceptionHandlerIterator(const HTryBoundary& try_boundary)
2222    : block_(*try_boundary.GetBlock()), index_(block_.NumberOfNormalSuccessors()) {}
2223
2224  bool Done() const { return index_ == block_.GetSuccessors().Size(); }
2225  HBasicBlock* Current() const { return block_.GetSuccessors().Get(index_); }
2226  size_t CurrentSuccessorIndex() const { return index_; }
2227  void Advance() { ++index_; }
2228
2229 private:
2230  const HBasicBlock& block_;
2231  size_t index_;
2232
2233  DISALLOW_COPY_AND_ASSIGN(HExceptionHandlerIterator);
2234};
2235
2236// Deoptimize to interpreter, upon checking a condition.
2237class HDeoptimize : public HTemplateInstruction<1> {
2238 public:
2239  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2240      : HTemplateInstruction(SideEffects::None()),
2241        dex_pc_(dex_pc) {
2242    SetRawInputAt(0, cond);
2243  }
2244
2245  bool NeedsEnvironment() const OVERRIDE { return true; }
2246  bool CanThrow() const OVERRIDE { return true; }
2247  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2248
2249  DECLARE_INSTRUCTION(Deoptimize);
2250
2251 private:
2252  uint32_t dex_pc_;
2253
2254  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2255};
2256
2257// Represents the ArtMethod that was passed as a first argument to
2258// the method. It is used by instructions that depend on it, like
2259// instructions that work with the dex cache.
2260class HCurrentMethod : public HExpression<0> {
2261 public:
2262  explicit HCurrentMethod(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
2263
2264  DECLARE_INSTRUCTION(CurrentMethod);
2265
2266 private:
2267  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2268};
2269
2270class HUnaryOperation : public HExpression<1> {
2271 public:
2272  HUnaryOperation(Primitive::Type result_type, HInstruction* input)
2273      : HExpression(result_type, SideEffects::None()) {
2274    SetRawInputAt(0, input);
2275  }
2276
2277  HInstruction* GetInput() const { return InputAt(0); }
2278  Primitive::Type GetResultType() const { return GetType(); }
2279
2280  bool CanBeMoved() const OVERRIDE { return true; }
2281  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2282    UNUSED(other);
2283    return true;
2284  }
2285
2286  // Try to statically evaluate `operation` and return a HConstant
2287  // containing the result of this evaluation.  If `operation` cannot
2288  // be evaluated as a constant, return null.
2289  HConstant* TryStaticEvaluation() const;
2290
2291  // Apply this operation to `x`.
2292  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2293  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2294
2295  DECLARE_INSTRUCTION(UnaryOperation);
2296
2297 private:
2298  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2299};
2300
2301class HBinaryOperation : public HExpression<2> {
2302 public:
2303  HBinaryOperation(Primitive::Type result_type,
2304                   HInstruction* left,
2305                   HInstruction* right) : HExpression(result_type, SideEffects::None()) {
2306    SetRawInputAt(0, left);
2307    SetRawInputAt(1, right);
2308  }
2309
2310  HInstruction* GetLeft() const { return InputAt(0); }
2311  HInstruction* GetRight() const { return InputAt(1); }
2312  Primitive::Type GetResultType() const { return GetType(); }
2313
2314  virtual bool IsCommutative() const { return false; }
2315
2316  // Put constant on the right.
2317  // Returns whether order is changed.
2318  bool OrderInputsWithConstantOnTheRight() {
2319    HInstruction* left = InputAt(0);
2320    HInstruction* right = InputAt(1);
2321    if (left->IsConstant() && !right->IsConstant()) {
2322      ReplaceInput(right, 0);
2323      ReplaceInput(left, 1);
2324      return true;
2325    }
2326    return false;
2327  }
2328
2329  // Order inputs by instruction id, but favor constant on the right side.
2330  // This helps GVN for commutative ops.
2331  void OrderInputs() {
2332    DCHECK(IsCommutative());
2333    HInstruction* left = InputAt(0);
2334    HInstruction* right = InputAt(1);
2335    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2336      return;
2337    }
2338    if (OrderInputsWithConstantOnTheRight()) {
2339      return;
2340    }
2341    // Order according to instruction id.
2342    if (left->GetId() > right->GetId()) {
2343      ReplaceInput(right, 0);
2344      ReplaceInput(left, 1);
2345    }
2346  }
2347
2348  bool CanBeMoved() const OVERRIDE { return true; }
2349  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2350    UNUSED(other);
2351    return true;
2352  }
2353
2354  // Try to statically evaluate `operation` and return a HConstant
2355  // containing the result of this evaluation.  If `operation` cannot
2356  // be evaluated as a constant, return null.
2357  HConstant* TryStaticEvaluation() const;
2358
2359  // Apply this operation to `x` and `y`.
2360  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2361  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2362  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2363                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2364    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2365    return nullptr;
2366  }
2367  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2368                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2369    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2370    return nullptr;
2371  }
2372
2373  // Returns an input that can legally be used as the right input and is
2374  // constant, or null.
2375  HConstant* GetConstantRight() const;
2376
2377  // If `GetConstantRight()` returns one of the input, this returns the other
2378  // one. Otherwise it returns null.
2379  HInstruction* GetLeastConstantLeft() const;
2380
2381  DECLARE_INSTRUCTION(BinaryOperation);
2382
2383 private:
2384  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2385};
2386
2387// The comparison bias applies for floating point operations and indicates how NaN
2388// comparisons are treated:
2389enum class ComparisonBias {
2390  kNoBias,  // bias is not applicable (i.e. for long operation)
2391  kGtBias,  // return 1 for NaN comparisons
2392  kLtBias,  // return -1 for NaN comparisons
2393};
2394
2395class HCondition : public HBinaryOperation {
2396 public:
2397  HCondition(HInstruction* first, HInstruction* second)
2398      : HBinaryOperation(Primitive::kPrimBoolean, first, second),
2399        needs_materialization_(true),
2400        bias_(ComparisonBias::kNoBias) {}
2401
2402  bool NeedsMaterialization() const { return needs_materialization_; }
2403  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2404
2405  // For code generation purposes, returns whether this instruction is just before
2406  // `instruction`, and disregard moves in between.
2407  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2408
2409  DECLARE_INSTRUCTION(Condition);
2410
2411  virtual IfCondition GetCondition() const = 0;
2412
2413  virtual IfCondition GetOppositeCondition() const = 0;
2414
2415  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2416
2417  void SetBias(ComparisonBias bias) { bias_ = bias; }
2418
2419  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2420    return bias_ == other->AsCondition()->bias_;
2421  }
2422
2423  bool IsFPConditionTrueIfNaN() const {
2424    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2425    IfCondition if_cond = GetCondition();
2426    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2427  }
2428
2429  bool IsFPConditionFalseIfNaN() const {
2430    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2431    IfCondition if_cond = GetCondition();
2432    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2433  }
2434
2435 private:
2436  // For register allocation purposes, returns whether this instruction needs to be
2437  // materialized (that is, not just be in the processor flags).
2438  bool needs_materialization_;
2439
2440  // Needed if we merge a HCompare into a HCondition.
2441  ComparisonBias bias_;
2442
2443  DISALLOW_COPY_AND_ASSIGN(HCondition);
2444};
2445
2446// Instruction to check if two inputs are equal to each other.
2447class HEqual : public HCondition {
2448 public:
2449  HEqual(HInstruction* first, HInstruction* second)
2450      : HCondition(first, second) {}
2451
2452  bool IsCommutative() const OVERRIDE { return true; }
2453
2454  template <typename T> bool Compute(T x, T y) const { return x == y; }
2455
2456  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2457    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2458  }
2459  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2460    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2461  }
2462
2463  DECLARE_INSTRUCTION(Equal);
2464
2465  IfCondition GetCondition() const OVERRIDE {
2466    return kCondEQ;
2467  }
2468
2469  IfCondition GetOppositeCondition() const OVERRIDE {
2470    return kCondNE;
2471  }
2472
2473 private:
2474  DISALLOW_COPY_AND_ASSIGN(HEqual);
2475};
2476
2477class HNotEqual : public HCondition {
2478 public:
2479  HNotEqual(HInstruction* first, HInstruction* second)
2480      : HCondition(first, second) {}
2481
2482  bool IsCommutative() const OVERRIDE { return true; }
2483
2484  template <typename T> bool Compute(T x, T y) const { return x != y; }
2485
2486  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2487    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2488  }
2489  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2490    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2491  }
2492
2493  DECLARE_INSTRUCTION(NotEqual);
2494
2495  IfCondition GetCondition() const OVERRIDE {
2496    return kCondNE;
2497  }
2498
2499  IfCondition GetOppositeCondition() const OVERRIDE {
2500    return kCondEQ;
2501  }
2502
2503 private:
2504  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2505};
2506
2507class HLessThan : public HCondition {
2508 public:
2509  HLessThan(HInstruction* first, HInstruction* second)
2510      : HCondition(first, second) {}
2511
2512  template <typename T> bool Compute(T x, T y) const { return x < y; }
2513
2514  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2515    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2516  }
2517  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2518    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2519  }
2520
2521  DECLARE_INSTRUCTION(LessThan);
2522
2523  IfCondition GetCondition() const OVERRIDE {
2524    return kCondLT;
2525  }
2526
2527  IfCondition GetOppositeCondition() const OVERRIDE {
2528    return kCondGE;
2529  }
2530
2531 private:
2532  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2533};
2534
2535class HLessThanOrEqual : public HCondition {
2536 public:
2537  HLessThanOrEqual(HInstruction* first, HInstruction* second)
2538      : HCondition(first, second) {}
2539
2540  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2541
2542  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2543    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2544  }
2545  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2546    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2547  }
2548
2549  DECLARE_INSTRUCTION(LessThanOrEqual);
2550
2551  IfCondition GetCondition() const OVERRIDE {
2552    return kCondLE;
2553  }
2554
2555  IfCondition GetOppositeCondition() const OVERRIDE {
2556    return kCondGT;
2557  }
2558
2559 private:
2560  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2561};
2562
2563class HGreaterThan : public HCondition {
2564 public:
2565  HGreaterThan(HInstruction* first, HInstruction* second)
2566      : HCondition(first, second) {}
2567
2568  template <typename T> bool Compute(T x, T y) const { return x > y; }
2569
2570  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2571    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2572  }
2573  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2574    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2575  }
2576
2577  DECLARE_INSTRUCTION(GreaterThan);
2578
2579  IfCondition GetCondition() const OVERRIDE {
2580    return kCondGT;
2581  }
2582
2583  IfCondition GetOppositeCondition() const OVERRIDE {
2584    return kCondLE;
2585  }
2586
2587 private:
2588  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2589};
2590
2591class HGreaterThanOrEqual : public HCondition {
2592 public:
2593  HGreaterThanOrEqual(HInstruction* first, HInstruction* second)
2594      : HCondition(first, second) {}
2595
2596  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2597
2598  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2599    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2600  }
2601  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2602    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2603  }
2604
2605  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2606
2607  IfCondition GetCondition() const OVERRIDE {
2608    return kCondGE;
2609  }
2610
2611  IfCondition GetOppositeCondition() const OVERRIDE {
2612    return kCondLT;
2613  }
2614
2615 private:
2616  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2617};
2618
2619
2620// Instruction to check how two inputs compare to each other.
2621// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
2622class HCompare : public HBinaryOperation {
2623 public:
2624  HCompare(Primitive::Type type,
2625           HInstruction* first,
2626           HInstruction* second,
2627           ComparisonBias bias,
2628           uint32_t dex_pc)
2629      : HBinaryOperation(Primitive::kPrimInt, first, second), bias_(bias), dex_pc_(dex_pc) {
2630    DCHECK_EQ(type, first->GetType());
2631    DCHECK_EQ(type, second->GetType());
2632  }
2633
2634  template <typename T>
2635  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
2636
2637  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2638    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2639  }
2640  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2641    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
2642  }
2643
2644  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2645    return bias_ == other->AsCompare()->bias_;
2646  }
2647
2648  ComparisonBias GetBias() const { return bias_; }
2649
2650  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
2651
2652  uint32_t GetDexPc() const { return dex_pc_; }
2653
2654  DECLARE_INSTRUCTION(Compare);
2655
2656 private:
2657  const ComparisonBias bias_;
2658  const uint32_t dex_pc_;
2659
2660  DISALLOW_COPY_AND_ASSIGN(HCompare);
2661};
2662
2663// A local in the graph. Corresponds to a Dex register.
2664class HLocal : public HTemplateInstruction<0> {
2665 public:
2666  explicit HLocal(uint16_t reg_number)
2667      : HTemplateInstruction(SideEffects::None()), reg_number_(reg_number) {}
2668
2669  DECLARE_INSTRUCTION(Local);
2670
2671  uint16_t GetRegNumber() const { return reg_number_; }
2672
2673 private:
2674  // The Dex register number.
2675  const uint16_t reg_number_;
2676
2677  DISALLOW_COPY_AND_ASSIGN(HLocal);
2678};
2679
2680// Load a given local. The local is an input of this instruction.
2681class HLoadLocal : public HExpression<1> {
2682 public:
2683  HLoadLocal(HLocal* local, Primitive::Type type)
2684      : HExpression(type, SideEffects::None()) {
2685    SetRawInputAt(0, local);
2686  }
2687
2688  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
2689
2690  DECLARE_INSTRUCTION(LoadLocal);
2691
2692 private:
2693  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
2694};
2695
2696// Store a value in a given local. This instruction has two inputs: the value
2697// and the local.
2698class HStoreLocal : public HTemplateInstruction<2> {
2699 public:
2700  HStoreLocal(HLocal* local, HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
2701    SetRawInputAt(0, local);
2702    SetRawInputAt(1, value);
2703  }
2704
2705  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
2706
2707  DECLARE_INSTRUCTION(StoreLocal);
2708
2709 private:
2710  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
2711};
2712
2713class HFloatConstant : public HConstant {
2714 public:
2715  float GetValue() const { return value_; }
2716
2717  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2718    DCHECK(other->IsFloatConstant());
2719    return bit_cast<uint32_t, float>(other->AsFloatConstant()->value_) ==
2720        bit_cast<uint32_t, float>(value_);
2721  }
2722
2723  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2724
2725  bool IsMinusOne() const OVERRIDE {
2726    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
2727  }
2728  bool IsZero() const OVERRIDE {
2729    return value_ == 0.0f;
2730  }
2731  bool IsOne() const OVERRIDE {
2732    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
2733  }
2734  bool IsNaN() const {
2735    return std::isnan(value_);
2736  }
2737
2738  DECLARE_INSTRUCTION(FloatConstant);
2739
2740 private:
2741  explicit HFloatConstant(float value) : HConstant(Primitive::kPrimFloat), value_(value) {}
2742  explicit HFloatConstant(int32_t value)
2743      : HConstant(Primitive::kPrimFloat), value_(bit_cast<float, int32_t>(value)) {}
2744
2745  const float value_;
2746
2747  // Only the SsaBuilder and HGraph can create floating-point constants.
2748  friend class SsaBuilder;
2749  friend class HGraph;
2750  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2751};
2752
2753class HDoubleConstant : public HConstant {
2754 public:
2755  double GetValue() const { return value_; }
2756
2757  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2758    DCHECK(other->IsDoubleConstant());
2759    return bit_cast<uint64_t, double>(other->AsDoubleConstant()->value_) ==
2760        bit_cast<uint64_t, double>(value_);
2761  }
2762
2763  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2764
2765  bool IsMinusOne() const OVERRIDE {
2766    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
2767  }
2768  bool IsZero() const OVERRIDE {
2769    return value_ == 0.0;
2770  }
2771  bool IsOne() const OVERRIDE {
2772    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
2773  }
2774  bool IsNaN() const {
2775    return std::isnan(value_);
2776  }
2777
2778  DECLARE_INSTRUCTION(DoubleConstant);
2779
2780 private:
2781  explicit HDoubleConstant(double value) : HConstant(Primitive::kPrimDouble), value_(value) {}
2782  explicit HDoubleConstant(int64_t value)
2783      : HConstant(Primitive::kPrimDouble), value_(bit_cast<double, int64_t>(value)) {}
2784
2785  const double value_;
2786
2787  // Only the SsaBuilder and HGraph can create floating-point constants.
2788  friend class SsaBuilder;
2789  friend class HGraph;
2790  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
2791};
2792
2793enum class Intrinsics {
2794#define OPTIMIZING_INTRINSICS(Name, IsStatic) k ## Name,
2795#include "intrinsics_list.h"
2796  kNone,
2797  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
2798#undef INTRINSICS_LIST
2799#undef OPTIMIZING_INTRINSICS
2800};
2801std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
2802
2803class HInvoke : public HInstruction {
2804 public:
2805  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2806
2807  // Runtime needs to walk the stack, so Dex -> Dex calls need to
2808  // know their environment.
2809  bool NeedsEnvironment() const OVERRIDE { return true; }
2810
2811  void SetArgumentAt(size_t index, HInstruction* argument) {
2812    SetRawInputAt(index, argument);
2813  }
2814
2815  // Return the number of arguments.  This number can be lower than
2816  // the number of inputs returned by InputCount(), as some invoke
2817  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
2818  // inputs at the end of their list of inputs.
2819  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
2820
2821  Primitive::Type GetType() const OVERRIDE { return return_type_; }
2822
2823  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
2824
2825  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2826  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
2827
2828  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
2829
2830  Intrinsics GetIntrinsic() const {
2831    return intrinsic_;
2832  }
2833
2834  void SetIntrinsic(Intrinsics intrinsic) {
2835    intrinsic_ = intrinsic;
2836  }
2837
2838  bool IsFromInlinedInvoke() const {
2839    return GetEnvironment()->GetParent() != nullptr;
2840  }
2841
2842  bool CanThrow() const OVERRIDE { return true; }
2843
2844  DECLARE_INSTRUCTION(Invoke);
2845
2846 protected:
2847  HInvoke(ArenaAllocator* arena,
2848          uint32_t number_of_arguments,
2849          uint32_t number_of_other_inputs,
2850          Primitive::Type return_type,
2851          uint32_t dex_pc,
2852          uint32_t dex_method_index,
2853          InvokeType original_invoke_type)
2854    : HInstruction(SideEffects::All()),  // assume write/read on all fields/arrays
2855      number_of_arguments_(number_of_arguments),
2856      inputs_(arena, number_of_arguments),
2857      return_type_(return_type),
2858      dex_pc_(dex_pc),
2859      dex_method_index_(dex_method_index),
2860      original_invoke_type_(original_invoke_type),
2861      intrinsic_(Intrinsics::kNone) {
2862    uint32_t number_of_inputs = number_of_arguments + number_of_other_inputs;
2863    inputs_.SetSize(number_of_inputs);
2864  }
2865
2866  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
2867  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2868    inputs_.Put(index, input);
2869  }
2870
2871  uint32_t number_of_arguments_;
2872  GrowableArray<HUserRecord<HInstruction*> > inputs_;
2873  const Primitive::Type return_type_;
2874  const uint32_t dex_pc_;
2875  const uint32_t dex_method_index_;
2876  const InvokeType original_invoke_type_;
2877  Intrinsics intrinsic_;
2878
2879 private:
2880  DISALLOW_COPY_AND_ASSIGN(HInvoke);
2881};
2882
2883class HInvokeStaticOrDirect : public HInvoke {
2884 public:
2885  // Requirements of this method call regarding the class
2886  // initialization (clinit) check of its declaring class.
2887  enum class ClinitCheckRequirement {
2888    kNone,      // Class already initialized.
2889    kExplicit,  // Static call having explicit clinit check as last input.
2890    kImplicit,  // Static call implicitly requiring a clinit check.
2891  };
2892
2893  HInvokeStaticOrDirect(ArenaAllocator* arena,
2894                        uint32_t number_of_arguments,
2895                        Primitive::Type return_type,
2896                        uint32_t dex_pc,
2897                        uint32_t dex_method_index,
2898                        bool is_recursive,
2899                        int32_t string_init_offset,
2900                        InvokeType original_invoke_type,
2901                        InvokeType invoke_type,
2902                        ClinitCheckRequirement clinit_check_requirement)
2903      : HInvoke(arena,
2904                number_of_arguments,
2905                // There is one extra argument for the HCurrentMethod node, and
2906                // potentially one other if the clinit check is explicit, and one other
2907                // if the method is a string factory.
2908                1u + (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u)
2909                   + (string_init_offset ? 1u : 0u),
2910                return_type,
2911                dex_pc,
2912                dex_method_index,
2913                original_invoke_type),
2914        invoke_type_(invoke_type),
2915        is_recursive_(is_recursive),
2916        clinit_check_requirement_(clinit_check_requirement),
2917        string_init_offset_(string_init_offset) {}
2918
2919  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
2920    UNUSED(obj);
2921    // We access the method via the dex cache so we can't do an implicit null check.
2922    // TODO: for intrinsics we can generate implicit null checks.
2923    return false;
2924  }
2925
2926  InvokeType GetInvokeType() const { return invoke_type_; }
2927  bool IsRecursive() const { return is_recursive_; }
2928  bool NeedsDexCache() const OVERRIDE { return !IsRecursive(); }
2929  bool IsStringInit() const { return string_init_offset_ != 0; }
2930  int32_t GetStringInitOffset() const { return string_init_offset_; }
2931  uint32_t GetCurrentMethodInputIndex() const { return GetNumberOfArguments(); }
2932
2933  // Is this instruction a call to a static method?
2934  bool IsStatic() const {
2935    return GetInvokeType() == kStatic;
2936  }
2937
2938  // Remove the art::HLoadClass instruction set as last input by
2939  // art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of
2940  // the initial art::HClinitCheck instruction (only relevant for
2941  // static calls with explicit clinit check).
2942  void RemoveLoadClassAsLastInput() {
2943    DCHECK(IsStaticWithExplicitClinitCheck());
2944    size_t last_input_index = InputCount() - 1;
2945    HInstruction* last_input = InputAt(last_input_index);
2946    DCHECK(last_input != nullptr);
2947    DCHECK(last_input->IsLoadClass()) << last_input->DebugName();
2948    RemoveAsUserOfInput(last_input_index);
2949    inputs_.DeleteAt(last_input_index);
2950    clinit_check_requirement_ = ClinitCheckRequirement::kImplicit;
2951    DCHECK(IsStaticWithImplicitClinitCheck());
2952  }
2953
2954  bool IsStringFactoryFor(HFakeString* str) const {
2955    if (!IsStringInit()) return false;
2956    // +1 for the current method.
2957    if (InputCount() == (number_of_arguments_ + 1)) return false;
2958    return InputAt(InputCount() - 1)->AsFakeString() == str;
2959  }
2960
2961  void RemoveFakeStringArgumentAsLastInput() {
2962    DCHECK(IsStringInit());
2963    size_t last_input_index = InputCount() - 1;
2964    HInstruction* last_input = InputAt(last_input_index);
2965    DCHECK(last_input != nullptr);
2966    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
2967    RemoveAsUserOfInput(last_input_index);
2968    inputs_.DeleteAt(last_input_index);
2969  }
2970
2971  // Is this a call to a static method whose declaring class has an
2972  // explicit intialization check in the graph?
2973  bool IsStaticWithExplicitClinitCheck() const {
2974    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
2975  }
2976
2977  // Is this a call to a static method whose declaring class has an
2978  // implicit intialization check requirement?
2979  bool IsStaticWithImplicitClinitCheck() const {
2980    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
2981  }
2982
2983  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
2984
2985 protected:
2986  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2987    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
2988    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
2989      HInstruction* input = input_record.GetInstruction();
2990      // `input` is the last input of a static invoke marked as having
2991      // an explicit clinit check. It must either be:
2992      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
2993      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
2994      DCHECK(input != nullptr);
2995      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
2996    }
2997    return input_record;
2998  }
2999
3000 private:
3001  const InvokeType invoke_type_;
3002  const bool is_recursive_;
3003  ClinitCheckRequirement clinit_check_requirement_;
3004  // Thread entrypoint offset for string init method if this is a string init invoke.
3005  // Note that there are multiple string init methods, each having its own offset.
3006  int32_t string_init_offset_;
3007
3008  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3009};
3010
3011class HInvokeVirtual : public HInvoke {
3012 public:
3013  HInvokeVirtual(ArenaAllocator* arena,
3014                 uint32_t number_of_arguments,
3015                 Primitive::Type return_type,
3016                 uint32_t dex_pc,
3017                 uint32_t dex_method_index,
3018                 uint32_t vtable_index)
3019      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3020        vtable_index_(vtable_index) {}
3021
3022  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3023    // TODO: Add implicit null checks in intrinsics.
3024    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3025  }
3026
3027  uint32_t GetVTableIndex() const { return vtable_index_; }
3028
3029  DECLARE_INSTRUCTION(InvokeVirtual);
3030
3031 private:
3032  const uint32_t vtable_index_;
3033
3034  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3035};
3036
3037class HInvokeInterface : public HInvoke {
3038 public:
3039  HInvokeInterface(ArenaAllocator* arena,
3040                   uint32_t number_of_arguments,
3041                   Primitive::Type return_type,
3042                   uint32_t dex_pc,
3043                   uint32_t dex_method_index,
3044                   uint32_t imt_index)
3045      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3046        imt_index_(imt_index) {}
3047
3048  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3049    // TODO: Add implicit null checks in intrinsics.
3050    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3051  }
3052
3053  uint32_t GetImtIndex() const { return imt_index_; }
3054  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3055
3056  DECLARE_INSTRUCTION(InvokeInterface);
3057
3058 private:
3059  const uint32_t imt_index_;
3060
3061  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3062};
3063
3064class HNewInstance : public HExpression<1> {
3065 public:
3066  HNewInstance(HCurrentMethod* current_method,
3067               uint32_t dex_pc,
3068               uint16_t type_index,
3069               const DexFile& dex_file,
3070               QuickEntrypointEnum entrypoint)
3071      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3072        dex_pc_(dex_pc),
3073        type_index_(type_index),
3074        dex_file_(dex_file),
3075        entrypoint_(entrypoint) {
3076    SetRawInputAt(0, current_method);
3077  }
3078
3079  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3080  uint16_t GetTypeIndex() const { return type_index_; }
3081  const DexFile& GetDexFile() const { return dex_file_; }
3082
3083  // Calls runtime so needs an environment.
3084  bool NeedsEnvironment() const OVERRIDE { return true; }
3085  // It may throw when called on:
3086  //   - interfaces
3087  //   - abstract/innaccessible/unknown classes
3088  // TODO: optimize when possible.
3089  bool CanThrow() const OVERRIDE { return true; }
3090
3091  bool CanBeNull() const OVERRIDE { return false; }
3092
3093  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3094
3095  DECLARE_INSTRUCTION(NewInstance);
3096
3097 private:
3098  const uint32_t dex_pc_;
3099  const uint16_t type_index_;
3100  const DexFile& dex_file_;
3101  const QuickEntrypointEnum entrypoint_;
3102
3103  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3104};
3105
3106class HNeg : public HUnaryOperation {
3107 public:
3108  explicit HNeg(Primitive::Type result_type, HInstruction* input)
3109      : HUnaryOperation(result_type, input) {}
3110
3111  template <typename T> T Compute(T x) const { return -x; }
3112
3113  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3114    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()));
3115  }
3116  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3117    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()));
3118  }
3119
3120  DECLARE_INSTRUCTION(Neg);
3121
3122 private:
3123  DISALLOW_COPY_AND_ASSIGN(HNeg);
3124};
3125
3126class HNewArray : public HExpression<2> {
3127 public:
3128  HNewArray(HInstruction* length,
3129            HCurrentMethod* current_method,
3130            uint32_t dex_pc,
3131            uint16_t type_index,
3132            const DexFile& dex_file,
3133            QuickEntrypointEnum entrypoint)
3134      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3135        dex_pc_(dex_pc),
3136        type_index_(type_index),
3137        dex_file_(dex_file),
3138        entrypoint_(entrypoint) {
3139    SetRawInputAt(0, length);
3140    SetRawInputAt(1, current_method);
3141  }
3142
3143  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3144  uint16_t GetTypeIndex() const { return type_index_; }
3145  const DexFile& GetDexFile() const { return dex_file_; }
3146
3147  // Calls runtime so needs an environment.
3148  bool NeedsEnvironment() const OVERRIDE { return true; }
3149
3150  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3151  bool CanThrow() const OVERRIDE { return true; }
3152
3153  bool CanBeNull() const OVERRIDE { return false; }
3154
3155  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3156
3157  DECLARE_INSTRUCTION(NewArray);
3158
3159 private:
3160  const uint32_t dex_pc_;
3161  const uint16_t type_index_;
3162  const DexFile& dex_file_;
3163  const QuickEntrypointEnum entrypoint_;
3164
3165  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3166};
3167
3168class HAdd : public HBinaryOperation {
3169 public:
3170  HAdd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3171      : HBinaryOperation(result_type, left, right) {}
3172
3173  bool IsCommutative() const OVERRIDE { return true; }
3174
3175  template <typename T> T Compute(T x, T y) const { return x + y; }
3176
3177  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3178    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3179  }
3180  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3181    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3182  }
3183
3184  DECLARE_INSTRUCTION(Add);
3185
3186 private:
3187  DISALLOW_COPY_AND_ASSIGN(HAdd);
3188};
3189
3190class HSub : public HBinaryOperation {
3191 public:
3192  HSub(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3193      : HBinaryOperation(result_type, left, right) {}
3194
3195  template <typename T> T Compute(T x, T y) const { return x - y; }
3196
3197  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3198    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3199  }
3200  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3201    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3202  }
3203
3204  DECLARE_INSTRUCTION(Sub);
3205
3206 private:
3207  DISALLOW_COPY_AND_ASSIGN(HSub);
3208};
3209
3210class HMul : public HBinaryOperation {
3211 public:
3212  HMul(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3213      : HBinaryOperation(result_type, left, right) {}
3214
3215  bool IsCommutative() const OVERRIDE { return true; }
3216
3217  template <typename T> T Compute(T x, T y) const { return x * y; }
3218
3219  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3220    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3221  }
3222  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3223    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3224  }
3225
3226  DECLARE_INSTRUCTION(Mul);
3227
3228 private:
3229  DISALLOW_COPY_AND_ASSIGN(HMul);
3230};
3231
3232class HDiv : public HBinaryOperation {
3233 public:
3234  HDiv(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
3235      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
3236
3237  template <typename T>
3238  T Compute(T x, T y) const {
3239    // Our graph structure ensures we never have 0 for `y` during
3240    // constant folding.
3241    DCHECK_NE(y, 0);
3242    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3243    return (y == -1) ? -x : x / y;
3244  }
3245
3246  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3247    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3248  }
3249  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3250    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3251  }
3252
3253  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3254
3255  DECLARE_INSTRUCTION(Div);
3256
3257 private:
3258  const uint32_t dex_pc_;
3259
3260  DISALLOW_COPY_AND_ASSIGN(HDiv);
3261};
3262
3263class HRem : public HBinaryOperation {
3264 public:
3265  HRem(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
3266      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
3267
3268  template <typename T>
3269  T Compute(T x, T y) const {
3270    // Our graph structure ensures we never have 0 for `y` during
3271    // constant folding.
3272    DCHECK_NE(y, 0);
3273    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3274    return (y == -1) ? 0 : x % y;
3275  }
3276
3277  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3278    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3279  }
3280  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3281    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3282  }
3283
3284  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3285
3286  DECLARE_INSTRUCTION(Rem);
3287
3288 private:
3289  const uint32_t dex_pc_;
3290
3291  DISALLOW_COPY_AND_ASSIGN(HRem);
3292};
3293
3294class HDivZeroCheck : public HExpression<1> {
3295 public:
3296  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
3297      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3298    SetRawInputAt(0, value);
3299  }
3300
3301  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
3302
3303  bool CanBeMoved() const OVERRIDE { return true; }
3304
3305  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3306    UNUSED(other);
3307    return true;
3308  }
3309
3310  bool NeedsEnvironment() const OVERRIDE { return true; }
3311  bool CanThrow() const OVERRIDE { return true; }
3312
3313  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3314
3315  DECLARE_INSTRUCTION(DivZeroCheck);
3316
3317 private:
3318  const uint32_t dex_pc_;
3319
3320  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
3321};
3322
3323class HShl : public HBinaryOperation {
3324 public:
3325  HShl(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3326      : HBinaryOperation(result_type, left, right) {}
3327
3328  template <typename T, typename U, typename V>
3329  T Compute(T x, U y, V max_shift_value) const {
3330    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3331                  "V is not the unsigned integer type corresponding to T");
3332    return x << (y & max_shift_value);
3333  }
3334
3335  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3336    return GetBlock()->GetGraph()->GetIntConstant(
3337        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue));
3338  }
3339  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3340  // case is handled as `x << static_cast<int>(y)`.
3341  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3342    return GetBlock()->GetGraph()->GetLongConstant(
3343        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue));
3344  }
3345  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3346    return GetBlock()->GetGraph()->GetLongConstant(
3347        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue));
3348  }
3349
3350  DECLARE_INSTRUCTION(Shl);
3351
3352 private:
3353  DISALLOW_COPY_AND_ASSIGN(HShl);
3354};
3355
3356class HShr : public HBinaryOperation {
3357 public:
3358  HShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3359      : HBinaryOperation(result_type, left, right) {}
3360
3361  template <typename T, typename U, typename V>
3362  T Compute(T x, U y, V max_shift_value) const {
3363    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3364                  "V is not the unsigned integer type corresponding to T");
3365    return x >> (y & max_shift_value);
3366  }
3367
3368  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3369    return GetBlock()->GetGraph()->GetIntConstant(
3370        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue));
3371  }
3372  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3373  // case is handled as `x >> static_cast<int>(y)`.
3374  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3375    return GetBlock()->GetGraph()->GetLongConstant(
3376        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue));
3377  }
3378  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3379    return GetBlock()->GetGraph()->GetLongConstant(
3380        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue));
3381  }
3382
3383  DECLARE_INSTRUCTION(Shr);
3384
3385 private:
3386  DISALLOW_COPY_AND_ASSIGN(HShr);
3387};
3388
3389class HUShr : public HBinaryOperation {
3390 public:
3391  HUShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3392      : HBinaryOperation(result_type, left, right) {}
3393
3394  template <typename T, typename U, typename V>
3395  T Compute(T x, U y, V max_shift_value) const {
3396    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3397                  "V is not the unsigned integer type corresponding to T");
3398    V ux = static_cast<V>(x);
3399    return static_cast<T>(ux >> (y & max_shift_value));
3400  }
3401
3402  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3403    return GetBlock()->GetGraph()->GetIntConstant(
3404        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue));
3405  }
3406  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3407  // case is handled as `x >>> static_cast<int>(y)`.
3408  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3409    return GetBlock()->GetGraph()->GetLongConstant(
3410        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue));
3411  }
3412  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3413    return GetBlock()->GetGraph()->GetLongConstant(
3414        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue));
3415  }
3416
3417  DECLARE_INSTRUCTION(UShr);
3418
3419 private:
3420  DISALLOW_COPY_AND_ASSIGN(HUShr);
3421};
3422
3423class HAnd : public HBinaryOperation {
3424 public:
3425  HAnd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3426      : HBinaryOperation(result_type, left, right) {}
3427
3428  bool IsCommutative() const OVERRIDE { return true; }
3429
3430  template <typename T, typename U>
3431  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
3432
3433  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3434    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3435  }
3436  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
3437    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3438  }
3439  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3440    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3441  }
3442  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3443    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3444  }
3445
3446  DECLARE_INSTRUCTION(And);
3447
3448 private:
3449  DISALLOW_COPY_AND_ASSIGN(HAnd);
3450};
3451
3452class HOr : public HBinaryOperation {
3453 public:
3454  HOr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3455      : HBinaryOperation(result_type, left, right) {}
3456
3457  bool IsCommutative() const OVERRIDE { return true; }
3458
3459  template <typename T, typename U>
3460  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
3461
3462  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3463    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3464  }
3465  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
3466    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3467  }
3468  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3469    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3470  }
3471  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3472    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3473  }
3474
3475  DECLARE_INSTRUCTION(Or);
3476
3477 private:
3478  DISALLOW_COPY_AND_ASSIGN(HOr);
3479};
3480
3481class HXor : public HBinaryOperation {
3482 public:
3483  HXor(Primitive::Type result_type, HInstruction* left, HInstruction* right)
3484      : HBinaryOperation(result_type, left, right) {}
3485
3486  bool IsCommutative() const OVERRIDE { return true; }
3487
3488  template <typename T, typename U>
3489  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
3490
3491  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3492    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue(), y->GetValue()));
3493  }
3494  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
3495    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3496  }
3497  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3498    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3499  }
3500  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3501    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue(), y->GetValue()));
3502  }
3503
3504  DECLARE_INSTRUCTION(Xor);
3505
3506 private:
3507  DISALLOW_COPY_AND_ASSIGN(HXor);
3508};
3509
3510// The value of a parameter in this method. Its location depends on
3511// the calling convention.
3512class HParameterValue : public HExpression<0> {
3513 public:
3514  HParameterValue(uint8_t index, Primitive::Type parameter_type, bool is_this = false)
3515      : HExpression(parameter_type, SideEffects::None()), index_(index), is_this_(is_this) {}
3516
3517  uint8_t GetIndex() const { return index_; }
3518
3519  bool CanBeNull() const OVERRIDE { return !is_this_; }
3520
3521  bool IsThis() const { return is_this_; }
3522
3523  DECLARE_INSTRUCTION(ParameterValue);
3524
3525 private:
3526  // The index of this parameter in the parameters list. Must be less
3527  // than HGraph::number_of_in_vregs_.
3528  const uint8_t index_;
3529
3530  // Whether or not the parameter value corresponds to 'this' argument.
3531  const bool is_this_;
3532
3533  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
3534};
3535
3536class HNot : public HUnaryOperation {
3537 public:
3538  explicit HNot(Primitive::Type result_type, HInstruction* input)
3539      : HUnaryOperation(result_type, input) {}
3540
3541  bool CanBeMoved() const OVERRIDE { return true; }
3542  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3543    UNUSED(other);
3544    return true;
3545  }
3546
3547  template <typename T> T Compute(T x) const { return ~x; }
3548
3549  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3550    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()));
3551  }
3552  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3553    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()));
3554  }
3555
3556  DECLARE_INSTRUCTION(Not);
3557
3558 private:
3559  DISALLOW_COPY_AND_ASSIGN(HNot);
3560};
3561
3562class HBooleanNot : public HUnaryOperation {
3563 public:
3564  explicit HBooleanNot(HInstruction* input)
3565      : HUnaryOperation(Primitive::Type::kPrimBoolean, input) {}
3566
3567  bool CanBeMoved() const OVERRIDE { return true; }
3568  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3569    UNUSED(other);
3570    return true;
3571  }
3572
3573  template <typename T> bool Compute(T x) const {
3574    DCHECK(IsUint<1>(x));
3575    return !x;
3576  }
3577
3578  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3579    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()));
3580  }
3581  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
3582    LOG(FATAL) << DebugName() << " is not defined for long values";
3583    UNREACHABLE();
3584  }
3585
3586  DECLARE_INSTRUCTION(BooleanNot);
3587
3588 private:
3589  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
3590};
3591
3592class HTypeConversion : public HExpression<1> {
3593 public:
3594  // Instantiate a type conversion of `input` to `result_type`.
3595  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
3596      : HExpression(result_type, SideEffects::None()), dex_pc_(dex_pc) {
3597    SetRawInputAt(0, input);
3598    DCHECK_NE(input->GetType(), result_type);
3599  }
3600
3601  HInstruction* GetInput() const { return InputAt(0); }
3602  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
3603  Primitive::Type GetResultType() const { return GetType(); }
3604
3605  // Required by the x86 and ARM code generators when producing calls
3606  // to the runtime.
3607  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3608
3609  bool CanBeMoved() const OVERRIDE { return true; }
3610  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
3611
3612  // Try to statically evaluate the conversion and return a HConstant
3613  // containing the result.  If the input cannot be converted, return nullptr.
3614  HConstant* TryStaticEvaluation() const;
3615
3616  DECLARE_INSTRUCTION(TypeConversion);
3617
3618 private:
3619  const uint32_t dex_pc_;
3620
3621  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
3622};
3623
3624static constexpr uint32_t kNoRegNumber = -1;
3625
3626class HPhi : public HInstruction {
3627 public:
3628  HPhi(ArenaAllocator* arena, uint32_t reg_number, size_t number_of_inputs, Primitive::Type type)
3629      : HInstruction(SideEffects::None()),
3630        inputs_(arena, number_of_inputs),
3631        reg_number_(reg_number),
3632        type_(type),
3633        is_live_(false),
3634        can_be_null_(true) {
3635    inputs_.SetSize(number_of_inputs);
3636  }
3637
3638  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
3639  static Primitive::Type ToPhiType(Primitive::Type type) {
3640    switch (type) {
3641      case Primitive::kPrimBoolean:
3642      case Primitive::kPrimByte:
3643      case Primitive::kPrimShort:
3644      case Primitive::kPrimChar:
3645        return Primitive::kPrimInt;
3646      default:
3647        return type;
3648    }
3649  }
3650
3651  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
3652
3653  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
3654
3655  void AddInput(HInstruction* input);
3656  void RemoveInputAt(size_t index);
3657
3658  Primitive::Type GetType() const OVERRIDE { return type_; }
3659  void SetType(Primitive::Type type) { type_ = type; }
3660
3661  bool CanBeNull() const OVERRIDE { return can_be_null_; }
3662  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
3663
3664  uint32_t GetRegNumber() const { return reg_number_; }
3665
3666  void SetDead() { is_live_ = false; }
3667  void SetLive() { is_live_ = true; }
3668  bool IsDead() const { return !is_live_; }
3669  bool IsLive() const { return is_live_; }
3670
3671  // Returns the next equivalent phi (starting from the current one) or null if there is none.
3672  // An equivalent phi is a phi having the same dex register and type.
3673  // It assumes that phis with the same dex register are adjacent.
3674  HPhi* GetNextEquivalentPhiWithSameType() {
3675    HInstruction* next = GetNext();
3676    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
3677      if (next->GetType() == GetType()) {
3678        return next->AsPhi();
3679      }
3680      next = next->GetNext();
3681    }
3682    return nullptr;
3683  }
3684
3685  DECLARE_INSTRUCTION(Phi);
3686
3687 protected:
3688  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
3689
3690  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3691    inputs_.Put(index, input);
3692  }
3693
3694 private:
3695  GrowableArray<HUserRecord<HInstruction*> > inputs_;
3696  const uint32_t reg_number_;
3697  Primitive::Type type_;
3698  bool is_live_;
3699  bool can_be_null_;
3700
3701  DISALLOW_COPY_AND_ASSIGN(HPhi);
3702};
3703
3704class HNullCheck : public HExpression<1> {
3705 public:
3706  HNullCheck(HInstruction* value, uint32_t dex_pc)
3707      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3708    SetRawInputAt(0, value);
3709  }
3710
3711  bool CanBeMoved() const OVERRIDE { return true; }
3712  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3713    UNUSED(other);
3714    return true;
3715  }
3716
3717  bool NeedsEnvironment() const OVERRIDE { return true; }
3718
3719  bool CanThrow() const OVERRIDE { return true; }
3720
3721  bool CanBeNull() const OVERRIDE { return false; }
3722
3723  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3724
3725  DECLARE_INSTRUCTION(NullCheck);
3726
3727 private:
3728  const uint32_t dex_pc_;
3729
3730  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
3731};
3732
3733class FieldInfo : public ValueObject {
3734 public:
3735  FieldInfo(MemberOffset field_offset,
3736            Primitive::Type field_type,
3737            bool is_volatile,
3738            uint32_t index,
3739            const DexFile& dex_file)
3740      : field_offset_(field_offset),
3741        field_type_(field_type),
3742        is_volatile_(is_volatile),
3743        index_(index),
3744        dex_file_(dex_file) {}
3745
3746  MemberOffset GetFieldOffset() const { return field_offset_; }
3747  Primitive::Type GetFieldType() const { return field_type_; }
3748  uint32_t GetFieldIndex() const { return index_; }
3749  const DexFile& GetDexFile() const { return dex_file_; }
3750  bool IsVolatile() const { return is_volatile_; }
3751
3752 private:
3753  const MemberOffset field_offset_;
3754  const Primitive::Type field_type_;
3755  const bool is_volatile_;
3756  uint32_t index_;
3757  const DexFile& dex_file_;
3758};
3759
3760class HInstanceFieldGet : public HExpression<1> {
3761 public:
3762  HInstanceFieldGet(HInstruction* value,
3763                    Primitive::Type field_type,
3764                    MemberOffset field_offset,
3765                    bool is_volatile,
3766                    uint32_t field_idx,
3767                    const DexFile& dex_file)
3768      : HExpression(
3769            field_type,
3770            SideEffects::FieldReadOfType(field_type, is_volatile)),
3771        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file) {
3772    SetRawInputAt(0, value);
3773  }
3774
3775  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
3776
3777  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3778    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
3779    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
3780  }
3781
3782  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3783    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
3784  }
3785
3786  size_t ComputeHashCode() const OVERRIDE {
3787    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
3788  }
3789
3790  const FieldInfo& GetFieldInfo() const { return field_info_; }
3791  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3792  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3793  bool IsVolatile() const { return field_info_.IsVolatile(); }
3794
3795  DECLARE_INSTRUCTION(InstanceFieldGet);
3796
3797 private:
3798  const FieldInfo field_info_;
3799
3800  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
3801};
3802
3803class HInstanceFieldSet : public HTemplateInstruction<2> {
3804 public:
3805  HInstanceFieldSet(HInstruction* object,
3806                    HInstruction* value,
3807                    Primitive::Type field_type,
3808                    MemberOffset field_offset,
3809                    bool is_volatile,
3810                    uint32_t field_idx,
3811                    const DexFile& dex_file)
3812      : HTemplateInstruction(
3813          SideEffects::FieldWriteOfType(field_type, is_volatile)),
3814        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file),
3815        value_can_be_null_(true) {
3816    SetRawInputAt(0, object);
3817    SetRawInputAt(1, value);
3818  }
3819
3820  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3821    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
3822  }
3823
3824  const FieldInfo& GetFieldInfo() const { return field_info_; }
3825  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3826  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3827  bool IsVolatile() const { return field_info_.IsVolatile(); }
3828  HInstruction* GetValue() const { return InputAt(1); }
3829  bool GetValueCanBeNull() const { return value_can_be_null_; }
3830  void ClearValueCanBeNull() { value_can_be_null_ = false; }
3831
3832  DECLARE_INSTRUCTION(InstanceFieldSet);
3833
3834 private:
3835  const FieldInfo field_info_;
3836  bool value_can_be_null_;
3837
3838  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
3839};
3840
3841class HArrayGet : public HExpression<2> {
3842 public:
3843  HArrayGet(HInstruction* array, HInstruction* index, Primitive::Type type)
3844      : HExpression(type, SideEffects::ArrayReadOfType(type)) {
3845    SetRawInputAt(0, array);
3846    SetRawInputAt(1, index);
3847  }
3848
3849  bool CanBeMoved() const OVERRIDE { return true; }
3850  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3851    UNUSED(other);
3852    return true;
3853  }
3854  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3855    UNUSED(obj);
3856    // TODO: We can be smarter here.
3857    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
3858    // which generates the implicit null check. There are cases when these can be removed
3859    // to produce better code. If we ever add optimizations to do so we should allow an
3860    // implicit check here (as long as the address falls in the first page).
3861    return false;
3862  }
3863
3864  void SetType(Primitive::Type type) { type_ = type; }
3865
3866  HInstruction* GetArray() const { return InputAt(0); }
3867  HInstruction* GetIndex() const { return InputAt(1); }
3868
3869  DECLARE_INSTRUCTION(ArrayGet);
3870
3871 private:
3872  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
3873};
3874
3875class HArraySet : public HTemplateInstruction<3> {
3876 public:
3877  HArraySet(HInstruction* array,
3878            HInstruction* index,
3879            HInstruction* value,
3880            Primitive::Type expected_component_type,
3881            uint32_t dex_pc)
3882      : HTemplateInstruction(SideEffects::ArrayWriteOfType(expected_component_type)),
3883        dex_pc_(dex_pc),
3884        expected_component_type_(expected_component_type),
3885        needs_type_check_(value->GetType() == Primitive::kPrimNot),
3886        value_can_be_null_(true) {
3887    SetRawInputAt(0, array);
3888    SetRawInputAt(1, index);
3889    SetRawInputAt(2, value);
3890  }
3891
3892  bool NeedsEnvironment() const OVERRIDE {
3893    // We currently always call a runtime method to catch array store
3894    // exceptions.
3895    return needs_type_check_;
3896  }
3897
3898  // Can throw ArrayStoreException.
3899  bool CanThrow() const OVERRIDE { return needs_type_check_; }
3900
3901  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3902    UNUSED(obj);
3903    // TODO: Same as for ArrayGet.
3904    return false;
3905  }
3906
3907  void ClearNeedsTypeCheck() {
3908    needs_type_check_ = false;
3909  }
3910
3911  void ClearValueCanBeNull() {
3912    value_can_be_null_ = false;
3913  }
3914
3915  bool GetValueCanBeNull() const { return value_can_be_null_; }
3916  bool NeedsTypeCheck() const { return needs_type_check_; }
3917
3918  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3919
3920  HInstruction* GetArray() const { return InputAt(0); }
3921  HInstruction* GetIndex() const { return InputAt(1); }
3922  HInstruction* GetValue() const { return InputAt(2); }
3923
3924  Primitive::Type GetComponentType() const {
3925    // The Dex format does not type floating point index operations. Since the
3926    // `expected_component_type_` is set during building and can therefore not
3927    // be correct, we also check what is the value type. If it is a floating
3928    // point type, we must use that type.
3929    Primitive::Type value_type = GetValue()->GetType();
3930    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
3931        ? value_type
3932        : expected_component_type_;
3933  }
3934
3935  DECLARE_INSTRUCTION(ArraySet);
3936
3937 private:
3938  const uint32_t dex_pc_;
3939  const Primitive::Type expected_component_type_;
3940  bool needs_type_check_;
3941  bool value_can_be_null_;
3942
3943  DISALLOW_COPY_AND_ASSIGN(HArraySet);
3944};
3945
3946class HArrayLength : public HExpression<1> {
3947 public:
3948  explicit HArrayLength(HInstruction* array)
3949      : HExpression(Primitive::kPrimInt, SideEffects::None()) {
3950    // Note that arrays do not change length, so the instruction does not
3951    // depend on any write.
3952    SetRawInputAt(0, array);
3953  }
3954
3955  bool CanBeMoved() const OVERRIDE { return true; }
3956  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3957    UNUSED(other);
3958    return true;
3959  }
3960  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3961    return obj == InputAt(0);
3962  }
3963
3964  DECLARE_INSTRUCTION(ArrayLength);
3965
3966 private:
3967  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
3968};
3969
3970class HBoundsCheck : public HExpression<2> {
3971 public:
3972  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
3973      : HExpression(index->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
3974    DCHECK(index->GetType() == Primitive::kPrimInt);
3975    SetRawInputAt(0, index);
3976    SetRawInputAt(1, length);
3977  }
3978
3979  bool CanBeMoved() const OVERRIDE { return true; }
3980  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3981    UNUSED(other);
3982    return true;
3983  }
3984
3985  bool NeedsEnvironment() const OVERRIDE { return true; }
3986
3987  bool CanThrow() const OVERRIDE { return true; }
3988
3989  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
3990
3991  DECLARE_INSTRUCTION(BoundsCheck);
3992
3993 private:
3994  const uint32_t dex_pc_;
3995
3996  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
3997};
3998
3999/**
4000 * Some DEX instructions are folded into multiple HInstructions that need
4001 * to stay live until the last HInstruction. This class
4002 * is used as a marker for the baseline compiler to ensure its preceding
4003 * HInstruction stays live. `index` represents the stack location index of the
4004 * instruction (the actual offset is computed as index * vreg_size).
4005 */
4006class HTemporary : public HTemplateInstruction<0> {
4007 public:
4008  explicit HTemporary(size_t index) : HTemplateInstruction(SideEffects::None()), index_(index) {}
4009
4010  size_t GetIndex() const { return index_; }
4011
4012  Primitive::Type GetType() const OVERRIDE {
4013    // The previous instruction is the one that will be stored in the temporary location.
4014    DCHECK(GetPrevious() != nullptr);
4015    return GetPrevious()->GetType();
4016  }
4017
4018  DECLARE_INSTRUCTION(Temporary);
4019
4020 private:
4021  const size_t index_;
4022
4023  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4024};
4025
4026class HSuspendCheck : public HTemplateInstruction<0> {
4027 public:
4028  explicit HSuspendCheck(uint32_t dex_pc)
4029      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc), slow_path_(nullptr) {}
4030
4031  bool NeedsEnvironment() const OVERRIDE {
4032    return true;
4033  }
4034
4035  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4036  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4037  SlowPathCode* GetSlowPath() const { return slow_path_; }
4038
4039  DECLARE_INSTRUCTION(SuspendCheck);
4040
4041 private:
4042  const uint32_t dex_pc_;
4043
4044  // Only used for code generation, in order to share the same slow path between back edges
4045  // of a same loop.
4046  SlowPathCode* slow_path_;
4047
4048  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4049};
4050
4051/**
4052 * Instruction to load a Class object.
4053 */
4054class HLoadClass : public HExpression<1> {
4055 public:
4056  HLoadClass(HCurrentMethod* current_method,
4057             uint16_t type_index,
4058             const DexFile& dex_file,
4059             bool is_referrers_class,
4060             uint32_t dex_pc)
4061      : HExpression(Primitive::kPrimNot, SideEffects::None()),
4062        type_index_(type_index),
4063        dex_file_(dex_file),
4064        is_referrers_class_(is_referrers_class),
4065        dex_pc_(dex_pc),
4066        generate_clinit_check_(false),
4067        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4068    SetRawInputAt(0, current_method);
4069  }
4070
4071  bool CanBeMoved() const OVERRIDE { return true; }
4072
4073  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4074    return other->AsLoadClass()->type_index_ == type_index_;
4075  }
4076
4077  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4078
4079  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4080  uint16_t GetTypeIndex() const { return type_index_; }
4081  bool IsReferrersClass() const { return is_referrers_class_; }
4082  bool CanBeNull() const OVERRIDE { return false; }
4083
4084  bool NeedsEnvironment() const OVERRIDE {
4085    // Will call runtime and load the class if the class is not loaded yet.
4086    // TODO: finer grain decision.
4087    return !is_referrers_class_;
4088  }
4089
4090  bool MustGenerateClinitCheck() const {
4091    return generate_clinit_check_;
4092  }
4093
4094  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4095    generate_clinit_check_ = generate_clinit_check;
4096  }
4097
4098  bool CanCallRuntime() const {
4099    return MustGenerateClinitCheck() || !is_referrers_class_;
4100  }
4101
4102  bool CanThrow() const OVERRIDE {
4103    // May call runtime and and therefore can throw.
4104    // TODO: finer grain decision.
4105    return CanCallRuntime();
4106  }
4107
4108  ReferenceTypeInfo GetLoadedClassRTI() {
4109    return loaded_class_rti_;
4110  }
4111
4112  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4113    // Make sure we only set exact types (the loaded class should never be merged).
4114    DCHECK(rti.IsExact());
4115    loaded_class_rti_ = rti;
4116  }
4117
4118  const DexFile& GetDexFile() { return dex_file_; }
4119
4120  bool NeedsDexCache() const OVERRIDE { return !is_referrers_class_; }
4121
4122  DECLARE_INSTRUCTION(LoadClass);
4123
4124 private:
4125  const uint16_t type_index_;
4126  const DexFile& dex_file_;
4127  const bool is_referrers_class_;
4128  const uint32_t dex_pc_;
4129  // Whether this instruction must generate the initialization check.
4130  // Used for code generation.
4131  bool generate_clinit_check_;
4132
4133  ReferenceTypeInfo loaded_class_rti_;
4134
4135  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
4136};
4137
4138class HLoadString : public HExpression<1> {
4139 public:
4140  HLoadString(HCurrentMethod* current_method, uint32_t string_index, uint32_t dex_pc)
4141      : HExpression(Primitive::kPrimNot, SideEffects::None()),
4142        string_index_(string_index),
4143        dex_pc_(dex_pc) {
4144    SetRawInputAt(0, current_method);
4145  }
4146
4147  bool CanBeMoved() const OVERRIDE { return true; }
4148
4149  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4150    return other->AsLoadString()->string_index_ == string_index_;
4151  }
4152
4153  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
4154
4155  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4156  uint32_t GetStringIndex() const { return string_index_; }
4157
4158  // TODO: Can we deopt or debug when we resolve a string?
4159  bool NeedsEnvironment() const OVERRIDE { return false; }
4160  bool NeedsDexCache() const OVERRIDE { return true; }
4161
4162  DECLARE_INSTRUCTION(LoadString);
4163
4164 private:
4165  const uint32_t string_index_;
4166  const uint32_t dex_pc_;
4167
4168  DISALLOW_COPY_AND_ASSIGN(HLoadString);
4169};
4170
4171/**
4172 * Performs an initialization check on its Class object input.
4173 */
4174class HClinitCheck : public HExpression<1> {
4175 public:
4176  explicit HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
4177      : HExpression(
4178          Primitive::kPrimNot,
4179          SideEffects::AllWrites()),  // assume write on all fields/arrays
4180        dex_pc_(dex_pc) {
4181    SetRawInputAt(0, constant);
4182  }
4183
4184  bool CanBeMoved() const OVERRIDE { return true; }
4185  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4186    UNUSED(other);
4187    return true;
4188  }
4189
4190  bool NeedsEnvironment() const OVERRIDE {
4191    // May call runtime to initialize the class.
4192    return true;
4193  }
4194
4195  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4196
4197  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
4198
4199  DECLARE_INSTRUCTION(ClinitCheck);
4200
4201 private:
4202  const uint32_t dex_pc_;
4203
4204  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
4205};
4206
4207class HStaticFieldGet : public HExpression<1> {
4208 public:
4209  HStaticFieldGet(HInstruction* cls,
4210                  Primitive::Type field_type,
4211                  MemberOffset field_offset,
4212                  bool is_volatile,
4213                  uint32_t field_idx,
4214                  const DexFile& dex_file)
4215      : HExpression(
4216            field_type,
4217            SideEffects::FieldReadOfType(field_type, is_volatile)),
4218        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file) {
4219    SetRawInputAt(0, cls);
4220  }
4221
4222
4223  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4224
4225  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4226    HStaticFieldGet* other_get = other->AsStaticFieldGet();
4227    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4228  }
4229
4230  size_t ComputeHashCode() const OVERRIDE {
4231    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4232  }
4233
4234  const FieldInfo& GetFieldInfo() const { return field_info_; }
4235  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4236  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4237  bool IsVolatile() const { return field_info_.IsVolatile(); }
4238
4239  DECLARE_INSTRUCTION(StaticFieldGet);
4240
4241 private:
4242  const FieldInfo field_info_;
4243
4244  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
4245};
4246
4247class HStaticFieldSet : public HTemplateInstruction<2> {
4248 public:
4249  HStaticFieldSet(HInstruction* cls,
4250                  HInstruction* value,
4251                  Primitive::Type field_type,
4252                  MemberOffset field_offset,
4253                  bool is_volatile,
4254                  uint32_t field_idx,
4255                  const DexFile& dex_file)
4256      : HTemplateInstruction(
4257          SideEffects::FieldWriteOfType(field_type, is_volatile)),
4258        field_info_(field_offset, field_type, is_volatile, field_idx, dex_file),
4259        value_can_be_null_(true) {
4260    SetRawInputAt(0, cls);
4261    SetRawInputAt(1, value);
4262  }
4263
4264  const FieldInfo& GetFieldInfo() const { return field_info_; }
4265  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4266  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4267  bool IsVolatile() const { return field_info_.IsVolatile(); }
4268
4269  HInstruction* GetValue() const { return InputAt(1); }
4270  bool GetValueCanBeNull() const { return value_can_be_null_; }
4271  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4272
4273  DECLARE_INSTRUCTION(StaticFieldSet);
4274
4275 private:
4276  const FieldInfo field_info_;
4277  bool value_can_be_null_;
4278
4279  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
4280};
4281
4282// Implement the move-exception DEX instruction.
4283class HLoadException : public HExpression<0> {
4284 public:
4285  HLoadException() : HExpression(Primitive::kPrimNot, SideEffects::None()) {}
4286
4287  DECLARE_INSTRUCTION(LoadException);
4288
4289 private:
4290  DISALLOW_COPY_AND_ASSIGN(HLoadException);
4291};
4292
4293// Implicit part of move-exception which clears thread-local exception storage.
4294// Must not be removed because the runtime expects the TLS to get cleared.
4295class HClearException : public HTemplateInstruction<0> {
4296 public:
4297  HClearException() : HTemplateInstruction(SideEffects::AllWrites()) {}
4298
4299  DECLARE_INSTRUCTION(ClearException);
4300
4301 private:
4302  DISALLOW_COPY_AND_ASSIGN(HClearException);
4303};
4304
4305class HThrow : public HTemplateInstruction<1> {
4306 public:
4307  HThrow(HInstruction* exception, uint32_t dex_pc)
4308      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {
4309    SetRawInputAt(0, exception);
4310  }
4311
4312  bool IsControlFlow() const OVERRIDE { return true; }
4313
4314  bool NeedsEnvironment() const OVERRIDE { return true; }
4315
4316  bool CanThrow() const OVERRIDE { return true; }
4317
4318  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4319
4320  DECLARE_INSTRUCTION(Throw);
4321
4322 private:
4323  const uint32_t dex_pc_;
4324
4325  DISALLOW_COPY_AND_ASSIGN(HThrow);
4326};
4327
4328class HInstanceOf : public HExpression<2> {
4329 public:
4330  HInstanceOf(HInstruction* object,
4331              HLoadClass* constant,
4332              bool class_is_final,
4333              uint32_t dex_pc)
4334      : HExpression(Primitive::kPrimBoolean, SideEffects::None()),
4335        class_is_final_(class_is_final),
4336        must_do_null_check_(true),
4337        dex_pc_(dex_pc) {
4338    SetRawInputAt(0, object);
4339    SetRawInputAt(1, constant);
4340  }
4341
4342  bool CanBeMoved() const OVERRIDE { return true; }
4343
4344  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4345    return true;
4346  }
4347
4348  bool NeedsEnvironment() const OVERRIDE {
4349    return false;
4350  }
4351
4352  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4353
4354  bool IsClassFinal() const { return class_is_final_; }
4355
4356  // Used only in code generation.
4357  bool MustDoNullCheck() const { return must_do_null_check_; }
4358  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
4359
4360  DECLARE_INSTRUCTION(InstanceOf);
4361
4362 private:
4363  const bool class_is_final_;
4364  bool must_do_null_check_;
4365  const uint32_t dex_pc_;
4366
4367  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
4368};
4369
4370class HBoundType : public HExpression<1> {
4371 public:
4372  // Constructs an HBoundType with the given upper_bound.
4373  // Ensures that the upper_bound is valid.
4374  HBoundType(HInstruction* input, ReferenceTypeInfo upper_bound, bool upper_can_be_null)
4375      : HExpression(Primitive::kPrimNot, SideEffects::None()),
4376        upper_bound_(upper_bound),
4377        upper_can_be_null_(upper_can_be_null),
4378        can_be_null_(upper_can_be_null) {
4379    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
4380    SetRawInputAt(0, input);
4381    SetReferenceTypeInfo(upper_bound_);
4382  }
4383
4384  // GetUpper* should only be used in reference type propagation.
4385  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
4386  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
4387
4388  void SetCanBeNull(bool can_be_null) {
4389    DCHECK(upper_can_be_null_ || !can_be_null);
4390    can_be_null_ = can_be_null;
4391  }
4392
4393  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4394
4395  DECLARE_INSTRUCTION(BoundType);
4396
4397 private:
4398  // Encodes the most upper class that this instruction can have. In other words
4399  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
4400  // It is used to bound the type in cases like:
4401  //   if (x instanceof ClassX) {
4402  //     // uper_bound_ will be ClassX
4403  //   }
4404  const ReferenceTypeInfo upper_bound_;
4405  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
4406  // is false then can_be_null_ cannot be true).
4407  const bool upper_can_be_null_;
4408  bool can_be_null_;
4409
4410  DISALLOW_COPY_AND_ASSIGN(HBoundType);
4411};
4412
4413class HCheckCast : public HTemplateInstruction<2> {
4414 public:
4415  HCheckCast(HInstruction* object,
4416             HLoadClass* constant,
4417             bool class_is_final,
4418             uint32_t dex_pc)
4419      : HTemplateInstruction(SideEffects::None()),
4420        class_is_final_(class_is_final),
4421        must_do_null_check_(true),
4422        dex_pc_(dex_pc) {
4423    SetRawInputAt(0, object);
4424    SetRawInputAt(1, constant);
4425  }
4426
4427  bool CanBeMoved() const OVERRIDE { return true; }
4428
4429  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4430    return true;
4431  }
4432
4433  bool NeedsEnvironment() const OVERRIDE {
4434    // Instruction may throw a CheckCastError.
4435    return true;
4436  }
4437
4438  bool CanThrow() const OVERRIDE { return true; }
4439
4440  bool MustDoNullCheck() const { return must_do_null_check_; }
4441  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
4442
4443  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4444
4445  bool IsClassFinal() const { return class_is_final_; }
4446
4447  DECLARE_INSTRUCTION(CheckCast);
4448
4449 private:
4450  const bool class_is_final_;
4451  bool must_do_null_check_;
4452  const uint32_t dex_pc_;
4453
4454  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
4455};
4456
4457class HMemoryBarrier : public HTemplateInstruction<0> {
4458 public:
4459  explicit HMemoryBarrier(MemBarrierKind barrier_kind)
4460      : HTemplateInstruction(
4461          SideEffects::All()),  // assume write/read on all fields/arrays
4462        barrier_kind_(barrier_kind) {}
4463
4464  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
4465
4466  DECLARE_INSTRUCTION(MemoryBarrier);
4467
4468 private:
4469  const MemBarrierKind barrier_kind_;
4470
4471  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
4472};
4473
4474class HMonitorOperation : public HTemplateInstruction<1> {
4475 public:
4476  enum OperationKind {
4477    kEnter,
4478    kExit,
4479  };
4480
4481  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
4482    : HTemplateInstruction(SideEffects::All()),  // assume write/read on all fields/arrays
4483      kind_(kind), dex_pc_(dex_pc) {
4484    SetRawInputAt(0, object);
4485  }
4486
4487  // Instruction may throw a Java exception, so we need an environment.
4488  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
4489
4490  bool CanThrow() const OVERRIDE {
4491    // Verifier guarantees that monitor-exit cannot throw.
4492    // This is important because it allows the HGraphBuilder to remove
4493    // a dead throw-catch loop generated for `synchronized` blocks/methods.
4494    return IsEnter();
4495  }
4496
4497  uint32_t GetDexPc() const OVERRIDE { return dex_pc_; }
4498
4499  bool IsEnter() const { return kind_ == kEnter; }
4500
4501  DECLARE_INSTRUCTION(MonitorOperation);
4502
4503 private:
4504  const OperationKind kind_;
4505  const uint32_t dex_pc_;
4506
4507 private:
4508  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
4509};
4510
4511/**
4512 * A HInstruction used as a marker for the replacement of new + <init>
4513 * of a String to a call to a StringFactory. Only baseline will see
4514 * the node at code generation, where it will be be treated as null.
4515 * When compiling non-baseline, `HFakeString` instructions are being removed
4516 * in the instruction simplifier.
4517 */
4518class HFakeString : public HTemplateInstruction<0> {
4519 public:
4520  HFakeString() : HTemplateInstruction(SideEffects::None()) {}
4521
4522  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
4523
4524  DECLARE_INSTRUCTION(FakeString);
4525
4526 private:
4527  DISALLOW_COPY_AND_ASSIGN(HFakeString);
4528};
4529
4530class MoveOperands : public ArenaObject<kArenaAllocMisc> {
4531 public:
4532  MoveOperands(Location source,
4533               Location destination,
4534               Primitive::Type type,
4535               HInstruction* instruction)
4536      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
4537
4538  Location GetSource() const { return source_; }
4539  Location GetDestination() const { return destination_; }
4540
4541  void SetSource(Location value) { source_ = value; }
4542  void SetDestination(Location value) { destination_ = value; }
4543
4544  // The parallel move resolver marks moves as "in-progress" by clearing the
4545  // destination (but not the source).
4546  Location MarkPending() {
4547    DCHECK(!IsPending());
4548    Location dest = destination_;
4549    destination_ = Location::NoLocation();
4550    return dest;
4551  }
4552
4553  void ClearPending(Location dest) {
4554    DCHECK(IsPending());
4555    destination_ = dest;
4556  }
4557
4558  bool IsPending() const {
4559    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
4560    return destination_.IsInvalid() && !source_.IsInvalid();
4561  }
4562
4563  // True if this blocks a move from the given location.
4564  bool Blocks(Location loc) const {
4565    return !IsEliminated() && source_.OverlapsWith(loc);
4566  }
4567
4568  // A move is redundant if it's been eliminated, if its source and
4569  // destination are the same, or if its destination is unneeded.
4570  bool IsRedundant() const {
4571    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
4572  }
4573
4574  // We clear both operands to indicate move that's been eliminated.
4575  void Eliminate() {
4576    source_ = destination_ = Location::NoLocation();
4577  }
4578
4579  bool IsEliminated() const {
4580    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
4581    return source_.IsInvalid();
4582  }
4583
4584  Primitive::Type GetType() const { return type_; }
4585
4586  bool Is64BitMove() const {
4587    return Primitive::Is64BitType(type_);
4588  }
4589
4590  HInstruction* GetInstruction() const { return instruction_; }
4591
4592 private:
4593  Location source_;
4594  Location destination_;
4595  // The type this move is for.
4596  Primitive::Type type_;
4597  // The instruction this move is assocatied with. Null when this move is
4598  // for moving an input in the expected locations of user (including a phi user).
4599  // This is only used in debug mode, to ensure we do not connect interval siblings
4600  // in the same parallel move.
4601  HInstruction* instruction_;
4602};
4603
4604static constexpr size_t kDefaultNumberOfMoves = 4;
4605
4606class HParallelMove : public HTemplateInstruction<0> {
4607 public:
4608  explicit HParallelMove(ArenaAllocator* arena)
4609      : HTemplateInstruction(SideEffects::None()), moves_(arena, kDefaultNumberOfMoves) {}
4610
4611  void AddMove(Location source,
4612               Location destination,
4613               Primitive::Type type,
4614               HInstruction* instruction) {
4615    DCHECK(source.IsValid());
4616    DCHECK(destination.IsValid());
4617    if (kIsDebugBuild) {
4618      if (instruction != nullptr) {
4619        for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
4620          if (moves_.Get(i).GetInstruction() == instruction) {
4621            // Special case the situation where the move is for the spill slot
4622            // of the instruction.
4623            if ((GetPrevious() == instruction)
4624                || ((GetPrevious() == nullptr)
4625                    && instruction->IsPhi()
4626                    && instruction->GetBlock() == GetBlock())) {
4627              DCHECK_NE(destination.GetKind(), moves_.Get(i).GetDestination().GetKind())
4628                  << "Doing parallel moves for the same instruction.";
4629            } else {
4630              DCHECK(false) << "Doing parallel moves for the same instruction.";
4631            }
4632          }
4633        }
4634      }
4635      for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
4636        DCHECK(!destination.OverlapsWith(moves_.Get(i).GetDestination()))
4637            << "Overlapped destination for two moves in a parallel move: "
4638            << moves_.Get(i).GetSource() << " ==> " << moves_.Get(i).GetDestination() << " and "
4639            << source << " ==> " << destination;
4640      }
4641    }
4642    moves_.Add(MoveOperands(source, destination, type, instruction));
4643  }
4644
4645  MoveOperands* MoveOperandsAt(size_t index) const {
4646    return moves_.GetRawStorage() + index;
4647  }
4648
4649  size_t NumMoves() const { return moves_.Size(); }
4650
4651  DECLARE_INSTRUCTION(ParallelMove);
4652
4653 private:
4654  GrowableArray<MoveOperands> moves_;
4655
4656  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
4657};
4658
4659class HGraphVisitor : public ValueObject {
4660 public:
4661  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
4662  virtual ~HGraphVisitor() {}
4663
4664  virtual void VisitInstruction(HInstruction* instruction) { UNUSED(instruction); }
4665  virtual void VisitBasicBlock(HBasicBlock* block);
4666
4667  // Visit the graph following basic block insertion order.
4668  void VisitInsertionOrder();
4669
4670  // Visit the graph following dominator tree reverse post-order.
4671  void VisitReversePostOrder();
4672
4673  HGraph* GetGraph() const { return graph_; }
4674
4675  // Visit functions for instruction classes.
4676#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
4677  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
4678
4679  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
4680
4681#undef DECLARE_VISIT_INSTRUCTION
4682
4683 private:
4684  HGraph* const graph_;
4685
4686  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
4687};
4688
4689class HGraphDelegateVisitor : public HGraphVisitor {
4690 public:
4691  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
4692  virtual ~HGraphDelegateVisitor() {}
4693
4694  // Visit functions that delegate to to super class.
4695#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
4696  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
4697
4698  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
4699
4700#undef DECLARE_VISIT_INSTRUCTION
4701
4702 private:
4703  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
4704};
4705
4706class HInsertionOrderIterator : public ValueObject {
4707 public:
4708  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
4709
4710  bool Done() const { return index_ == graph_.GetBlocks().Size(); }
4711  HBasicBlock* Current() const { return graph_.GetBlocks().Get(index_); }
4712  void Advance() { ++index_; }
4713
4714 private:
4715  const HGraph& graph_;
4716  size_t index_;
4717
4718  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
4719};
4720
4721class HReversePostOrderIterator : public ValueObject {
4722 public:
4723  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
4724    // Check that reverse post order of the graph has been built.
4725    DCHECK(!graph.GetReversePostOrder().IsEmpty());
4726  }
4727
4728  bool Done() const { return index_ == graph_.GetReversePostOrder().Size(); }
4729  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_); }
4730  void Advance() { ++index_; }
4731
4732 private:
4733  const HGraph& graph_;
4734  size_t index_;
4735
4736  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
4737};
4738
4739class HPostOrderIterator : public ValueObject {
4740 public:
4741  explicit HPostOrderIterator(const HGraph& graph)
4742      : graph_(graph), index_(graph_.GetReversePostOrder().Size()) {
4743    // Check that reverse post order of the graph has been built.
4744    DCHECK(!graph.GetReversePostOrder().IsEmpty());
4745  }
4746
4747  bool Done() const { return index_ == 0; }
4748  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_ - 1); }
4749  void Advance() { --index_; }
4750
4751 private:
4752  const HGraph& graph_;
4753  size_t index_;
4754
4755  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
4756};
4757
4758class HLinearPostOrderIterator : public ValueObject {
4759 public:
4760  explicit HLinearPostOrderIterator(const HGraph& graph)
4761      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().Size()) {}
4762
4763  bool Done() const { return index_ == 0; }
4764
4765  HBasicBlock* Current() const { return order_.Get(index_ -1); }
4766
4767  void Advance() {
4768    --index_;
4769    DCHECK_GE(index_, 0U);
4770  }
4771
4772 private:
4773  const GrowableArray<HBasicBlock*>& order_;
4774  size_t index_;
4775
4776  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
4777};
4778
4779class HLinearOrderIterator : public ValueObject {
4780 public:
4781  explicit HLinearOrderIterator(const HGraph& graph)
4782      : order_(graph.GetLinearOrder()), index_(0) {}
4783
4784  bool Done() const { return index_ == order_.Size(); }
4785  HBasicBlock* Current() const { return order_.Get(index_); }
4786  void Advance() { ++index_; }
4787
4788 private:
4789  const GrowableArray<HBasicBlock*>& order_;
4790  size_t index_;
4791
4792  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
4793};
4794
4795// Iterator over the blocks that art part of the loop. Includes blocks part
4796// of an inner loop. The order in which the blocks are iterated is on their
4797// block id.
4798class HBlocksInLoopIterator : public ValueObject {
4799 public:
4800  explicit HBlocksInLoopIterator(const HLoopInformation& info)
4801      : blocks_in_loop_(info.GetBlocks()),
4802        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
4803        index_(0) {
4804    if (!blocks_in_loop_.IsBitSet(index_)) {
4805      Advance();
4806    }
4807  }
4808
4809  bool Done() const { return index_ == blocks_.Size(); }
4810  HBasicBlock* Current() const { return blocks_.Get(index_); }
4811  void Advance() {
4812    ++index_;
4813    for (size_t e = blocks_.Size(); index_ < e; ++index_) {
4814      if (blocks_in_loop_.IsBitSet(index_)) {
4815        break;
4816      }
4817    }
4818  }
4819
4820 private:
4821  const BitVector& blocks_in_loop_;
4822  const GrowableArray<HBasicBlock*>& blocks_;
4823  size_t index_;
4824
4825  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
4826};
4827
4828// Iterator over the blocks that art part of the loop. Includes blocks part
4829// of an inner loop. The order in which the blocks are iterated is reverse
4830// post order.
4831class HBlocksInLoopReversePostOrderIterator : public ValueObject {
4832 public:
4833  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
4834      : blocks_in_loop_(info.GetBlocks()),
4835        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
4836        index_(0) {
4837    if (!blocks_in_loop_.IsBitSet(blocks_.Get(index_)->GetBlockId())) {
4838      Advance();
4839    }
4840  }
4841
4842  bool Done() const { return index_ == blocks_.Size(); }
4843  HBasicBlock* Current() const { return blocks_.Get(index_); }
4844  void Advance() {
4845    ++index_;
4846    for (size_t e = blocks_.Size(); index_ < e; ++index_) {
4847      if (blocks_in_loop_.IsBitSet(blocks_.Get(index_)->GetBlockId())) {
4848        break;
4849      }
4850    }
4851  }
4852
4853 private:
4854  const BitVector& blocks_in_loop_;
4855  const GrowableArray<HBasicBlock*>& blocks_;
4856  size_t index_;
4857
4858  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
4859};
4860
4861inline int64_t Int64FromConstant(HConstant* constant) {
4862  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
4863  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
4864                                   : constant->AsLongConstant()->GetValue();
4865}
4866
4867}  // namespace art
4868
4869#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
4870