nodes.h revision 917d01680714b2295f109f8fea0aa06764a30b70
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_bit_vector.h"
25#include "base/arena_containers.h"
26#include "base/arena_object.h"
27#include "base/stl_util.h"
28#include "dex/compiler_enums.h"
29#include "entrypoints/quick/quick_entrypoints_enum.h"
30#include "handle.h"
31#include "handle_scope.h"
32#include "invoke_type.h"
33#include "locations.h"
34#include "method_reference.h"
35#include "mirror/class.h"
36#include "offsets.h"
37#include "primitive.h"
38#include "utils/array_ref.h"
39
40namespace art {
41
42class GraphChecker;
43class HBasicBlock;
44class HCurrentMethod;
45class HDoubleConstant;
46class HEnvironment;
47class HFakeString;
48class HFloatConstant;
49class HGraphBuilder;
50class HGraphVisitor;
51class HInstruction;
52class HIntConstant;
53class HInvoke;
54class HLongConstant;
55class HNullConstant;
56class HPhi;
57class HSuspendCheck;
58class HTryBoundary;
59class LiveInterval;
60class LocationSummary;
61class SlowPathCode;
62class SsaBuilder;
63
64namespace mirror {
65class DexCache;
66}  // namespace mirror
67
68static const int kDefaultNumberOfBlocks = 8;
69static const int kDefaultNumberOfSuccessors = 2;
70static const int kDefaultNumberOfPredecessors = 2;
71static const int kDefaultNumberOfExceptionalPredecessors = 0;
72static const int kDefaultNumberOfDominatedBlocks = 1;
73static const int kDefaultNumberOfBackEdges = 1;
74
75static constexpr uint32_t kMaxIntShiftValue = 0x1f;
76static constexpr uint64_t kMaxLongShiftValue = 0x3f;
77
78static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
79static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
80
81static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
82
83static constexpr uint32_t kNoDexPc = -1;
84
85enum IfCondition {
86  // All types.
87  kCondEQ,  // ==
88  kCondNE,  // !=
89  // Signed integers and floating-point numbers.
90  kCondLT,  // <
91  kCondLE,  // <=
92  kCondGT,  // >
93  kCondGE,  // >=
94  // Unsigned integers.
95  kCondB,   // <
96  kCondBE,  // <=
97  kCondA,   // >
98  kCondAE,  // >=
99};
100
101class HInstructionList : public ValueObject {
102 public:
103  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
104
105  void AddInstruction(HInstruction* instruction);
106  void RemoveInstruction(HInstruction* instruction);
107
108  // Insert `instruction` before/after an existing instruction `cursor`.
109  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
110  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
111
112  // Return true if this list contains `instruction`.
113  bool Contains(HInstruction* instruction) const;
114
115  // Return true if `instruction1` is found before `instruction2` in
116  // this instruction list and false otherwise.  Abort if none
117  // of these instructions is found.
118  bool FoundBefore(const HInstruction* instruction1,
119                   const HInstruction* instruction2) const;
120
121  bool IsEmpty() const { return first_instruction_ == nullptr; }
122  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
123
124  // Update the block of all instructions to be `block`.
125  void SetBlockOfInstructions(HBasicBlock* block) const;
126
127  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
128  void Add(const HInstructionList& instruction_list);
129
130  // Return the number of instructions in the list. This is an expensive operation.
131  size_t CountSize() const;
132
133 private:
134  HInstruction* first_instruction_;
135  HInstruction* last_instruction_;
136
137  friend class HBasicBlock;
138  friend class HGraph;
139  friend class HInstruction;
140  friend class HInstructionIterator;
141  friend class HBackwardInstructionIterator;
142
143  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
144};
145
146// Control-flow graph of a method. Contains a list of basic blocks.
147class HGraph : public ArenaObject<kArenaAllocGraph> {
148 public:
149  HGraph(ArenaAllocator* arena,
150         const DexFile& dex_file,
151         uint32_t method_idx,
152         bool should_generate_constructor_barrier,
153         InstructionSet instruction_set,
154         InvokeType invoke_type = kInvalidInvokeType,
155         bool debuggable = false,
156         int start_instruction_id = 0)
157      : arena_(arena),
158        blocks_(arena->Adapter(kArenaAllocBlockList)),
159        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
160        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
161        entry_block_(nullptr),
162        exit_block_(nullptr),
163        maximum_number_of_out_vregs_(0),
164        number_of_vregs_(0),
165        number_of_in_vregs_(0),
166        temporaries_vreg_slots_(0),
167        has_bounds_checks_(false),
168        has_try_catch_(false),
169        debuggable_(debuggable),
170        current_instruction_id_(start_instruction_id),
171        dex_file_(dex_file),
172        method_idx_(method_idx),
173        invoke_type_(invoke_type),
174        in_ssa_form_(false),
175        should_generate_constructor_barrier_(should_generate_constructor_barrier),
176        instruction_set_(instruction_set),
177        cached_null_constant_(nullptr),
178        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
179        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
180        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
181        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
182        cached_current_method_(nullptr) {
183    blocks_.reserve(kDefaultNumberOfBlocks);
184  }
185
186  ArenaAllocator* GetArena() const { return arena_; }
187  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
188
189  bool IsInSsaForm() const { return in_ssa_form_; }
190
191  HBasicBlock* GetEntryBlock() const { return entry_block_; }
192  HBasicBlock* GetExitBlock() const { return exit_block_; }
193  bool HasExitBlock() const { return exit_block_ != nullptr; }
194
195  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
196  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
197
198  void AddBlock(HBasicBlock* block);
199
200  // Try building the SSA form of this graph, with dominance computation and loop
201  // recognition. Returns whether it was successful in doing all these steps.
202  bool TryBuildingSsa() {
203    BuildDominatorTree();
204    // The SSA builder requires loops to all be natural. Specifically, the dead phi
205    // elimination phase checks the consistency of the graph when doing a post-order
206    // visit for eliminating dead phis: a dead phi can only have loop header phi
207    // users remaining when being visited.
208    if (!AnalyzeNaturalLoops()) return false;
209    // Precompute per-block try membership before entering the SSA builder,
210    // which needs the information to build catch block phis from values of
211    // locals at throwing instructions inside try blocks.
212    ComputeTryBlockInformation();
213    TransformToSsa();
214    in_ssa_form_ = true;
215    return true;
216  }
217
218  void ComputeDominanceInformation();
219  void ClearDominanceInformation();
220
221  void BuildDominatorTree();
222  void TransformToSsa();
223  void SimplifyCFG();
224  void SimplifyCatchBlocks();
225
226  // Analyze all natural loops in this graph. Returns false if one
227  // loop is not natural, that is the header does not dominate the
228  // back edge.
229  bool AnalyzeNaturalLoops() const;
230
231  // Iterate over blocks to compute try block membership. Needs reverse post
232  // order and loop information.
233  void ComputeTryBlockInformation();
234
235  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
236  // Returns the instruction used to replace the invoke expression or null if the
237  // invoke is for a void method.
238  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
239
240  // Need to add a couple of blocks to test if the loop body is entered and
241  // put deoptimization instructions, etc.
242  void TransformLoopHeaderForBCE(HBasicBlock* header);
243
244  // Removes `block` from the graph. Assumes `block` has been disconnected from
245  // other blocks and has no instructions or phis.
246  void DeleteDeadEmptyBlock(HBasicBlock* block);
247
248  // Splits the edge between `block` and `successor` while preserving the
249  // indices in the predecessor/successor lists. If there are multiple edges
250  // between the blocks, the lowest indices are used.
251  // Returns the new block which is empty and has the same dex pc as `successor`.
252  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
253
254  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
255  void SimplifyLoop(HBasicBlock* header);
256
257  int32_t GetNextInstructionId() {
258    DCHECK_NE(current_instruction_id_, INT32_MAX);
259    return current_instruction_id_++;
260  }
261
262  int32_t GetCurrentInstructionId() const {
263    return current_instruction_id_;
264  }
265
266  void SetCurrentInstructionId(int32_t id) {
267    current_instruction_id_ = id;
268  }
269
270  uint16_t GetMaximumNumberOfOutVRegs() const {
271    return maximum_number_of_out_vregs_;
272  }
273
274  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
275    maximum_number_of_out_vregs_ = new_value;
276  }
277
278  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
279    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
280  }
281
282  void UpdateTemporariesVRegSlots(size_t slots) {
283    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
284  }
285
286  size_t GetTemporariesVRegSlots() const {
287    DCHECK(!in_ssa_form_);
288    return temporaries_vreg_slots_;
289  }
290
291  void SetNumberOfVRegs(uint16_t number_of_vregs) {
292    number_of_vregs_ = number_of_vregs;
293  }
294
295  uint16_t GetNumberOfVRegs() const {
296    return number_of_vregs_;
297  }
298
299  void SetNumberOfInVRegs(uint16_t value) {
300    number_of_in_vregs_ = value;
301  }
302
303  uint16_t GetNumberOfLocalVRegs() const {
304    DCHECK(!in_ssa_form_);
305    return number_of_vregs_ - number_of_in_vregs_;
306  }
307
308  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
309    return reverse_post_order_;
310  }
311
312  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
313    return linear_order_;
314  }
315
316  bool HasBoundsChecks() const {
317    return has_bounds_checks_;
318  }
319
320  void SetHasBoundsChecks(bool value) {
321    has_bounds_checks_ = value;
322  }
323
324  bool ShouldGenerateConstructorBarrier() const {
325    return should_generate_constructor_barrier_;
326  }
327
328  bool IsDebuggable() const { return debuggable_; }
329
330  // Returns a constant of the given type and value. If it does not exist
331  // already, it is created and inserted into the graph. This method is only for
332  // integral types.
333  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
334
335  // TODO: This is problematic for the consistency of reference type propagation
336  // because it can be created anytime after the pass and thus it will be left
337  // with an invalid type.
338  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
339
340  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
341    return CreateConstant(value, &cached_int_constants_, dex_pc);
342  }
343  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
344    return CreateConstant(value, &cached_long_constants_, dex_pc);
345  }
346  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
347    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
348  }
349  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
350    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
351  }
352
353  HCurrentMethod* GetCurrentMethod();
354
355  const DexFile& GetDexFile() const {
356    return dex_file_;
357  }
358
359  uint32_t GetMethodIdx() const {
360    return method_idx_;
361  }
362
363  InvokeType GetInvokeType() const {
364    return invoke_type_;
365  }
366
367  InstructionSet GetInstructionSet() const {
368    return instruction_set_;
369  }
370
371  bool HasTryCatch() const { return has_try_catch_; }
372  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
373
374  ArtMethod* GetArtMethod() const { return art_method_; }
375  void SetArtMethod(ArtMethod* method) { art_method_ = method; }
376
377  // Returns an instruction with the opposite boolean value from 'cond'.
378  // The instruction has been inserted into the graph, either as a constant, or
379  // before cursor.
380  HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
381
382 private:
383  void FindBackEdges(ArenaBitVector* visited);
384  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
385  void RemoveDeadBlocks(const ArenaBitVector& visited);
386
387  template <class InstructionType, typename ValueType>
388  InstructionType* CreateConstant(ValueType value,
389                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
390                                  uint32_t dex_pc = kNoDexPc) {
391    // Try to find an existing constant of the given value.
392    InstructionType* constant = nullptr;
393    auto cached_constant = cache->find(value);
394    if (cached_constant != cache->end()) {
395      constant = cached_constant->second;
396    }
397
398    // If not found or previously deleted, create and cache a new instruction.
399    // Don't bother reviving a previously deleted instruction, for simplicity.
400    if (constant == nullptr || constant->GetBlock() == nullptr) {
401      constant = new (arena_) InstructionType(value, dex_pc);
402      cache->Overwrite(value, constant);
403      InsertConstant(constant);
404    }
405    return constant;
406  }
407
408  void InsertConstant(HConstant* instruction);
409
410  // Cache a float constant into the graph. This method should only be
411  // called by the SsaBuilder when creating "equivalent" instructions.
412  void CacheFloatConstant(HFloatConstant* constant);
413
414  // See CacheFloatConstant comment.
415  void CacheDoubleConstant(HDoubleConstant* constant);
416
417  ArenaAllocator* const arena_;
418
419  // List of blocks in insertion order.
420  ArenaVector<HBasicBlock*> blocks_;
421
422  // List of blocks to perform a reverse post order tree traversal.
423  ArenaVector<HBasicBlock*> reverse_post_order_;
424
425  // List of blocks to perform a linear order tree traversal.
426  ArenaVector<HBasicBlock*> linear_order_;
427
428  HBasicBlock* entry_block_;
429  HBasicBlock* exit_block_;
430
431  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
432  uint16_t maximum_number_of_out_vregs_;
433
434  // The number of virtual registers in this method. Contains the parameters.
435  uint16_t number_of_vregs_;
436
437  // The number of virtual registers used by parameters of this method.
438  uint16_t number_of_in_vregs_;
439
440  // Number of vreg size slots that the temporaries use (used in baseline compiler).
441  size_t temporaries_vreg_slots_;
442
443  // Has bounds checks. We can totally skip BCE if it's false.
444  bool has_bounds_checks_;
445
446  // Flag whether there are any try/catch blocks in the graph. We will skip
447  // try/catch-related passes if false.
448  bool has_try_catch_;
449
450  // Indicates whether the graph should be compiled in a way that
451  // ensures full debuggability. If false, we can apply more
452  // aggressive optimizations that may limit the level of debugging.
453  const bool debuggable_;
454
455  // The current id to assign to a newly added instruction. See HInstruction.id_.
456  int32_t current_instruction_id_;
457
458  // The dex file from which the method is from.
459  const DexFile& dex_file_;
460
461  // The method index in the dex file.
462  const uint32_t method_idx_;
463
464  // If inlined, this encodes how the callee is being invoked.
465  const InvokeType invoke_type_;
466
467  // Whether the graph has been transformed to SSA form. Only used
468  // in debug mode to ensure we are not using properties only valid
469  // for non-SSA form (like the number of temporaries).
470  bool in_ssa_form_;
471
472  const bool should_generate_constructor_barrier_;
473
474  const InstructionSet instruction_set_;
475
476  // Cached constants.
477  HNullConstant* cached_null_constant_;
478  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
479  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
480  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
481  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
482
483  HCurrentMethod* cached_current_method_;
484
485  // The ArtMethod this graph is for. Note that for AOT, it may be null,
486  // for example for methods whose declaring class could not be resolved
487  // (such as when the superclass could not be found).
488  ArtMethod* art_method_;
489
490  friend class SsaBuilder;           // For caching constants.
491  friend class SsaLivenessAnalysis;  // For the linear order.
492  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
493  DISALLOW_COPY_AND_ASSIGN(HGraph);
494};
495
496class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
497 public:
498  HLoopInformation(HBasicBlock* header, HGraph* graph)
499      : header_(header),
500        suspend_check_(nullptr),
501        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
502        // Make bit vector growable, as the number of blocks may change.
503        blocks_(graph->GetArena(), graph->GetBlocks().size(), true) {
504    back_edges_.reserve(kDefaultNumberOfBackEdges);
505  }
506
507  HBasicBlock* GetHeader() const {
508    return header_;
509  }
510
511  void SetHeader(HBasicBlock* block) {
512    header_ = block;
513  }
514
515  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
516  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
517  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
518
519  void AddBackEdge(HBasicBlock* back_edge) {
520    back_edges_.push_back(back_edge);
521  }
522
523  void RemoveBackEdge(HBasicBlock* back_edge) {
524    RemoveElement(back_edges_, back_edge);
525  }
526
527  bool IsBackEdge(const HBasicBlock& block) const {
528    return ContainsElement(back_edges_, &block);
529  }
530
531  size_t NumberOfBackEdges() const {
532    return back_edges_.size();
533  }
534
535  HBasicBlock* GetPreHeader() const;
536
537  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
538    return back_edges_;
539  }
540
541  // Returns the lifetime position of the back edge that has the
542  // greatest lifetime position.
543  size_t GetLifetimeEnd() const;
544
545  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
546    ReplaceElement(back_edges_, existing, new_back_edge);
547  }
548
549  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
550  // that is the header dominates the back edge.
551  bool Populate();
552
553  // Reanalyzes the loop by removing loop info from its blocks and re-running
554  // Populate(). If there are no back edges left, the loop info is completely
555  // removed as well as its SuspendCheck instruction. It must be run on nested
556  // inner loops first.
557  void Update();
558
559  // Returns whether this loop information contains `block`.
560  // Note that this loop information *must* be populated before entering this function.
561  bool Contains(const HBasicBlock& block) const;
562
563  // Returns whether this loop information is an inner loop of `other`.
564  // Note that `other` *must* be populated before entering this function.
565  bool IsIn(const HLoopInformation& other) const;
566
567  // Returns true if instruction is not defined within this loop.
568  bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
569
570  const ArenaBitVector& GetBlocks() const { return blocks_; }
571
572  void Add(HBasicBlock* block);
573  void Remove(HBasicBlock* block);
574
575 private:
576  // Internal recursive implementation of `Populate`.
577  void PopulateRecursive(HBasicBlock* block);
578
579  HBasicBlock* header_;
580  HSuspendCheck* suspend_check_;
581  ArenaVector<HBasicBlock*> back_edges_;
582  ArenaBitVector blocks_;
583
584  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
585};
586
587// Stores try/catch information for basic blocks.
588// Note that HGraph is constructed so that catch blocks cannot simultaneously
589// be try blocks.
590class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
591 public:
592  // Try block information constructor.
593  explicit TryCatchInformation(const HTryBoundary& try_entry)
594      : try_entry_(&try_entry),
595        catch_dex_file_(nullptr),
596        catch_type_index_(DexFile::kDexNoIndex16) {
597    DCHECK(try_entry_ != nullptr);
598  }
599
600  // Catch block information constructor.
601  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
602      : try_entry_(nullptr),
603        catch_dex_file_(&dex_file),
604        catch_type_index_(catch_type_index) {}
605
606  bool IsTryBlock() const { return try_entry_ != nullptr; }
607
608  const HTryBoundary& GetTryEntry() const {
609    DCHECK(IsTryBlock());
610    return *try_entry_;
611  }
612
613  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
614
615  bool IsCatchAllTypeIndex() const {
616    DCHECK(IsCatchBlock());
617    return catch_type_index_ == DexFile::kDexNoIndex16;
618  }
619
620  uint16_t GetCatchTypeIndex() const {
621    DCHECK(IsCatchBlock());
622    return catch_type_index_;
623  }
624
625  const DexFile& GetCatchDexFile() const {
626    DCHECK(IsCatchBlock());
627    return *catch_dex_file_;
628  }
629
630 private:
631  // One of possibly several TryBoundary instructions entering the block's try.
632  // Only set for try blocks.
633  const HTryBoundary* try_entry_;
634
635  // Exception type information. Only set for catch blocks.
636  const DexFile* catch_dex_file_;
637  const uint16_t catch_type_index_;
638};
639
640static constexpr size_t kNoLifetime = -1;
641static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
642
643// A block in a method. Contains the list of instructions represented
644// as a double linked list. Each block knows its predecessors and
645// successors.
646
647class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
648 public:
649  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
650      : graph_(graph),
651        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
652        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
653        loop_information_(nullptr),
654        dominator_(nullptr),
655        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
656        block_id_(kInvalidBlockId),
657        dex_pc_(dex_pc),
658        lifetime_start_(kNoLifetime),
659        lifetime_end_(kNoLifetime),
660        try_catch_information_(nullptr) {
661    predecessors_.reserve(kDefaultNumberOfPredecessors);
662    successors_.reserve(kDefaultNumberOfSuccessors);
663    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
664  }
665
666  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
667    return predecessors_;
668  }
669
670  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
671    return successors_;
672  }
673
674  ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
675  ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
676
677  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
678    return ContainsElement(successors_, block, start_from);
679  }
680
681  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
682    return dominated_blocks_;
683  }
684
685  bool IsEntryBlock() const {
686    return graph_->GetEntryBlock() == this;
687  }
688
689  bool IsExitBlock() const {
690    return graph_->GetExitBlock() == this;
691  }
692
693  bool IsSingleGoto() const;
694  bool IsSingleTryBoundary() const;
695
696  // Returns true if this block emits nothing but a jump.
697  bool IsSingleJump() const {
698    HLoopInformation* loop_info = GetLoopInformation();
699    return (IsSingleGoto() || IsSingleTryBoundary())
700           // Back edges generate a suspend check.
701           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
702  }
703
704  void AddBackEdge(HBasicBlock* back_edge) {
705    if (loop_information_ == nullptr) {
706      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
707    }
708    DCHECK_EQ(loop_information_->GetHeader(), this);
709    loop_information_->AddBackEdge(back_edge);
710  }
711
712  HGraph* GetGraph() const { return graph_; }
713  void SetGraph(HGraph* graph) { graph_ = graph; }
714
715  uint32_t GetBlockId() const { return block_id_; }
716  void SetBlockId(int id) { block_id_ = id; }
717  uint32_t GetDexPc() const { return dex_pc_; }
718
719  HBasicBlock* GetDominator() const { return dominator_; }
720  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
721  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
722
723  void RemoveDominatedBlock(HBasicBlock* block) {
724    RemoveElement(dominated_blocks_, block);
725  }
726
727  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
728    ReplaceElement(dominated_blocks_, existing, new_block);
729  }
730
731  void ClearDominanceInformation();
732
733  int NumberOfBackEdges() const {
734    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
735  }
736
737  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
738  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
739  const HInstructionList& GetInstructions() const { return instructions_; }
740  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
741  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
742  const HInstructionList& GetPhis() const { return phis_; }
743
744  void AddSuccessor(HBasicBlock* block) {
745    successors_.push_back(block);
746    block->predecessors_.push_back(this);
747  }
748
749  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
750    size_t successor_index = GetSuccessorIndexOf(existing);
751    existing->RemovePredecessor(this);
752    new_block->predecessors_.push_back(this);
753    successors_[successor_index] = new_block;
754  }
755
756  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
757    size_t predecessor_index = GetPredecessorIndexOf(existing);
758    existing->RemoveSuccessor(this);
759    new_block->successors_.push_back(this);
760    predecessors_[predecessor_index] = new_block;
761  }
762
763  // Insert `this` between `predecessor` and `successor. This method
764  // preserves the indicies, and will update the first edge found between
765  // `predecessor` and `successor`.
766  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
767    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
768    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
769    successor->predecessors_[predecessor_index] = this;
770    predecessor->successors_[successor_index] = this;
771    successors_.push_back(successor);
772    predecessors_.push_back(predecessor);
773  }
774
775  void RemovePredecessor(HBasicBlock* block) {
776    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
777  }
778
779  void RemoveSuccessor(HBasicBlock* block) {
780    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
781  }
782
783  void ClearAllPredecessors() {
784    predecessors_.clear();
785  }
786
787  void AddPredecessor(HBasicBlock* block) {
788    predecessors_.push_back(block);
789    block->successors_.push_back(this);
790  }
791
792  void SwapPredecessors() {
793    DCHECK_EQ(predecessors_.size(), 2u);
794    std::swap(predecessors_[0], predecessors_[1]);
795  }
796
797  void SwapSuccessors() {
798    DCHECK_EQ(successors_.size(), 2u);
799    std::swap(successors_[0], successors_[1]);
800  }
801
802  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
803    return IndexOfElement(predecessors_, predecessor);
804  }
805
806  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
807    return IndexOfElement(successors_, successor);
808  }
809
810  HBasicBlock* GetSinglePredecessor() const {
811    DCHECK_EQ(GetPredecessors().size(), 1u);
812    return GetPredecessors()[0];
813  }
814
815  HBasicBlock* GetSingleSuccessor() const {
816    DCHECK_EQ(GetSuccessors().size(), 1u);
817    return GetSuccessors()[0];
818  }
819
820  // Returns whether the first occurrence of `predecessor` in the list of
821  // predecessors is at index `idx`.
822  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
823    DCHECK_EQ(GetPredecessors()[idx], predecessor);
824    return GetPredecessorIndexOf(predecessor) == idx;
825  }
826
827  // Create a new block between this block and its predecessors. The new block
828  // is added to the graph, all predecessor edges are relinked to it and an edge
829  // is created to `this`. Returns the new empty block. Reverse post order or
830  // loop and try/catch information are not updated.
831  HBasicBlock* CreateImmediateDominator();
832
833  // Split the block into two blocks just before `cursor`. Returns the newly
834  // created, latter block. Note that this method will add the block to the
835  // graph, create a Goto at the end of the former block and will create an edge
836  // between the blocks. It will not, however, update the reverse post order or
837  // loop and try/catch information.
838  HBasicBlock* SplitBefore(HInstruction* cursor);
839
840  // Split the block into two blocks just after `cursor`. Returns the newly
841  // created block. Note that this method just updates raw block information,
842  // like predecessors, successors, dominators, and instruction list. It does not
843  // update the graph, reverse post order, loop information, nor make sure the
844  // blocks are consistent (for example ending with a control flow instruction).
845  HBasicBlock* SplitAfter(HInstruction* cursor);
846
847  // Split catch block into two blocks after the original move-exception bytecode
848  // instruction, or at the beginning if not present. Returns the newly created,
849  // latter block, or nullptr if such block could not be created (must be dead
850  // in that case). Note that this method just updates raw block information,
851  // like predecessors, successors, dominators, and instruction list. It does not
852  // update the graph, reverse post order, loop information, nor make sure the
853  // blocks are consistent (for example ending with a control flow instruction).
854  HBasicBlock* SplitCatchBlockAfterMoveException();
855
856  // Merge `other` at the end of `this`. Successors and dominated blocks of
857  // `other` are changed to be successors and dominated blocks of `this`. Note
858  // that this method does not update the graph, reverse post order, loop
859  // information, nor make sure the blocks are consistent (for example ending
860  // with a control flow instruction).
861  void MergeWithInlined(HBasicBlock* other);
862
863  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
864  // of `this` are moved to `other`.
865  // Note that this method does not update the graph, reverse post order, loop
866  // information, nor make sure the blocks are consistent (for example ending
867  // with a control flow instruction).
868  void ReplaceWith(HBasicBlock* other);
869
870  // Merge `other` at the end of `this`. This method updates loops, reverse post
871  // order, links to predecessors, successors, dominators and deletes the block
872  // from the graph. The two blocks must be successive, i.e. `this` the only
873  // predecessor of `other` and vice versa.
874  void MergeWith(HBasicBlock* other);
875
876  // Disconnects `this` from all its predecessors, successors and dominator,
877  // removes it from all loops it is included in and eventually from the graph.
878  // The block must not dominate any other block. Predecessors and successors
879  // are safely updated.
880  void DisconnectAndDelete();
881
882  void AddInstruction(HInstruction* instruction);
883  // Insert `instruction` before/after an existing instruction `cursor`.
884  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
885  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
886  // Replace instruction `initial` with `replacement` within this block.
887  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
888                                       HInstruction* replacement);
889  void AddPhi(HPhi* phi);
890  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
891  // RemoveInstruction and RemovePhi delete a given instruction from the respective
892  // instruction list. With 'ensure_safety' set to true, it verifies that the
893  // instruction is not in use and removes it from the use lists of its inputs.
894  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
895  void RemovePhi(HPhi* phi, bool ensure_safety = true);
896  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
897
898  bool IsLoopHeader() const {
899    return IsInLoop() && (loop_information_->GetHeader() == this);
900  }
901
902  bool IsLoopPreHeaderFirstPredecessor() const {
903    DCHECK(IsLoopHeader());
904    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
905  }
906
907  HLoopInformation* GetLoopInformation() const {
908    return loop_information_;
909  }
910
911  // Set the loop_information_ on this block. Overrides the current
912  // loop_information if it is an outer loop of the passed loop information.
913  // Note that this method is called while creating the loop information.
914  void SetInLoop(HLoopInformation* info) {
915    if (IsLoopHeader()) {
916      // Nothing to do. This just means `info` is an outer loop.
917    } else if (!IsInLoop()) {
918      loop_information_ = info;
919    } else if (loop_information_->Contains(*info->GetHeader())) {
920      // Block is currently part of an outer loop. Make it part of this inner loop.
921      // Note that a non loop header having a loop information means this loop information
922      // has already been populated
923      loop_information_ = info;
924    } else {
925      // Block is part of an inner loop. Do not update the loop information.
926      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
927      // at this point, because this method is being called while populating `info`.
928    }
929  }
930
931  // Raw update of the loop information.
932  void SetLoopInformation(HLoopInformation* info) {
933    loop_information_ = info;
934  }
935
936  bool IsInLoop() const { return loop_information_ != nullptr; }
937
938  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
939
940  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
941    try_catch_information_ = try_catch_information;
942  }
943
944  bool IsTryBlock() const {
945    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
946  }
947
948  bool IsCatchBlock() const {
949    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
950  }
951
952  // Returns the try entry that this block's successors should have. They will
953  // be in the same try, unless the block ends in a try boundary. In that case,
954  // the appropriate try entry will be returned.
955  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
956
957  bool HasThrowingInstructions() const;
958
959  // Returns whether this block dominates the blocked passed as parameter.
960  bool Dominates(HBasicBlock* block) const;
961
962  size_t GetLifetimeStart() const { return lifetime_start_; }
963  size_t GetLifetimeEnd() const { return lifetime_end_; }
964
965  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
966  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
967
968  bool EndsWithControlFlowInstruction() const;
969  bool EndsWithIf() const;
970  bool EndsWithTryBoundary() const;
971  bool HasSinglePhi() const;
972
973 private:
974  HGraph* graph_;
975  ArenaVector<HBasicBlock*> predecessors_;
976  ArenaVector<HBasicBlock*> successors_;
977  HInstructionList instructions_;
978  HInstructionList phis_;
979  HLoopInformation* loop_information_;
980  HBasicBlock* dominator_;
981  ArenaVector<HBasicBlock*> dominated_blocks_;
982  uint32_t block_id_;
983  // The dex program counter of the first instruction of this block.
984  const uint32_t dex_pc_;
985  size_t lifetime_start_;
986  size_t lifetime_end_;
987  TryCatchInformation* try_catch_information_;
988
989  friend class HGraph;
990  friend class HInstruction;
991
992  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
993};
994
995// Iterates over the LoopInformation of all loops which contain 'block'
996// from the innermost to the outermost.
997class HLoopInformationOutwardIterator : public ValueObject {
998 public:
999  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
1000      : current_(block.GetLoopInformation()) {}
1001
1002  bool Done() const { return current_ == nullptr; }
1003
1004  void Advance() {
1005    DCHECK(!Done());
1006    current_ = current_->GetPreHeader()->GetLoopInformation();
1007  }
1008
1009  HLoopInformation* Current() const {
1010    DCHECK(!Done());
1011    return current_;
1012  }
1013
1014 private:
1015  HLoopInformation* current_;
1016
1017  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1018};
1019
1020#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1021  M(Above, Condition)                                                   \
1022  M(AboveOrEqual, Condition)                                            \
1023  M(Add, BinaryOperation)                                               \
1024  M(And, BinaryOperation)                                               \
1025  M(ArrayGet, Instruction)                                              \
1026  M(ArrayLength, Instruction)                                           \
1027  M(ArraySet, Instruction)                                              \
1028  M(Below, Condition)                                                   \
1029  M(BelowOrEqual, Condition)                                            \
1030  M(BooleanNot, UnaryOperation)                                         \
1031  M(BoundsCheck, Instruction)                                           \
1032  M(BoundType, Instruction)                                             \
1033  M(CheckCast, Instruction)                                             \
1034  M(ClearException, Instruction)                                        \
1035  M(ClinitCheck, Instruction)                                           \
1036  M(Compare, BinaryOperation)                                           \
1037  M(Condition, BinaryOperation)                                         \
1038  M(CurrentMethod, Instruction)                                         \
1039  M(Deoptimize, Instruction)                                            \
1040  M(Div, BinaryOperation)                                               \
1041  M(DivZeroCheck, Instruction)                                          \
1042  M(DoubleConstant, Constant)                                           \
1043  M(Equal, Condition)                                                   \
1044  M(Exit, Instruction)                                                  \
1045  M(FakeString, Instruction)                                            \
1046  M(FloatConstant, Constant)                                            \
1047  M(Goto, Instruction)                                                  \
1048  M(GreaterThan, Condition)                                             \
1049  M(GreaterThanOrEqual, Condition)                                      \
1050  M(If, Instruction)                                                    \
1051  M(InstanceFieldGet, Instruction)                                      \
1052  M(InstanceFieldSet, Instruction)                                      \
1053  M(InstanceOf, Instruction)                                            \
1054  M(IntConstant, Constant)                                              \
1055  M(InvokeUnresolved, Invoke)                                           \
1056  M(InvokeInterface, Invoke)                                            \
1057  M(InvokeStaticOrDirect, Invoke)                                       \
1058  M(InvokeVirtual, Invoke)                                              \
1059  M(LessThan, Condition)                                                \
1060  M(LessThanOrEqual, Condition)                                         \
1061  M(LoadClass, Instruction)                                             \
1062  M(LoadException, Instruction)                                         \
1063  M(LoadLocal, Instruction)                                             \
1064  M(LoadString, Instruction)                                            \
1065  M(Local, Instruction)                                                 \
1066  M(LongConstant, Constant)                                             \
1067  M(MemoryBarrier, Instruction)                                         \
1068  M(MonitorOperation, Instruction)                                      \
1069  M(Mul, BinaryOperation)                                               \
1070  M(Neg, UnaryOperation)                                                \
1071  M(NewArray, Instruction)                                              \
1072  M(NewInstance, Instruction)                                           \
1073  M(Not, UnaryOperation)                                                \
1074  M(NotEqual, Condition)                                                \
1075  M(NullConstant, Instruction)                                          \
1076  M(NullCheck, Instruction)                                             \
1077  M(Or, BinaryOperation)                                                \
1078  M(PackedSwitch, Instruction)                                          \
1079  M(ParallelMove, Instruction)                                          \
1080  M(ParameterValue, Instruction)                                        \
1081  M(Phi, Instruction)                                                   \
1082  M(Rem, BinaryOperation)                                               \
1083  M(Return, Instruction)                                                \
1084  M(ReturnVoid, Instruction)                                            \
1085  M(Shl, BinaryOperation)                                               \
1086  M(Shr, BinaryOperation)                                               \
1087  M(StaticFieldGet, Instruction)                                        \
1088  M(StaticFieldSet, Instruction)                                        \
1089  M(UnresolvedInstanceFieldGet, Instruction)                            \
1090  M(UnresolvedInstanceFieldSet, Instruction)                            \
1091  M(UnresolvedStaticFieldGet, Instruction)                              \
1092  M(UnresolvedStaticFieldSet, Instruction)                              \
1093  M(StoreLocal, Instruction)                                            \
1094  M(Sub, BinaryOperation)                                               \
1095  M(SuspendCheck, Instruction)                                          \
1096  M(Temporary, Instruction)                                             \
1097  M(Throw, Instruction)                                                 \
1098  M(TryBoundary, Instruction)                                           \
1099  M(TypeConversion, Instruction)                                        \
1100  M(UShr, BinaryOperation)                                              \
1101  M(Xor, BinaryOperation)                                               \
1102
1103#ifndef ART_ENABLE_CODEGEN_arm
1104#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1105#else
1106#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                            \
1107  M(ArmDexCacheArraysBase, Instruction)
1108#endif
1109
1110#ifndef ART_ENABLE_CODEGEN_arm64
1111#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1112#else
1113#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1114  M(Arm64DataProcWithShifterOp, Instruction)                            \
1115  M(Arm64IntermediateAddress, Instruction)                              \
1116  M(Arm64MultiplyAccumulate, Instruction)
1117#endif
1118
1119#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1120
1121#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1122
1123#ifndef ART_ENABLE_CODEGEN_x86
1124#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1125#else
1126#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1127  M(X86ComputeBaseMethodAddress, Instruction)                           \
1128  M(X86LoadFromConstantTable, Instruction)                              \
1129  M(X86PackedSwitch, Instruction)
1130#endif
1131
1132#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1133
1134#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1135  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1136  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1137  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1138  FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
1139  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1140  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1141  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1142
1143#define FOR_EACH_INSTRUCTION(M)                                         \
1144  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1145  M(Constant, Instruction)                                              \
1146  M(UnaryOperation, Instruction)                                        \
1147  M(BinaryOperation, Instruction)                                       \
1148  M(Invoke, Instruction)
1149
1150#define FORWARD_DECLARATION(type, super) class H##type;
1151FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1152#undef FORWARD_DECLARATION
1153
1154#define DECLARE_INSTRUCTION(type)                                       \
1155  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
1156  const char* DebugName() const OVERRIDE { return #type; }              \
1157  const H##type* As##type() const OVERRIDE { return this; }             \
1158  H##type* As##type() OVERRIDE { return this; }                         \
1159  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1160    return other->Is##type();                                           \
1161  }                                                                     \
1162  void Accept(HGraphVisitor* visitor) OVERRIDE
1163
1164template <typename T> class HUseList;
1165
1166template <typename T>
1167class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1168 public:
1169  HUseListNode* GetPrevious() const { return prev_; }
1170  HUseListNode* GetNext() const { return next_; }
1171  T GetUser() const { return user_; }
1172  size_t GetIndex() const { return index_; }
1173  void SetIndex(size_t index) { index_ = index; }
1174
1175 private:
1176  HUseListNode(T user, size_t index)
1177      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1178
1179  T const user_;
1180  size_t index_;
1181  HUseListNode<T>* prev_;
1182  HUseListNode<T>* next_;
1183
1184  friend class HUseList<T>;
1185
1186  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1187};
1188
1189template <typename T>
1190class HUseList : public ValueObject {
1191 public:
1192  HUseList() : first_(nullptr) {}
1193
1194  void Clear() {
1195    first_ = nullptr;
1196  }
1197
1198  // Adds a new entry at the beginning of the use list and returns
1199  // the newly created node.
1200  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1201    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1202    if (IsEmpty()) {
1203      first_ = new_node;
1204    } else {
1205      first_->prev_ = new_node;
1206      new_node->next_ = first_;
1207      first_ = new_node;
1208    }
1209    return new_node;
1210  }
1211
1212  HUseListNode<T>* GetFirst() const {
1213    return first_;
1214  }
1215
1216  void Remove(HUseListNode<T>* node) {
1217    DCHECK(node != nullptr);
1218    DCHECK(Contains(node));
1219
1220    if (node->prev_ != nullptr) {
1221      node->prev_->next_ = node->next_;
1222    }
1223    if (node->next_ != nullptr) {
1224      node->next_->prev_ = node->prev_;
1225    }
1226    if (node == first_) {
1227      first_ = node->next_;
1228    }
1229  }
1230
1231  bool Contains(const HUseListNode<T>* node) const {
1232    if (node == nullptr) {
1233      return false;
1234    }
1235    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1236      if (current == node) {
1237        return true;
1238      }
1239    }
1240    return false;
1241  }
1242
1243  bool IsEmpty() const {
1244    return first_ == nullptr;
1245  }
1246
1247  bool HasOnlyOneUse() const {
1248    return first_ != nullptr && first_->next_ == nullptr;
1249  }
1250
1251  size_t SizeSlow() const {
1252    size_t count = 0;
1253    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1254      ++count;
1255    }
1256    return count;
1257  }
1258
1259 private:
1260  HUseListNode<T>* first_;
1261};
1262
1263template<typename T>
1264class HUseIterator : public ValueObject {
1265 public:
1266  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1267
1268  bool Done() const { return current_ == nullptr; }
1269
1270  void Advance() {
1271    DCHECK(!Done());
1272    current_ = current_->GetNext();
1273  }
1274
1275  HUseListNode<T>* Current() const {
1276    DCHECK(!Done());
1277    return current_;
1278  }
1279
1280 private:
1281  HUseListNode<T>* current_;
1282
1283  friend class HValue;
1284};
1285
1286// This class is used by HEnvironment and HInstruction classes to record the
1287// instructions they use and pointers to the corresponding HUseListNodes kept
1288// by the used instructions.
1289template <typename T>
1290class HUserRecord : public ValueObject {
1291 public:
1292  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1293  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1294
1295  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1296    : instruction_(old_record.instruction_), use_node_(use_node) {
1297    DCHECK(instruction_ != nullptr);
1298    DCHECK(use_node_ != nullptr);
1299    DCHECK(old_record.use_node_ == nullptr);
1300  }
1301
1302  HInstruction* GetInstruction() const { return instruction_; }
1303  HUseListNode<T>* GetUseNode() const { return use_node_; }
1304
1305 private:
1306  // Instruction used by the user.
1307  HInstruction* instruction_;
1308
1309  // Corresponding entry in the use list kept by 'instruction_'.
1310  HUseListNode<T>* use_node_;
1311};
1312
1313/**
1314 * Side-effects representation.
1315 *
1316 * For write/read dependences on fields/arrays, the dependence analysis uses
1317 * type disambiguation (e.g. a float field write cannot modify the value of an
1318 * integer field read) and the access type (e.g.  a reference array write cannot
1319 * modify the value of a reference field read [although it may modify the
1320 * reference fetch prior to reading the field, which is represented by its own
1321 * write/read dependence]). The analysis makes conservative points-to
1322 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1323 * the same, and any reference read depends on any reference read without
1324 * further regard of its type).
1325 *
1326 * The internal representation uses 38-bit and is described in the table below.
1327 * The first line indicates the side effect, and for field/array accesses the
1328 * second line indicates the type of the access (in the order of the
1329 * Primitive::Type enum).
1330 * The two numbered lines below indicate the bit position in the bitfield (read
1331 * vertically).
1332 *
1333 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1334 *   +-------------+---------+---------+--------------+---------+---------+
1335 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1336 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1337 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1338 *
1339 * Note that, to ease the implementation, 'changes' bits are least significant
1340 * bits, while 'dependency' bits are most significant bits.
1341 */
1342class SideEffects : public ValueObject {
1343 public:
1344  SideEffects() : flags_(0) {}
1345
1346  static SideEffects None() {
1347    return SideEffects(0);
1348  }
1349
1350  static SideEffects All() {
1351    return SideEffects(kAllChangeBits | kAllDependOnBits);
1352  }
1353
1354  static SideEffects AllChanges() {
1355    return SideEffects(kAllChangeBits);
1356  }
1357
1358  static SideEffects AllDependencies() {
1359    return SideEffects(kAllDependOnBits);
1360  }
1361
1362  static SideEffects AllExceptGCDependency() {
1363    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1364  }
1365
1366  static SideEffects AllWritesAndReads() {
1367    return SideEffects(kAllWrites | kAllReads);
1368  }
1369
1370  static SideEffects AllWrites() {
1371    return SideEffects(kAllWrites);
1372  }
1373
1374  static SideEffects AllReads() {
1375    return SideEffects(kAllReads);
1376  }
1377
1378  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1379    return is_volatile
1380        ? AllWritesAndReads()
1381        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1382  }
1383
1384  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1385    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1386  }
1387
1388  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1389    return is_volatile
1390        ? AllWritesAndReads()
1391        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1392  }
1393
1394  static SideEffects ArrayReadOfType(Primitive::Type type) {
1395    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1396  }
1397
1398  static SideEffects CanTriggerGC() {
1399    return SideEffects(1ULL << kCanTriggerGCBit);
1400  }
1401
1402  static SideEffects DependsOnGC() {
1403    return SideEffects(1ULL << kDependsOnGCBit);
1404  }
1405
1406  // Combines the side-effects of this and the other.
1407  SideEffects Union(SideEffects other) const {
1408    return SideEffects(flags_ | other.flags_);
1409  }
1410
1411  SideEffects Exclusion(SideEffects other) const {
1412    return SideEffects(flags_ & ~other.flags_);
1413  }
1414
1415  void Add(SideEffects other) {
1416    flags_ |= other.flags_;
1417  }
1418
1419  bool Includes(SideEffects other) const {
1420    return (other.flags_ & flags_) == other.flags_;
1421  }
1422
1423  bool HasSideEffects() const {
1424    return (flags_ & kAllChangeBits);
1425  }
1426
1427  bool HasDependencies() const {
1428    return (flags_ & kAllDependOnBits);
1429  }
1430
1431  // Returns true if there are no side effects or dependencies.
1432  bool DoesNothing() const {
1433    return flags_ == 0;
1434  }
1435
1436  // Returns true if something is written.
1437  bool DoesAnyWrite() const {
1438    return (flags_ & kAllWrites);
1439  }
1440
1441  // Returns true if something is read.
1442  bool DoesAnyRead() const {
1443    return (flags_ & kAllReads);
1444  }
1445
1446  // Returns true if potentially everything is written and read
1447  // (every type and every kind of access).
1448  bool DoesAllReadWrite() const {
1449    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1450  }
1451
1452  bool DoesAll() const {
1453    return flags_ == (kAllChangeBits | kAllDependOnBits);
1454  }
1455
1456  // Returns true if `this` may read something written by `other`.
1457  bool MayDependOn(SideEffects other) const {
1458    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1459    return (other.flags_ & depends_on_flags);
1460  }
1461
1462  // Returns string representation of flags (for debugging only).
1463  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1464  std::string ToString() const {
1465    std::string flags = "|";
1466    for (int s = kLastBit; s >= 0; s--) {
1467      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1468      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1469        // This is a bit for the GC side effect.
1470        if (current_bit_is_set) {
1471          flags += "GC";
1472        }
1473        flags += "|";
1474      } else {
1475        // This is a bit for the array/field analysis.
1476        // The underscore character stands for the 'can trigger GC' bit.
1477        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1478        if (current_bit_is_set) {
1479          flags += kDebug[s];
1480        }
1481        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1482            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1483          flags += "|";
1484        }
1485      }
1486    }
1487    return flags;
1488  }
1489
1490  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1491
1492 private:
1493  static constexpr int kFieldArrayAnalysisBits = 9;
1494
1495  static constexpr int kFieldWriteOffset = 0;
1496  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1497  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1498  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1499
1500  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1501
1502  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1503  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1504  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1505  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1506
1507  static constexpr int kLastBit = kDependsOnGCBit;
1508  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1509
1510  // Aliases.
1511
1512  static_assert(kChangeBits == kDependOnBits,
1513                "the 'change' bits should match the 'depend on' bits.");
1514
1515  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1516  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1517  static constexpr uint64_t kAllWrites =
1518      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1519  static constexpr uint64_t kAllReads =
1520      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1521
1522  // Work around the fact that HIR aliases I/F and J/D.
1523  // TODO: remove this interceptor once HIR types are clean
1524  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1525    switch (type) {
1526      case Primitive::kPrimInt:
1527      case Primitive::kPrimFloat:
1528        return TypeFlag(Primitive::kPrimInt, offset) |
1529               TypeFlag(Primitive::kPrimFloat, offset);
1530      case Primitive::kPrimLong:
1531      case Primitive::kPrimDouble:
1532        return TypeFlag(Primitive::kPrimLong, offset) |
1533               TypeFlag(Primitive::kPrimDouble, offset);
1534      default:
1535        return TypeFlag(type, offset);
1536    }
1537  }
1538
1539  // Translates type to bit flag.
1540  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1541    CHECK_NE(type, Primitive::kPrimVoid);
1542    const uint64_t one = 1;
1543    const int shift = type;  // 0-based consecutive enum
1544    DCHECK_LE(kFieldWriteOffset, shift);
1545    DCHECK_LT(shift, kArrayWriteOffset);
1546    return one << (type + offset);
1547  }
1548
1549  // Private constructor on direct flags value.
1550  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1551
1552  uint64_t flags_;
1553};
1554
1555// A HEnvironment object contains the values of virtual registers at a given location.
1556class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1557 public:
1558  HEnvironment(ArenaAllocator* arena,
1559               size_t number_of_vregs,
1560               const DexFile& dex_file,
1561               uint32_t method_idx,
1562               uint32_t dex_pc,
1563               InvokeType invoke_type,
1564               HInstruction* holder)
1565     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1566       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1567       parent_(nullptr),
1568       dex_file_(dex_file),
1569       method_idx_(method_idx),
1570       dex_pc_(dex_pc),
1571       invoke_type_(invoke_type),
1572       holder_(holder) {
1573  }
1574
1575  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1576      : HEnvironment(arena,
1577                     to_copy.Size(),
1578                     to_copy.GetDexFile(),
1579                     to_copy.GetMethodIdx(),
1580                     to_copy.GetDexPc(),
1581                     to_copy.GetInvokeType(),
1582                     holder) {}
1583
1584  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1585    if (parent_ != nullptr) {
1586      parent_->SetAndCopyParentChain(allocator, parent);
1587    } else {
1588      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1589      parent_->CopyFrom(parent);
1590      if (parent->GetParent() != nullptr) {
1591        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1592      }
1593    }
1594  }
1595
1596  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1597  void CopyFrom(HEnvironment* environment);
1598
1599  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1600  // input to the loop phi instead. This is for inserting instructions that
1601  // require an environment (like HDeoptimization) in the loop pre-header.
1602  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1603
1604  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1605    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1606  }
1607
1608  HInstruction* GetInstructionAt(size_t index) const {
1609    return vregs_[index].GetInstruction();
1610  }
1611
1612  void RemoveAsUserOfInput(size_t index) const;
1613
1614  size_t Size() const { return vregs_.size(); }
1615
1616  HEnvironment* GetParent() const { return parent_; }
1617
1618  void SetLocationAt(size_t index, Location location) {
1619    locations_[index] = location;
1620  }
1621
1622  Location GetLocationAt(size_t index) const {
1623    return locations_[index];
1624  }
1625
1626  uint32_t GetDexPc() const {
1627    return dex_pc_;
1628  }
1629
1630  uint32_t GetMethodIdx() const {
1631    return method_idx_;
1632  }
1633
1634  InvokeType GetInvokeType() const {
1635    return invoke_type_;
1636  }
1637
1638  const DexFile& GetDexFile() const {
1639    return dex_file_;
1640  }
1641
1642  HInstruction* GetHolder() const {
1643    return holder_;
1644  }
1645
1646
1647  bool IsFromInlinedInvoke() const {
1648    return GetParent() != nullptr;
1649  }
1650
1651 private:
1652  // Record instructions' use entries of this environment for constant-time removal.
1653  // It should only be called by HInstruction when a new environment use is added.
1654  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1655    DCHECK(env_use->GetUser() == this);
1656    size_t index = env_use->GetIndex();
1657    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1658  }
1659
1660  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1661  ArenaVector<Location> locations_;
1662  HEnvironment* parent_;
1663  const DexFile& dex_file_;
1664  const uint32_t method_idx_;
1665  const uint32_t dex_pc_;
1666  const InvokeType invoke_type_;
1667
1668  // The instruction that holds this environment.
1669  HInstruction* const holder_;
1670
1671  friend class HInstruction;
1672
1673  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1674};
1675
1676class ReferenceTypeInfo : ValueObject {
1677 public:
1678  typedef Handle<mirror::Class> TypeHandle;
1679
1680  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1681    // The constructor will check that the type_handle is valid.
1682    return ReferenceTypeInfo(type_handle, is_exact);
1683  }
1684
1685  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1686
1687  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1688    return handle.GetReference() != nullptr;
1689  }
1690
1691  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1692    return IsValidHandle(type_handle_);
1693  }
1694
1695  bool IsExact() const { return is_exact_; }
1696
1697  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1698    DCHECK(IsValid());
1699    return GetTypeHandle()->IsObjectClass();
1700  }
1701
1702  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1703    DCHECK(IsValid());
1704    return GetTypeHandle()->IsStringClass();
1705  }
1706
1707  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
1708    DCHECK(IsValid());
1709    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
1710  }
1711
1712  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1713    DCHECK(IsValid());
1714    return GetTypeHandle()->IsInterface();
1715  }
1716
1717  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1718    DCHECK(IsValid());
1719    return GetTypeHandle()->IsArrayClass();
1720  }
1721
1722  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1723    DCHECK(IsValid());
1724    return GetTypeHandle()->IsPrimitiveArray();
1725  }
1726
1727  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1728    DCHECK(IsValid());
1729    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
1730  }
1731
1732  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1733    DCHECK(IsValid());
1734    if (!IsExact()) return false;
1735    if (!IsArrayClass()) return false;
1736    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
1737  }
1738
1739  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1740    DCHECK(IsValid());
1741    if (!IsExact()) return false;
1742    if (!IsArrayClass()) return false;
1743    if (!rti.IsArrayClass()) return false;
1744    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
1745        rti.GetTypeHandle()->GetComponentType());
1746  }
1747
1748  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1749
1750  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1751    DCHECK(IsValid());
1752    DCHECK(rti.IsValid());
1753    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1754  }
1755
1756  bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1757    DCHECK(IsValid());
1758    DCHECK(rti.IsValid());
1759    return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
1760        GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1761  }
1762
1763  // Returns true if the type information provide the same amount of details.
1764  // Note that it does not mean that the instructions have the same actual type
1765  // (because the type can be the result of a merge).
1766  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1767    if (!IsValid() && !rti.IsValid()) {
1768      // Invalid types are equal.
1769      return true;
1770    }
1771    if (!IsValid() || !rti.IsValid()) {
1772      // One is valid, the other not.
1773      return false;
1774    }
1775    return IsExact() == rti.IsExact()
1776        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1777  }
1778
1779 private:
1780  ReferenceTypeInfo();
1781  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1782
1783  // The class of the object.
1784  TypeHandle type_handle_;
1785  // Whether or not the type is exact or a superclass of the actual type.
1786  // Whether or not we have any information about this type.
1787  bool is_exact_;
1788};
1789
1790std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1791
1792class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1793 public:
1794  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1795      : previous_(nullptr),
1796        next_(nullptr),
1797        block_(nullptr),
1798        dex_pc_(dex_pc),
1799        id_(-1),
1800        ssa_index_(-1),
1801        environment_(nullptr),
1802        locations_(nullptr),
1803        live_interval_(nullptr),
1804        lifetime_position_(kNoLifetime),
1805        side_effects_(side_effects),
1806        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1807
1808  virtual ~HInstruction() {}
1809
1810#define DECLARE_KIND(type, super) k##type,
1811  enum InstructionKind {
1812    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1813  };
1814#undef DECLARE_KIND
1815
1816  HInstruction* GetNext() const { return next_; }
1817  HInstruction* GetPrevious() const { return previous_; }
1818
1819  HInstruction* GetNextDisregardingMoves() const;
1820  HInstruction* GetPreviousDisregardingMoves() const;
1821
1822  HBasicBlock* GetBlock() const { return block_; }
1823  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1824  void SetBlock(HBasicBlock* block) { block_ = block; }
1825  bool IsInBlock() const { return block_ != nullptr; }
1826  bool IsInLoop() const { return block_->IsInLoop(); }
1827  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1828
1829  virtual size_t InputCount() const = 0;
1830  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1831
1832  virtual void Accept(HGraphVisitor* visitor) = 0;
1833  virtual const char* DebugName() const = 0;
1834
1835  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1836  void SetRawInputAt(size_t index, HInstruction* input) {
1837    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1838  }
1839
1840  virtual bool NeedsEnvironment() const { return false; }
1841
1842  uint32_t GetDexPc() const { return dex_pc_; }
1843
1844  virtual bool IsControlFlow() const { return false; }
1845
1846  virtual bool CanThrow() const { return false; }
1847  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1848
1849  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1850  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1851
1852  // Does not apply for all instructions, but having this at top level greatly
1853  // simplifies the null check elimination.
1854  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1855  virtual bool CanBeNull() const {
1856    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1857    return true;
1858  }
1859
1860  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1861    return false;
1862  }
1863
1864  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1865
1866  ReferenceTypeInfo GetReferenceTypeInfo() const {
1867    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1868    return reference_type_info_;
1869  }
1870
1871  void AddUseAt(HInstruction* user, size_t index) {
1872    DCHECK(user != nullptr);
1873    HUseListNode<HInstruction*>* use =
1874        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1875    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1876  }
1877
1878  void AddEnvUseAt(HEnvironment* user, size_t index) {
1879    DCHECK(user != nullptr);
1880    HUseListNode<HEnvironment*>* env_use =
1881        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1882    user->RecordEnvUse(env_use);
1883  }
1884
1885  void RemoveAsUserOfInput(size_t input) {
1886    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1887    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1888  }
1889
1890  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1891  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1892
1893  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1894  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1895  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1896  bool HasOnlyOneNonEnvironmentUse() const {
1897    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1898  }
1899
1900  // Does this instruction strictly dominate `other_instruction`?
1901  // Returns false if this instruction and `other_instruction` are the same.
1902  // Aborts if this instruction and `other_instruction` are both phis.
1903  bool StrictlyDominates(HInstruction* other_instruction) const;
1904
1905  int GetId() const { return id_; }
1906  void SetId(int id) { id_ = id; }
1907
1908  int GetSsaIndex() const { return ssa_index_; }
1909  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1910  bool HasSsaIndex() const { return ssa_index_ != -1; }
1911
1912  bool HasEnvironment() const { return environment_ != nullptr; }
1913  HEnvironment* GetEnvironment() const { return environment_; }
1914  // Set the `environment_` field. Raw because this method does not
1915  // update the uses lists.
1916  void SetRawEnvironment(HEnvironment* environment) {
1917    DCHECK(environment_ == nullptr);
1918    DCHECK_EQ(environment->GetHolder(), this);
1919    environment_ = environment;
1920  }
1921
1922  // Set the environment of this instruction, copying it from `environment`. While
1923  // copying, the uses lists are being updated.
1924  void CopyEnvironmentFrom(HEnvironment* environment) {
1925    DCHECK(environment_ == nullptr);
1926    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1927    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1928    environment_->CopyFrom(environment);
1929    if (environment->GetParent() != nullptr) {
1930      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1931    }
1932  }
1933
1934  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1935                                                HBasicBlock* block) {
1936    DCHECK(environment_ == nullptr);
1937    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1938    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1939    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1940    if (environment->GetParent() != nullptr) {
1941      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1942    }
1943  }
1944
1945  // Returns the number of entries in the environment. Typically, that is the
1946  // number of dex registers in a method. It could be more in case of inlining.
1947  size_t EnvironmentSize() const;
1948
1949  LocationSummary* GetLocations() const { return locations_; }
1950  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1951
1952  void ReplaceWith(HInstruction* instruction);
1953  void ReplaceInput(HInstruction* replacement, size_t index);
1954
1955  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1956  // uses of this instruction by `other` are *not* updated.
1957  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1958    ReplaceWith(other);
1959    other->ReplaceInput(this, use_index);
1960  }
1961
1962  // Move `this` instruction before `cursor`.
1963  void MoveBefore(HInstruction* cursor);
1964
1965  // Move `this` before its first user and out of any loops. If there is no
1966  // out-of-loop user that dominates all other users, move the instruction
1967  // to the end of the out-of-loop common dominator of the user's blocks.
1968  //
1969  // This can be used only on non-throwing instructions with no side effects that
1970  // have at least one use but no environment uses.
1971  void MoveBeforeFirstUserAndOutOfLoops();
1972
1973#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1974  bool Is##type() const { return (As##type() != nullptr); }                    \
1975  virtual const H##type* As##type() const { return nullptr; }                  \
1976  virtual H##type* As##type() { return nullptr; }
1977
1978  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1979#undef INSTRUCTION_TYPE_CHECK
1980
1981  // Returns whether the instruction can be moved within the graph.
1982  virtual bool CanBeMoved() const { return false; }
1983
1984  // Returns whether the two instructions are of the same kind.
1985  virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1986    return false;
1987  }
1988
1989  // Returns whether any data encoded in the two instructions is equal.
1990  // This method does not look at the inputs. Both instructions must be
1991  // of the same type, otherwise the method has undefined behavior.
1992  virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1993    return false;
1994  }
1995
1996  // Returns whether two instructions are equal, that is:
1997  // 1) They have the same type and contain the same data (InstructionDataEquals).
1998  // 2) Their inputs are identical.
1999  bool Equals(HInstruction* other) const;
2000
2001  virtual InstructionKind GetKind() const = 0;
2002
2003  virtual size_t ComputeHashCode() const {
2004    size_t result = GetKind();
2005    for (size_t i = 0, e = InputCount(); i < e; ++i) {
2006      result = (result * 31) + InputAt(i)->GetId();
2007    }
2008    return result;
2009  }
2010
2011  SideEffects GetSideEffects() const { return side_effects_; }
2012  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
2013
2014  size_t GetLifetimePosition() const { return lifetime_position_; }
2015  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
2016  LiveInterval* GetLiveInterval() const { return live_interval_; }
2017  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
2018  bool HasLiveInterval() const { return live_interval_ != nullptr; }
2019
2020  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2021
2022  // Returns whether the code generation of the instruction will require to have access
2023  // to the current method. Such instructions are:
2024  // (1): Instructions that require an environment, as calling the runtime requires
2025  //      to walk the stack and have the current method stored at a specific stack address.
2026  // (2): Object literals like classes and strings, that are loaded from the dex cache
2027  //      fields of the current method.
2028  bool NeedsCurrentMethod() const {
2029    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
2030  }
2031
2032  // Returns whether the code generation of the instruction will require to have access
2033  // to the dex cache of the current method's declaring class via the current method.
2034  virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2035
2036  // Does this instruction have any use in an environment before
2037  // control flow hits 'other'?
2038  bool HasAnyEnvironmentUseBefore(HInstruction* other);
2039
2040  // Remove all references to environment uses of this instruction.
2041  // The caller must ensure that this is safe to do.
2042  void RemoveEnvironmentUsers();
2043
2044 protected:
2045  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
2046  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
2047
2048 private:
2049  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
2050
2051  HInstruction* previous_;
2052  HInstruction* next_;
2053  HBasicBlock* block_;
2054  const uint32_t dex_pc_;
2055
2056  // An instruction gets an id when it is added to the graph.
2057  // It reflects creation order. A negative id means the instruction
2058  // has not been added to the graph.
2059  int id_;
2060
2061  // When doing liveness analysis, instructions that have uses get an SSA index.
2062  int ssa_index_;
2063
2064  // List of instructions that have this instruction as input.
2065  HUseList<HInstruction*> uses_;
2066
2067  // List of environments that contain this instruction.
2068  HUseList<HEnvironment*> env_uses_;
2069
2070  // The environment associated with this instruction. Not null if the instruction
2071  // might jump out of the method.
2072  HEnvironment* environment_;
2073
2074  // Set by the code generator.
2075  LocationSummary* locations_;
2076
2077  // Set by the liveness analysis.
2078  LiveInterval* live_interval_;
2079
2080  // Set by the liveness analysis, this is the position in a linear
2081  // order of blocks where this instruction's live interval start.
2082  size_t lifetime_position_;
2083
2084  SideEffects side_effects_;
2085
2086  // TODO: for primitive types this should be marked as invalid.
2087  ReferenceTypeInfo reference_type_info_;
2088
2089  friend class GraphChecker;
2090  friend class HBasicBlock;
2091  friend class HEnvironment;
2092  friend class HGraph;
2093  friend class HInstructionList;
2094
2095  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2096};
2097std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2098
2099class HInputIterator : public ValueObject {
2100 public:
2101  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2102
2103  bool Done() const { return index_ == instruction_->InputCount(); }
2104  HInstruction* Current() const { return instruction_->InputAt(index_); }
2105  void Advance() { index_++; }
2106
2107 private:
2108  HInstruction* instruction_;
2109  size_t index_;
2110
2111  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2112};
2113
2114class HInstructionIterator : public ValueObject {
2115 public:
2116  explicit HInstructionIterator(const HInstructionList& instructions)
2117      : instruction_(instructions.first_instruction_) {
2118    next_ = Done() ? nullptr : instruction_->GetNext();
2119  }
2120
2121  bool Done() const { return instruction_ == nullptr; }
2122  HInstruction* Current() const { return instruction_; }
2123  void Advance() {
2124    instruction_ = next_;
2125    next_ = Done() ? nullptr : instruction_->GetNext();
2126  }
2127
2128 private:
2129  HInstruction* instruction_;
2130  HInstruction* next_;
2131
2132  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2133};
2134
2135class HBackwardInstructionIterator : public ValueObject {
2136 public:
2137  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2138      : instruction_(instructions.last_instruction_) {
2139    next_ = Done() ? nullptr : instruction_->GetPrevious();
2140  }
2141
2142  bool Done() const { return instruction_ == nullptr; }
2143  HInstruction* Current() const { return instruction_; }
2144  void Advance() {
2145    instruction_ = next_;
2146    next_ = Done() ? nullptr : instruction_->GetPrevious();
2147  }
2148
2149 private:
2150  HInstruction* instruction_;
2151  HInstruction* next_;
2152
2153  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2154};
2155
2156template<size_t N>
2157class HTemplateInstruction: public HInstruction {
2158 public:
2159  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2160      : HInstruction(side_effects, dex_pc), inputs_() {}
2161  virtual ~HTemplateInstruction() {}
2162
2163  size_t InputCount() const OVERRIDE { return N; }
2164
2165 protected:
2166  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2167    DCHECK_LT(i, N);
2168    return inputs_[i];
2169  }
2170
2171  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2172    DCHECK_LT(i, N);
2173    inputs_[i] = input;
2174  }
2175
2176 private:
2177  std::array<HUserRecord<HInstruction*>, N> inputs_;
2178
2179  friend class SsaBuilder;
2180};
2181
2182// HTemplateInstruction specialization for N=0.
2183template<>
2184class HTemplateInstruction<0>: public HInstruction {
2185 public:
2186  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2187      : HInstruction(side_effects, dex_pc) {}
2188
2189  virtual ~HTemplateInstruction() {}
2190
2191  size_t InputCount() const OVERRIDE { return 0; }
2192
2193 protected:
2194  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2195    LOG(FATAL) << "Unreachable";
2196    UNREACHABLE();
2197  }
2198
2199  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2200                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2201    LOG(FATAL) << "Unreachable";
2202    UNREACHABLE();
2203  }
2204
2205 private:
2206  friend class SsaBuilder;
2207};
2208
2209template<intptr_t N>
2210class HExpression : public HTemplateInstruction<N> {
2211 public:
2212  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2213      : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {}
2214  virtual ~HExpression() {}
2215
2216  Primitive::Type GetType() const OVERRIDE { return type_; }
2217
2218 protected:
2219  Primitive::Type type_;
2220};
2221
2222// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2223// instruction that branches to the exit block.
2224class HReturnVoid : public HTemplateInstruction<0> {
2225 public:
2226  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2227      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2228
2229  bool IsControlFlow() const OVERRIDE { return true; }
2230
2231  DECLARE_INSTRUCTION(ReturnVoid);
2232
2233 private:
2234  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2235};
2236
2237// Represents dex's RETURN opcodes. A HReturn is a control flow
2238// instruction that branches to the exit block.
2239class HReturn : public HTemplateInstruction<1> {
2240 public:
2241  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2242      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2243    SetRawInputAt(0, value);
2244  }
2245
2246  bool IsControlFlow() const OVERRIDE { return true; }
2247
2248  DECLARE_INSTRUCTION(Return);
2249
2250 private:
2251  DISALLOW_COPY_AND_ASSIGN(HReturn);
2252};
2253
2254// The exit instruction is the only instruction of the exit block.
2255// Instructions aborting the method (HThrow and HReturn) must branch to the
2256// exit block.
2257class HExit : public HTemplateInstruction<0> {
2258 public:
2259  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2260
2261  bool IsControlFlow() const OVERRIDE { return true; }
2262
2263  DECLARE_INSTRUCTION(Exit);
2264
2265 private:
2266  DISALLOW_COPY_AND_ASSIGN(HExit);
2267};
2268
2269// Jumps from one block to another.
2270class HGoto : public HTemplateInstruction<0> {
2271 public:
2272  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2273
2274  bool IsControlFlow() const OVERRIDE { return true; }
2275
2276  HBasicBlock* GetSuccessor() const {
2277    return GetBlock()->GetSingleSuccessor();
2278  }
2279
2280  DECLARE_INSTRUCTION(Goto);
2281
2282 private:
2283  DISALLOW_COPY_AND_ASSIGN(HGoto);
2284};
2285
2286class HConstant : public HExpression<0> {
2287 public:
2288  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2289      : HExpression(type, SideEffects::None(), dex_pc) {}
2290
2291  bool CanBeMoved() const OVERRIDE { return true; }
2292
2293  virtual bool IsMinusOne() const { return false; }
2294  virtual bool IsZero() const { return false; }
2295  virtual bool IsOne() const { return false; }
2296
2297  virtual uint64_t GetValueAsUint64() const = 0;
2298
2299  DECLARE_INSTRUCTION(Constant);
2300
2301 private:
2302  DISALLOW_COPY_AND_ASSIGN(HConstant);
2303};
2304
2305class HNullConstant : public HConstant {
2306 public:
2307  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2308    return true;
2309  }
2310
2311  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2312
2313  size_t ComputeHashCode() const OVERRIDE { return 0; }
2314
2315  DECLARE_INSTRUCTION(NullConstant);
2316
2317 private:
2318  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2319
2320  friend class HGraph;
2321  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2322};
2323
2324// Constants of the type int. Those can be from Dex instructions, or
2325// synthesized (for example with the if-eqz instruction).
2326class HIntConstant : public HConstant {
2327 public:
2328  int32_t GetValue() const { return value_; }
2329
2330  uint64_t GetValueAsUint64() const OVERRIDE {
2331    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2332  }
2333
2334  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2335    DCHECK(other->IsIntConstant());
2336    return other->AsIntConstant()->value_ == value_;
2337  }
2338
2339  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2340
2341  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2342  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2343  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2344
2345  DECLARE_INSTRUCTION(IntConstant);
2346
2347 private:
2348  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2349      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2350  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2351      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2352
2353  const int32_t value_;
2354
2355  friend class HGraph;
2356  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2357  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2358  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2359};
2360
2361class HLongConstant : public HConstant {
2362 public:
2363  int64_t GetValue() const { return value_; }
2364
2365  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2366
2367  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2368    DCHECK(other->IsLongConstant());
2369    return other->AsLongConstant()->value_ == value_;
2370  }
2371
2372  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2373
2374  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2375  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2376  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2377
2378  DECLARE_INSTRUCTION(LongConstant);
2379
2380 private:
2381  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2382      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2383
2384  const int64_t value_;
2385
2386  friend class HGraph;
2387  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2388};
2389
2390// Conditional branch. A block ending with an HIf instruction must have
2391// two successors.
2392class HIf : public HTemplateInstruction<1> {
2393 public:
2394  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2395      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2396    SetRawInputAt(0, input);
2397  }
2398
2399  bool IsControlFlow() const OVERRIDE { return true; }
2400
2401  HBasicBlock* IfTrueSuccessor() const {
2402    return GetBlock()->GetSuccessors()[0];
2403  }
2404
2405  HBasicBlock* IfFalseSuccessor() const {
2406    return GetBlock()->GetSuccessors()[1];
2407  }
2408
2409  DECLARE_INSTRUCTION(If);
2410
2411 private:
2412  DISALLOW_COPY_AND_ASSIGN(HIf);
2413};
2414
2415
2416// Abstract instruction which marks the beginning and/or end of a try block and
2417// links it to the respective exception handlers. Behaves the same as a Goto in
2418// non-exceptional control flow.
2419// Normal-flow successor is stored at index zero, exception handlers under
2420// higher indices in no particular order.
2421class HTryBoundary : public HTemplateInstruction<0> {
2422 public:
2423  enum BoundaryKind {
2424    kEntry,
2425    kExit,
2426  };
2427
2428  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2429      : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {}
2430
2431  bool IsControlFlow() const OVERRIDE { return true; }
2432
2433  // Returns the block's non-exceptional successor (index zero).
2434  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2435
2436  ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
2437    return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
2438  }
2439
2440  // Returns whether `handler` is among its exception handlers (non-zero index
2441  // successors).
2442  bool HasExceptionHandler(const HBasicBlock& handler) const {
2443    DCHECK(handler.IsCatchBlock());
2444    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2445  }
2446
2447  // If not present already, adds `handler` to its block's list of exception
2448  // handlers.
2449  void AddExceptionHandler(HBasicBlock* handler) {
2450    if (!HasExceptionHandler(*handler)) {
2451      GetBlock()->AddSuccessor(handler);
2452    }
2453  }
2454
2455  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2456
2457  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2458
2459  DECLARE_INSTRUCTION(TryBoundary);
2460
2461 private:
2462  const BoundaryKind kind_;
2463
2464  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2465};
2466
2467// Deoptimize to interpreter, upon checking a condition.
2468class HDeoptimize : public HTemplateInstruction<1> {
2469 public:
2470  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2471      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2472    SetRawInputAt(0, cond);
2473  }
2474
2475  bool CanBeMoved() const OVERRIDE { return true; }
2476  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2477    return true;
2478  }
2479  bool NeedsEnvironment() const OVERRIDE { return true; }
2480  bool CanThrow() const OVERRIDE { return true; }
2481
2482  DECLARE_INSTRUCTION(Deoptimize);
2483
2484 private:
2485  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2486};
2487
2488// Represents the ArtMethod that was passed as a first argument to
2489// the method. It is used by instructions that depend on it, like
2490// instructions that work with the dex cache.
2491class HCurrentMethod : public HExpression<0> {
2492 public:
2493  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2494      : HExpression(type, SideEffects::None(), dex_pc) {}
2495
2496  DECLARE_INSTRUCTION(CurrentMethod);
2497
2498 private:
2499  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2500};
2501
2502// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2503// have one successor for each entry in the switch table, and the final successor
2504// will be the block containing the next Dex opcode.
2505class HPackedSwitch : public HTemplateInstruction<1> {
2506 public:
2507  HPackedSwitch(int32_t start_value,
2508                uint32_t num_entries,
2509                HInstruction* input,
2510                uint32_t dex_pc = kNoDexPc)
2511    : HTemplateInstruction(SideEffects::None(), dex_pc),
2512      start_value_(start_value),
2513      num_entries_(num_entries) {
2514    SetRawInputAt(0, input);
2515  }
2516
2517  bool IsControlFlow() const OVERRIDE { return true; }
2518
2519  int32_t GetStartValue() const { return start_value_; }
2520
2521  uint32_t GetNumEntries() const { return num_entries_; }
2522
2523  HBasicBlock* GetDefaultBlock() const {
2524    // Last entry is the default block.
2525    return GetBlock()->GetSuccessors()[num_entries_];
2526  }
2527  DECLARE_INSTRUCTION(PackedSwitch);
2528
2529 private:
2530  const int32_t start_value_;
2531  const uint32_t num_entries_;
2532
2533  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2534};
2535
2536class HUnaryOperation : public HExpression<1> {
2537 public:
2538  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2539      : HExpression(result_type, SideEffects::None(), dex_pc) {
2540    SetRawInputAt(0, input);
2541  }
2542
2543  HInstruction* GetInput() const { return InputAt(0); }
2544  Primitive::Type GetResultType() const { return GetType(); }
2545
2546  bool CanBeMoved() const OVERRIDE { return true; }
2547  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2548    return true;
2549  }
2550
2551  // Try to statically evaluate `operation` and return a HConstant
2552  // containing the result of this evaluation.  If `operation` cannot
2553  // be evaluated as a constant, return null.
2554  HConstant* TryStaticEvaluation() const;
2555
2556  // Apply this operation to `x`.
2557  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2558  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2559
2560  DECLARE_INSTRUCTION(UnaryOperation);
2561
2562 private:
2563  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2564};
2565
2566class HBinaryOperation : public HExpression<2> {
2567 public:
2568  HBinaryOperation(Primitive::Type result_type,
2569                   HInstruction* left,
2570                   HInstruction* right,
2571                   SideEffects side_effects = SideEffects::None(),
2572                   uint32_t dex_pc = kNoDexPc)
2573      : HExpression(result_type, side_effects, dex_pc) {
2574    SetRawInputAt(0, left);
2575    SetRawInputAt(1, right);
2576  }
2577
2578  HInstruction* GetLeft() const { return InputAt(0); }
2579  HInstruction* GetRight() const { return InputAt(1); }
2580  Primitive::Type GetResultType() const { return GetType(); }
2581
2582  virtual bool IsCommutative() const { return false; }
2583
2584  // Put constant on the right.
2585  // Returns whether order is changed.
2586  bool OrderInputsWithConstantOnTheRight() {
2587    HInstruction* left = InputAt(0);
2588    HInstruction* right = InputAt(1);
2589    if (left->IsConstant() && !right->IsConstant()) {
2590      ReplaceInput(right, 0);
2591      ReplaceInput(left, 1);
2592      return true;
2593    }
2594    return false;
2595  }
2596
2597  // Order inputs by instruction id, but favor constant on the right side.
2598  // This helps GVN for commutative ops.
2599  void OrderInputs() {
2600    DCHECK(IsCommutative());
2601    HInstruction* left = InputAt(0);
2602    HInstruction* right = InputAt(1);
2603    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2604      return;
2605    }
2606    if (OrderInputsWithConstantOnTheRight()) {
2607      return;
2608    }
2609    // Order according to instruction id.
2610    if (left->GetId() > right->GetId()) {
2611      ReplaceInput(right, 0);
2612      ReplaceInput(left, 1);
2613    }
2614  }
2615
2616  bool CanBeMoved() const OVERRIDE { return true; }
2617  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2618    return true;
2619  }
2620
2621  // Try to statically evaluate `operation` and return a HConstant
2622  // containing the result of this evaluation.  If `operation` cannot
2623  // be evaluated as a constant, return null.
2624  HConstant* TryStaticEvaluation() const;
2625
2626  // Apply this operation to `x` and `y`.
2627  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2628  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2629  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2630                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2631    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2632    return nullptr;
2633  }
2634  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2635                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2636    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2637    return nullptr;
2638  }
2639  virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2640                              HNullConstant* y ATTRIBUTE_UNUSED) const {
2641    VLOG(compiler) << DebugName() << " is not defined for the (null, null) case.";
2642    return nullptr;
2643  }
2644
2645  // Returns an input that can legally be used as the right input and is
2646  // constant, or null.
2647  HConstant* GetConstantRight() const;
2648
2649  // If `GetConstantRight()` returns one of the input, this returns the other
2650  // one. Otherwise it returns null.
2651  HInstruction* GetLeastConstantLeft() const;
2652
2653  DECLARE_INSTRUCTION(BinaryOperation);
2654
2655 private:
2656  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2657};
2658
2659// The comparison bias applies for floating point operations and indicates how NaN
2660// comparisons are treated:
2661enum class ComparisonBias {
2662  kNoBias,  // bias is not applicable (i.e. for long operation)
2663  kGtBias,  // return 1 for NaN comparisons
2664  kLtBias,  // return -1 for NaN comparisons
2665};
2666
2667class HCondition : public HBinaryOperation {
2668 public:
2669  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2670      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc),
2671        needs_materialization_(true),
2672        bias_(ComparisonBias::kNoBias) {}
2673
2674  bool NeedsMaterialization() const { return needs_materialization_; }
2675  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2676
2677  // For code generation purposes, returns whether this instruction is just before
2678  // `instruction`, and disregard moves in between.
2679  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2680
2681  DECLARE_INSTRUCTION(Condition);
2682
2683  virtual IfCondition GetCondition() const = 0;
2684
2685  virtual IfCondition GetOppositeCondition() const = 0;
2686
2687  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2688
2689  void SetBias(ComparisonBias bias) { bias_ = bias; }
2690
2691  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2692    return bias_ == other->AsCondition()->bias_;
2693  }
2694
2695  bool IsFPConditionTrueIfNaN() const {
2696    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2697    IfCondition if_cond = GetCondition();
2698    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2699  }
2700
2701  bool IsFPConditionFalseIfNaN() const {
2702    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2703    IfCondition if_cond = GetCondition();
2704    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2705  }
2706
2707 private:
2708  // For register allocation purposes, returns whether this instruction needs to be
2709  // materialized (that is, not just be in the processor flags).
2710  bool needs_materialization_;
2711
2712  // Needed if we merge a HCompare into a HCondition.
2713  ComparisonBias bias_;
2714
2715  DISALLOW_COPY_AND_ASSIGN(HCondition);
2716};
2717
2718// Instruction to check if two inputs are equal to each other.
2719class HEqual : public HCondition {
2720 public:
2721  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2722      : HCondition(first, second, dex_pc) {}
2723
2724  bool IsCommutative() const OVERRIDE { return true; }
2725
2726  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2727    return GetBlock()->GetGraph()->GetIntConstant(
2728        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2729  }
2730  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2731    return GetBlock()->GetGraph()->GetIntConstant(
2732        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2733  }
2734  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2735                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2736    return GetBlock()->GetGraph()->GetIntConstant(1);
2737  }
2738
2739  DECLARE_INSTRUCTION(Equal);
2740
2741  IfCondition GetCondition() const OVERRIDE {
2742    return kCondEQ;
2743  }
2744
2745  IfCondition GetOppositeCondition() const OVERRIDE {
2746    return kCondNE;
2747  }
2748
2749 private:
2750  template <typename T> bool Compute(T x, T y) const { return x == y; }
2751
2752  DISALLOW_COPY_AND_ASSIGN(HEqual);
2753};
2754
2755class HNotEqual : public HCondition {
2756 public:
2757  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2758      : HCondition(first, second, dex_pc) {}
2759
2760  bool IsCommutative() const OVERRIDE { return true; }
2761
2762  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2763    return GetBlock()->GetGraph()->GetIntConstant(
2764        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2765  }
2766  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2767    return GetBlock()->GetGraph()->GetIntConstant(
2768        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2769  }
2770  HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
2771                      HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
2772    return GetBlock()->GetGraph()->GetIntConstant(0);
2773  }
2774
2775  DECLARE_INSTRUCTION(NotEqual);
2776
2777  IfCondition GetCondition() const OVERRIDE {
2778    return kCondNE;
2779  }
2780
2781  IfCondition GetOppositeCondition() const OVERRIDE {
2782    return kCondEQ;
2783  }
2784
2785 private:
2786  template <typename T> bool Compute(T x, T y) const { return x != y; }
2787
2788  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2789};
2790
2791class HLessThan : public HCondition {
2792 public:
2793  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2794      : HCondition(first, second, dex_pc) {}
2795
2796  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2797    return GetBlock()->GetGraph()->GetIntConstant(
2798        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2799  }
2800  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2801    return GetBlock()->GetGraph()->GetIntConstant(
2802        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2803  }
2804
2805  DECLARE_INSTRUCTION(LessThan);
2806
2807  IfCondition GetCondition() const OVERRIDE {
2808    return kCondLT;
2809  }
2810
2811  IfCondition GetOppositeCondition() const OVERRIDE {
2812    return kCondGE;
2813  }
2814
2815 private:
2816  template <typename T> bool Compute(T x, T y) const { return x < y; }
2817
2818  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2819};
2820
2821class HLessThanOrEqual : public HCondition {
2822 public:
2823  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2824      : HCondition(first, second, dex_pc) {}
2825
2826  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2827    return GetBlock()->GetGraph()->GetIntConstant(
2828        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2829  }
2830  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2831    return GetBlock()->GetGraph()->GetIntConstant(
2832        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2833  }
2834
2835  DECLARE_INSTRUCTION(LessThanOrEqual);
2836
2837  IfCondition GetCondition() const OVERRIDE {
2838    return kCondLE;
2839  }
2840
2841  IfCondition GetOppositeCondition() const OVERRIDE {
2842    return kCondGT;
2843  }
2844
2845 private:
2846  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2847
2848  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2849};
2850
2851class HGreaterThan : public HCondition {
2852 public:
2853  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2854      : HCondition(first, second, dex_pc) {}
2855
2856  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2857    return GetBlock()->GetGraph()->GetIntConstant(
2858        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2859  }
2860  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2861    return GetBlock()->GetGraph()->GetIntConstant(
2862        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2863  }
2864
2865  DECLARE_INSTRUCTION(GreaterThan);
2866
2867  IfCondition GetCondition() const OVERRIDE {
2868    return kCondGT;
2869  }
2870
2871  IfCondition GetOppositeCondition() const OVERRIDE {
2872    return kCondLE;
2873  }
2874
2875 private:
2876  template <typename T> bool Compute(T x, T y) const { return x > y; }
2877
2878  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2879};
2880
2881class HGreaterThanOrEqual : public HCondition {
2882 public:
2883  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2884      : HCondition(first, second, dex_pc) {}
2885
2886  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2887    return GetBlock()->GetGraph()->GetIntConstant(
2888        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2889  }
2890  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2891    return GetBlock()->GetGraph()->GetIntConstant(
2892        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2893  }
2894
2895  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2896
2897  IfCondition GetCondition() const OVERRIDE {
2898    return kCondGE;
2899  }
2900
2901  IfCondition GetOppositeCondition() const OVERRIDE {
2902    return kCondLT;
2903  }
2904
2905 private:
2906  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2907
2908  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2909};
2910
2911class HBelow : public HCondition {
2912 public:
2913  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2914      : HCondition(first, second, dex_pc) {}
2915
2916  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2917    return GetBlock()->GetGraph()->GetIntConstant(
2918        Compute(static_cast<uint32_t>(x->GetValue()),
2919                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2920  }
2921  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2922    return GetBlock()->GetGraph()->GetIntConstant(
2923        Compute(static_cast<uint64_t>(x->GetValue()),
2924                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2925  }
2926
2927  DECLARE_INSTRUCTION(Below);
2928
2929  IfCondition GetCondition() const OVERRIDE {
2930    return kCondB;
2931  }
2932
2933  IfCondition GetOppositeCondition() const OVERRIDE {
2934    return kCondAE;
2935  }
2936
2937 private:
2938  template <typename T> bool Compute(T x, T y) const { return x < y; }
2939
2940  DISALLOW_COPY_AND_ASSIGN(HBelow);
2941};
2942
2943class HBelowOrEqual : public HCondition {
2944 public:
2945  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2946      : HCondition(first, second, dex_pc) {}
2947
2948  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2949    return GetBlock()->GetGraph()->GetIntConstant(
2950        Compute(static_cast<uint32_t>(x->GetValue()),
2951                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2952  }
2953  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2954    return GetBlock()->GetGraph()->GetIntConstant(
2955        Compute(static_cast<uint64_t>(x->GetValue()),
2956                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2957  }
2958
2959  DECLARE_INSTRUCTION(BelowOrEqual);
2960
2961  IfCondition GetCondition() const OVERRIDE {
2962    return kCondBE;
2963  }
2964
2965  IfCondition GetOppositeCondition() const OVERRIDE {
2966    return kCondA;
2967  }
2968
2969 private:
2970  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2971
2972  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
2973};
2974
2975class HAbove : public HCondition {
2976 public:
2977  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2978      : HCondition(first, second, dex_pc) {}
2979
2980  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2981    return GetBlock()->GetGraph()->GetIntConstant(
2982        Compute(static_cast<uint32_t>(x->GetValue()),
2983                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2984  }
2985  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2986    return GetBlock()->GetGraph()->GetIntConstant(
2987        Compute(static_cast<uint64_t>(x->GetValue()),
2988                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2989  }
2990
2991  DECLARE_INSTRUCTION(Above);
2992
2993  IfCondition GetCondition() const OVERRIDE {
2994    return kCondA;
2995  }
2996
2997  IfCondition GetOppositeCondition() const OVERRIDE {
2998    return kCondBE;
2999  }
3000
3001 private:
3002  template <typename T> bool Compute(T x, T y) const { return x > y; }
3003
3004  DISALLOW_COPY_AND_ASSIGN(HAbove);
3005};
3006
3007class HAboveOrEqual : public HCondition {
3008 public:
3009  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
3010      : HCondition(first, second, dex_pc) {}
3011
3012  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3013    return GetBlock()->GetGraph()->GetIntConstant(
3014        Compute(static_cast<uint32_t>(x->GetValue()),
3015                static_cast<uint32_t>(y->GetValue())), GetDexPc());
3016  }
3017  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3018    return GetBlock()->GetGraph()->GetIntConstant(
3019        Compute(static_cast<uint64_t>(x->GetValue()),
3020                static_cast<uint64_t>(y->GetValue())), GetDexPc());
3021  }
3022
3023  DECLARE_INSTRUCTION(AboveOrEqual);
3024
3025  IfCondition GetCondition() const OVERRIDE {
3026    return kCondAE;
3027  }
3028
3029  IfCondition GetOppositeCondition() const OVERRIDE {
3030    return kCondB;
3031  }
3032
3033 private:
3034  template <typename T> bool Compute(T x, T y) const { return x >= y; }
3035
3036  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
3037};
3038
3039// Instruction to check how two inputs compare to each other.
3040// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
3041class HCompare : public HBinaryOperation {
3042 public:
3043  HCompare(Primitive::Type type,
3044           HInstruction* first,
3045           HInstruction* second,
3046           ComparisonBias bias,
3047           uint32_t dex_pc)
3048      : HBinaryOperation(Primitive::kPrimInt,
3049                         first,
3050                         second,
3051                         SideEffectsForArchRuntimeCalls(type),
3052                         dex_pc),
3053        bias_(bias) {
3054    DCHECK_EQ(type, first->GetType());
3055    DCHECK_EQ(type, second->GetType());
3056  }
3057
3058  template <typename T>
3059  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
3060
3061  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3062    return GetBlock()->GetGraph()->GetIntConstant(
3063        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3064  }
3065  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3066    return GetBlock()->GetGraph()->GetIntConstant(
3067        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3068  }
3069
3070  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3071    return bias_ == other->AsCompare()->bias_;
3072  }
3073
3074  ComparisonBias GetBias() const { return bias_; }
3075
3076  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
3077
3078
3079  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
3080    // MIPS64 uses a runtime call for FP comparisons.
3081    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
3082  }
3083
3084  DECLARE_INSTRUCTION(Compare);
3085
3086 private:
3087  const ComparisonBias bias_;
3088
3089  DISALLOW_COPY_AND_ASSIGN(HCompare);
3090};
3091
3092// A local in the graph. Corresponds to a Dex register.
3093class HLocal : public HTemplateInstruction<0> {
3094 public:
3095  explicit HLocal(uint16_t reg_number)
3096      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
3097
3098  DECLARE_INSTRUCTION(Local);
3099
3100  uint16_t GetRegNumber() const { return reg_number_; }
3101
3102 private:
3103  // The Dex register number.
3104  const uint16_t reg_number_;
3105
3106  DISALLOW_COPY_AND_ASSIGN(HLocal);
3107};
3108
3109// Load a given local. The local is an input of this instruction.
3110class HLoadLocal : public HExpression<1> {
3111 public:
3112  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
3113      : HExpression(type, SideEffects::None(), dex_pc) {
3114    SetRawInputAt(0, local);
3115  }
3116
3117  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3118
3119  DECLARE_INSTRUCTION(LoadLocal);
3120
3121 private:
3122  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
3123};
3124
3125// Store a value in a given local. This instruction has two inputs: the value
3126// and the local.
3127class HStoreLocal : public HTemplateInstruction<2> {
3128 public:
3129  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
3130      : HTemplateInstruction(SideEffects::None(), dex_pc) {
3131    SetRawInputAt(0, local);
3132    SetRawInputAt(1, value);
3133  }
3134
3135  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3136
3137  DECLARE_INSTRUCTION(StoreLocal);
3138
3139 private:
3140  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
3141};
3142
3143class HFloatConstant : public HConstant {
3144 public:
3145  float GetValue() const { return value_; }
3146
3147  uint64_t GetValueAsUint64() const OVERRIDE {
3148    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3149  }
3150
3151  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3152    DCHECK(other->IsFloatConstant());
3153    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3154  }
3155
3156  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3157
3158  bool IsMinusOne() const OVERRIDE {
3159    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3160  }
3161  bool IsZero() const OVERRIDE {
3162    return value_ == 0.0f;
3163  }
3164  bool IsOne() const OVERRIDE {
3165    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3166  }
3167  bool IsNaN() const {
3168    return std::isnan(value_);
3169  }
3170
3171  DECLARE_INSTRUCTION(FloatConstant);
3172
3173 private:
3174  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3175      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
3176  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3177      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
3178
3179  const float value_;
3180
3181  // Only the SsaBuilder and HGraph can create floating-point constants.
3182  friend class SsaBuilder;
3183  friend class HGraph;
3184  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
3185};
3186
3187class HDoubleConstant : public HConstant {
3188 public:
3189  double GetValue() const { return value_; }
3190
3191  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
3192
3193  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3194    DCHECK(other->IsDoubleConstant());
3195    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3196  }
3197
3198  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3199
3200  bool IsMinusOne() const OVERRIDE {
3201    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3202  }
3203  bool IsZero() const OVERRIDE {
3204    return value_ == 0.0;
3205  }
3206  bool IsOne() const OVERRIDE {
3207    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3208  }
3209  bool IsNaN() const {
3210    return std::isnan(value_);
3211  }
3212
3213  DECLARE_INSTRUCTION(DoubleConstant);
3214
3215 private:
3216  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3217      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
3218  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3219      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
3220
3221  const double value_;
3222
3223  // Only the SsaBuilder and HGraph can create floating-point constants.
3224  friend class SsaBuilder;
3225  friend class HGraph;
3226  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
3227};
3228
3229enum class Intrinsics {
3230#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache) k ## Name,
3231#include "intrinsics_list.h"
3232  kNone,
3233  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3234#undef INTRINSICS_LIST
3235#undef OPTIMIZING_INTRINSICS
3236};
3237std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3238
3239enum IntrinsicNeedsEnvironmentOrCache {
3240  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3241  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3242};
3243
3244class HInvoke : public HInstruction {
3245 public:
3246  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3247
3248  bool NeedsEnvironment() const OVERRIDE;
3249
3250  void SetArgumentAt(size_t index, HInstruction* argument) {
3251    SetRawInputAt(index, argument);
3252  }
3253
3254  // Return the number of arguments.  This number can be lower than
3255  // the number of inputs returned by InputCount(), as some invoke
3256  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3257  // inputs at the end of their list of inputs.
3258  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3259
3260  Primitive::Type GetType() const OVERRIDE { return return_type_; }
3261
3262
3263  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3264  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3265
3266  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
3267
3268  Intrinsics GetIntrinsic() const {
3269    return intrinsic_;
3270  }
3271
3272  void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache);
3273
3274  bool IsFromInlinedInvoke() const {
3275    return GetEnvironment()->IsFromInlinedInvoke();
3276  }
3277
3278  bool CanThrow() const OVERRIDE { return true; }
3279
3280  uint32_t* GetIntrinsicOptimizations() {
3281    return &intrinsic_optimizations_;
3282  }
3283
3284  const uint32_t* GetIntrinsicOptimizations() const {
3285    return &intrinsic_optimizations_;
3286  }
3287
3288  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3289
3290  DECLARE_INSTRUCTION(Invoke);
3291
3292 protected:
3293  HInvoke(ArenaAllocator* arena,
3294          uint32_t number_of_arguments,
3295          uint32_t number_of_other_inputs,
3296          Primitive::Type return_type,
3297          uint32_t dex_pc,
3298          uint32_t dex_method_index,
3299          InvokeType original_invoke_type)
3300    : HInstruction(
3301          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3302      number_of_arguments_(number_of_arguments),
3303      inputs_(number_of_arguments + number_of_other_inputs,
3304              arena->Adapter(kArenaAllocInvokeInputs)),
3305      return_type_(return_type),
3306      dex_method_index_(dex_method_index),
3307      original_invoke_type_(original_invoke_type),
3308      intrinsic_(Intrinsics::kNone),
3309      intrinsic_optimizations_(0) {
3310  }
3311
3312  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3313    return inputs_[index];
3314  }
3315
3316  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3317    inputs_[index] = input;
3318  }
3319
3320  uint32_t number_of_arguments_;
3321  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3322  const Primitive::Type return_type_;
3323  const uint32_t dex_method_index_;
3324  const InvokeType original_invoke_type_;
3325  Intrinsics intrinsic_;
3326
3327  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3328  uint32_t intrinsic_optimizations_;
3329
3330 private:
3331  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3332};
3333
3334class HInvokeUnresolved : public HInvoke {
3335 public:
3336  HInvokeUnresolved(ArenaAllocator* arena,
3337                    uint32_t number_of_arguments,
3338                    Primitive::Type return_type,
3339                    uint32_t dex_pc,
3340                    uint32_t dex_method_index,
3341                    InvokeType invoke_type)
3342      : HInvoke(arena,
3343                number_of_arguments,
3344                0u /* number_of_other_inputs */,
3345                return_type,
3346                dex_pc,
3347                dex_method_index,
3348                invoke_type) {
3349  }
3350
3351  DECLARE_INSTRUCTION(InvokeUnresolved);
3352
3353 private:
3354  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3355};
3356
3357class HInvokeStaticOrDirect : public HInvoke {
3358 public:
3359  // Requirements of this method call regarding the class
3360  // initialization (clinit) check of its declaring class.
3361  enum class ClinitCheckRequirement {
3362    kNone,      // Class already initialized.
3363    kExplicit,  // Static call having explicit clinit check as last input.
3364    kImplicit,  // Static call implicitly requiring a clinit check.
3365  };
3366
3367  // Determines how to load the target ArtMethod*.
3368  enum class MethodLoadKind {
3369    // Use a String init ArtMethod* loaded from Thread entrypoints.
3370    kStringInit,
3371
3372    // Use the method's own ArtMethod* loaded by the register allocator.
3373    kRecursive,
3374
3375    // Use ArtMethod* at a known address, embed the direct address in the code.
3376    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3377    kDirectAddress,
3378
3379    // Use ArtMethod* at an address that will be known at link time, embed the direct
3380    // address in the code. If the image is relocatable, emit .patch_oat entry.
3381    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3382    // the image relocatable or not.
3383    kDirectAddressWithFixup,
3384
3385    // Load from resoved methods array in the dex cache using a PC-relative load.
3386    // Used when we need to use the dex cache, for example for invoke-static that
3387    // may cause class initialization (the entry may point to a resolution method),
3388    // and we know that we can access the dex cache arrays using a PC-relative load.
3389    kDexCachePcRelative,
3390
3391    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3392    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3393    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3394    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3395    kDexCacheViaMethod,
3396  };
3397
3398  // Determines the location of the code pointer.
3399  enum class CodePtrLocation {
3400    // Recursive call, use local PC-relative call instruction.
3401    kCallSelf,
3402
3403    // Use PC-relative call instruction patched at link time.
3404    // Used for calls within an oat file, boot->boot or app->app.
3405    kCallPCRelative,
3406
3407    // Call to a known target address, embed the direct address in code.
3408    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3409    kCallDirect,
3410
3411    // Call to a target address that will be known at link time, embed the direct
3412    // address in code. If the image is relocatable, emit .patch_oat entry.
3413    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3414    // the image relocatable or not.
3415    kCallDirectWithFixup,
3416
3417    // Use code pointer from the ArtMethod*.
3418    // Used when we don't know the target code. This is also the last-resort-kind used when
3419    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3420    kCallArtMethod,
3421  };
3422
3423  struct DispatchInfo {
3424    MethodLoadKind method_load_kind;
3425    CodePtrLocation code_ptr_location;
3426    // The method load data holds
3427    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3428    //     Note that there are multiple string init methods, each having its own offset.
3429    //   - the method address for kDirectAddress
3430    //   - the dex cache arrays offset for kDexCachePcRel.
3431    uint64_t method_load_data;
3432    uint64_t direct_code_ptr;
3433  };
3434
3435  HInvokeStaticOrDirect(ArenaAllocator* arena,
3436                        uint32_t number_of_arguments,
3437                        Primitive::Type return_type,
3438                        uint32_t dex_pc,
3439                        uint32_t method_index,
3440                        MethodReference target_method,
3441                        DispatchInfo dispatch_info,
3442                        InvokeType original_invoke_type,
3443                        InvokeType optimized_invoke_type,
3444                        ClinitCheckRequirement clinit_check_requirement)
3445      : HInvoke(arena,
3446                number_of_arguments,
3447                // There is potentially one extra argument for the HCurrentMethod node, and
3448                // potentially one other if the clinit check is explicit, and potentially
3449                // one other if the method is a string factory.
3450                (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
3451                    (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u) +
3452                    (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3453                return_type,
3454                dex_pc,
3455                method_index,
3456                original_invoke_type),
3457        optimized_invoke_type_(optimized_invoke_type),
3458        clinit_check_requirement_(clinit_check_requirement),
3459        target_method_(target_method),
3460        dispatch_info_(dispatch_info) { }
3461
3462  void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3463    bool had_current_method_input = HasCurrentMethodInput();
3464    bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
3465
3466    // Using the current method is the default and once we find a better
3467    // method load kind, we should not go back to using the current method.
3468    DCHECK(had_current_method_input || !needs_current_method_input);
3469
3470    if (had_current_method_input && !needs_current_method_input) {
3471      DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
3472      RemoveInputAt(GetSpecialInputIndex());
3473    }
3474    dispatch_info_ = dispatch_info;
3475  }
3476
3477  void AddSpecialInput(HInstruction* input) {
3478    // We allow only one special input.
3479    DCHECK(!IsStringInit() && !HasCurrentMethodInput());
3480    DCHECK(InputCount() == GetSpecialInputIndex() ||
3481           (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
3482    InsertInputAt(GetSpecialInputIndex(), input);
3483  }
3484
3485  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3486    // We access the method via the dex cache so we can't do an implicit null check.
3487    // TODO: for intrinsics we can generate implicit null checks.
3488    return false;
3489  }
3490
3491  bool CanBeNull() const OVERRIDE {
3492    return return_type_ == Primitive::kPrimNot && !IsStringInit();
3493  }
3494
3495  // Get the index of the special input, if any.
3496  //
3497  // If the invoke IsStringInit(), it initially has a HFakeString special argument
3498  // which is removed by the instruction simplifier; if the invoke HasCurrentMethodInput(),
3499  // the "special input" is the current method pointer; otherwise there may be one
3500  // platform-specific special input, such as PC-relative addressing base.
3501  uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
3502
3503  InvokeType GetOptimizedInvokeType() const { return optimized_invoke_type_; }
3504  void SetOptimizedInvokeType(InvokeType invoke_type) {
3505    optimized_invoke_type_ = invoke_type;
3506  }
3507
3508  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3509  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3510  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3511  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
3512  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3513  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3514  bool HasPcRelativeDexCache() const {
3515    return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
3516  }
3517  bool HasCurrentMethodInput() const {
3518    // This function can be called only after the invoke has been fully initialized by the builder.
3519    if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
3520      DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3521      return true;
3522    } else {
3523      DCHECK(InputCount() == GetSpecialInputIndex() ||
3524             !InputAt(GetSpecialInputIndex())->IsCurrentMethod());
3525      return false;
3526    }
3527  }
3528  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3529  MethodReference GetTargetMethod() const { return target_method_; }
3530  void SetTargetMethod(MethodReference method) { target_method_ = method; }
3531
3532  int32_t GetStringInitOffset() const {
3533    DCHECK(IsStringInit());
3534    return dispatch_info_.method_load_data;
3535  }
3536
3537  uint64_t GetMethodAddress() const {
3538    DCHECK(HasMethodAddress());
3539    return dispatch_info_.method_load_data;
3540  }
3541
3542  uint32_t GetDexCacheArrayOffset() const {
3543    DCHECK(HasPcRelativeDexCache());
3544    return dispatch_info_.method_load_data;
3545  }
3546
3547  uint64_t GetDirectCodePtr() const {
3548    DCHECK(HasDirectCodePtr());
3549    return dispatch_info_.direct_code_ptr;
3550  }
3551
3552  ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; }
3553
3554  // Is this instruction a call to a static method?
3555  bool IsStatic() const {
3556    return GetOriginalInvokeType() == kStatic;
3557  }
3558
3559  // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
3560  // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
3561  // instruction; only relevant for static calls with explicit clinit check.
3562  void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
3563    DCHECK(IsStaticWithExplicitClinitCheck());
3564    size_t last_input_index = InputCount() - 1;
3565    HInstruction* last_input = InputAt(last_input_index);
3566    DCHECK(last_input != nullptr);
3567    DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
3568    RemoveAsUserOfInput(last_input_index);
3569    inputs_.pop_back();
3570    clinit_check_requirement_ = new_requirement;
3571    DCHECK(!IsStaticWithExplicitClinitCheck());
3572  }
3573
3574  bool IsStringFactoryFor(HFakeString* str) const {
3575    if (!IsStringInit()) return false;
3576    DCHECK(!HasCurrentMethodInput());
3577    if (InputCount() == (number_of_arguments_)) return false;
3578    return InputAt(InputCount() - 1)->AsFakeString() == str;
3579  }
3580
3581  void RemoveFakeStringArgumentAsLastInput() {
3582    DCHECK(IsStringInit());
3583    size_t last_input_index = InputCount() - 1;
3584    HInstruction* last_input = InputAt(last_input_index);
3585    DCHECK(last_input != nullptr);
3586    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
3587    RemoveAsUserOfInput(last_input_index);
3588    inputs_.pop_back();
3589  }
3590
3591  // Is this a call to a static method whose declaring class has an
3592  // explicit initialization check in the graph?
3593  bool IsStaticWithExplicitClinitCheck() const {
3594    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3595  }
3596
3597  // Is this a call to a static method whose declaring class has an
3598  // implicit intialization check requirement?
3599  bool IsStaticWithImplicitClinitCheck() const {
3600    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3601  }
3602
3603  // Does this method load kind need the current method as an input?
3604  static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
3605    return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod;
3606  }
3607
3608  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3609
3610 protected:
3611  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3612    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3613    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3614      HInstruction* input = input_record.GetInstruction();
3615      // `input` is the last input of a static invoke marked as having
3616      // an explicit clinit check. It must either be:
3617      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3618      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3619      DCHECK(input != nullptr);
3620      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3621    }
3622    return input_record;
3623  }
3624
3625  void InsertInputAt(size_t index, HInstruction* input);
3626  void RemoveInputAt(size_t index);
3627
3628 private:
3629  InvokeType optimized_invoke_type_;
3630  ClinitCheckRequirement clinit_check_requirement_;
3631  // The target method may refer to different dex file or method index than the original
3632  // invoke. This happens for sharpened calls and for calls where a method was redeclared
3633  // in derived class to increase visibility.
3634  MethodReference target_method_;
3635  DispatchInfo dispatch_info_;
3636
3637  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3638};
3639std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs);
3640std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
3641
3642class HInvokeVirtual : public HInvoke {
3643 public:
3644  HInvokeVirtual(ArenaAllocator* arena,
3645                 uint32_t number_of_arguments,
3646                 Primitive::Type return_type,
3647                 uint32_t dex_pc,
3648                 uint32_t dex_method_index,
3649                 uint32_t vtable_index)
3650      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3651        vtable_index_(vtable_index) {}
3652
3653  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3654    // TODO: Add implicit null checks in intrinsics.
3655    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3656  }
3657
3658  uint32_t GetVTableIndex() const { return vtable_index_; }
3659
3660  DECLARE_INSTRUCTION(InvokeVirtual);
3661
3662 private:
3663  const uint32_t vtable_index_;
3664
3665  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3666};
3667
3668class HInvokeInterface : public HInvoke {
3669 public:
3670  HInvokeInterface(ArenaAllocator* arena,
3671                   uint32_t number_of_arguments,
3672                   Primitive::Type return_type,
3673                   uint32_t dex_pc,
3674                   uint32_t dex_method_index,
3675                   uint32_t imt_index)
3676      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3677        imt_index_(imt_index) {}
3678
3679  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3680    // TODO: Add implicit null checks in intrinsics.
3681    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3682  }
3683
3684  uint32_t GetImtIndex() const { return imt_index_; }
3685  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3686
3687  DECLARE_INSTRUCTION(InvokeInterface);
3688
3689 private:
3690  const uint32_t imt_index_;
3691
3692  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3693};
3694
3695class HNewInstance : public HExpression<2> {
3696 public:
3697  HNewInstance(HInstruction* cls,
3698               HCurrentMethod* current_method,
3699               uint32_t dex_pc,
3700               uint16_t type_index,
3701               const DexFile& dex_file,
3702               bool can_throw,
3703               bool finalizable,
3704               QuickEntrypointEnum entrypoint)
3705      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3706        type_index_(type_index),
3707        dex_file_(dex_file),
3708        can_throw_(can_throw),
3709        finalizable_(finalizable),
3710        entrypoint_(entrypoint) {
3711    SetRawInputAt(0, cls);
3712    SetRawInputAt(1, current_method);
3713  }
3714
3715  uint16_t GetTypeIndex() const { return type_index_; }
3716  const DexFile& GetDexFile() const { return dex_file_; }
3717
3718  // Calls runtime so needs an environment.
3719  bool NeedsEnvironment() const OVERRIDE { return true; }
3720
3721  // It may throw when called on type that's not instantiable/accessible.
3722  // It can throw OOME.
3723  // TODO: distinguish between the two cases so we can for example allow allocation elimination.
3724  bool CanThrow() const OVERRIDE { return can_throw_ || true; }
3725
3726  bool IsFinalizable() const { return finalizable_; }
3727
3728  bool CanBeNull() const OVERRIDE { return false; }
3729
3730  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3731
3732  void SetEntrypoint(QuickEntrypointEnum entrypoint) {
3733    entrypoint_ = entrypoint;
3734  }
3735
3736  DECLARE_INSTRUCTION(NewInstance);
3737
3738 private:
3739  const uint16_t type_index_;
3740  const DexFile& dex_file_;
3741  const bool can_throw_;
3742  const bool finalizable_;
3743  QuickEntrypointEnum entrypoint_;
3744
3745  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3746};
3747
3748class HNeg : public HUnaryOperation {
3749 public:
3750  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3751      : HUnaryOperation(result_type, input, dex_pc) {}
3752
3753  template <typename T> T Compute(T x) const { return -x; }
3754
3755  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3756    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3757  }
3758  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3759    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3760  }
3761
3762  DECLARE_INSTRUCTION(Neg);
3763
3764 private:
3765  DISALLOW_COPY_AND_ASSIGN(HNeg);
3766};
3767
3768class HNewArray : public HExpression<2> {
3769 public:
3770  HNewArray(HInstruction* length,
3771            HCurrentMethod* current_method,
3772            uint32_t dex_pc,
3773            uint16_t type_index,
3774            const DexFile& dex_file,
3775            QuickEntrypointEnum entrypoint)
3776      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3777        type_index_(type_index),
3778        dex_file_(dex_file),
3779        entrypoint_(entrypoint) {
3780    SetRawInputAt(0, length);
3781    SetRawInputAt(1, current_method);
3782  }
3783
3784  uint16_t GetTypeIndex() const { return type_index_; }
3785  const DexFile& GetDexFile() const { return dex_file_; }
3786
3787  // Calls runtime so needs an environment.
3788  bool NeedsEnvironment() const OVERRIDE { return true; }
3789
3790  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3791  bool CanThrow() const OVERRIDE { return true; }
3792
3793  bool CanBeNull() const OVERRIDE { return false; }
3794
3795  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3796
3797  DECLARE_INSTRUCTION(NewArray);
3798
3799 private:
3800  const uint16_t type_index_;
3801  const DexFile& dex_file_;
3802  const QuickEntrypointEnum entrypoint_;
3803
3804  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3805};
3806
3807class HAdd : public HBinaryOperation {
3808 public:
3809  HAdd(Primitive::Type result_type,
3810       HInstruction* left,
3811       HInstruction* right,
3812       uint32_t dex_pc = kNoDexPc)
3813      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3814
3815  bool IsCommutative() const OVERRIDE { return true; }
3816
3817  template <typename T> T Compute(T x, T y) const { return x + y; }
3818
3819  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3820    return GetBlock()->GetGraph()->GetIntConstant(
3821        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3822  }
3823  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3824    return GetBlock()->GetGraph()->GetLongConstant(
3825        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3826  }
3827
3828  DECLARE_INSTRUCTION(Add);
3829
3830 private:
3831  DISALLOW_COPY_AND_ASSIGN(HAdd);
3832};
3833
3834class HSub : public HBinaryOperation {
3835 public:
3836  HSub(Primitive::Type result_type,
3837       HInstruction* left,
3838       HInstruction* right,
3839       uint32_t dex_pc = kNoDexPc)
3840      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3841
3842  template <typename T> T Compute(T x, T y) const { return x - y; }
3843
3844  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3845    return GetBlock()->GetGraph()->GetIntConstant(
3846        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3847  }
3848  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3849    return GetBlock()->GetGraph()->GetLongConstant(
3850        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3851  }
3852
3853  DECLARE_INSTRUCTION(Sub);
3854
3855 private:
3856  DISALLOW_COPY_AND_ASSIGN(HSub);
3857};
3858
3859class HMul : public HBinaryOperation {
3860 public:
3861  HMul(Primitive::Type result_type,
3862       HInstruction* left,
3863       HInstruction* right,
3864       uint32_t dex_pc = kNoDexPc)
3865      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3866
3867  bool IsCommutative() const OVERRIDE { return true; }
3868
3869  template <typename T> T Compute(T x, T y) const { return x * y; }
3870
3871  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3872    return GetBlock()->GetGraph()->GetIntConstant(
3873        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3874  }
3875  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3876    return GetBlock()->GetGraph()->GetLongConstant(
3877        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3878  }
3879
3880  DECLARE_INSTRUCTION(Mul);
3881
3882 private:
3883  DISALLOW_COPY_AND_ASSIGN(HMul);
3884};
3885
3886class HDiv : public HBinaryOperation {
3887 public:
3888  HDiv(Primitive::Type result_type,
3889       HInstruction* left,
3890       HInstruction* right,
3891       uint32_t dex_pc)
3892      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3893
3894  template <typename T>
3895  T Compute(T x, T y) const {
3896    // Our graph structure ensures we never have 0 for `y` during
3897    // constant folding.
3898    DCHECK_NE(y, 0);
3899    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3900    return (y == -1) ? -x : x / y;
3901  }
3902
3903  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3904    return GetBlock()->GetGraph()->GetIntConstant(
3905        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3906  }
3907  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3908    return GetBlock()->GetGraph()->GetLongConstant(
3909        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3910  }
3911
3912  static SideEffects SideEffectsForArchRuntimeCalls() {
3913    // The generated code can use a runtime call.
3914    return SideEffects::CanTriggerGC();
3915  }
3916
3917  DECLARE_INSTRUCTION(Div);
3918
3919 private:
3920  DISALLOW_COPY_AND_ASSIGN(HDiv);
3921};
3922
3923class HRem : public HBinaryOperation {
3924 public:
3925  HRem(Primitive::Type result_type,
3926       HInstruction* left,
3927       HInstruction* right,
3928       uint32_t dex_pc)
3929      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3930
3931  template <typename T>
3932  T Compute(T x, T y) const {
3933    // Our graph structure ensures we never have 0 for `y` during
3934    // constant folding.
3935    DCHECK_NE(y, 0);
3936    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3937    return (y == -1) ? 0 : x % y;
3938  }
3939
3940  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3941    return GetBlock()->GetGraph()->GetIntConstant(
3942        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3943  }
3944  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3945    return GetBlock()->GetGraph()->GetLongConstant(
3946        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3947  }
3948
3949
3950  static SideEffects SideEffectsForArchRuntimeCalls() {
3951    return SideEffects::CanTriggerGC();
3952  }
3953
3954  DECLARE_INSTRUCTION(Rem);
3955
3956 private:
3957  DISALLOW_COPY_AND_ASSIGN(HRem);
3958};
3959
3960class HDivZeroCheck : public HExpression<1> {
3961 public:
3962  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
3963      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
3964    SetRawInputAt(0, value);
3965  }
3966
3967  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
3968
3969  bool CanBeMoved() const OVERRIDE { return true; }
3970
3971  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3972    return true;
3973  }
3974
3975  bool NeedsEnvironment() const OVERRIDE { return true; }
3976  bool CanThrow() const OVERRIDE { return true; }
3977
3978  DECLARE_INSTRUCTION(DivZeroCheck);
3979
3980 private:
3981  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
3982};
3983
3984class HShl : public HBinaryOperation {
3985 public:
3986  HShl(Primitive::Type result_type,
3987       HInstruction* left,
3988       HInstruction* right,
3989       uint32_t dex_pc = kNoDexPc)
3990      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3991
3992  template <typename T, typename U, typename V>
3993  T Compute(T x, U y, V max_shift_value) const {
3994    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3995                  "V is not the unsigned integer type corresponding to T");
3996    return x << (y & max_shift_value);
3997  }
3998
3999  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4000    return GetBlock()->GetGraph()->GetIntConstant(
4001        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4002  }
4003  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4004  // case is handled as `x << static_cast<int>(y)`.
4005  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4006    return GetBlock()->GetGraph()->GetLongConstant(
4007        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4008  }
4009  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4010    return GetBlock()->GetGraph()->GetLongConstant(
4011        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4012  }
4013
4014  DECLARE_INSTRUCTION(Shl);
4015
4016 private:
4017  DISALLOW_COPY_AND_ASSIGN(HShl);
4018};
4019
4020class HShr : public HBinaryOperation {
4021 public:
4022  HShr(Primitive::Type result_type,
4023       HInstruction* left,
4024       HInstruction* right,
4025       uint32_t dex_pc = kNoDexPc)
4026      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4027
4028  template <typename T, typename U, typename V>
4029  T Compute(T x, U y, V max_shift_value) const {
4030    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4031                  "V is not the unsigned integer type corresponding to T");
4032    return x >> (y & max_shift_value);
4033  }
4034
4035  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4036    return GetBlock()->GetGraph()->GetIntConstant(
4037        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4038  }
4039  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4040  // case is handled as `x >> static_cast<int>(y)`.
4041  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4042    return GetBlock()->GetGraph()->GetLongConstant(
4043        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4044  }
4045  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4046    return GetBlock()->GetGraph()->GetLongConstant(
4047        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4048  }
4049
4050  DECLARE_INSTRUCTION(Shr);
4051
4052 private:
4053  DISALLOW_COPY_AND_ASSIGN(HShr);
4054};
4055
4056class HUShr : public HBinaryOperation {
4057 public:
4058  HUShr(Primitive::Type result_type,
4059        HInstruction* left,
4060        HInstruction* right,
4061        uint32_t dex_pc = kNoDexPc)
4062      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4063
4064  template <typename T, typename U, typename V>
4065  T Compute(T x, U y, V max_shift_value) const {
4066    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
4067                  "V is not the unsigned integer type corresponding to T");
4068    V ux = static_cast<V>(x);
4069    return static_cast<T>(ux >> (y & max_shift_value));
4070  }
4071
4072  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4073    return GetBlock()->GetGraph()->GetIntConstant(
4074        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
4075  }
4076  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
4077  // case is handled as `x >>> static_cast<int>(y)`.
4078  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4079    return GetBlock()->GetGraph()->GetLongConstant(
4080        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4081  }
4082  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4083    return GetBlock()->GetGraph()->GetLongConstant(
4084        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
4085  }
4086
4087  DECLARE_INSTRUCTION(UShr);
4088
4089 private:
4090  DISALLOW_COPY_AND_ASSIGN(HUShr);
4091};
4092
4093class HAnd : public HBinaryOperation {
4094 public:
4095  HAnd(Primitive::Type result_type,
4096       HInstruction* left,
4097       HInstruction* right,
4098       uint32_t dex_pc = kNoDexPc)
4099      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4100
4101  bool IsCommutative() const OVERRIDE { return true; }
4102
4103  template <typename T, typename U>
4104  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
4105
4106  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4107    return GetBlock()->GetGraph()->GetIntConstant(
4108        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4109  }
4110  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4111    return GetBlock()->GetGraph()->GetLongConstant(
4112        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4113  }
4114  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4115    return GetBlock()->GetGraph()->GetLongConstant(
4116        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4117  }
4118  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4119    return GetBlock()->GetGraph()->GetLongConstant(
4120        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4121  }
4122
4123  DECLARE_INSTRUCTION(And);
4124
4125 private:
4126  DISALLOW_COPY_AND_ASSIGN(HAnd);
4127};
4128
4129class HOr : public HBinaryOperation {
4130 public:
4131  HOr(Primitive::Type result_type,
4132      HInstruction* left,
4133      HInstruction* right,
4134      uint32_t dex_pc = kNoDexPc)
4135      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4136
4137  bool IsCommutative() const OVERRIDE { return true; }
4138
4139  template <typename T, typename U>
4140  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
4141
4142  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4143    return GetBlock()->GetGraph()->GetIntConstant(
4144        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4145  }
4146  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4147    return GetBlock()->GetGraph()->GetLongConstant(
4148        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4149  }
4150  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4151    return GetBlock()->GetGraph()->GetLongConstant(
4152        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4153  }
4154  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4155    return GetBlock()->GetGraph()->GetLongConstant(
4156        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4157  }
4158
4159  DECLARE_INSTRUCTION(Or);
4160
4161 private:
4162  DISALLOW_COPY_AND_ASSIGN(HOr);
4163};
4164
4165class HXor : public HBinaryOperation {
4166 public:
4167  HXor(Primitive::Type result_type,
4168       HInstruction* left,
4169       HInstruction* right,
4170       uint32_t dex_pc = kNoDexPc)
4171      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4172
4173  bool IsCommutative() const OVERRIDE { return true; }
4174
4175  template <typename T, typename U>
4176  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
4177
4178  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4179    return GetBlock()->GetGraph()->GetIntConstant(
4180        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4181  }
4182  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4183    return GetBlock()->GetGraph()->GetLongConstant(
4184        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4185  }
4186  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4187    return GetBlock()->GetGraph()->GetLongConstant(
4188        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4189  }
4190  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4191    return GetBlock()->GetGraph()->GetLongConstant(
4192        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4193  }
4194
4195  DECLARE_INSTRUCTION(Xor);
4196
4197 private:
4198  DISALLOW_COPY_AND_ASSIGN(HXor);
4199};
4200
4201// The value of a parameter in this method. Its location depends on
4202// the calling convention.
4203class HParameterValue : public HExpression<0> {
4204 public:
4205  HParameterValue(const DexFile& dex_file,
4206                  uint16_t type_index,
4207                  uint8_t index,
4208                  Primitive::Type parameter_type,
4209                  bool is_this = false)
4210      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4211        dex_file_(dex_file),
4212        type_index_(type_index),
4213        index_(index),
4214        is_this_(is_this),
4215        can_be_null_(!is_this) {}
4216
4217  const DexFile& GetDexFile() const { return dex_file_; }
4218  uint16_t GetTypeIndex() const { return type_index_; }
4219  uint8_t GetIndex() const { return index_; }
4220  bool IsThis() const { return is_this_; }
4221
4222  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4223  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4224
4225  DECLARE_INSTRUCTION(ParameterValue);
4226
4227 private:
4228  const DexFile& dex_file_;
4229  const uint16_t type_index_;
4230  // The index of this parameter in the parameters list. Must be less
4231  // than HGraph::number_of_in_vregs_.
4232  const uint8_t index_;
4233
4234  // Whether or not the parameter value corresponds to 'this' argument.
4235  const bool is_this_;
4236
4237  bool can_be_null_;
4238
4239  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4240};
4241
4242class HNot : public HUnaryOperation {
4243 public:
4244  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4245      : HUnaryOperation(result_type, input, dex_pc) {}
4246
4247  bool CanBeMoved() const OVERRIDE { return true; }
4248  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4249    return true;
4250  }
4251
4252  template <typename T> T Compute(T x) const { return ~x; }
4253
4254  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4255    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4256  }
4257  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4258    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4259  }
4260
4261  DECLARE_INSTRUCTION(Not);
4262
4263 private:
4264  DISALLOW_COPY_AND_ASSIGN(HNot);
4265};
4266
4267class HBooleanNot : public HUnaryOperation {
4268 public:
4269  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4270      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4271
4272  bool CanBeMoved() const OVERRIDE { return true; }
4273  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4274    return true;
4275  }
4276
4277  template <typename T> bool Compute(T x) const {
4278    DCHECK(IsUint<1>(x));
4279    return !x;
4280  }
4281
4282  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4283    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4284  }
4285  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4286    LOG(FATAL) << DebugName() << " is not defined for long values";
4287    UNREACHABLE();
4288  }
4289
4290  DECLARE_INSTRUCTION(BooleanNot);
4291
4292 private:
4293  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4294};
4295
4296class HTypeConversion : public HExpression<1> {
4297 public:
4298  // Instantiate a type conversion of `input` to `result_type`.
4299  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4300      : HExpression(result_type,
4301                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4302                    dex_pc) {
4303    SetRawInputAt(0, input);
4304    DCHECK_NE(input->GetType(), result_type);
4305  }
4306
4307  HInstruction* GetInput() const { return InputAt(0); }
4308  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4309  Primitive::Type GetResultType() const { return GetType(); }
4310
4311  // Required by the x86, ARM, MIPS and MIPS64 code generators when producing calls
4312  // to the runtime.
4313
4314  bool CanBeMoved() const OVERRIDE { return true; }
4315  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4316
4317  // Try to statically evaluate the conversion and return a HConstant
4318  // containing the result.  If the input cannot be converted, return nullptr.
4319  HConstant* TryStaticEvaluation() const;
4320
4321  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4322                                                    Primitive::Type result_type) {
4323    // Some architectures may not require the 'GC' side effects, but at this point
4324    // in the compilation process we do not know what architecture we will
4325    // generate code for, so we must be conservative.
4326    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4327        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4328      return SideEffects::CanTriggerGC();
4329    }
4330    return SideEffects::None();
4331  }
4332
4333  DECLARE_INSTRUCTION(TypeConversion);
4334
4335 private:
4336  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4337};
4338
4339static constexpr uint32_t kNoRegNumber = -1;
4340
4341class HPhi : public HInstruction {
4342 public:
4343  HPhi(ArenaAllocator* arena,
4344       uint32_t reg_number,
4345       size_t number_of_inputs,
4346       Primitive::Type type,
4347       uint32_t dex_pc = kNoDexPc)
4348      : HInstruction(SideEffects::None(), dex_pc),
4349        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4350        reg_number_(reg_number),
4351        type_(ToPhiType(type)),
4352        // Phis are constructed live and marked dead if conflicting or unused.
4353        // Individual steps of SsaBuilder should assume that if a phi has been
4354        // marked dead, it can be ignored and will be removed by SsaPhiElimination.
4355        is_live_(true),
4356        can_be_null_(true) {
4357    DCHECK_NE(type_, Primitive::kPrimVoid);
4358  }
4359
4360  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4361  static Primitive::Type ToPhiType(Primitive::Type type) {
4362    switch (type) {
4363      case Primitive::kPrimBoolean:
4364      case Primitive::kPrimByte:
4365      case Primitive::kPrimShort:
4366      case Primitive::kPrimChar:
4367        return Primitive::kPrimInt;
4368      default:
4369        return type;
4370    }
4371  }
4372
4373  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4374
4375  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4376
4377  void AddInput(HInstruction* input);
4378  void RemoveInputAt(size_t index);
4379
4380  Primitive::Type GetType() const OVERRIDE { return type_; }
4381  void SetType(Primitive::Type type) { type_ = type; }
4382
4383  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4384  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4385
4386  uint32_t GetRegNumber() const { return reg_number_; }
4387
4388  void SetDead() { is_live_ = false; }
4389  void SetLive() { is_live_ = true; }
4390  bool IsDead() const { return !is_live_; }
4391  bool IsLive() const { return is_live_; }
4392
4393  bool IsVRegEquivalentOf(HInstruction* other) const {
4394    return other != nullptr
4395        && other->IsPhi()
4396        && other->AsPhi()->GetBlock() == GetBlock()
4397        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4398  }
4399
4400  // Returns the next equivalent phi (starting from the current one) or null if there is none.
4401  // An equivalent phi is a phi having the same dex register and type.
4402  // It assumes that phis with the same dex register are adjacent.
4403  HPhi* GetNextEquivalentPhiWithSameType() {
4404    HInstruction* next = GetNext();
4405    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
4406      if (next->GetType() == GetType()) {
4407        return next->AsPhi();
4408      }
4409      next = next->GetNext();
4410    }
4411    return nullptr;
4412  }
4413
4414  DECLARE_INSTRUCTION(Phi);
4415
4416 protected:
4417  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
4418    return inputs_[index];
4419  }
4420
4421  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
4422    inputs_[index] = input;
4423  }
4424
4425 private:
4426  ArenaVector<HUserRecord<HInstruction*> > inputs_;
4427  const uint32_t reg_number_;
4428  Primitive::Type type_;
4429  bool is_live_;
4430  bool can_be_null_;
4431
4432  DISALLOW_COPY_AND_ASSIGN(HPhi);
4433};
4434
4435class HNullCheck : public HExpression<1> {
4436 public:
4437  HNullCheck(HInstruction* value, uint32_t dex_pc)
4438      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
4439    SetRawInputAt(0, value);
4440  }
4441
4442  bool CanBeMoved() const OVERRIDE { return true; }
4443  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4444    return true;
4445  }
4446
4447  bool NeedsEnvironment() const OVERRIDE { return true; }
4448
4449  bool CanThrow() const OVERRIDE { return true; }
4450
4451  bool CanBeNull() const OVERRIDE { return false; }
4452
4453
4454  DECLARE_INSTRUCTION(NullCheck);
4455
4456 private:
4457  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4458};
4459
4460class FieldInfo : public ValueObject {
4461 public:
4462  FieldInfo(MemberOffset field_offset,
4463            Primitive::Type field_type,
4464            bool is_volatile,
4465            uint32_t index,
4466            uint16_t declaring_class_def_index,
4467            const DexFile& dex_file,
4468            Handle<mirror::DexCache> dex_cache)
4469      : field_offset_(field_offset),
4470        field_type_(field_type),
4471        is_volatile_(is_volatile),
4472        index_(index),
4473        declaring_class_def_index_(declaring_class_def_index),
4474        dex_file_(dex_file),
4475        dex_cache_(dex_cache) {}
4476
4477  MemberOffset GetFieldOffset() const { return field_offset_; }
4478  Primitive::Type GetFieldType() const { return field_type_; }
4479  uint32_t GetFieldIndex() const { return index_; }
4480  uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
4481  const DexFile& GetDexFile() const { return dex_file_; }
4482  bool IsVolatile() const { return is_volatile_; }
4483  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4484
4485 private:
4486  const MemberOffset field_offset_;
4487  const Primitive::Type field_type_;
4488  const bool is_volatile_;
4489  const uint32_t index_;
4490  const uint16_t declaring_class_def_index_;
4491  const DexFile& dex_file_;
4492  const Handle<mirror::DexCache> dex_cache_;
4493};
4494
4495class HInstanceFieldGet : public HExpression<1> {
4496 public:
4497  HInstanceFieldGet(HInstruction* value,
4498                    Primitive::Type field_type,
4499                    MemberOffset field_offset,
4500                    bool is_volatile,
4501                    uint32_t field_idx,
4502                    uint16_t declaring_class_def_index,
4503                    const DexFile& dex_file,
4504                    Handle<mirror::DexCache> dex_cache,
4505                    uint32_t dex_pc)
4506      : HExpression(field_type,
4507                    SideEffects::FieldReadOfType(field_type, is_volatile),
4508                    dex_pc),
4509        field_info_(field_offset,
4510                    field_type,
4511                    is_volatile,
4512                    field_idx,
4513                    declaring_class_def_index,
4514                    dex_file,
4515                    dex_cache) {
4516    SetRawInputAt(0, value);
4517  }
4518
4519  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4520
4521  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4522    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
4523    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4524  }
4525
4526  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4527    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4528  }
4529
4530  size_t ComputeHashCode() const OVERRIDE {
4531    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4532  }
4533
4534  const FieldInfo& GetFieldInfo() const { return field_info_; }
4535  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4536  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4537  bool IsVolatile() const { return field_info_.IsVolatile(); }
4538
4539  DECLARE_INSTRUCTION(InstanceFieldGet);
4540
4541 private:
4542  const FieldInfo field_info_;
4543
4544  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
4545};
4546
4547class HInstanceFieldSet : public HTemplateInstruction<2> {
4548 public:
4549  HInstanceFieldSet(HInstruction* object,
4550                    HInstruction* value,
4551                    Primitive::Type field_type,
4552                    MemberOffset field_offset,
4553                    bool is_volatile,
4554                    uint32_t field_idx,
4555                    uint16_t declaring_class_def_index,
4556                    const DexFile& dex_file,
4557                    Handle<mirror::DexCache> dex_cache,
4558                    uint32_t dex_pc)
4559      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4560                             dex_pc),
4561        field_info_(field_offset,
4562                    field_type,
4563                    is_volatile,
4564                    field_idx,
4565                    declaring_class_def_index,
4566                    dex_file,
4567                    dex_cache),
4568        value_can_be_null_(true) {
4569    SetRawInputAt(0, object);
4570    SetRawInputAt(1, value);
4571  }
4572
4573  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4574    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4575  }
4576
4577  const FieldInfo& GetFieldInfo() const { return field_info_; }
4578  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4579  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4580  bool IsVolatile() const { return field_info_.IsVolatile(); }
4581  HInstruction* GetValue() const { return InputAt(1); }
4582  bool GetValueCanBeNull() const { return value_can_be_null_; }
4583  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4584
4585  DECLARE_INSTRUCTION(InstanceFieldSet);
4586
4587 private:
4588  const FieldInfo field_info_;
4589  bool value_can_be_null_;
4590
4591  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
4592};
4593
4594class HArrayGet : public HExpression<2> {
4595 public:
4596  HArrayGet(HInstruction* array,
4597            HInstruction* index,
4598            Primitive::Type type,
4599            uint32_t dex_pc,
4600            SideEffects additional_side_effects = SideEffects::None())
4601      : HExpression(type,
4602                    SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
4603                    dex_pc) {
4604    SetRawInputAt(0, array);
4605    SetRawInputAt(1, index);
4606  }
4607
4608  bool CanBeMoved() const OVERRIDE { return true; }
4609  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4610    return true;
4611  }
4612  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4613    // TODO: We can be smarter here.
4614    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
4615    // which generates the implicit null check. There are cases when these can be removed
4616    // to produce better code. If we ever add optimizations to do so we should allow an
4617    // implicit check here (as long as the address falls in the first page).
4618    return false;
4619  }
4620
4621  void SetType(Primitive::Type type) { type_ = type; }
4622
4623  HInstruction* GetArray() const { return InputAt(0); }
4624  HInstruction* GetIndex() const { return InputAt(1); }
4625
4626  DECLARE_INSTRUCTION(ArrayGet);
4627
4628 private:
4629  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4630};
4631
4632class HArraySet : public HTemplateInstruction<3> {
4633 public:
4634  HArraySet(HInstruction* array,
4635            HInstruction* index,
4636            HInstruction* value,
4637            Primitive::Type expected_component_type,
4638            uint32_t dex_pc,
4639            SideEffects additional_side_effects = SideEffects::None())
4640      : HTemplateInstruction(
4641            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4642                SideEffectsForArchRuntimeCalls(value->GetType())).Union(
4643                    additional_side_effects),
4644            dex_pc),
4645        expected_component_type_(expected_component_type),
4646        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4647        value_can_be_null_(true),
4648        static_type_of_array_is_object_array_(false) {
4649    SetRawInputAt(0, array);
4650    SetRawInputAt(1, index);
4651    SetRawInputAt(2, value);
4652  }
4653
4654  bool NeedsEnvironment() const OVERRIDE {
4655    // We currently always call a runtime method to catch array store
4656    // exceptions.
4657    return needs_type_check_;
4658  }
4659
4660  // Can throw ArrayStoreException.
4661  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4662
4663  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4664    // TODO: Same as for ArrayGet.
4665    return false;
4666  }
4667
4668  void ClearNeedsTypeCheck() {
4669    needs_type_check_ = false;
4670  }
4671
4672  void ClearValueCanBeNull() {
4673    value_can_be_null_ = false;
4674  }
4675
4676  void SetStaticTypeOfArrayIsObjectArray() {
4677    static_type_of_array_is_object_array_ = true;
4678  }
4679
4680  bool GetValueCanBeNull() const { return value_can_be_null_; }
4681  bool NeedsTypeCheck() const { return needs_type_check_; }
4682  bool StaticTypeOfArrayIsObjectArray() const { return static_type_of_array_is_object_array_; }
4683
4684  HInstruction* GetArray() const { return InputAt(0); }
4685  HInstruction* GetIndex() const { return InputAt(1); }
4686  HInstruction* GetValue() const { return InputAt(2); }
4687
4688  Primitive::Type GetComponentType() const {
4689    // The Dex format does not type floating point index operations. Since the
4690    // `expected_component_type_` is set during building and can therefore not
4691    // be correct, we also check what is the value type. If it is a floating
4692    // point type, we must use that type.
4693    Primitive::Type value_type = GetValue()->GetType();
4694    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4695        ? value_type
4696        : expected_component_type_;
4697  }
4698
4699  Primitive::Type GetRawExpectedComponentType() const {
4700    return expected_component_type_;
4701  }
4702
4703  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4704    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4705  }
4706
4707  DECLARE_INSTRUCTION(ArraySet);
4708
4709 private:
4710  const Primitive::Type expected_component_type_;
4711  bool needs_type_check_;
4712  bool value_can_be_null_;
4713  // Cached information for the reference_type_info_ so that codegen
4714  // does not need to inspect the static type.
4715  bool static_type_of_array_is_object_array_;
4716
4717  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4718};
4719
4720class HArrayLength : public HExpression<1> {
4721 public:
4722  HArrayLength(HInstruction* array, uint32_t dex_pc)
4723      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
4724    // Note that arrays do not change length, so the instruction does not
4725    // depend on any write.
4726    SetRawInputAt(0, array);
4727  }
4728
4729  bool CanBeMoved() const OVERRIDE { return true; }
4730  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4731    return true;
4732  }
4733  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4734    return obj == InputAt(0);
4735  }
4736
4737  DECLARE_INSTRUCTION(ArrayLength);
4738
4739 private:
4740  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4741};
4742
4743class HBoundsCheck : public HExpression<2> {
4744 public:
4745  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4746      : HExpression(index->GetType(), SideEffects::None(), dex_pc) {
4747    DCHECK(index->GetType() == Primitive::kPrimInt);
4748    SetRawInputAt(0, index);
4749    SetRawInputAt(1, length);
4750  }
4751
4752  bool CanBeMoved() const OVERRIDE { return true; }
4753  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4754    return true;
4755  }
4756
4757  bool NeedsEnvironment() const OVERRIDE { return true; }
4758
4759  bool CanThrow() const OVERRIDE { return true; }
4760
4761  HInstruction* GetIndex() const { return InputAt(0); }
4762
4763  DECLARE_INSTRUCTION(BoundsCheck);
4764
4765 private:
4766  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4767};
4768
4769/**
4770 * Some DEX instructions are folded into multiple HInstructions that need
4771 * to stay live until the last HInstruction. This class
4772 * is used as a marker for the baseline compiler to ensure its preceding
4773 * HInstruction stays live. `index` represents the stack location index of the
4774 * instruction (the actual offset is computed as index * vreg_size).
4775 */
4776class HTemporary : public HTemplateInstruction<0> {
4777 public:
4778  explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc)
4779      : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {}
4780
4781  size_t GetIndex() const { return index_; }
4782
4783  Primitive::Type GetType() const OVERRIDE {
4784    // The previous instruction is the one that will be stored in the temporary location.
4785    DCHECK(GetPrevious() != nullptr);
4786    return GetPrevious()->GetType();
4787  }
4788
4789  DECLARE_INSTRUCTION(Temporary);
4790
4791 private:
4792  const size_t index_;
4793  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4794};
4795
4796class HSuspendCheck : public HTemplateInstruction<0> {
4797 public:
4798  explicit HSuspendCheck(uint32_t dex_pc)
4799      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
4800
4801  bool NeedsEnvironment() const OVERRIDE {
4802    return true;
4803  }
4804
4805  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4806  SlowPathCode* GetSlowPath() const { return slow_path_; }
4807
4808  DECLARE_INSTRUCTION(SuspendCheck);
4809
4810 private:
4811  // Only used for code generation, in order to share the same slow path between back edges
4812  // of a same loop.
4813  SlowPathCode* slow_path_;
4814
4815  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4816};
4817
4818/**
4819 * Instruction to load a Class object.
4820 */
4821class HLoadClass : public HExpression<1> {
4822 public:
4823  HLoadClass(HCurrentMethod* current_method,
4824             uint16_t type_index,
4825             const DexFile& dex_file,
4826             bool is_referrers_class,
4827             uint32_t dex_pc,
4828             bool needs_access_check,
4829             bool is_in_dex_cache)
4830      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4831        type_index_(type_index),
4832        dex_file_(dex_file),
4833        is_referrers_class_(is_referrers_class),
4834        generate_clinit_check_(false),
4835        needs_access_check_(needs_access_check),
4836        is_in_dex_cache_(is_in_dex_cache),
4837        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4838    // Referrers class should not need access check. We never inline unverified
4839    // methods so we can't possibly end up in this situation.
4840    DCHECK(!is_referrers_class_ || !needs_access_check_);
4841    SetRawInputAt(0, current_method);
4842  }
4843
4844  bool CanBeMoved() const OVERRIDE { return true; }
4845
4846  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4847    // Note that we don't need to test for generate_clinit_check_.
4848    // Whether or not we need to generate the clinit check is processed in
4849    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
4850    return other->AsLoadClass()->type_index_ == type_index_ &&
4851        other->AsLoadClass()->needs_access_check_ == needs_access_check_;
4852  }
4853
4854  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4855
4856  uint16_t GetTypeIndex() const { return type_index_; }
4857  bool IsReferrersClass() const { return is_referrers_class_; }
4858  bool CanBeNull() const OVERRIDE { return false; }
4859
4860  bool NeedsEnvironment() const OVERRIDE {
4861    return CanCallRuntime();
4862  }
4863
4864  bool MustGenerateClinitCheck() const {
4865    return generate_clinit_check_;
4866  }
4867
4868  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4869    // The entrypoint the code generator is going to call does not do
4870    // clinit of the class.
4871    DCHECK(!NeedsAccessCheck());
4872    generate_clinit_check_ = generate_clinit_check;
4873  }
4874
4875  bool CanCallRuntime() const {
4876    return MustGenerateClinitCheck() ||
4877           (!is_referrers_class_ && !is_in_dex_cache_) ||
4878           needs_access_check_;
4879  }
4880
4881  bool NeedsAccessCheck() const {
4882    return needs_access_check_;
4883  }
4884
4885  bool CanThrow() const OVERRIDE {
4886    return CanCallRuntime();
4887  }
4888
4889  ReferenceTypeInfo GetLoadedClassRTI() {
4890    return loaded_class_rti_;
4891  }
4892
4893  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4894    // Make sure we only set exact types (the loaded class should never be merged).
4895    DCHECK(rti.IsExact());
4896    loaded_class_rti_ = rti;
4897  }
4898
4899  const DexFile& GetDexFile() { return dex_file_; }
4900
4901  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !is_referrers_class_; }
4902
4903  static SideEffects SideEffectsForArchRuntimeCalls() {
4904    return SideEffects::CanTriggerGC();
4905  }
4906
4907  bool IsInDexCache() const { return is_in_dex_cache_; }
4908
4909  DECLARE_INSTRUCTION(LoadClass);
4910
4911 private:
4912  const uint16_t type_index_;
4913  const DexFile& dex_file_;
4914  const bool is_referrers_class_;
4915  // Whether this instruction must generate the initialization check.
4916  // Used for code generation.
4917  bool generate_clinit_check_;
4918  const bool needs_access_check_;
4919  const bool is_in_dex_cache_;
4920
4921  ReferenceTypeInfo loaded_class_rti_;
4922
4923  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
4924};
4925
4926class HLoadString : public HExpression<1> {
4927 public:
4928  HLoadString(HCurrentMethod* current_method,
4929              uint32_t string_index,
4930              uint32_t dex_pc,
4931              bool is_in_dex_cache)
4932      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4933        string_index_(string_index),
4934        is_in_dex_cache_(is_in_dex_cache) {
4935    SetRawInputAt(0, current_method);
4936  }
4937
4938  bool CanBeMoved() const OVERRIDE { return true; }
4939
4940  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4941    return other->AsLoadString()->string_index_ == string_index_;
4942  }
4943
4944  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
4945
4946  uint32_t GetStringIndex() const { return string_index_; }
4947
4948  // TODO: Can we deopt or debug when we resolve a string?
4949  bool NeedsEnvironment() const OVERRIDE { return false; }
4950  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return true; }
4951  bool CanBeNull() const OVERRIDE { return false; }
4952  bool IsInDexCache() const { return is_in_dex_cache_; }
4953
4954  static SideEffects SideEffectsForArchRuntimeCalls() {
4955    return SideEffects::CanTriggerGC();
4956  }
4957
4958  DECLARE_INSTRUCTION(LoadString);
4959
4960 private:
4961  const uint32_t string_index_;
4962  const bool is_in_dex_cache_;
4963
4964  DISALLOW_COPY_AND_ASSIGN(HLoadString);
4965};
4966
4967/**
4968 * Performs an initialization check on its Class object input.
4969 */
4970class HClinitCheck : public HExpression<1> {
4971 public:
4972  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
4973      : HExpression(
4974            Primitive::kPrimNot,
4975            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
4976            dex_pc) {
4977    SetRawInputAt(0, constant);
4978  }
4979
4980  bool CanBeMoved() const OVERRIDE { return true; }
4981  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4982    return true;
4983  }
4984
4985  bool NeedsEnvironment() const OVERRIDE {
4986    // May call runtime to initialize the class.
4987    return true;
4988  }
4989
4990  bool CanThrow() const OVERRIDE { return true; }
4991
4992  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
4993
4994  DECLARE_INSTRUCTION(ClinitCheck);
4995
4996 private:
4997  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
4998};
4999
5000class HStaticFieldGet : public HExpression<1> {
5001 public:
5002  HStaticFieldGet(HInstruction* cls,
5003                  Primitive::Type field_type,
5004                  MemberOffset field_offset,
5005                  bool is_volatile,
5006                  uint32_t field_idx,
5007                  uint16_t declaring_class_def_index,
5008                  const DexFile& dex_file,
5009                  Handle<mirror::DexCache> dex_cache,
5010                  uint32_t dex_pc)
5011      : HExpression(field_type,
5012                    SideEffects::FieldReadOfType(field_type, is_volatile),
5013                    dex_pc),
5014        field_info_(field_offset,
5015                    field_type,
5016                    is_volatile,
5017                    field_idx,
5018                    declaring_class_def_index,
5019                    dex_file,
5020                    dex_cache) {
5021    SetRawInputAt(0, cls);
5022  }
5023
5024
5025  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
5026
5027  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
5028    HStaticFieldGet* other_get = other->AsStaticFieldGet();
5029    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
5030  }
5031
5032  size_t ComputeHashCode() const OVERRIDE {
5033    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
5034  }
5035
5036  const FieldInfo& GetFieldInfo() const { return field_info_; }
5037  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5038  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5039  bool IsVolatile() const { return field_info_.IsVolatile(); }
5040
5041  DECLARE_INSTRUCTION(StaticFieldGet);
5042
5043 private:
5044  const FieldInfo field_info_;
5045
5046  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
5047};
5048
5049class HStaticFieldSet : public HTemplateInstruction<2> {
5050 public:
5051  HStaticFieldSet(HInstruction* cls,
5052                  HInstruction* value,
5053                  Primitive::Type field_type,
5054                  MemberOffset field_offset,
5055                  bool is_volatile,
5056                  uint32_t field_idx,
5057                  uint16_t declaring_class_def_index,
5058                  const DexFile& dex_file,
5059                  Handle<mirror::DexCache> dex_cache,
5060                  uint32_t dex_pc)
5061      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
5062                             dex_pc),
5063        field_info_(field_offset,
5064                    field_type,
5065                    is_volatile,
5066                    field_idx,
5067                    declaring_class_def_index,
5068                    dex_file,
5069                    dex_cache),
5070        value_can_be_null_(true) {
5071    SetRawInputAt(0, cls);
5072    SetRawInputAt(1, value);
5073  }
5074
5075  const FieldInfo& GetFieldInfo() const { return field_info_; }
5076  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
5077  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
5078  bool IsVolatile() const { return field_info_.IsVolatile(); }
5079
5080  HInstruction* GetValue() const { return InputAt(1); }
5081  bool GetValueCanBeNull() const { return value_can_be_null_; }
5082  void ClearValueCanBeNull() { value_can_be_null_ = false; }
5083
5084  DECLARE_INSTRUCTION(StaticFieldSet);
5085
5086 private:
5087  const FieldInfo field_info_;
5088  bool value_can_be_null_;
5089
5090  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
5091};
5092
5093class HUnresolvedInstanceFieldGet : public HExpression<1> {
5094 public:
5095  HUnresolvedInstanceFieldGet(HInstruction* obj,
5096                              Primitive::Type field_type,
5097                              uint32_t field_index,
5098                              uint32_t dex_pc)
5099      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5100        field_index_(field_index) {
5101    SetRawInputAt(0, obj);
5102  }
5103
5104  bool NeedsEnvironment() const OVERRIDE { return true; }
5105  bool CanThrow() const OVERRIDE { return true; }
5106
5107  Primitive::Type GetFieldType() const { return GetType(); }
5108  uint32_t GetFieldIndex() const { return field_index_; }
5109
5110  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
5111
5112 private:
5113  const uint32_t field_index_;
5114
5115  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
5116};
5117
5118class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
5119 public:
5120  HUnresolvedInstanceFieldSet(HInstruction* obj,
5121                              HInstruction* value,
5122                              Primitive::Type field_type,
5123                              uint32_t field_index,
5124                              uint32_t dex_pc)
5125      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5126        field_type_(field_type),
5127        field_index_(field_index) {
5128    DCHECK_EQ(field_type, value->GetType());
5129    SetRawInputAt(0, obj);
5130    SetRawInputAt(1, value);
5131  }
5132
5133  bool NeedsEnvironment() const OVERRIDE { return true; }
5134  bool CanThrow() const OVERRIDE { return true; }
5135
5136  Primitive::Type GetFieldType() const { return field_type_; }
5137  uint32_t GetFieldIndex() const { return field_index_; }
5138
5139  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
5140
5141 private:
5142  const Primitive::Type field_type_;
5143  const uint32_t field_index_;
5144
5145  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
5146};
5147
5148class HUnresolvedStaticFieldGet : public HExpression<0> {
5149 public:
5150  HUnresolvedStaticFieldGet(Primitive::Type field_type,
5151                            uint32_t field_index,
5152                            uint32_t dex_pc)
5153      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5154        field_index_(field_index) {
5155  }
5156
5157  bool NeedsEnvironment() const OVERRIDE { return true; }
5158  bool CanThrow() const OVERRIDE { return true; }
5159
5160  Primitive::Type GetFieldType() const { return GetType(); }
5161  uint32_t GetFieldIndex() const { return field_index_; }
5162
5163  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
5164
5165 private:
5166  const uint32_t field_index_;
5167
5168  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
5169};
5170
5171class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
5172 public:
5173  HUnresolvedStaticFieldSet(HInstruction* value,
5174                            Primitive::Type field_type,
5175                            uint32_t field_index,
5176                            uint32_t dex_pc)
5177      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5178        field_type_(field_type),
5179        field_index_(field_index) {
5180    DCHECK_EQ(field_type, value->GetType());
5181    SetRawInputAt(0, value);
5182  }
5183
5184  bool NeedsEnvironment() const OVERRIDE { return true; }
5185  bool CanThrow() const OVERRIDE { return true; }
5186
5187  Primitive::Type GetFieldType() const { return field_type_; }
5188  uint32_t GetFieldIndex() const { return field_index_; }
5189
5190  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
5191
5192 private:
5193  const Primitive::Type field_type_;
5194  const uint32_t field_index_;
5195
5196  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
5197};
5198
5199// Implement the move-exception DEX instruction.
5200class HLoadException : public HExpression<0> {
5201 public:
5202  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
5203      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
5204
5205  bool CanBeNull() const OVERRIDE { return false; }
5206
5207  DECLARE_INSTRUCTION(LoadException);
5208
5209 private:
5210  DISALLOW_COPY_AND_ASSIGN(HLoadException);
5211};
5212
5213// Implicit part of move-exception which clears thread-local exception storage.
5214// Must not be removed because the runtime expects the TLS to get cleared.
5215class HClearException : public HTemplateInstruction<0> {
5216 public:
5217  explicit HClearException(uint32_t dex_pc = kNoDexPc)
5218      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
5219
5220  DECLARE_INSTRUCTION(ClearException);
5221
5222 private:
5223  DISALLOW_COPY_AND_ASSIGN(HClearException);
5224};
5225
5226class HThrow : public HTemplateInstruction<1> {
5227 public:
5228  HThrow(HInstruction* exception, uint32_t dex_pc)
5229      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
5230    SetRawInputAt(0, exception);
5231  }
5232
5233  bool IsControlFlow() const OVERRIDE { return true; }
5234
5235  bool NeedsEnvironment() const OVERRIDE { return true; }
5236
5237  bool CanThrow() const OVERRIDE { return true; }
5238
5239
5240  DECLARE_INSTRUCTION(Throw);
5241
5242 private:
5243  DISALLOW_COPY_AND_ASSIGN(HThrow);
5244};
5245
5246/**
5247 * Implementation strategies for the code generator of a HInstanceOf
5248 * or `HCheckCast`.
5249 */
5250enum class TypeCheckKind {
5251  kUnresolvedCheck,       // Check against an unresolved type.
5252  kExactCheck,            // Can do a single class compare.
5253  kClassHierarchyCheck,   // Can just walk the super class chain.
5254  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
5255  kInterfaceCheck,        // No optimization yet when checking against an interface.
5256  kArrayObjectCheck,      // Can just check if the array is not primitive.
5257  kArrayCheck             // No optimization yet when checking against a generic array.
5258};
5259
5260class HInstanceOf : public HExpression<2> {
5261 public:
5262  HInstanceOf(HInstruction* object,
5263              HLoadClass* constant,
5264              TypeCheckKind check_kind,
5265              uint32_t dex_pc)
5266      : HExpression(Primitive::kPrimBoolean,
5267                    SideEffectsForArchRuntimeCalls(check_kind),
5268                    dex_pc),
5269        check_kind_(check_kind),
5270        must_do_null_check_(true) {
5271    SetRawInputAt(0, object);
5272    SetRawInputAt(1, constant);
5273  }
5274
5275  bool CanBeMoved() const OVERRIDE { return true; }
5276
5277  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5278    return true;
5279  }
5280
5281  bool NeedsEnvironment() const OVERRIDE {
5282    return false;
5283  }
5284
5285  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5286
5287  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5288
5289  // Used only in code generation.
5290  bool MustDoNullCheck() const { return must_do_null_check_; }
5291  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5292
5293  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
5294    return (check_kind == TypeCheckKind::kExactCheck)
5295        ? SideEffects::None()
5296        // Mips currently does runtime calls for any other checks.
5297        : SideEffects::CanTriggerGC();
5298  }
5299
5300  DECLARE_INSTRUCTION(InstanceOf);
5301
5302 private:
5303  const TypeCheckKind check_kind_;
5304  bool must_do_null_check_;
5305
5306  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
5307};
5308
5309class HBoundType : public HExpression<1> {
5310 public:
5311  // Constructs an HBoundType with the given upper_bound.
5312  // Ensures that the upper_bound is valid.
5313  HBoundType(HInstruction* input,
5314             ReferenceTypeInfo upper_bound,
5315             bool upper_can_be_null,
5316             uint32_t dex_pc = kNoDexPc)
5317      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
5318        upper_bound_(upper_bound),
5319        upper_can_be_null_(upper_can_be_null),
5320        can_be_null_(upper_can_be_null) {
5321    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
5322    SetRawInputAt(0, input);
5323    SetReferenceTypeInfo(upper_bound_);
5324  }
5325
5326  // GetUpper* should only be used in reference type propagation.
5327  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
5328  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
5329
5330  void SetCanBeNull(bool can_be_null) {
5331    DCHECK(upper_can_be_null_ || !can_be_null);
5332    can_be_null_ = can_be_null;
5333  }
5334
5335  bool CanBeNull() const OVERRIDE { return can_be_null_; }
5336
5337  DECLARE_INSTRUCTION(BoundType);
5338
5339 private:
5340  // Encodes the most upper class that this instruction can have. In other words
5341  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
5342  // It is used to bound the type in cases like:
5343  //   if (x instanceof ClassX) {
5344  //     // uper_bound_ will be ClassX
5345  //   }
5346  const ReferenceTypeInfo upper_bound_;
5347  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
5348  // is false then can_be_null_ cannot be true).
5349  const bool upper_can_be_null_;
5350  bool can_be_null_;
5351
5352  DISALLOW_COPY_AND_ASSIGN(HBoundType);
5353};
5354
5355class HCheckCast : public HTemplateInstruction<2> {
5356 public:
5357  HCheckCast(HInstruction* object,
5358             HLoadClass* constant,
5359             TypeCheckKind check_kind,
5360             uint32_t dex_pc)
5361      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc),
5362        check_kind_(check_kind),
5363        must_do_null_check_(true) {
5364    SetRawInputAt(0, object);
5365    SetRawInputAt(1, constant);
5366  }
5367
5368  bool CanBeMoved() const OVERRIDE { return true; }
5369
5370  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5371    return true;
5372  }
5373
5374  bool NeedsEnvironment() const OVERRIDE {
5375    // Instruction may throw a CheckCastError.
5376    return true;
5377  }
5378
5379  bool CanThrow() const OVERRIDE { return true; }
5380
5381  bool MustDoNullCheck() const { return must_do_null_check_; }
5382  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5383  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5384
5385  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5386
5387  DECLARE_INSTRUCTION(CheckCast);
5388
5389 private:
5390  const TypeCheckKind check_kind_;
5391  bool must_do_null_check_;
5392
5393  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
5394};
5395
5396class HMemoryBarrier : public HTemplateInstruction<0> {
5397 public:
5398  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
5399      : HTemplateInstruction(
5400            SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays.
5401        barrier_kind_(barrier_kind) {}
5402
5403  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
5404
5405  DECLARE_INSTRUCTION(MemoryBarrier);
5406
5407 private:
5408  const MemBarrierKind barrier_kind_;
5409
5410  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
5411};
5412
5413class HMonitorOperation : public HTemplateInstruction<1> {
5414 public:
5415  enum OperationKind {
5416    kEnter,
5417    kExit,
5418  };
5419
5420  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
5421    : HTemplateInstruction(
5422          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
5423      kind_(kind) {
5424    SetRawInputAt(0, object);
5425  }
5426
5427  // Instruction may throw a Java exception, so we need an environment.
5428  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
5429
5430  bool CanThrow() const OVERRIDE {
5431    // Verifier guarantees that monitor-exit cannot throw.
5432    // This is important because it allows the HGraphBuilder to remove
5433    // a dead throw-catch loop generated for `synchronized` blocks/methods.
5434    return IsEnter();
5435  }
5436
5437
5438  bool IsEnter() const { return kind_ == kEnter; }
5439
5440  DECLARE_INSTRUCTION(MonitorOperation);
5441
5442 private:
5443  const OperationKind kind_;
5444
5445 private:
5446  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
5447};
5448
5449/**
5450 * A HInstruction used as a marker for the replacement of new + <init>
5451 * of a String to a call to a StringFactory. Only baseline will see
5452 * the node at code generation, where it will be be treated as null.
5453 * When compiling non-baseline, `HFakeString` instructions are being removed
5454 * in the instruction simplifier.
5455 */
5456class HFakeString : public HTemplateInstruction<0> {
5457 public:
5458  explicit HFakeString(uint32_t dex_pc = kNoDexPc)
5459      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
5460
5461  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
5462
5463  DECLARE_INSTRUCTION(FakeString);
5464
5465 private:
5466  DISALLOW_COPY_AND_ASSIGN(HFakeString);
5467};
5468
5469class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
5470 public:
5471  MoveOperands(Location source,
5472               Location destination,
5473               Primitive::Type type,
5474               HInstruction* instruction)
5475      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
5476
5477  Location GetSource() const { return source_; }
5478  Location GetDestination() const { return destination_; }
5479
5480  void SetSource(Location value) { source_ = value; }
5481  void SetDestination(Location value) { destination_ = value; }
5482
5483  // The parallel move resolver marks moves as "in-progress" by clearing the
5484  // destination (but not the source).
5485  Location MarkPending() {
5486    DCHECK(!IsPending());
5487    Location dest = destination_;
5488    destination_ = Location::NoLocation();
5489    return dest;
5490  }
5491
5492  void ClearPending(Location dest) {
5493    DCHECK(IsPending());
5494    destination_ = dest;
5495  }
5496
5497  bool IsPending() const {
5498    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5499    return destination_.IsInvalid() && !source_.IsInvalid();
5500  }
5501
5502  // True if this blocks a move from the given location.
5503  bool Blocks(Location loc) const {
5504    return !IsEliminated() && source_.OverlapsWith(loc);
5505  }
5506
5507  // A move is redundant if it's been eliminated, if its source and
5508  // destination are the same, or if its destination is unneeded.
5509  bool IsRedundant() const {
5510    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
5511  }
5512
5513  // We clear both operands to indicate move that's been eliminated.
5514  void Eliminate() {
5515    source_ = destination_ = Location::NoLocation();
5516  }
5517
5518  bool IsEliminated() const {
5519    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5520    return source_.IsInvalid();
5521  }
5522
5523  Primitive::Type GetType() const { return type_; }
5524
5525  bool Is64BitMove() const {
5526    return Primitive::Is64BitType(type_);
5527  }
5528
5529  HInstruction* GetInstruction() const { return instruction_; }
5530
5531 private:
5532  Location source_;
5533  Location destination_;
5534  // The type this move is for.
5535  Primitive::Type type_;
5536  // The instruction this move is assocatied with. Null when this move is
5537  // for moving an input in the expected locations of user (including a phi user).
5538  // This is only used in debug mode, to ensure we do not connect interval siblings
5539  // in the same parallel move.
5540  HInstruction* instruction_;
5541};
5542
5543static constexpr size_t kDefaultNumberOfMoves = 4;
5544
5545class HParallelMove : public HTemplateInstruction<0> {
5546 public:
5547  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
5548      : HTemplateInstruction(SideEffects::None(), dex_pc),
5549        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
5550    moves_.reserve(kDefaultNumberOfMoves);
5551  }
5552
5553  void AddMove(Location source,
5554               Location destination,
5555               Primitive::Type type,
5556               HInstruction* instruction) {
5557    DCHECK(source.IsValid());
5558    DCHECK(destination.IsValid());
5559    if (kIsDebugBuild) {
5560      if (instruction != nullptr) {
5561        for (const MoveOperands& move : moves_) {
5562          if (move.GetInstruction() == instruction) {
5563            // Special case the situation where the move is for the spill slot
5564            // of the instruction.
5565            if ((GetPrevious() == instruction)
5566                || ((GetPrevious() == nullptr)
5567                    && instruction->IsPhi()
5568                    && instruction->GetBlock() == GetBlock())) {
5569              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
5570                  << "Doing parallel moves for the same instruction.";
5571            } else {
5572              DCHECK(false) << "Doing parallel moves for the same instruction.";
5573            }
5574          }
5575        }
5576      }
5577      for (const MoveOperands& move : moves_) {
5578        DCHECK(!destination.OverlapsWith(move.GetDestination()))
5579            << "Overlapped destination for two moves in a parallel move: "
5580            << move.GetSource() << " ==> " << move.GetDestination() << " and "
5581            << source << " ==> " << destination;
5582      }
5583    }
5584    moves_.emplace_back(source, destination, type, instruction);
5585  }
5586
5587  MoveOperands* MoveOperandsAt(size_t index) {
5588    return &moves_[index];
5589  }
5590
5591  size_t NumMoves() const { return moves_.size(); }
5592
5593  DECLARE_INSTRUCTION(ParallelMove);
5594
5595 private:
5596  ArenaVector<MoveOperands> moves_;
5597
5598  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
5599};
5600
5601}  // namespace art
5602
5603#ifdef ART_ENABLE_CODEGEN_arm
5604#include "nodes_arm.h"
5605#endif
5606#ifdef ART_ENABLE_CODEGEN_arm64
5607#include "nodes_arm64.h"
5608#endif
5609#ifdef ART_ENABLE_CODEGEN_x86
5610#include "nodes_x86.h"
5611#endif
5612
5613namespace art {
5614
5615class HGraphVisitor : public ValueObject {
5616 public:
5617  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
5618  virtual ~HGraphVisitor() {}
5619
5620  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
5621  virtual void VisitBasicBlock(HBasicBlock* block);
5622
5623  // Visit the graph following basic block insertion order.
5624  void VisitInsertionOrder();
5625
5626  // Visit the graph following dominator tree reverse post-order.
5627  void VisitReversePostOrder();
5628
5629  HGraph* GetGraph() const { return graph_; }
5630
5631  // Visit functions for instruction classes.
5632#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5633  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
5634
5635  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5636
5637#undef DECLARE_VISIT_INSTRUCTION
5638
5639 private:
5640  HGraph* const graph_;
5641
5642  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
5643};
5644
5645class HGraphDelegateVisitor : public HGraphVisitor {
5646 public:
5647  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
5648  virtual ~HGraphDelegateVisitor() {}
5649
5650  // Visit functions that delegate to to super class.
5651#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5652  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
5653
5654  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5655
5656#undef DECLARE_VISIT_INSTRUCTION
5657
5658 private:
5659  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
5660};
5661
5662class HInsertionOrderIterator : public ValueObject {
5663 public:
5664  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
5665
5666  bool Done() const { return index_ == graph_.GetBlocks().size(); }
5667  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
5668  void Advance() { ++index_; }
5669
5670 private:
5671  const HGraph& graph_;
5672  size_t index_;
5673
5674  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
5675};
5676
5677class HReversePostOrderIterator : public ValueObject {
5678 public:
5679  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
5680    // Check that reverse post order of the graph has been built.
5681    DCHECK(!graph.GetReversePostOrder().empty());
5682  }
5683
5684  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
5685  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
5686  void Advance() { ++index_; }
5687
5688 private:
5689  const HGraph& graph_;
5690  size_t index_;
5691
5692  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
5693};
5694
5695class HPostOrderIterator : public ValueObject {
5696 public:
5697  explicit HPostOrderIterator(const HGraph& graph)
5698      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
5699    // Check that reverse post order of the graph has been built.
5700    DCHECK(!graph.GetReversePostOrder().empty());
5701  }
5702
5703  bool Done() const { return index_ == 0; }
5704  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
5705  void Advance() { --index_; }
5706
5707 private:
5708  const HGraph& graph_;
5709  size_t index_;
5710
5711  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
5712};
5713
5714class HLinearPostOrderIterator : public ValueObject {
5715 public:
5716  explicit HLinearPostOrderIterator(const HGraph& graph)
5717      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
5718
5719  bool Done() const { return index_ == 0; }
5720
5721  HBasicBlock* Current() const { return order_[index_ - 1u]; }
5722
5723  void Advance() {
5724    --index_;
5725    DCHECK_GE(index_, 0U);
5726  }
5727
5728 private:
5729  const ArenaVector<HBasicBlock*>& order_;
5730  size_t index_;
5731
5732  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
5733};
5734
5735class HLinearOrderIterator : public ValueObject {
5736 public:
5737  explicit HLinearOrderIterator(const HGraph& graph)
5738      : order_(graph.GetLinearOrder()), index_(0) {}
5739
5740  bool Done() const { return index_ == order_.size(); }
5741  HBasicBlock* Current() const { return order_[index_]; }
5742  void Advance() { ++index_; }
5743
5744 private:
5745  const ArenaVector<HBasicBlock*>& order_;
5746  size_t index_;
5747
5748  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
5749};
5750
5751// Iterator over the blocks that art part of the loop. Includes blocks part
5752// of an inner loop. The order in which the blocks are iterated is on their
5753// block id.
5754class HBlocksInLoopIterator : public ValueObject {
5755 public:
5756  explicit HBlocksInLoopIterator(const HLoopInformation& info)
5757      : blocks_in_loop_(info.GetBlocks()),
5758        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
5759        index_(0) {
5760    if (!blocks_in_loop_.IsBitSet(index_)) {
5761      Advance();
5762    }
5763  }
5764
5765  bool Done() const { return index_ == blocks_.size(); }
5766  HBasicBlock* Current() const { return blocks_[index_]; }
5767  void Advance() {
5768    ++index_;
5769    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5770      if (blocks_in_loop_.IsBitSet(index_)) {
5771        break;
5772      }
5773    }
5774  }
5775
5776 private:
5777  const BitVector& blocks_in_loop_;
5778  const ArenaVector<HBasicBlock*>& blocks_;
5779  size_t index_;
5780
5781  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
5782};
5783
5784// Iterator over the blocks that art part of the loop. Includes blocks part
5785// of an inner loop. The order in which the blocks are iterated is reverse
5786// post order.
5787class HBlocksInLoopReversePostOrderIterator : public ValueObject {
5788 public:
5789  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
5790      : blocks_in_loop_(info.GetBlocks()),
5791        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
5792        index_(0) {
5793    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5794      Advance();
5795    }
5796  }
5797
5798  bool Done() const { return index_ == blocks_.size(); }
5799  HBasicBlock* Current() const { return blocks_[index_]; }
5800  void Advance() {
5801    ++index_;
5802    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5803      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5804        break;
5805      }
5806    }
5807  }
5808
5809 private:
5810  const BitVector& blocks_in_loop_;
5811  const ArenaVector<HBasicBlock*>& blocks_;
5812  size_t index_;
5813
5814  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
5815};
5816
5817inline int64_t Int64FromConstant(HConstant* constant) {
5818  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
5819  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
5820                                   : constant->AsLongConstant()->GetValue();
5821}
5822
5823inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
5824  // For the purposes of the compiler, the dex files must actually be the same object
5825  // if we want to safely treat them as the same. This is especially important for JIT
5826  // as custom class loaders can open the same underlying file (or memory) multiple
5827  // times and provide different class resolution but no two class loaders should ever
5828  // use the same DexFile object - doing so is an unsupported hack that can lead to
5829  // all sorts of weird failures.
5830  return &lhs == &rhs;
5831}
5832
5833}  // namespace art
5834
5835#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
5836