nodes.h revision a4f8831d6533e4fe5aed18433099e1130d95a877
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include "base/arena_containers.h"
21#include "base/arena_object.h"
22#include "entrypoints/quick/quick_entrypoints_enum.h"
23#include "handle.h"
24#include "handle_scope.h"
25#include "invoke_type.h"
26#include "locations.h"
27#include "mirror/class.h"
28#include "offsets.h"
29#include "primitive.h"
30#include "utils/arena_bit_vector.h"
31#include "utils/growable_array.h"
32
33namespace art {
34
35class GraphChecker;
36class HBasicBlock;
37class HDoubleConstant;
38class HEnvironment;
39class HFloatConstant;
40class HGraphVisitor;
41class HInstruction;
42class HIntConstant;
43class HInvoke;
44class HLongConstant;
45class HNullConstant;
46class HPhi;
47class HSuspendCheck;
48class LiveInterval;
49class LocationSummary;
50class SsaBuilder;
51
52static const int kDefaultNumberOfBlocks = 8;
53static const int kDefaultNumberOfSuccessors = 2;
54static const int kDefaultNumberOfPredecessors = 2;
55static const int kDefaultNumberOfDominatedBlocks = 1;
56static const int kDefaultNumberOfBackEdges = 1;
57
58static constexpr uint32_t kMaxIntShiftValue = 0x1f;
59static constexpr uint64_t kMaxLongShiftValue = 0x3f;
60
61enum IfCondition {
62  kCondEQ,
63  kCondNE,
64  kCondLT,
65  kCondLE,
66  kCondGT,
67  kCondGE,
68};
69
70class HInstructionList {
71 public:
72  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
73
74  void AddInstruction(HInstruction* instruction);
75  void RemoveInstruction(HInstruction* instruction);
76
77  // Return true if this list contains `instruction`.
78  bool Contains(HInstruction* instruction) const;
79
80  // Return true if `instruction1` is found before `instruction2` in
81  // this instruction list and false otherwise.  Abort if none
82  // of these instructions is found.
83  bool FoundBefore(const HInstruction* instruction1,
84                   const HInstruction* instruction2) const;
85
86  bool IsEmpty() const { return first_instruction_ == nullptr; }
87  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
88
89  // Update the block of all instructions to be `block`.
90  void SetBlockOfInstructions(HBasicBlock* block) const;
91
92  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
93  void Add(const HInstructionList& instruction_list);
94
95 private:
96  HInstruction* first_instruction_;
97  HInstruction* last_instruction_;
98
99  friend class HBasicBlock;
100  friend class HGraph;
101  friend class HInstruction;
102  friend class HInstructionIterator;
103  friend class HBackwardInstructionIterator;
104
105  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
106};
107
108// Control-flow graph of a method. Contains a list of basic blocks.
109class HGraph : public ArenaObject<kArenaAllocMisc> {
110 public:
111  HGraph(ArenaAllocator* arena, bool debuggable = false, int start_instruction_id = 0)
112      : arena_(arena),
113        blocks_(arena, kDefaultNumberOfBlocks),
114        reverse_post_order_(arena, kDefaultNumberOfBlocks),
115        entry_block_(nullptr),
116        exit_block_(nullptr),
117        maximum_number_of_out_vregs_(0),
118        number_of_vregs_(0),
119        number_of_in_vregs_(0),
120        temporaries_vreg_slots_(0),
121        has_array_accesses_(false),
122        debuggable_(debuggable),
123        current_instruction_id_(start_instruction_id),
124        cached_null_constant_(nullptr),
125        cached_int_constants_(std::less<int32_t>(), arena->Adapter()),
126        cached_long_constants_(std::less<int64_t>(), arena->Adapter()) {}
127
128  ArenaAllocator* GetArena() const { return arena_; }
129  const GrowableArray<HBasicBlock*>& GetBlocks() const { return blocks_; }
130  HBasicBlock* GetBlock(size_t id) const { return blocks_.Get(id); }
131
132  HBasicBlock* GetEntryBlock() const { return entry_block_; }
133  HBasicBlock* GetExitBlock() const { return exit_block_; }
134
135  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
136  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
137
138  void AddBlock(HBasicBlock* block);
139
140  // Try building the SSA form of this graph, with dominance computation and loop
141  // recognition. Returns whether it was successful in doing all these steps.
142  bool TryBuildingSsa() {
143    BuildDominatorTree();
144    // The SSA builder requires loops to all be natural. Specifically, the dead phi
145    // elimination phase checks the consistency of the graph when doing a post-order
146    // visit for eliminating dead phis: a dead phi can only have loop header phi
147    // users remaining when being visited.
148    if (!AnalyzeNaturalLoops()) return false;
149    TransformToSsa();
150    return true;
151  }
152
153  void BuildDominatorTree();
154  void TransformToSsa();
155  void SimplifyCFG();
156
157  // Analyze all natural loops in this graph. Returns false if one
158  // loop is not natural, that is the header does not dominate the
159  // back edge.
160  bool AnalyzeNaturalLoops() const;
161
162  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
163  void InlineInto(HGraph* outer_graph, HInvoke* invoke);
164
165  void MergeEmptyBranches(HBasicBlock* start_block, HBasicBlock* end_block);
166
167  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
168  void SimplifyLoop(HBasicBlock* header);
169
170  int32_t GetNextInstructionId() {
171    DCHECK_NE(current_instruction_id_, INT32_MAX);
172    return current_instruction_id_++;
173  }
174
175  int32_t GetCurrentInstructionId() const {
176    return current_instruction_id_;
177  }
178
179  void SetCurrentInstructionId(int32_t id) {
180    current_instruction_id_ = id;
181  }
182
183  uint16_t GetMaximumNumberOfOutVRegs() const {
184    return maximum_number_of_out_vregs_;
185  }
186
187  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
188    maximum_number_of_out_vregs_ = new_value;
189  }
190
191  void UpdateTemporariesVRegSlots(size_t slots) {
192    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
193  }
194
195  size_t GetTemporariesVRegSlots() const {
196    return temporaries_vreg_slots_;
197  }
198
199  void SetNumberOfVRegs(uint16_t number_of_vregs) {
200    number_of_vregs_ = number_of_vregs;
201  }
202
203  uint16_t GetNumberOfVRegs() const {
204    return number_of_vregs_;
205  }
206
207  void SetNumberOfInVRegs(uint16_t value) {
208    number_of_in_vregs_ = value;
209  }
210
211  uint16_t GetNumberOfLocalVRegs() const {
212    return number_of_vregs_ - number_of_in_vregs_;
213  }
214
215  const GrowableArray<HBasicBlock*>& GetReversePostOrder() const {
216    return reverse_post_order_;
217  }
218
219  bool HasArrayAccesses() const {
220    return has_array_accesses_;
221  }
222
223  void SetHasArrayAccesses(bool value) {
224    has_array_accesses_ = value;
225  }
226
227  bool IsDebuggable() const { return debuggable_; }
228
229  // Returns a constant of the given type and value. If it does not exist
230  // already, it is created and inserted into the graph. Only integral types
231  // are currently supported.
232  HConstant* GetConstant(Primitive::Type type, int64_t value);
233  HNullConstant* GetNullConstant();
234  HIntConstant* GetIntConstant(int32_t value) {
235    return CreateConstant(value, &cached_int_constants_);
236  }
237  HLongConstant* GetLongConstant(int64_t value) {
238    return CreateConstant(value, &cached_long_constants_);
239  }
240
241 private:
242  HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
243  void VisitBlockForDominatorTree(HBasicBlock* block,
244                                  HBasicBlock* predecessor,
245                                  GrowableArray<size_t>* visits);
246  void FindBackEdges(ArenaBitVector* visited);
247  void VisitBlockForBackEdges(HBasicBlock* block,
248                              ArenaBitVector* visited,
249                              ArenaBitVector* visiting);
250  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
251  void RemoveDeadBlocks(const ArenaBitVector& visited) const;
252
253  template <class InstType, typename ValueType>
254  InstType* CreateConstant(ValueType value, ArenaSafeMap<ValueType, InstType*>* cache);
255  void InsertConstant(HConstant* instruction);
256
257  ArenaAllocator* const arena_;
258
259  // List of blocks in insertion order.
260  GrowableArray<HBasicBlock*> blocks_;
261
262  // List of blocks to perform a reverse post order tree traversal.
263  GrowableArray<HBasicBlock*> reverse_post_order_;
264
265  HBasicBlock* entry_block_;
266  HBasicBlock* exit_block_;
267
268  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
269  uint16_t maximum_number_of_out_vregs_;
270
271  // The number of virtual registers in this method. Contains the parameters.
272  uint16_t number_of_vregs_;
273
274  // The number of virtual registers used by parameters of this method.
275  uint16_t number_of_in_vregs_;
276
277  // Number of vreg size slots that the temporaries use (used in baseline compiler).
278  size_t temporaries_vreg_slots_;
279
280  // Has array accesses. We can totally skip BCE if it's false.
281  bool has_array_accesses_;
282
283  // Indicates whether the graph should be compiled in a way that
284  // ensures full debuggability. If false, we can apply more
285  // aggressive optimizations that may limit the level of debugging.
286  const bool debuggable_;
287
288  // The current id to assign to a newly added instruction. See HInstruction.id_.
289  int32_t current_instruction_id_;
290
291  // Cached common constants often needed by optimization passes.
292  HNullConstant* cached_null_constant_;
293  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
294  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
295
296  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
297  DISALLOW_COPY_AND_ASSIGN(HGraph);
298};
299
300class HLoopInformation : public ArenaObject<kArenaAllocMisc> {
301 public:
302  HLoopInformation(HBasicBlock* header, HGraph* graph)
303      : header_(header),
304        suspend_check_(nullptr),
305        back_edges_(graph->GetArena(), kDefaultNumberOfBackEdges),
306        // Make bit vector growable, as the number of blocks may change.
307        blocks_(graph->GetArena(), graph->GetBlocks().Size(), true) {}
308
309  HBasicBlock* GetHeader() const {
310    return header_;
311  }
312
313  void SetHeader(HBasicBlock* block) {
314    header_ = block;
315  }
316
317  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
318  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
319  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
320
321  void AddBackEdge(HBasicBlock* back_edge) {
322    back_edges_.Add(back_edge);
323  }
324
325  void RemoveBackEdge(HBasicBlock* back_edge) {
326    back_edges_.Delete(back_edge);
327  }
328
329  bool IsBackEdge(const HBasicBlock& block) const {
330    for (size_t i = 0, e = back_edges_.Size(); i < e; ++i) {
331      if (back_edges_.Get(i) == &block) return true;
332    }
333    return false;
334  }
335
336  size_t NumberOfBackEdges() const {
337    return back_edges_.Size();
338  }
339
340  HBasicBlock* GetPreHeader() const;
341
342  const GrowableArray<HBasicBlock*>& GetBackEdges() const {
343    return back_edges_;
344  }
345
346  void ClearBackEdges() {
347    back_edges_.Reset();
348  }
349
350  // Find blocks that are part of this loop. Returns whether the loop is a natural loop,
351  // that is the header dominates the back edge.
352  bool Populate();
353
354  // Returns whether this loop information contains `block`.
355  // Note that this loop information *must* be populated before entering this function.
356  bool Contains(const HBasicBlock& block) const;
357
358  // Returns whether this loop information is an inner loop of `other`.
359  // Note that `other` *must* be populated before entering this function.
360  bool IsIn(const HLoopInformation& other) const;
361
362  const ArenaBitVector& GetBlocks() const { return blocks_; }
363
364  void Add(HBasicBlock* block);
365  void Remove(HBasicBlock* block);
366
367 private:
368  // Internal recursive implementation of `Populate`.
369  void PopulateRecursive(HBasicBlock* block);
370
371  HBasicBlock* header_;
372  HSuspendCheck* suspend_check_;
373  GrowableArray<HBasicBlock*> back_edges_;
374  ArenaBitVector blocks_;
375
376  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
377};
378
379static constexpr size_t kNoLifetime = -1;
380static constexpr uint32_t kNoDexPc = -1;
381
382// A block in a method. Contains the list of instructions represented
383// as a double linked list. Each block knows its predecessors and
384// successors.
385
386class HBasicBlock : public ArenaObject<kArenaAllocMisc> {
387 public:
388  explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
389      : graph_(graph),
390        predecessors_(graph->GetArena(), kDefaultNumberOfPredecessors),
391        successors_(graph->GetArena(), kDefaultNumberOfSuccessors),
392        loop_information_(nullptr),
393        dominator_(nullptr),
394        dominated_blocks_(graph->GetArena(), kDefaultNumberOfDominatedBlocks),
395        block_id_(-1),
396        dex_pc_(dex_pc),
397        lifetime_start_(kNoLifetime),
398        lifetime_end_(kNoLifetime),
399        is_catch_block_(false) {}
400
401  const GrowableArray<HBasicBlock*>& GetPredecessors() const {
402    return predecessors_;
403  }
404
405  const GrowableArray<HBasicBlock*>& GetSuccessors() const {
406    return successors_;
407  }
408
409  const GrowableArray<HBasicBlock*>& GetDominatedBlocks() const {
410    return dominated_blocks_;
411  }
412
413  bool IsEntryBlock() const {
414    return graph_->GetEntryBlock() == this;
415  }
416
417  bool IsExitBlock() const {
418    return graph_->GetExitBlock() == this;
419  }
420
421  bool IsSingleGoto() const;
422
423  void AddBackEdge(HBasicBlock* back_edge) {
424    if (loop_information_ == nullptr) {
425      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
426    }
427    DCHECK_EQ(loop_information_->GetHeader(), this);
428    loop_information_->AddBackEdge(back_edge);
429  }
430
431  HGraph* GetGraph() const { return graph_; }
432  void SetGraph(HGraph* graph) { graph_ = graph; }
433
434  int GetBlockId() const { return block_id_; }
435  void SetBlockId(int id) { block_id_ = id; }
436
437  HBasicBlock* GetDominator() const { return dominator_; }
438  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
439  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.Add(block); }
440  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
441    for (size_t i = 0, e = dominated_blocks_.Size(); i < e; ++i) {
442      if (dominated_blocks_.Get(i) == existing) {
443        dominated_blocks_.Put(i, new_block);
444        return;
445      }
446    }
447    LOG(FATAL) << "Unreachable";
448    UNREACHABLE();
449  }
450
451  int NumberOfBackEdges() const {
452    return loop_information_ == nullptr
453        ? 0
454        : loop_information_->NumberOfBackEdges();
455  }
456
457  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
458  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
459  const HInstructionList& GetInstructions() const { return instructions_; }
460  const HInstructionList& GetPhis() const { return phis_; }
461  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
462
463  void AddSuccessor(HBasicBlock* block) {
464    successors_.Add(block);
465    block->predecessors_.Add(this);
466  }
467
468  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
469    size_t successor_index = GetSuccessorIndexOf(existing);
470    DCHECK_NE(successor_index, static_cast<size_t>(-1));
471    existing->RemovePredecessor(this);
472    new_block->predecessors_.Add(this);
473    successors_.Put(successor_index, new_block);
474  }
475
476  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
477    size_t predecessor_index = GetPredecessorIndexOf(existing);
478    DCHECK_NE(predecessor_index, static_cast<size_t>(-1));
479    existing->RemoveSuccessor(this);
480    new_block->successors_.Add(this);
481    predecessors_.Put(predecessor_index, new_block);
482  }
483
484  void RemovePredecessor(HBasicBlock* block) {
485    predecessors_.Delete(block);
486  }
487
488  void RemoveSuccessor(HBasicBlock* block) {
489    successors_.Delete(block);
490  }
491
492  void ClearAllPredecessors() {
493    predecessors_.Reset();
494  }
495
496  void AddPredecessor(HBasicBlock* block) {
497    predecessors_.Add(block);
498    block->successors_.Add(this);
499  }
500
501  void SwapPredecessors() {
502    DCHECK_EQ(predecessors_.Size(), 2u);
503    HBasicBlock* temp = predecessors_.Get(0);
504    predecessors_.Put(0, predecessors_.Get(1));
505    predecessors_.Put(1, temp);
506  }
507
508  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) {
509    for (size_t i = 0, e = predecessors_.Size(); i < e; ++i) {
510      if (predecessors_.Get(i) == predecessor) {
511        return i;
512      }
513    }
514    return -1;
515  }
516
517  size_t GetSuccessorIndexOf(HBasicBlock* successor) {
518    for (size_t i = 0, e = successors_.Size(); i < e; ++i) {
519      if (successors_.Get(i) == successor) {
520        return i;
521      }
522    }
523    return -1;
524  }
525
526  // Split the block into two blocks just after `cursor`. Returns the newly
527  // created block. Note that this method just updates raw block information,
528  // like predecessors, successors, dominators, and instruction list. It does not
529  // update the graph, reverse post order, loop information, nor make sure the
530  // blocks are consistent (for example ending with a control flow instruction).
531  HBasicBlock* SplitAfter(HInstruction* cursor);
532
533  // Merge `other` at the end of `this`. Successors and dominated blocks of
534  // `other` are changed to be successors and dominated blocks of `this`. Note
535  // that this method does not update the graph, reverse post order, loop
536  // information, nor make sure the blocks are consistent (for example ending
537  // with a control flow instruction).
538  void MergeWith(HBasicBlock* other);
539
540  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
541  // of `this` are moved to `other`.
542  // Note that this method does not update the graph, reverse post order, loop
543  // information, nor make sure the blocks are consistent (for example ending
544  // with a control flow instruction).
545  void ReplaceWith(HBasicBlock* other);
546
547  // Disconnects `this` from all its predecessors, successors and the dominator.
548  // It assumes that `this` does not dominate any blocks.
549  // Note that this method does not update the graph, reverse post order, loop
550  // information, nor make sure the blocks are consistent (for example ending
551  // with a control flow instruction).
552  void DisconnectFromAll();
553
554  void AddInstruction(HInstruction* instruction);
555  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
556  // Replace instruction `initial` with `replacement` within this block.
557  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
558                                       HInstruction* replacement);
559  void AddPhi(HPhi* phi);
560  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
561  // RemoveInstruction and RemovePhi delete a given instruction from the respective
562  // instruction list. With 'ensure_safety' set to true, it verifies that the
563  // instruction is not in use and removes it from the use lists of its inputs.
564  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
565  void RemovePhi(HPhi* phi, bool ensure_safety = true);
566
567  bool IsLoopHeader() const {
568    return (loop_information_ != nullptr) && (loop_information_->GetHeader() == this);
569  }
570
571  bool IsLoopPreHeaderFirstPredecessor() const {
572    DCHECK(IsLoopHeader());
573    DCHECK(!GetPredecessors().IsEmpty());
574    return GetPredecessors().Get(0) == GetLoopInformation()->GetPreHeader();
575  }
576
577  HLoopInformation* GetLoopInformation() const {
578    return loop_information_;
579  }
580
581  // Set the loop_information_ on this block. Overrides the current
582  // loop_information if it is an outer loop of the passed loop information.
583  // Note that this method is called while creating the loop information.
584  void SetInLoop(HLoopInformation* info) {
585    if (IsLoopHeader()) {
586      // Nothing to do. This just means `info` is an outer loop.
587    } else if (loop_information_ == nullptr) {
588      loop_information_ = info;
589    } else if (loop_information_->Contains(*info->GetHeader())) {
590      // Block is currently part of an outer loop. Make it part of this inner loop.
591      // Note that a non loop header having a loop information means this loop information
592      // has already been populated
593      loop_information_ = info;
594    } else {
595      // Block is part of an inner loop. Do not update the loop information.
596      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
597      // at this point, because this method is being called while populating `info`.
598    }
599  }
600
601  // Raw update of the loop information.
602  void SetLoopInformation(HLoopInformation* info) {
603    loop_information_ = info;
604  }
605
606  bool IsInLoop() const { return loop_information_ != nullptr; }
607
608  // Returns wheter this block dominates the blocked passed as parameter.
609  bool Dominates(HBasicBlock* block) const;
610
611  size_t GetLifetimeStart() const { return lifetime_start_; }
612  size_t GetLifetimeEnd() const { return lifetime_end_; }
613
614  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
615  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
616
617  uint32_t GetDexPc() const { return dex_pc_; }
618
619  bool IsCatchBlock() const { return is_catch_block_; }
620  void SetIsCatchBlock() { is_catch_block_ = true; }
621
622  bool EndsWithControlFlowInstruction() const;
623  bool EndsWithIf() const;
624  bool HasSinglePhi() const;
625
626 private:
627  HGraph* graph_;
628  GrowableArray<HBasicBlock*> predecessors_;
629  GrowableArray<HBasicBlock*> successors_;
630  HInstructionList instructions_;
631  HInstructionList phis_;
632  HLoopInformation* loop_information_;
633  HBasicBlock* dominator_;
634  GrowableArray<HBasicBlock*> dominated_blocks_;
635  int block_id_;
636  // The dex program counter of the first instruction of this block.
637  const uint32_t dex_pc_;
638  size_t lifetime_start_;
639  size_t lifetime_end_;
640  bool is_catch_block_;
641
642  friend class HGraph;
643  friend class HInstruction;
644
645  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
646};
647
648// Iterates over the LoopInformation of all loops which contain 'block'
649// from the innermost to the outermost.
650class HLoopInformationOutwardIterator : public ValueObject {
651 public:
652  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
653      : current_(block.GetLoopInformation()) {}
654
655  bool Done() const { return current_ == nullptr; }
656
657  void Advance() {
658    DCHECK(!Done());
659    current_ = current_->GetHeader()->GetDominator()->GetLoopInformation();
660  }
661
662  HLoopInformation* Current() const {
663    DCHECK(!Done());
664    return current_;
665  }
666
667 private:
668  HLoopInformation* current_;
669
670  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
671};
672
673#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
674  M(Add, BinaryOperation)                                               \
675  M(And, BinaryOperation)                                               \
676  M(ArrayGet, Instruction)                                              \
677  M(ArrayLength, Instruction)                                           \
678  M(ArraySet, Instruction)                                              \
679  M(BoundsCheck, Instruction)                                           \
680  M(BoundType, Instruction)                                             \
681  M(CheckCast, Instruction)                                             \
682  M(ClinitCheck, Instruction)                                           \
683  M(Compare, BinaryOperation)                                           \
684  M(Condition, BinaryOperation)                                         \
685  M(Deoptimize, Instruction)                                            \
686  M(Div, BinaryOperation)                                               \
687  M(DivZeroCheck, Instruction)                                          \
688  M(DoubleConstant, Constant)                                           \
689  M(Equal, Condition)                                                   \
690  M(Exit, Instruction)                                                  \
691  M(FloatConstant, Constant)                                            \
692  M(Goto, Instruction)                                                  \
693  M(GreaterThan, Condition)                                             \
694  M(GreaterThanOrEqual, Condition)                                      \
695  M(If, Instruction)                                                    \
696  M(InstanceFieldGet, Instruction)                                      \
697  M(InstanceFieldSet, Instruction)                                      \
698  M(InstanceOf, Instruction)                                            \
699  M(IntConstant, Constant)                                              \
700  M(InvokeInterface, Invoke)                                            \
701  M(InvokeStaticOrDirect, Invoke)                                       \
702  M(InvokeVirtual, Invoke)                                              \
703  M(LessThan, Condition)                                                \
704  M(LessThanOrEqual, Condition)                                         \
705  M(LoadClass, Instruction)                                             \
706  M(LoadException, Instruction)                                         \
707  M(LoadLocal, Instruction)                                             \
708  M(LoadString, Instruction)                                            \
709  M(Local, Instruction)                                                 \
710  M(LongConstant, Constant)                                             \
711  M(MonitorOperation, Instruction)                                      \
712  M(Mul, BinaryOperation)                                               \
713  M(Neg, UnaryOperation)                                                \
714  M(NewArray, Instruction)                                              \
715  M(NewInstance, Instruction)                                           \
716  M(Not, UnaryOperation)                                                \
717  M(NotEqual, Condition)                                                \
718  M(NullConstant, Instruction)                                          \
719  M(NullCheck, Instruction)                                             \
720  M(Or, BinaryOperation)                                                \
721  M(ParallelMove, Instruction)                                          \
722  M(ParameterValue, Instruction)                                        \
723  M(Phi, Instruction)                                                   \
724  M(Rem, BinaryOperation)                                               \
725  M(Return, Instruction)                                                \
726  M(ReturnVoid, Instruction)                                            \
727  M(Shl, BinaryOperation)                                               \
728  M(Shr, BinaryOperation)                                               \
729  M(StaticFieldGet, Instruction)                                        \
730  M(StaticFieldSet, Instruction)                                        \
731  M(StoreLocal, Instruction)                                            \
732  M(Sub, BinaryOperation)                                               \
733  M(SuspendCheck, Instruction)                                          \
734  M(Temporary, Instruction)                                             \
735  M(Throw, Instruction)                                                 \
736  M(TypeConversion, Instruction)                                        \
737  M(UShr, BinaryOperation)                                              \
738  M(Xor, BinaryOperation)                                               \
739
740#define FOR_EACH_INSTRUCTION(M)                                         \
741  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
742  M(Constant, Instruction)                                              \
743  M(UnaryOperation, Instruction)                                        \
744  M(BinaryOperation, Instruction)                                       \
745  M(Invoke, Instruction)
746
747#define FORWARD_DECLARATION(type, super) class H##type;
748FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
749#undef FORWARD_DECLARATION
750
751#define DECLARE_INSTRUCTION(type)                                       \
752  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
753  const char* DebugName() const OVERRIDE { return #type; }              \
754  const H##type* As##type() const OVERRIDE { return this; }             \
755  H##type* As##type() OVERRIDE { return this; }                         \
756  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
757    return other->Is##type();                                           \
758  }                                                                     \
759  void Accept(HGraphVisitor* visitor) OVERRIDE
760
761template <typename T> class HUseList;
762
763template <typename T>
764class HUseListNode : public ArenaObject<kArenaAllocMisc> {
765 public:
766  HUseListNode* GetPrevious() const { return prev_; }
767  HUseListNode* GetNext() const { return next_; }
768  T GetUser() const { return user_; }
769  size_t GetIndex() const { return index_; }
770
771 private:
772  HUseListNode(T user, size_t index)
773      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
774
775  T const user_;
776  const size_t index_;
777  HUseListNode<T>* prev_;
778  HUseListNode<T>* next_;
779
780  friend class HUseList<T>;
781
782  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
783};
784
785template <typename T>
786class HUseList : public ValueObject {
787 public:
788  HUseList() : first_(nullptr) {}
789
790  void Clear() {
791    first_ = nullptr;
792  }
793
794  // Adds a new entry at the beginning of the use list and returns
795  // the newly created node.
796  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
797    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
798    if (IsEmpty()) {
799      first_ = new_node;
800    } else {
801      first_->prev_ = new_node;
802      new_node->next_ = first_;
803      first_ = new_node;
804    }
805    return new_node;
806  }
807
808  HUseListNode<T>* GetFirst() const {
809    return first_;
810  }
811
812  void Remove(HUseListNode<T>* node) {
813    DCHECK(node != nullptr);
814    DCHECK(Contains(node));
815
816    if (node->prev_ != nullptr) {
817      node->prev_->next_ = node->next_;
818    }
819    if (node->next_ != nullptr) {
820      node->next_->prev_ = node->prev_;
821    }
822    if (node == first_) {
823      first_ = node->next_;
824    }
825  }
826
827  bool Contains(const HUseListNode<T>* node) const {
828    if (node == nullptr) {
829      return false;
830    }
831    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
832      if (current == node) {
833        return true;
834      }
835    }
836    return false;
837  }
838
839  bool IsEmpty() const {
840    return first_ == nullptr;
841  }
842
843  bool HasOnlyOneUse() const {
844    return first_ != nullptr && first_->next_ == nullptr;
845  }
846
847 private:
848  HUseListNode<T>* first_;
849};
850
851template<typename T>
852class HUseIterator : public ValueObject {
853 public:
854  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
855
856  bool Done() const { return current_ == nullptr; }
857
858  void Advance() {
859    DCHECK(!Done());
860    current_ = current_->GetNext();
861  }
862
863  HUseListNode<T>* Current() const {
864    DCHECK(!Done());
865    return current_;
866  }
867
868 private:
869  HUseListNode<T>* current_;
870
871  friend class HValue;
872};
873
874// This class is used by HEnvironment and HInstruction classes to record the
875// instructions they use and pointers to the corresponding HUseListNodes kept
876// by the used instructions.
877template <typename T>
878class HUserRecord : public ValueObject {
879 public:
880  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
881  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
882
883  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
884    : instruction_(old_record.instruction_), use_node_(use_node) {
885    DCHECK(instruction_ != nullptr);
886    DCHECK(use_node_ != nullptr);
887    DCHECK(old_record.use_node_ == nullptr);
888  }
889
890  HInstruction* GetInstruction() const { return instruction_; }
891  HUseListNode<T>* GetUseNode() const { return use_node_; }
892
893 private:
894  // Instruction used by the user.
895  HInstruction* instruction_;
896
897  // Corresponding entry in the use list kept by 'instruction_'.
898  HUseListNode<T>* use_node_;
899};
900
901// Represents the side effects an instruction may have.
902class SideEffects : public ValueObject {
903 public:
904  SideEffects() : flags_(0) {}
905
906  static SideEffects None() {
907    return SideEffects(0);
908  }
909
910  static SideEffects All() {
911    return SideEffects(ChangesSomething().flags_ | DependsOnSomething().flags_);
912  }
913
914  static SideEffects ChangesSomething() {
915    return SideEffects((1 << kFlagChangesCount) - 1);
916  }
917
918  static SideEffects DependsOnSomething() {
919    int count = kFlagDependsOnCount - kFlagChangesCount;
920    return SideEffects(((1 << count) - 1) << kFlagChangesCount);
921  }
922
923  SideEffects Union(SideEffects other) const {
924    return SideEffects(flags_ | other.flags_);
925  }
926
927  bool HasSideEffects() const {
928    size_t all_bits_set = (1 << kFlagChangesCount) - 1;
929    return (flags_ & all_bits_set) != 0;
930  }
931
932  bool HasAllSideEffects() const {
933    size_t all_bits_set = (1 << kFlagChangesCount) - 1;
934    return all_bits_set == (flags_ & all_bits_set);
935  }
936
937  bool DependsOn(SideEffects other) const {
938    size_t depends_flags = other.ComputeDependsFlags();
939    return (flags_ & depends_flags) != 0;
940  }
941
942  bool HasDependencies() const {
943    int count = kFlagDependsOnCount - kFlagChangesCount;
944    size_t all_bits_set = (1 << count) - 1;
945    return ((flags_ >> kFlagChangesCount) & all_bits_set) != 0;
946  }
947
948 private:
949  static constexpr int kFlagChangesSomething = 0;
950  static constexpr int kFlagChangesCount = kFlagChangesSomething + 1;
951
952  static constexpr int kFlagDependsOnSomething = kFlagChangesCount;
953  static constexpr int kFlagDependsOnCount = kFlagDependsOnSomething + 1;
954
955  explicit SideEffects(size_t flags) : flags_(flags) {}
956
957  size_t ComputeDependsFlags() const {
958    return flags_ << kFlagChangesCount;
959  }
960
961  size_t flags_;
962};
963
964// A HEnvironment object contains the values of virtual registers at a given location.
965class HEnvironment : public ArenaObject<kArenaAllocMisc> {
966 public:
967  HEnvironment(ArenaAllocator* arena, size_t number_of_vregs)
968     : vregs_(arena, number_of_vregs) {
969    vregs_.SetSize(number_of_vregs);
970    for (size_t i = 0; i < number_of_vregs; i++) {
971      vregs_.Put(i, HUserRecord<HEnvironment*>());
972    }
973  }
974
975  void CopyFrom(HEnvironment* env);
976
977  void SetRawEnvAt(size_t index, HInstruction* instruction) {
978    vregs_.Put(index, HUserRecord<HEnvironment*>(instruction));
979  }
980
981  HInstruction* GetInstructionAt(size_t index) const {
982    return vregs_.Get(index).GetInstruction();
983  }
984
985  void RemoveAsUserOfInput(size_t index) const;
986
987  size_t Size() const { return vregs_.Size(); }
988
989 private:
990  // Record instructions' use entries of this environment for constant-time removal.
991  // It should only be called by HInstruction when a new environment use is added.
992  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
993    DCHECK(env_use->GetUser() == this);
994    size_t index = env_use->GetIndex();
995    vregs_.Put(index, HUserRecord<HEnvironment*>(vregs_.Get(index), env_use));
996  }
997
998  GrowableArray<HUserRecord<HEnvironment*> > vregs_;
999
1000  friend HInstruction;
1001
1002  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1003};
1004
1005class ReferenceTypeInfo : ValueObject {
1006 public:
1007  typedef Handle<mirror::Class> TypeHandle;
1008
1009  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact)
1010      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1011    if (type_handle->IsObjectClass()) {
1012      // Override the type handle to be consistent with the case when we get to
1013      // Top but don't have the Object class available. It avoids having to guess
1014      // what value the type_handle has when it's Top.
1015      return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1016    } else {
1017      return ReferenceTypeInfo(type_handle, is_exact, false);
1018    }
1019  }
1020
1021  static ReferenceTypeInfo CreateTop(bool is_exact) {
1022    return ReferenceTypeInfo(TypeHandle(), is_exact, true);
1023  }
1024
1025  bool IsExact() const { return is_exact_; }
1026  bool IsTop() const { return is_top_; }
1027
1028  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1029
1030  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1031    if (IsTop()) {
1032      // Top (equivalent for java.lang.Object) is supertype of anything.
1033      return true;
1034    }
1035    if (rti.IsTop()) {
1036      // If we get here `this` is not Top() so it can't be a supertype.
1037      return false;
1038    }
1039    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1040  }
1041
1042  // Returns true if the type information provide the same amount of details.
1043  // Note that it does not mean that the instructions have the same actual type
1044  // (e.g. tops are equal but they can be the result of a merge).
1045  bool IsEqual(ReferenceTypeInfo rti) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1046    if (IsExact() != rti.IsExact()) {
1047      return false;
1048    }
1049    if (IsTop() && rti.IsTop()) {
1050      // `Top` means java.lang.Object, so the types are equivalent.
1051      return true;
1052    }
1053    if (IsTop() || rti.IsTop()) {
1054      // If only one is top or object than they are not equivalent.
1055      // NB: We need this extra check because the type_handle of `Top` is invalid
1056      // and we cannot inspect its reference.
1057      return false;
1058    }
1059
1060    // Finally check the types.
1061    return GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1062  }
1063
1064 private:
1065  ReferenceTypeInfo() : ReferenceTypeInfo(TypeHandle(), false, true) {}
1066  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact, bool is_top)
1067      : type_handle_(type_handle), is_exact_(is_exact), is_top_(is_top) {}
1068
1069  // The class of the object.
1070  TypeHandle type_handle_;
1071  // Whether or not the type is exact or a superclass of the actual type.
1072  // Whether or not we have any information about this type.
1073  bool is_exact_;
1074  // A true value here means that the object type should be java.lang.Object.
1075  // We don't have access to the corresponding mirror object every time so this
1076  // flag acts as a substitute. When true, the TypeHandle refers to a null
1077  // pointer and should not be used.
1078  bool is_top_;
1079};
1080
1081std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1082
1083class HInstruction : public ArenaObject<kArenaAllocMisc> {
1084 public:
1085  explicit HInstruction(SideEffects side_effects)
1086      : previous_(nullptr),
1087        next_(nullptr),
1088        block_(nullptr),
1089        id_(-1),
1090        ssa_index_(-1),
1091        environment_(nullptr),
1092        locations_(nullptr),
1093        live_interval_(nullptr),
1094        lifetime_position_(kNoLifetime),
1095        side_effects_(side_effects),
1096        reference_type_info_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
1097
1098  virtual ~HInstruction() {}
1099
1100#define DECLARE_KIND(type, super) k##type,
1101  enum InstructionKind {
1102    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1103  };
1104#undef DECLARE_KIND
1105
1106  HInstruction* GetNext() const { return next_; }
1107  HInstruction* GetPrevious() const { return previous_; }
1108
1109  HInstruction* GetNextDisregardingMoves() const;
1110  HInstruction* GetPreviousDisregardingMoves() const;
1111
1112  HBasicBlock* GetBlock() const { return block_; }
1113  void SetBlock(HBasicBlock* block) { block_ = block; }
1114  bool IsInBlock() const { return block_ != nullptr; }
1115  bool IsInLoop() const { return block_->IsInLoop(); }
1116  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1117
1118  virtual size_t InputCount() const = 0;
1119  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1120
1121  virtual void Accept(HGraphVisitor* visitor) = 0;
1122  virtual const char* DebugName() const = 0;
1123
1124  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1125  void SetRawInputAt(size_t index, HInstruction* input) {
1126    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1127  }
1128
1129  virtual bool NeedsEnvironment() const { return false; }
1130  virtual bool IsControlFlow() const { return false; }
1131  virtual bool CanThrow() const { return false; }
1132  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1133
1134  virtual bool ActAsNullConstant() const { return false; }
1135
1136  // Does not apply for all instructions, but having this at top level greatly
1137  // simplifies the null check elimination.
1138  virtual bool CanBeNull() const {
1139    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1140    return true;
1141  }
1142
1143  virtual bool CanDoImplicitNullCheck() const { return false; }
1144
1145  void SetReferenceTypeInfo(ReferenceTypeInfo reference_type_info) {
1146    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1147    reference_type_info_ = reference_type_info;
1148  }
1149
1150  ReferenceTypeInfo GetReferenceTypeInfo() const {
1151    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1152    return reference_type_info_;
1153  }
1154
1155  void AddUseAt(HInstruction* user, size_t index) {
1156    DCHECK(user != nullptr);
1157    HUseListNode<HInstruction*>* use =
1158        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1159    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1160  }
1161
1162  void AddEnvUseAt(HEnvironment* user, size_t index) {
1163    DCHECK(user != nullptr);
1164    HUseListNode<HEnvironment*>* env_use =
1165        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1166    user->RecordEnvUse(env_use);
1167  }
1168
1169  void RemoveAsUserOfInput(size_t input) {
1170    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1171    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1172  }
1173
1174  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1175  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1176
1177  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1178  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1179  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1180  bool HasOnlyOneNonEnvironmentUse() const {
1181    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1182  }
1183
1184  // Does this instruction strictly dominate `other_instruction`?
1185  // Returns false if this instruction and `other_instruction` are the same.
1186  // Aborts if this instruction and `other_instruction` are both phis.
1187  bool StrictlyDominates(HInstruction* other_instruction) const;
1188
1189  int GetId() const { return id_; }
1190  void SetId(int id) { id_ = id; }
1191
1192  int GetSsaIndex() const { return ssa_index_; }
1193  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1194  bool HasSsaIndex() const { return ssa_index_ != -1; }
1195
1196  bool HasEnvironment() const { return environment_ != nullptr; }
1197  HEnvironment* GetEnvironment() const { return environment_; }
1198  // Set the `environment_` field. Raw because this method does not
1199  // update the uses lists.
1200  void SetRawEnvironment(HEnvironment* environment) { environment_ = environment; }
1201
1202  // Set the environment of this instruction, copying it from `environment`. While
1203  // copying, the uses lists are being updated.
1204  void CopyEnvironmentFrom(HEnvironment* environment) {
1205    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1206    environment_ = new (allocator) HEnvironment(allocator, environment->Size());
1207    environment_->CopyFrom(environment);
1208  }
1209
1210  // Returns the number of entries in the environment. Typically, that is the
1211  // number of dex registers in a method. It could be more in case of inlining.
1212  size_t EnvironmentSize() const;
1213
1214  LocationSummary* GetLocations() const { return locations_; }
1215  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1216
1217  void ReplaceWith(HInstruction* instruction);
1218  void ReplaceInput(HInstruction* replacement, size_t index);
1219
1220  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1221  // uses of this instruction by `other` are *not* updated.
1222  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1223    ReplaceWith(other);
1224    other->ReplaceInput(this, use_index);
1225  }
1226
1227  // Move `this` instruction before `cursor`.
1228  void MoveBefore(HInstruction* cursor);
1229
1230#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1231  bool Is##type() const { return (As##type() != nullptr); }                    \
1232  virtual const H##type* As##type() const { return nullptr; }                  \
1233  virtual H##type* As##type() { return nullptr; }
1234
1235  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1236#undef INSTRUCTION_TYPE_CHECK
1237
1238  // Returns whether the instruction can be moved within the graph.
1239  virtual bool CanBeMoved() const { return false; }
1240
1241  // Returns whether the two instructions are of the same kind.
1242  virtual bool InstructionTypeEquals(HInstruction* other) const {
1243    UNUSED(other);
1244    return false;
1245  }
1246
1247  // Returns whether any data encoded in the two instructions is equal.
1248  // This method does not look at the inputs. Both instructions must be
1249  // of the same type, otherwise the method has undefined behavior.
1250  virtual bool InstructionDataEquals(HInstruction* other) const {
1251    UNUSED(other);
1252    return false;
1253  }
1254
1255  // Returns whether two instructions are equal, that is:
1256  // 1) They have the same type and contain the same data (InstructionDataEquals).
1257  // 2) Their inputs are identical.
1258  bool Equals(HInstruction* other) const;
1259
1260  virtual InstructionKind GetKind() const = 0;
1261
1262  virtual size_t ComputeHashCode() const {
1263    size_t result = GetKind();
1264    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1265      result = (result * 31) + InputAt(i)->GetId();
1266    }
1267    return result;
1268  }
1269
1270  SideEffects GetSideEffects() const { return side_effects_; }
1271
1272  size_t GetLifetimePosition() const { return lifetime_position_; }
1273  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1274  LiveInterval* GetLiveInterval() const { return live_interval_; }
1275  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1276  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1277
1278  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1279
1280  // Returns whether the code generation of the instruction will require to have access
1281  // to the current method. Such instructions are:
1282  // (1): Instructions that require an environment, as calling the runtime requires
1283  //      to walk the stack and have the current method stored at a specific stack address.
1284  // (2): Object literals like classes and strings, that are loaded from the dex cache
1285  //      fields of the current method.
1286  bool NeedsCurrentMethod() const {
1287    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1288  }
1289
1290  virtual bool NeedsDexCache() const { return false; }
1291
1292 protected:
1293  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
1294  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
1295
1296 private:
1297  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
1298
1299  HInstruction* previous_;
1300  HInstruction* next_;
1301  HBasicBlock* block_;
1302
1303  // An instruction gets an id when it is added to the graph.
1304  // It reflects creation order. A negative id means the instruction
1305  // has not been added to the graph.
1306  int id_;
1307
1308  // When doing liveness analysis, instructions that have uses get an SSA index.
1309  int ssa_index_;
1310
1311  // List of instructions that have this instruction as input.
1312  HUseList<HInstruction*> uses_;
1313
1314  // List of environments that contain this instruction.
1315  HUseList<HEnvironment*> env_uses_;
1316
1317  // The environment associated with this instruction. Not null if the instruction
1318  // might jump out of the method.
1319  HEnvironment* environment_;
1320
1321  // Set by the code generator.
1322  LocationSummary* locations_;
1323
1324  // Set by the liveness analysis.
1325  LiveInterval* live_interval_;
1326
1327  // Set by the liveness analysis, this is the position in a linear
1328  // order of blocks where this instruction's live interval start.
1329  size_t lifetime_position_;
1330
1331  const SideEffects side_effects_;
1332
1333  // TODO: for primitive types this should be marked as invalid.
1334  ReferenceTypeInfo reference_type_info_;
1335
1336  friend class GraphChecker;
1337  friend class HBasicBlock;
1338  friend class HEnvironment;
1339  friend class HGraph;
1340  friend class HInstructionList;
1341
1342  DISALLOW_COPY_AND_ASSIGN(HInstruction);
1343};
1344std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
1345
1346class HInputIterator : public ValueObject {
1347 public:
1348  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
1349
1350  bool Done() const { return index_ == instruction_->InputCount(); }
1351  HInstruction* Current() const { return instruction_->InputAt(index_); }
1352  void Advance() { index_++; }
1353
1354 private:
1355  HInstruction* instruction_;
1356  size_t index_;
1357
1358  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
1359};
1360
1361class HInstructionIterator : public ValueObject {
1362 public:
1363  explicit HInstructionIterator(const HInstructionList& instructions)
1364      : instruction_(instructions.first_instruction_) {
1365    next_ = Done() ? nullptr : instruction_->GetNext();
1366  }
1367
1368  bool Done() const { return instruction_ == nullptr; }
1369  HInstruction* Current() const { return instruction_; }
1370  void Advance() {
1371    instruction_ = next_;
1372    next_ = Done() ? nullptr : instruction_->GetNext();
1373  }
1374
1375 private:
1376  HInstruction* instruction_;
1377  HInstruction* next_;
1378
1379  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
1380};
1381
1382class HBackwardInstructionIterator : public ValueObject {
1383 public:
1384  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
1385      : instruction_(instructions.last_instruction_) {
1386    next_ = Done() ? nullptr : instruction_->GetPrevious();
1387  }
1388
1389  bool Done() const { return instruction_ == nullptr; }
1390  HInstruction* Current() const { return instruction_; }
1391  void Advance() {
1392    instruction_ = next_;
1393    next_ = Done() ? nullptr : instruction_->GetPrevious();
1394  }
1395
1396 private:
1397  HInstruction* instruction_;
1398  HInstruction* next_;
1399
1400  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
1401};
1402
1403// An embedded container with N elements of type T.  Used (with partial
1404// specialization for N=0) because embedded arrays cannot have size 0.
1405template<typename T, intptr_t N>
1406class EmbeddedArray {
1407 public:
1408  EmbeddedArray() : elements_() {}
1409
1410  intptr_t GetLength() const { return N; }
1411
1412  const T& operator[](intptr_t i) const {
1413    DCHECK_LT(i, GetLength());
1414    return elements_[i];
1415  }
1416
1417  T& operator[](intptr_t i) {
1418    DCHECK_LT(i, GetLength());
1419    return elements_[i];
1420  }
1421
1422  const T& At(intptr_t i) const {
1423    return (*this)[i];
1424  }
1425
1426  void SetAt(intptr_t i, const T& val) {
1427    (*this)[i] = val;
1428  }
1429
1430 private:
1431  T elements_[N];
1432};
1433
1434template<typename T>
1435class EmbeddedArray<T, 0> {
1436 public:
1437  intptr_t length() const { return 0; }
1438  const T& operator[](intptr_t i) const {
1439    UNUSED(i);
1440    LOG(FATAL) << "Unreachable";
1441    UNREACHABLE();
1442  }
1443  T& operator[](intptr_t i) {
1444    UNUSED(i);
1445    LOG(FATAL) << "Unreachable";
1446    UNREACHABLE();
1447  }
1448};
1449
1450template<intptr_t N>
1451class HTemplateInstruction: public HInstruction {
1452 public:
1453  HTemplateInstruction<N>(SideEffects side_effects)
1454      : HInstruction(side_effects), inputs_() {}
1455  virtual ~HTemplateInstruction() {}
1456
1457  size_t InputCount() const OVERRIDE { return N; }
1458
1459 protected:
1460  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_[i]; }
1461
1462  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
1463    inputs_[i] = input;
1464  }
1465
1466 private:
1467  EmbeddedArray<HUserRecord<HInstruction*>, N> inputs_;
1468
1469  friend class SsaBuilder;
1470};
1471
1472template<intptr_t N>
1473class HExpression : public HTemplateInstruction<N> {
1474 public:
1475  HExpression<N>(Primitive::Type type, SideEffects side_effects)
1476      : HTemplateInstruction<N>(side_effects), type_(type) {}
1477  virtual ~HExpression() {}
1478
1479  Primitive::Type GetType() const OVERRIDE { return type_; }
1480
1481 protected:
1482  Primitive::Type type_;
1483};
1484
1485// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
1486// instruction that branches to the exit block.
1487class HReturnVoid : public HTemplateInstruction<0> {
1488 public:
1489  HReturnVoid() : HTemplateInstruction(SideEffects::None()) {}
1490
1491  bool IsControlFlow() const OVERRIDE { return true; }
1492
1493  DECLARE_INSTRUCTION(ReturnVoid);
1494
1495 private:
1496  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
1497};
1498
1499// Represents dex's RETURN opcodes. A HReturn is a control flow
1500// instruction that branches to the exit block.
1501class HReturn : public HTemplateInstruction<1> {
1502 public:
1503  explicit HReturn(HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
1504    SetRawInputAt(0, value);
1505  }
1506
1507  bool IsControlFlow() const OVERRIDE { return true; }
1508
1509  DECLARE_INSTRUCTION(Return);
1510
1511 private:
1512  DISALLOW_COPY_AND_ASSIGN(HReturn);
1513};
1514
1515// The exit instruction is the only instruction of the exit block.
1516// Instructions aborting the method (HThrow and HReturn) must branch to the
1517// exit block.
1518class HExit : public HTemplateInstruction<0> {
1519 public:
1520  HExit() : HTemplateInstruction(SideEffects::None()) {}
1521
1522  bool IsControlFlow() const OVERRIDE { return true; }
1523
1524  DECLARE_INSTRUCTION(Exit);
1525
1526 private:
1527  DISALLOW_COPY_AND_ASSIGN(HExit);
1528};
1529
1530// Jumps from one block to another.
1531class HGoto : public HTemplateInstruction<0> {
1532 public:
1533  HGoto() : HTemplateInstruction(SideEffects::None()) {}
1534
1535  bool IsControlFlow() const OVERRIDE { return true; }
1536
1537  HBasicBlock* GetSuccessor() const {
1538    return GetBlock()->GetSuccessors().Get(0);
1539  }
1540
1541  DECLARE_INSTRUCTION(Goto);
1542
1543 private:
1544  DISALLOW_COPY_AND_ASSIGN(HGoto);
1545};
1546
1547
1548// Conditional branch. A block ending with an HIf instruction must have
1549// two successors.
1550class HIf : public HTemplateInstruction<1> {
1551 public:
1552  explicit HIf(HInstruction* input) : HTemplateInstruction(SideEffects::None()) {
1553    SetRawInputAt(0, input);
1554  }
1555
1556  bool IsControlFlow() const OVERRIDE { return true; }
1557
1558  HBasicBlock* IfTrueSuccessor() const {
1559    return GetBlock()->GetSuccessors().Get(0);
1560  }
1561
1562  HBasicBlock* IfFalseSuccessor() const {
1563    return GetBlock()->GetSuccessors().Get(1);
1564  }
1565
1566  DECLARE_INSTRUCTION(If);
1567
1568 private:
1569  DISALLOW_COPY_AND_ASSIGN(HIf);
1570};
1571
1572// Deoptimize to interpreter, upon checking a condition.
1573class HDeoptimize : public HTemplateInstruction<1> {
1574 public:
1575  HDeoptimize(HInstruction* cond, uint32_t dex_pc)
1576      : HTemplateInstruction(SideEffects::None()),
1577        dex_pc_(dex_pc) {
1578    SetRawInputAt(0, cond);
1579  }
1580
1581  bool NeedsEnvironment() const OVERRIDE { return true; }
1582  bool CanThrow() const OVERRIDE { return true; }
1583  uint32_t GetDexPc() const { return dex_pc_; }
1584
1585  DECLARE_INSTRUCTION(Deoptimize);
1586
1587 private:
1588  uint32_t dex_pc_;
1589
1590  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
1591};
1592
1593class HUnaryOperation : public HExpression<1> {
1594 public:
1595  HUnaryOperation(Primitive::Type result_type, HInstruction* input)
1596      : HExpression(result_type, SideEffects::None()) {
1597    SetRawInputAt(0, input);
1598  }
1599
1600  HInstruction* GetInput() const { return InputAt(0); }
1601  Primitive::Type GetResultType() const { return GetType(); }
1602
1603  bool CanBeMoved() const OVERRIDE { return true; }
1604  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1605    UNUSED(other);
1606    return true;
1607  }
1608
1609  // Try to statically evaluate `operation` and return a HConstant
1610  // containing the result of this evaluation.  If `operation` cannot
1611  // be evaluated as a constant, return nullptr.
1612  HConstant* TryStaticEvaluation() const;
1613
1614  // Apply this operation to `x`.
1615  virtual int32_t Evaluate(int32_t x) const = 0;
1616  virtual int64_t Evaluate(int64_t x) const = 0;
1617
1618  DECLARE_INSTRUCTION(UnaryOperation);
1619
1620 private:
1621  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
1622};
1623
1624class HBinaryOperation : public HExpression<2> {
1625 public:
1626  HBinaryOperation(Primitive::Type result_type,
1627                   HInstruction* left,
1628                   HInstruction* right) : HExpression(result_type, SideEffects::None()) {
1629    SetRawInputAt(0, left);
1630    SetRawInputAt(1, right);
1631  }
1632
1633  HInstruction* GetLeft() const { return InputAt(0); }
1634  HInstruction* GetRight() const { return InputAt(1); }
1635  Primitive::Type GetResultType() const { return GetType(); }
1636
1637  virtual bool IsCommutative() const { return false; }
1638
1639  // Put constant on the right.
1640  // Returns whether order is changed.
1641  bool OrderInputsWithConstantOnTheRight() {
1642    HInstruction* left = InputAt(0);
1643    HInstruction* right = InputAt(1);
1644    if (left->IsConstant() && !right->IsConstant()) {
1645      ReplaceInput(right, 0);
1646      ReplaceInput(left, 1);
1647      return true;
1648    }
1649    return false;
1650  }
1651
1652  // Order inputs by instruction id, but favor constant on the right side.
1653  // This helps GVN for commutative ops.
1654  void OrderInputs() {
1655    DCHECK(IsCommutative());
1656    HInstruction* left = InputAt(0);
1657    HInstruction* right = InputAt(1);
1658    if (left == right || (!left->IsConstant() && right->IsConstant())) {
1659      return;
1660    }
1661    if (OrderInputsWithConstantOnTheRight()) {
1662      return;
1663    }
1664    // Order according to instruction id.
1665    if (left->GetId() > right->GetId()) {
1666      ReplaceInput(right, 0);
1667      ReplaceInput(left, 1);
1668    }
1669  }
1670
1671  bool CanBeMoved() const OVERRIDE { return true; }
1672  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1673    UNUSED(other);
1674    return true;
1675  }
1676
1677  // Try to statically evaluate `operation` and return a HConstant
1678  // containing the result of this evaluation.  If `operation` cannot
1679  // be evaluated as a constant, return nullptr.
1680  HConstant* TryStaticEvaluation() const;
1681
1682  // Apply this operation to `x` and `y`.
1683  virtual int32_t Evaluate(int32_t x, int32_t y) const = 0;
1684  virtual int64_t Evaluate(int64_t x, int64_t y) const = 0;
1685
1686  // Returns an input that can legally be used as the right input and is
1687  // constant, or nullptr.
1688  HConstant* GetConstantRight() const;
1689
1690  // If `GetConstantRight()` returns one of the input, this returns the other
1691  // one. Otherwise it returns nullptr.
1692  HInstruction* GetLeastConstantLeft() const;
1693
1694  DECLARE_INSTRUCTION(BinaryOperation);
1695
1696 private:
1697  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
1698};
1699
1700class HCondition : public HBinaryOperation {
1701 public:
1702  HCondition(HInstruction* first, HInstruction* second)
1703      : HBinaryOperation(Primitive::kPrimBoolean, first, second),
1704        needs_materialization_(true) {}
1705
1706  bool NeedsMaterialization() const { return needs_materialization_; }
1707  void ClearNeedsMaterialization() { needs_materialization_ = false; }
1708
1709  // For code generation purposes, returns whether this instruction is just before
1710  // `instruction`, and disregard moves in between.
1711  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
1712
1713  DECLARE_INSTRUCTION(Condition);
1714
1715  virtual IfCondition GetCondition() const = 0;
1716
1717 private:
1718  // For register allocation purposes, returns whether this instruction needs to be
1719  // materialized (that is, not just be in the processor flags).
1720  bool needs_materialization_;
1721
1722  DISALLOW_COPY_AND_ASSIGN(HCondition);
1723};
1724
1725// Instruction to check if two inputs are equal to each other.
1726class HEqual : public HCondition {
1727 public:
1728  HEqual(HInstruction* first, HInstruction* second)
1729      : HCondition(first, second) {}
1730
1731  bool IsCommutative() const OVERRIDE { return true; }
1732
1733  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1734    return x == y ? 1 : 0;
1735  }
1736  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1737    return x == y ? 1 : 0;
1738  }
1739
1740  DECLARE_INSTRUCTION(Equal);
1741
1742  IfCondition GetCondition() const OVERRIDE {
1743    return kCondEQ;
1744  }
1745
1746 private:
1747  DISALLOW_COPY_AND_ASSIGN(HEqual);
1748};
1749
1750class HNotEqual : public HCondition {
1751 public:
1752  HNotEqual(HInstruction* first, HInstruction* second)
1753      : HCondition(first, second) {}
1754
1755  bool IsCommutative() const OVERRIDE { return true; }
1756
1757  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1758    return x != y ? 1 : 0;
1759  }
1760  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1761    return x != y ? 1 : 0;
1762  }
1763
1764  DECLARE_INSTRUCTION(NotEqual);
1765
1766  IfCondition GetCondition() const OVERRIDE {
1767    return kCondNE;
1768  }
1769
1770 private:
1771  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
1772};
1773
1774class HLessThan : public HCondition {
1775 public:
1776  HLessThan(HInstruction* first, HInstruction* second)
1777      : HCondition(first, second) {}
1778
1779  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1780    return x < y ? 1 : 0;
1781  }
1782  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1783    return x < y ? 1 : 0;
1784  }
1785
1786  DECLARE_INSTRUCTION(LessThan);
1787
1788  IfCondition GetCondition() const OVERRIDE {
1789    return kCondLT;
1790  }
1791
1792 private:
1793  DISALLOW_COPY_AND_ASSIGN(HLessThan);
1794};
1795
1796class HLessThanOrEqual : public HCondition {
1797 public:
1798  HLessThanOrEqual(HInstruction* first, HInstruction* second)
1799      : HCondition(first, second) {}
1800
1801  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1802    return x <= y ? 1 : 0;
1803  }
1804  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1805    return x <= y ? 1 : 0;
1806  }
1807
1808  DECLARE_INSTRUCTION(LessThanOrEqual);
1809
1810  IfCondition GetCondition() const OVERRIDE {
1811    return kCondLE;
1812  }
1813
1814 private:
1815  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
1816};
1817
1818class HGreaterThan : public HCondition {
1819 public:
1820  HGreaterThan(HInstruction* first, HInstruction* second)
1821      : HCondition(first, second) {}
1822
1823  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1824    return x > y ? 1 : 0;
1825  }
1826  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1827    return x > y ? 1 : 0;
1828  }
1829
1830  DECLARE_INSTRUCTION(GreaterThan);
1831
1832  IfCondition GetCondition() const OVERRIDE {
1833    return kCondGT;
1834  }
1835
1836 private:
1837  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
1838};
1839
1840class HGreaterThanOrEqual : public HCondition {
1841 public:
1842  HGreaterThanOrEqual(HInstruction* first, HInstruction* second)
1843      : HCondition(first, second) {}
1844
1845  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1846    return x >= y ? 1 : 0;
1847  }
1848  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1849    return x >= y ? 1 : 0;
1850  }
1851
1852  DECLARE_INSTRUCTION(GreaterThanOrEqual);
1853
1854  IfCondition GetCondition() const OVERRIDE {
1855    return kCondGE;
1856  }
1857
1858 private:
1859  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
1860};
1861
1862
1863// Instruction to check how two inputs compare to each other.
1864// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
1865class HCompare : public HBinaryOperation {
1866 public:
1867  // The bias applies for floating point operations and indicates how NaN
1868  // comparisons are treated:
1869  enum Bias {
1870    kNoBias,  // bias is not applicable (i.e. for long operation)
1871    kGtBias,  // return 1 for NaN comparisons
1872    kLtBias,  // return -1 for NaN comparisons
1873  };
1874
1875  HCompare(Primitive::Type type, HInstruction* first, HInstruction* second, Bias bias)
1876      : HBinaryOperation(Primitive::kPrimInt, first, second), bias_(bias) {
1877    DCHECK_EQ(type, first->GetType());
1878    DCHECK_EQ(type, second->GetType());
1879  }
1880
1881  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
1882    return
1883      x == y ? 0 :
1884      x > y ? 1 :
1885      -1;
1886  }
1887
1888  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
1889    return
1890      x == y ? 0 :
1891      x > y ? 1 :
1892      -1;
1893  }
1894
1895  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1896    return bias_ == other->AsCompare()->bias_;
1897  }
1898
1899  bool IsGtBias() { return bias_ == kGtBias; }
1900
1901  DECLARE_INSTRUCTION(Compare);
1902
1903 private:
1904  const Bias bias_;
1905
1906  DISALLOW_COPY_AND_ASSIGN(HCompare);
1907};
1908
1909// A local in the graph. Corresponds to a Dex register.
1910class HLocal : public HTemplateInstruction<0> {
1911 public:
1912  explicit HLocal(uint16_t reg_number)
1913      : HTemplateInstruction(SideEffects::None()), reg_number_(reg_number) {}
1914
1915  DECLARE_INSTRUCTION(Local);
1916
1917  uint16_t GetRegNumber() const { return reg_number_; }
1918
1919 private:
1920  // The Dex register number.
1921  const uint16_t reg_number_;
1922
1923  DISALLOW_COPY_AND_ASSIGN(HLocal);
1924};
1925
1926// Load a given local. The local is an input of this instruction.
1927class HLoadLocal : public HExpression<1> {
1928 public:
1929  HLoadLocal(HLocal* local, Primitive::Type type)
1930      : HExpression(type, SideEffects::None()) {
1931    SetRawInputAt(0, local);
1932  }
1933
1934  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
1935
1936  DECLARE_INSTRUCTION(LoadLocal);
1937
1938 private:
1939  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
1940};
1941
1942// Store a value in a given local. This instruction has two inputs: the value
1943// and the local.
1944class HStoreLocal : public HTemplateInstruction<2> {
1945 public:
1946  HStoreLocal(HLocal* local, HInstruction* value) : HTemplateInstruction(SideEffects::None()) {
1947    SetRawInputAt(0, local);
1948    SetRawInputAt(1, value);
1949  }
1950
1951  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
1952
1953  DECLARE_INSTRUCTION(StoreLocal);
1954
1955 private:
1956  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
1957};
1958
1959class HConstant : public HExpression<0> {
1960 public:
1961  explicit HConstant(Primitive::Type type) : HExpression(type, SideEffects::None()) {}
1962
1963  bool CanBeMoved() const OVERRIDE { return true; }
1964
1965  virtual bool IsMinusOne() const { return false; }
1966  virtual bool IsZero() const { return false; }
1967  virtual bool IsOne() const { return false; }
1968
1969  DECLARE_INSTRUCTION(Constant);
1970
1971 private:
1972  DISALLOW_COPY_AND_ASSIGN(HConstant);
1973};
1974
1975class HFloatConstant : public HConstant {
1976 public:
1977  float GetValue() const { return value_; }
1978
1979  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
1980    return bit_cast<uint32_t, float>(other->AsFloatConstant()->value_) ==
1981        bit_cast<uint32_t, float>(value_);
1982  }
1983
1984  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
1985
1986  bool IsMinusOne() const OVERRIDE {
1987    return bit_cast<uint32_t, float>(AsFloatConstant()->GetValue()) ==
1988        bit_cast<uint32_t, float>((-1.0f));
1989  }
1990  bool IsZero() const OVERRIDE {
1991    return AsFloatConstant()->GetValue() == 0.0f;
1992  }
1993  bool IsOne() const OVERRIDE {
1994    return bit_cast<uint32_t, float>(AsFloatConstant()->GetValue()) ==
1995        bit_cast<uint32_t, float>(1.0f);
1996  }
1997
1998  DECLARE_INSTRUCTION(FloatConstant);
1999
2000 private:
2001  explicit HFloatConstant(float value) : HConstant(Primitive::kPrimFloat), value_(value) {}
2002
2003  const float value_;
2004
2005  // Only the SsaBuilder can currently create floating-point constants. If we
2006  // ever need to create them later in the pipeline, we will have to handle them
2007  // the same way as integral constants.
2008  friend class SsaBuilder;
2009  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2010};
2011
2012class HDoubleConstant : public HConstant {
2013 public:
2014  double GetValue() const { return value_; }
2015
2016  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2017    return bit_cast<uint64_t, double>(other->AsDoubleConstant()->value_) ==
2018        bit_cast<uint64_t, double>(value_);
2019  }
2020
2021  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2022
2023  bool IsMinusOne() const OVERRIDE {
2024    return bit_cast<uint64_t, double>(AsDoubleConstant()->GetValue()) ==
2025        bit_cast<uint64_t, double>((-1.0));
2026  }
2027  bool IsZero() const OVERRIDE {
2028    return AsDoubleConstant()->GetValue() == 0.0;
2029  }
2030  bool IsOne() const OVERRIDE {
2031    return bit_cast<uint64_t, double>(AsDoubleConstant()->GetValue()) ==
2032        bit_cast<uint64_t, double>(1.0);
2033  }
2034
2035  DECLARE_INSTRUCTION(DoubleConstant);
2036
2037 private:
2038  explicit HDoubleConstant(double value) : HConstant(Primitive::kPrimDouble), value_(value) {}
2039
2040  const double value_;
2041
2042  // Only the SsaBuilder can currently create floating-point constants. If we
2043  // ever need to create them later in the pipeline, we will have to handle them
2044  // the same way as integral constants.
2045  friend class SsaBuilder;
2046  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
2047};
2048
2049class HNullConstant : public HConstant {
2050 public:
2051  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2052    return true;
2053  }
2054
2055  size_t ComputeHashCode() const OVERRIDE { return 0; }
2056
2057  bool ActAsNullConstant() const OVERRIDE { return true; }
2058
2059  DECLARE_INSTRUCTION(NullConstant);
2060
2061 private:
2062  HNullConstant() : HConstant(Primitive::kPrimNot) {}
2063
2064  friend class HGraph;
2065  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2066};
2067
2068// Constants of the type int. Those can be from Dex instructions, or
2069// synthesized (for example with the if-eqz instruction).
2070class HIntConstant : public HConstant {
2071 public:
2072  int32_t GetValue() const { return value_; }
2073
2074  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2075    return other->AsIntConstant()->value_ == value_;
2076  }
2077
2078  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2079
2080  // TODO: Null is represented by the `0` constant. In most cases we replace it
2081  // with a HNullConstant but we don't do it when comparing (a != null). This
2082  // method is an workaround until we fix the above.
2083  bool ActAsNullConstant() const OVERRIDE { return value_ == 0; }
2084
2085  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2086  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2087  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2088
2089  DECLARE_INSTRUCTION(IntConstant);
2090
2091 private:
2092  explicit HIntConstant(int32_t value) : HConstant(Primitive::kPrimInt), value_(value) {}
2093
2094  const int32_t value_;
2095
2096  friend class HGraph;
2097  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2098  ART_FRIEND_TEST(ParallelMoveTest, ConstantLast);
2099  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2100};
2101
2102class HLongConstant : public HConstant {
2103 public:
2104  int64_t GetValue() const { return value_; }
2105
2106  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2107    return other->AsLongConstant()->value_ == value_;
2108  }
2109
2110  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2111
2112  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2113  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2114  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2115
2116  DECLARE_INSTRUCTION(LongConstant);
2117
2118 private:
2119  explicit HLongConstant(int64_t value) : HConstant(Primitive::kPrimLong), value_(value) {}
2120
2121  const int64_t value_;
2122
2123  friend class HGraph;
2124  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2125};
2126
2127enum class Intrinsics {
2128#define OPTIMIZING_INTRINSICS(Name, IsStatic) k ## Name,
2129#include "intrinsics_list.h"
2130  kNone,
2131  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
2132#undef INTRINSICS_LIST
2133#undef OPTIMIZING_INTRINSICS
2134};
2135std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
2136
2137class HInvoke : public HInstruction {
2138 public:
2139  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2140
2141  // Runtime needs to walk the stack, so Dex -> Dex calls need to
2142  // know their environment.
2143  bool NeedsEnvironment() const OVERRIDE { return true; }
2144
2145  void SetArgumentAt(size_t index, HInstruction* argument) {
2146    SetRawInputAt(index, argument);
2147  }
2148
2149  Primitive::Type GetType() const OVERRIDE { return return_type_; }
2150
2151  uint32_t GetDexPc() const { return dex_pc_; }
2152
2153  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2154
2155  Intrinsics GetIntrinsic() {
2156    return intrinsic_;
2157  }
2158
2159  void SetIntrinsic(Intrinsics intrinsic) {
2160    intrinsic_ = intrinsic;
2161  }
2162
2163  DECLARE_INSTRUCTION(Invoke);
2164
2165 protected:
2166  HInvoke(ArenaAllocator* arena,
2167          uint32_t number_of_arguments,
2168          Primitive::Type return_type,
2169          uint32_t dex_pc,
2170          uint32_t dex_method_index)
2171    : HInstruction(SideEffects::All()),
2172      inputs_(arena, number_of_arguments),
2173      return_type_(return_type),
2174      dex_pc_(dex_pc),
2175      dex_method_index_(dex_method_index),
2176      intrinsic_(Intrinsics::kNone) {
2177    inputs_.SetSize(number_of_arguments);
2178  }
2179
2180  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
2181  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2182    inputs_.Put(index, input);
2183  }
2184
2185  GrowableArray<HUserRecord<HInstruction*> > inputs_;
2186  const Primitive::Type return_type_;
2187  const uint32_t dex_pc_;
2188  const uint32_t dex_method_index_;
2189  Intrinsics intrinsic_;
2190
2191 private:
2192  DISALLOW_COPY_AND_ASSIGN(HInvoke);
2193};
2194
2195class HInvokeStaticOrDirect : public HInvoke {
2196 public:
2197  HInvokeStaticOrDirect(ArenaAllocator* arena,
2198                        uint32_t number_of_arguments,
2199                        Primitive::Type return_type,
2200                        uint32_t dex_pc,
2201                        uint32_t dex_method_index,
2202                        bool is_recursive,
2203                        InvokeType original_invoke_type,
2204                        InvokeType invoke_type)
2205      : HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
2206        original_invoke_type_(original_invoke_type),
2207        invoke_type_(invoke_type),
2208        is_recursive_(is_recursive) {}
2209
2210  bool CanDoImplicitNullCheck() const OVERRIDE {
2211    // We access the method via the dex cache so we can't do an implicit null check.
2212    // TODO: for intrinsics we can generate implicit null checks.
2213    return false;
2214  }
2215
2216  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
2217  InvokeType GetInvokeType() const { return invoke_type_; }
2218  bool IsRecursive() const { return is_recursive_; }
2219  bool NeedsDexCache() const OVERRIDE { return !IsRecursive(); }
2220
2221  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
2222
2223 private:
2224  const InvokeType original_invoke_type_;
2225  const InvokeType invoke_type_;
2226  const bool is_recursive_;
2227
2228  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
2229};
2230
2231class HInvokeVirtual : public HInvoke {
2232 public:
2233  HInvokeVirtual(ArenaAllocator* arena,
2234                 uint32_t number_of_arguments,
2235                 Primitive::Type return_type,
2236                 uint32_t dex_pc,
2237                 uint32_t dex_method_index,
2238                 uint32_t vtable_index)
2239      : HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
2240        vtable_index_(vtable_index) {}
2241
2242  bool CanDoImplicitNullCheck() const OVERRIDE {
2243    // TODO: Add implicit null checks in intrinsics.
2244    return !GetLocations()->Intrinsified();
2245  }
2246
2247  uint32_t GetVTableIndex() const { return vtable_index_; }
2248
2249  DECLARE_INSTRUCTION(InvokeVirtual);
2250
2251 private:
2252  const uint32_t vtable_index_;
2253
2254  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
2255};
2256
2257class HInvokeInterface : public HInvoke {
2258 public:
2259  HInvokeInterface(ArenaAllocator* arena,
2260                   uint32_t number_of_arguments,
2261                   Primitive::Type return_type,
2262                   uint32_t dex_pc,
2263                   uint32_t dex_method_index,
2264                   uint32_t imt_index)
2265      : HInvoke(arena, number_of_arguments, return_type, dex_pc, dex_method_index),
2266        imt_index_(imt_index) {}
2267
2268  bool CanDoImplicitNullCheck() const OVERRIDE {
2269    // TODO: Add implicit null checks in intrinsics.
2270    return !GetLocations()->Intrinsified();
2271  }
2272
2273  uint32_t GetImtIndex() const { return imt_index_; }
2274  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
2275
2276  DECLARE_INSTRUCTION(InvokeInterface);
2277
2278 private:
2279  const uint32_t imt_index_;
2280
2281  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
2282};
2283
2284class HNewInstance : public HExpression<0> {
2285 public:
2286  HNewInstance(uint32_t dex_pc, uint16_t type_index, QuickEntrypointEnum entrypoint)
2287      : HExpression(Primitive::kPrimNot, SideEffects::None()),
2288        dex_pc_(dex_pc),
2289        type_index_(type_index),
2290        entrypoint_(entrypoint) {}
2291
2292  uint32_t GetDexPc() const { return dex_pc_; }
2293  uint16_t GetTypeIndex() const { return type_index_; }
2294
2295  // Calls runtime so needs an environment.
2296  bool NeedsEnvironment() const OVERRIDE { return true; }
2297  // It may throw when called on:
2298  //   - interfaces
2299  //   - abstract/innaccessible/unknown classes
2300  // TODO: optimize when possible.
2301  bool CanThrow() const OVERRIDE { return true; }
2302
2303  bool CanBeNull() const OVERRIDE { return false; }
2304
2305  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2306
2307  DECLARE_INSTRUCTION(NewInstance);
2308
2309 private:
2310  const uint32_t dex_pc_;
2311  const uint16_t type_index_;
2312  const QuickEntrypointEnum entrypoint_;
2313
2314  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
2315};
2316
2317class HNeg : public HUnaryOperation {
2318 public:
2319  explicit HNeg(Primitive::Type result_type, HInstruction* input)
2320      : HUnaryOperation(result_type, input) {}
2321
2322  int32_t Evaluate(int32_t x) const OVERRIDE { return -x; }
2323  int64_t Evaluate(int64_t x) const OVERRIDE { return -x; }
2324
2325  DECLARE_INSTRUCTION(Neg);
2326
2327 private:
2328  DISALLOW_COPY_AND_ASSIGN(HNeg);
2329};
2330
2331class HNewArray : public HExpression<1> {
2332 public:
2333  HNewArray(HInstruction* length,
2334            uint32_t dex_pc,
2335            uint16_t type_index,
2336            QuickEntrypointEnum entrypoint)
2337      : HExpression(Primitive::kPrimNot, SideEffects::None()),
2338        dex_pc_(dex_pc),
2339        type_index_(type_index),
2340        entrypoint_(entrypoint) {
2341    SetRawInputAt(0, length);
2342  }
2343
2344  uint32_t GetDexPc() const { return dex_pc_; }
2345  uint16_t GetTypeIndex() const { return type_index_; }
2346
2347  // Calls runtime so needs an environment.
2348  bool NeedsEnvironment() const OVERRIDE { return true; }
2349
2350  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
2351  bool CanThrow() const OVERRIDE { return true; }
2352
2353  bool CanBeNull() const OVERRIDE { return false; }
2354
2355  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
2356
2357  DECLARE_INSTRUCTION(NewArray);
2358
2359 private:
2360  const uint32_t dex_pc_;
2361  const uint16_t type_index_;
2362  const QuickEntrypointEnum entrypoint_;
2363
2364  DISALLOW_COPY_AND_ASSIGN(HNewArray);
2365};
2366
2367class HAdd : public HBinaryOperation {
2368 public:
2369  HAdd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2370      : HBinaryOperation(result_type, left, right) {}
2371
2372  bool IsCommutative() const OVERRIDE { return true; }
2373
2374  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2375    return x + y;
2376  }
2377  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2378    return x + y;
2379  }
2380
2381  DECLARE_INSTRUCTION(Add);
2382
2383 private:
2384  DISALLOW_COPY_AND_ASSIGN(HAdd);
2385};
2386
2387class HSub : public HBinaryOperation {
2388 public:
2389  HSub(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2390      : HBinaryOperation(result_type, left, right) {}
2391
2392  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2393    return x - y;
2394  }
2395  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2396    return x - y;
2397  }
2398
2399  DECLARE_INSTRUCTION(Sub);
2400
2401 private:
2402  DISALLOW_COPY_AND_ASSIGN(HSub);
2403};
2404
2405class HMul : public HBinaryOperation {
2406 public:
2407  HMul(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2408      : HBinaryOperation(result_type, left, right) {}
2409
2410  bool IsCommutative() const OVERRIDE { return true; }
2411
2412  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x * y; }
2413  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x * y; }
2414
2415  DECLARE_INSTRUCTION(Mul);
2416
2417 private:
2418  DISALLOW_COPY_AND_ASSIGN(HMul);
2419};
2420
2421class HDiv : public HBinaryOperation {
2422 public:
2423  HDiv(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2424      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2425
2426  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2427    // Our graph structure ensures we never have 0 for `y` during constant folding.
2428    DCHECK_NE(y, 0);
2429    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2430    return (y == -1) ? -x : x / y;
2431  }
2432
2433  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2434    DCHECK_NE(y, 0);
2435    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2436    return (y == -1) ? -x : x / y;
2437  }
2438
2439  uint32_t GetDexPc() const { return dex_pc_; }
2440
2441  DECLARE_INSTRUCTION(Div);
2442
2443 private:
2444  const uint32_t dex_pc_;
2445
2446  DISALLOW_COPY_AND_ASSIGN(HDiv);
2447};
2448
2449class HRem : public HBinaryOperation {
2450 public:
2451  HRem(Primitive::Type result_type, HInstruction* left, HInstruction* right, uint32_t dex_pc)
2452      : HBinaryOperation(result_type, left, right), dex_pc_(dex_pc) {}
2453
2454  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2455    DCHECK_NE(y, 0);
2456    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2457    return (y == -1) ? 0 : x % y;
2458  }
2459
2460  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2461    DCHECK_NE(y, 0);
2462    // Special case -1 to avoid getting a SIGFPE on x86(_64).
2463    return (y == -1) ? 0 : x % y;
2464  }
2465
2466  uint32_t GetDexPc() const { return dex_pc_; }
2467
2468  DECLARE_INSTRUCTION(Rem);
2469
2470 private:
2471  const uint32_t dex_pc_;
2472
2473  DISALLOW_COPY_AND_ASSIGN(HRem);
2474};
2475
2476class HDivZeroCheck : public HExpression<1> {
2477 public:
2478  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
2479      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
2480    SetRawInputAt(0, value);
2481  }
2482
2483  bool CanBeMoved() const OVERRIDE { return true; }
2484
2485  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2486    UNUSED(other);
2487    return true;
2488  }
2489
2490  bool NeedsEnvironment() const OVERRIDE { return true; }
2491  bool CanThrow() const OVERRIDE { return true; }
2492
2493  uint32_t GetDexPc() const { return dex_pc_; }
2494
2495  DECLARE_INSTRUCTION(DivZeroCheck);
2496
2497 private:
2498  const uint32_t dex_pc_;
2499
2500  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
2501};
2502
2503class HShl : public HBinaryOperation {
2504 public:
2505  HShl(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2506      : HBinaryOperation(result_type, left, right) {}
2507
2508  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x << (y & kMaxIntShiftValue); }
2509  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x << (y & kMaxLongShiftValue); }
2510
2511  DECLARE_INSTRUCTION(Shl);
2512
2513 private:
2514  DISALLOW_COPY_AND_ASSIGN(HShl);
2515};
2516
2517class HShr : public HBinaryOperation {
2518 public:
2519  HShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2520      : HBinaryOperation(result_type, left, right) {}
2521
2522  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x >> (y & kMaxIntShiftValue); }
2523  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x >> (y & kMaxLongShiftValue); }
2524
2525  DECLARE_INSTRUCTION(Shr);
2526
2527 private:
2528  DISALLOW_COPY_AND_ASSIGN(HShr);
2529};
2530
2531class HUShr : public HBinaryOperation {
2532 public:
2533  HUShr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2534      : HBinaryOperation(result_type, left, right) {}
2535
2536  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE {
2537    uint32_t ux = static_cast<uint32_t>(x);
2538    uint32_t uy = static_cast<uint32_t>(y) & kMaxIntShiftValue;
2539    return static_cast<int32_t>(ux >> uy);
2540  }
2541
2542  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE {
2543    uint64_t ux = static_cast<uint64_t>(x);
2544    uint64_t uy = static_cast<uint64_t>(y) & kMaxLongShiftValue;
2545    return static_cast<int64_t>(ux >> uy);
2546  }
2547
2548  DECLARE_INSTRUCTION(UShr);
2549
2550 private:
2551  DISALLOW_COPY_AND_ASSIGN(HUShr);
2552};
2553
2554class HAnd : public HBinaryOperation {
2555 public:
2556  HAnd(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2557      : HBinaryOperation(result_type, left, right) {}
2558
2559  bool IsCommutative() const OVERRIDE { return true; }
2560
2561  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x & y; }
2562  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x & y; }
2563
2564  DECLARE_INSTRUCTION(And);
2565
2566 private:
2567  DISALLOW_COPY_AND_ASSIGN(HAnd);
2568};
2569
2570class HOr : public HBinaryOperation {
2571 public:
2572  HOr(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2573      : HBinaryOperation(result_type, left, right) {}
2574
2575  bool IsCommutative() const OVERRIDE { return true; }
2576
2577  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x | y; }
2578  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x | y; }
2579
2580  DECLARE_INSTRUCTION(Or);
2581
2582 private:
2583  DISALLOW_COPY_AND_ASSIGN(HOr);
2584};
2585
2586class HXor : public HBinaryOperation {
2587 public:
2588  HXor(Primitive::Type result_type, HInstruction* left, HInstruction* right)
2589      : HBinaryOperation(result_type, left, right) {}
2590
2591  bool IsCommutative() const OVERRIDE { return true; }
2592
2593  int32_t Evaluate(int32_t x, int32_t y) const OVERRIDE { return x ^ y; }
2594  int64_t Evaluate(int64_t x, int64_t y) const OVERRIDE { return x ^ y; }
2595
2596  DECLARE_INSTRUCTION(Xor);
2597
2598 private:
2599  DISALLOW_COPY_AND_ASSIGN(HXor);
2600};
2601
2602// The value of a parameter in this method. Its location depends on
2603// the calling convention.
2604class HParameterValue : public HExpression<0> {
2605 public:
2606  HParameterValue(uint8_t index, Primitive::Type parameter_type, bool is_this = false)
2607      : HExpression(parameter_type, SideEffects::None()), index_(index), is_this_(is_this) {}
2608
2609  uint8_t GetIndex() const { return index_; }
2610
2611  bool CanBeNull() const OVERRIDE { return !is_this_; }
2612
2613  DECLARE_INSTRUCTION(ParameterValue);
2614
2615 private:
2616  // The index of this parameter in the parameters list. Must be less
2617  // than HGraph::number_of_in_vregs_.
2618  const uint8_t index_;
2619
2620  // Whether or not the parameter value corresponds to 'this' argument.
2621  const bool is_this_;
2622
2623  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
2624};
2625
2626class HNot : public HUnaryOperation {
2627 public:
2628  explicit HNot(Primitive::Type result_type, HInstruction* input)
2629      : HUnaryOperation(result_type, input) {}
2630
2631  bool CanBeMoved() const OVERRIDE { return true; }
2632  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2633    UNUSED(other);
2634    return true;
2635  }
2636
2637  int32_t Evaluate(int32_t x) const OVERRIDE { return ~x; }
2638  int64_t Evaluate(int64_t x) const OVERRIDE { return ~x; }
2639
2640  DECLARE_INSTRUCTION(Not);
2641
2642 private:
2643  DISALLOW_COPY_AND_ASSIGN(HNot);
2644};
2645
2646class HTypeConversion : public HExpression<1> {
2647 public:
2648  // Instantiate a type conversion of `input` to `result_type`.
2649  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
2650      : HExpression(result_type, SideEffects::None()), dex_pc_(dex_pc) {
2651    SetRawInputAt(0, input);
2652    DCHECK_NE(input->GetType(), result_type);
2653  }
2654
2655  HInstruction* GetInput() const { return InputAt(0); }
2656  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
2657  Primitive::Type GetResultType() const { return GetType(); }
2658
2659  // Required by the x86 and ARM code generators when producing calls
2660  // to the runtime.
2661  uint32_t GetDexPc() const { return dex_pc_; }
2662
2663  bool CanBeMoved() const OVERRIDE { return true; }
2664  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
2665
2666  DECLARE_INSTRUCTION(TypeConversion);
2667
2668 private:
2669  const uint32_t dex_pc_;
2670
2671  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
2672};
2673
2674static constexpr uint32_t kNoRegNumber = -1;
2675
2676class HPhi : public HInstruction {
2677 public:
2678  HPhi(ArenaAllocator* arena, uint32_t reg_number, size_t number_of_inputs, Primitive::Type type)
2679      : HInstruction(SideEffects::None()),
2680        inputs_(arena, number_of_inputs),
2681        reg_number_(reg_number),
2682        type_(type),
2683        is_live_(false),
2684        can_be_null_(true) {
2685    inputs_.SetSize(number_of_inputs);
2686  }
2687
2688  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
2689  static Primitive::Type ToPhiType(Primitive::Type type) {
2690    switch (type) {
2691      case Primitive::kPrimBoolean:
2692      case Primitive::kPrimByte:
2693      case Primitive::kPrimShort:
2694      case Primitive::kPrimChar:
2695        return Primitive::kPrimInt;
2696      default:
2697        return type;
2698    }
2699  }
2700
2701  size_t InputCount() const OVERRIDE { return inputs_.Size(); }
2702
2703  void AddInput(HInstruction* input);
2704
2705  Primitive::Type GetType() const OVERRIDE { return type_; }
2706  void SetType(Primitive::Type type) { type_ = type; }
2707
2708  bool CanBeNull() const OVERRIDE { return can_be_null_; }
2709  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
2710
2711  uint32_t GetRegNumber() const { return reg_number_; }
2712
2713  void SetDead() { is_live_ = false; }
2714  void SetLive() { is_live_ = true; }
2715  bool IsDead() const { return !is_live_; }
2716  bool IsLive() const { return is_live_; }
2717
2718  // Returns the next equivalent phi (starting from the current one) or null if there is none.
2719  // An equivalent phi is a phi having the same dex register and type.
2720  // It assumes that phis with the same dex register are adjacent.
2721  HPhi* GetNextEquivalentPhiWithSameType() {
2722    HInstruction* next = GetNext();
2723    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
2724      if (next->GetType() == GetType()) {
2725        return next->AsPhi();
2726      }
2727      next = next->GetNext();
2728    }
2729    return nullptr;
2730  }
2731
2732  DECLARE_INSTRUCTION(Phi);
2733
2734 protected:
2735  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE { return inputs_.Get(i); }
2736
2737  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
2738    inputs_.Put(index, input);
2739  }
2740
2741 private:
2742  GrowableArray<HUserRecord<HInstruction*> > inputs_;
2743  const uint32_t reg_number_;
2744  Primitive::Type type_;
2745  bool is_live_;
2746  bool can_be_null_;
2747
2748  DISALLOW_COPY_AND_ASSIGN(HPhi);
2749};
2750
2751class HNullCheck : public HExpression<1> {
2752 public:
2753  HNullCheck(HInstruction* value, uint32_t dex_pc)
2754      : HExpression(value->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
2755    SetRawInputAt(0, value);
2756  }
2757
2758  bool CanBeMoved() const OVERRIDE { return true; }
2759  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2760    UNUSED(other);
2761    return true;
2762  }
2763
2764  bool NeedsEnvironment() const OVERRIDE { return true; }
2765
2766  bool CanThrow() const OVERRIDE { return true; }
2767
2768  bool CanBeNull() const OVERRIDE { return false; }
2769
2770  uint32_t GetDexPc() const { return dex_pc_; }
2771
2772  DECLARE_INSTRUCTION(NullCheck);
2773
2774 private:
2775  const uint32_t dex_pc_;
2776
2777  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
2778};
2779
2780class FieldInfo : public ValueObject {
2781 public:
2782  FieldInfo(MemberOffset field_offset, Primitive::Type field_type, bool is_volatile)
2783      : field_offset_(field_offset), field_type_(field_type), is_volatile_(is_volatile) {}
2784
2785  MemberOffset GetFieldOffset() const { return field_offset_; }
2786  Primitive::Type GetFieldType() const { return field_type_; }
2787  bool IsVolatile() const { return is_volatile_; }
2788
2789 private:
2790  const MemberOffset field_offset_;
2791  const Primitive::Type field_type_;
2792  const bool is_volatile_;
2793};
2794
2795class HInstanceFieldGet : public HExpression<1> {
2796 public:
2797  HInstanceFieldGet(HInstruction* value,
2798                    Primitive::Type field_type,
2799                    MemberOffset field_offset,
2800                    bool is_volatile)
2801      : HExpression(field_type, SideEffects::DependsOnSomething()),
2802        field_info_(field_offset, field_type, is_volatile) {
2803    SetRawInputAt(0, value);
2804  }
2805
2806  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
2807
2808  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2809    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
2810    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
2811  }
2812
2813  bool CanDoImplicitNullCheck() const OVERRIDE {
2814    return GetFieldOffset().Uint32Value() < kPageSize;
2815  }
2816
2817  size_t ComputeHashCode() const OVERRIDE {
2818    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
2819  }
2820
2821  const FieldInfo& GetFieldInfo() const { return field_info_; }
2822  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
2823  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
2824  bool IsVolatile() const { return field_info_.IsVolatile(); }
2825
2826  DECLARE_INSTRUCTION(InstanceFieldGet);
2827
2828 private:
2829  const FieldInfo field_info_;
2830
2831  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
2832};
2833
2834class HInstanceFieldSet : public HTemplateInstruction<2> {
2835 public:
2836  HInstanceFieldSet(HInstruction* object,
2837                    HInstruction* value,
2838                    Primitive::Type field_type,
2839                    MemberOffset field_offset,
2840                    bool is_volatile)
2841      : HTemplateInstruction(SideEffects::ChangesSomething()),
2842        field_info_(field_offset, field_type, is_volatile) {
2843    SetRawInputAt(0, object);
2844    SetRawInputAt(1, value);
2845  }
2846
2847  bool CanDoImplicitNullCheck() const OVERRIDE {
2848    return GetFieldOffset().Uint32Value() < kPageSize;
2849  }
2850
2851  const FieldInfo& GetFieldInfo() const { return field_info_; }
2852  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
2853  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
2854  bool IsVolatile() const { return field_info_.IsVolatile(); }
2855  HInstruction* GetValue() const { return InputAt(1); }
2856
2857  DECLARE_INSTRUCTION(InstanceFieldSet);
2858
2859 private:
2860  const FieldInfo field_info_;
2861
2862  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
2863};
2864
2865class HArrayGet : public HExpression<2> {
2866 public:
2867  HArrayGet(HInstruction* array, HInstruction* index, Primitive::Type type)
2868      : HExpression(type, SideEffects::DependsOnSomething()) {
2869    SetRawInputAt(0, array);
2870    SetRawInputAt(1, index);
2871  }
2872
2873  bool CanBeMoved() const OVERRIDE { return true; }
2874  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2875    UNUSED(other);
2876    return true;
2877  }
2878  bool CanDoImplicitNullCheck() const OVERRIDE {
2879    // TODO: We can be smarter here.
2880    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
2881    // which generates the implicit null check. There are cases when these can be removed
2882    // to produce better code. If we ever add optimizations to do so we should allow an
2883    // implicit check here (as long as the address falls in the first page).
2884    return false;
2885  }
2886
2887  void SetType(Primitive::Type type) { type_ = type; }
2888
2889  HInstruction* GetArray() const { return InputAt(0); }
2890  HInstruction* GetIndex() const { return InputAt(1); }
2891
2892  DECLARE_INSTRUCTION(ArrayGet);
2893
2894 private:
2895  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
2896};
2897
2898class HArraySet : public HTemplateInstruction<3> {
2899 public:
2900  HArraySet(HInstruction* array,
2901            HInstruction* index,
2902            HInstruction* value,
2903            Primitive::Type expected_component_type,
2904            uint32_t dex_pc)
2905      : HTemplateInstruction(SideEffects::ChangesSomething()),
2906        dex_pc_(dex_pc),
2907        expected_component_type_(expected_component_type),
2908        needs_type_check_(value->GetType() == Primitive::kPrimNot) {
2909    SetRawInputAt(0, array);
2910    SetRawInputAt(1, index);
2911    SetRawInputAt(2, value);
2912  }
2913
2914  bool NeedsEnvironment() const OVERRIDE {
2915    // We currently always call a runtime method to catch array store
2916    // exceptions.
2917    return needs_type_check_;
2918  }
2919
2920  bool CanDoImplicitNullCheck() const OVERRIDE {
2921    // TODO: Same as for ArrayGet.
2922    return false;
2923  }
2924
2925  void ClearNeedsTypeCheck() {
2926    needs_type_check_ = false;
2927  }
2928
2929  bool NeedsTypeCheck() const { return needs_type_check_; }
2930
2931  uint32_t GetDexPc() const { return dex_pc_; }
2932
2933  HInstruction* GetArray() const { return InputAt(0); }
2934  HInstruction* GetIndex() const { return InputAt(1); }
2935  HInstruction* GetValue() const { return InputAt(2); }
2936
2937  Primitive::Type GetComponentType() const {
2938    // The Dex format does not type floating point index operations. Since the
2939    // `expected_component_type_` is set during building and can therefore not
2940    // be correct, we also check what is the value type. If it is a floating
2941    // point type, we must use that type.
2942    Primitive::Type value_type = GetValue()->GetType();
2943    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
2944        ? value_type
2945        : expected_component_type_;
2946  }
2947
2948  DECLARE_INSTRUCTION(ArraySet);
2949
2950 private:
2951  const uint32_t dex_pc_;
2952  const Primitive::Type expected_component_type_;
2953  bool needs_type_check_;
2954
2955  DISALLOW_COPY_AND_ASSIGN(HArraySet);
2956};
2957
2958class HArrayLength : public HExpression<1> {
2959 public:
2960  explicit HArrayLength(HInstruction* array)
2961      : HExpression(Primitive::kPrimInt, SideEffects::None()) {
2962    // Note that arrays do not change length, so the instruction does not
2963    // depend on any write.
2964    SetRawInputAt(0, array);
2965  }
2966
2967  bool CanBeMoved() const OVERRIDE { return true; }
2968  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2969    UNUSED(other);
2970    return true;
2971  }
2972  bool CanDoImplicitNullCheck() const OVERRIDE { return true; }
2973
2974  DECLARE_INSTRUCTION(ArrayLength);
2975
2976 private:
2977  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
2978};
2979
2980class HBoundsCheck : public HExpression<2> {
2981 public:
2982  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
2983      : HExpression(index->GetType(), SideEffects::None()), dex_pc_(dex_pc) {
2984    DCHECK(index->GetType() == Primitive::kPrimInt);
2985    SetRawInputAt(0, index);
2986    SetRawInputAt(1, length);
2987  }
2988
2989  bool CanBeMoved() const OVERRIDE { return true; }
2990  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2991    UNUSED(other);
2992    return true;
2993  }
2994
2995  bool NeedsEnvironment() const OVERRIDE { return true; }
2996
2997  bool CanThrow() const OVERRIDE { return true; }
2998
2999  uint32_t GetDexPc() const { return dex_pc_; }
3000
3001  DECLARE_INSTRUCTION(BoundsCheck);
3002
3003 private:
3004  const uint32_t dex_pc_;
3005
3006  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
3007};
3008
3009/**
3010 * Some DEX instructions are folded into multiple HInstructions that need
3011 * to stay live until the last HInstruction. This class
3012 * is used as a marker for the baseline compiler to ensure its preceding
3013 * HInstruction stays live. `index` represents the stack location index of the
3014 * instruction (the actual offset is computed as index * vreg_size).
3015 */
3016class HTemporary : public HTemplateInstruction<0> {
3017 public:
3018  explicit HTemporary(size_t index) : HTemplateInstruction(SideEffects::None()), index_(index) {}
3019
3020  size_t GetIndex() const { return index_; }
3021
3022  Primitive::Type GetType() const OVERRIDE {
3023    // The previous instruction is the one that will be stored in the temporary location.
3024    DCHECK(GetPrevious() != nullptr);
3025    return GetPrevious()->GetType();
3026  }
3027
3028  DECLARE_INSTRUCTION(Temporary);
3029
3030 private:
3031  const size_t index_;
3032
3033  DISALLOW_COPY_AND_ASSIGN(HTemporary);
3034};
3035
3036class HSuspendCheck : public HTemplateInstruction<0> {
3037 public:
3038  explicit HSuspendCheck(uint32_t dex_pc)
3039      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {}
3040
3041  bool NeedsEnvironment() const OVERRIDE {
3042    return true;
3043  }
3044
3045  uint32_t GetDexPc() const { return dex_pc_; }
3046
3047  DECLARE_INSTRUCTION(SuspendCheck);
3048
3049 private:
3050  const uint32_t dex_pc_;
3051
3052  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
3053};
3054
3055/**
3056 * Instruction to load a Class object.
3057 */
3058class HLoadClass : public HExpression<0> {
3059 public:
3060  HLoadClass(uint16_t type_index,
3061             bool is_referrers_class,
3062             uint32_t dex_pc)
3063      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3064        type_index_(type_index),
3065        is_referrers_class_(is_referrers_class),
3066        dex_pc_(dex_pc),
3067        generate_clinit_check_(false),
3068        loaded_class_rti_(ReferenceTypeInfo::CreateTop(/* is_exact */ false)) {}
3069
3070  bool CanBeMoved() const OVERRIDE { return true; }
3071
3072  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3073    return other->AsLoadClass()->type_index_ == type_index_;
3074  }
3075
3076  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
3077
3078  uint32_t GetDexPc() const { return dex_pc_; }
3079  uint16_t GetTypeIndex() const { return type_index_; }
3080  bool IsReferrersClass() const { return is_referrers_class_; }
3081
3082  bool NeedsEnvironment() const OVERRIDE {
3083    // Will call runtime and load the class if the class is not loaded yet.
3084    // TODO: finer grain decision.
3085    return !is_referrers_class_;
3086  }
3087
3088  bool MustGenerateClinitCheck() const {
3089    return generate_clinit_check_;
3090  }
3091
3092  void SetMustGenerateClinitCheck() {
3093    generate_clinit_check_ = true;
3094  }
3095
3096  bool CanCallRuntime() const {
3097    return MustGenerateClinitCheck() || !is_referrers_class_;
3098  }
3099
3100  bool CanThrow() const OVERRIDE {
3101    // May call runtime and and therefore can throw.
3102    // TODO: finer grain decision.
3103    return !is_referrers_class_;
3104  }
3105
3106  ReferenceTypeInfo GetLoadedClassRTI() {
3107    return loaded_class_rti_;
3108  }
3109
3110  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
3111    // Make sure we only set exact types (the loaded class should never be merged).
3112    DCHECK(rti.IsExact());
3113    loaded_class_rti_ = rti;
3114  }
3115
3116  bool IsResolved() {
3117    return loaded_class_rti_.IsExact();
3118  }
3119
3120  bool NeedsDexCache() const OVERRIDE { return !is_referrers_class_; }
3121
3122  DECLARE_INSTRUCTION(LoadClass);
3123
3124 private:
3125  const uint16_t type_index_;
3126  const bool is_referrers_class_;
3127  const uint32_t dex_pc_;
3128  // Whether this instruction must generate the initialization check.
3129  // Used for code generation.
3130  bool generate_clinit_check_;
3131
3132  ReferenceTypeInfo loaded_class_rti_;
3133
3134  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
3135};
3136
3137class HLoadString : public HExpression<0> {
3138 public:
3139  HLoadString(uint32_t string_index, uint32_t dex_pc)
3140      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3141        string_index_(string_index),
3142        dex_pc_(dex_pc) {}
3143
3144  bool CanBeMoved() const OVERRIDE { return true; }
3145
3146  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3147    return other->AsLoadString()->string_index_ == string_index_;
3148  }
3149
3150  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
3151
3152  uint32_t GetDexPc() const { return dex_pc_; }
3153  uint32_t GetStringIndex() const { return string_index_; }
3154
3155  // TODO: Can we deopt or debug when we resolve a string?
3156  bool NeedsEnvironment() const OVERRIDE { return false; }
3157  bool NeedsDexCache() const OVERRIDE { return true; }
3158
3159  DECLARE_INSTRUCTION(LoadString);
3160
3161 private:
3162  const uint32_t string_index_;
3163  const uint32_t dex_pc_;
3164
3165  DISALLOW_COPY_AND_ASSIGN(HLoadString);
3166};
3167
3168// TODO: Pass this check to HInvokeStaticOrDirect nodes.
3169/**
3170 * Performs an initialization check on its Class object input.
3171 */
3172class HClinitCheck : public HExpression<1> {
3173 public:
3174  explicit HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
3175      : HExpression(Primitive::kPrimNot, SideEffects::ChangesSomething()),
3176        dex_pc_(dex_pc) {
3177    SetRawInputAt(0, constant);
3178  }
3179
3180  bool CanBeMoved() const OVERRIDE { return true; }
3181  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3182    UNUSED(other);
3183    return true;
3184  }
3185
3186  bool NeedsEnvironment() const OVERRIDE {
3187    // May call runtime to initialize the class.
3188    return true;
3189  }
3190
3191  uint32_t GetDexPc() const { return dex_pc_; }
3192
3193  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
3194
3195  DECLARE_INSTRUCTION(ClinitCheck);
3196
3197 private:
3198  const uint32_t dex_pc_;
3199
3200  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
3201};
3202
3203class HStaticFieldGet : public HExpression<1> {
3204 public:
3205  HStaticFieldGet(HInstruction* cls,
3206                  Primitive::Type field_type,
3207                  MemberOffset field_offset,
3208                  bool is_volatile)
3209      : HExpression(field_type, SideEffects::DependsOnSomething()),
3210        field_info_(field_offset, field_type, is_volatile) {
3211    SetRawInputAt(0, cls);
3212  }
3213
3214
3215  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
3216
3217  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3218    HStaticFieldGet* other_get = other->AsStaticFieldGet();
3219    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
3220  }
3221
3222  size_t ComputeHashCode() const OVERRIDE {
3223    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
3224  }
3225
3226  const FieldInfo& GetFieldInfo() const { return field_info_; }
3227  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3228  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3229  bool IsVolatile() const { return field_info_.IsVolatile(); }
3230
3231  DECLARE_INSTRUCTION(StaticFieldGet);
3232
3233 private:
3234  const FieldInfo field_info_;
3235
3236  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
3237};
3238
3239class HStaticFieldSet : public HTemplateInstruction<2> {
3240 public:
3241  HStaticFieldSet(HInstruction* cls,
3242                  HInstruction* value,
3243                  Primitive::Type field_type,
3244                  MemberOffset field_offset,
3245                  bool is_volatile)
3246      : HTemplateInstruction(SideEffects::ChangesSomething()),
3247        field_info_(field_offset, field_type, is_volatile) {
3248    SetRawInputAt(0, cls);
3249    SetRawInputAt(1, value);
3250  }
3251
3252  const FieldInfo& GetFieldInfo() const { return field_info_; }
3253  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
3254  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
3255  bool IsVolatile() const { return field_info_.IsVolatile(); }
3256
3257  HInstruction* GetValue() const { return InputAt(1); }
3258
3259  DECLARE_INSTRUCTION(StaticFieldSet);
3260
3261 private:
3262  const FieldInfo field_info_;
3263
3264  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
3265};
3266
3267// Implement the move-exception DEX instruction.
3268class HLoadException : public HExpression<0> {
3269 public:
3270  HLoadException() : HExpression(Primitive::kPrimNot, SideEffects::None()) {}
3271
3272  DECLARE_INSTRUCTION(LoadException);
3273
3274 private:
3275  DISALLOW_COPY_AND_ASSIGN(HLoadException);
3276};
3277
3278class HThrow : public HTemplateInstruction<1> {
3279 public:
3280  HThrow(HInstruction* exception, uint32_t dex_pc)
3281      : HTemplateInstruction(SideEffects::None()), dex_pc_(dex_pc) {
3282    SetRawInputAt(0, exception);
3283  }
3284
3285  bool IsControlFlow() const OVERRIDE { return true; }
3286
3287  bool NeedsEnvironment() const OVERRIDE { return true; }
3288
3289  bool CanThrow() const OVERRIDE { return true; }
3290
3291  uint32_t GetDexPc() const { return dex_pc_; }
3292
3293  DECLARE_INSTRUCTION(Throw);
3294
3295 private:
3296  const uint32_t dex_pc_;
3297
3298  DISALLOW_COPY_AND_ASSIGN(HThrow);
3299};
3300
3301class HInstanceOf : public HExpression<2> {
3302 public:
3303  HInstanceOf(HInstruction* object,
3304              HLoadClass* constant,
3305              bool class_is_final,
3306              uint32_t dex_pc)
3307      : HExpression(Primitive::kPrimBoolean, SideEffects::None()),
3308        class_is_final_(class_is_final),
3309        dex_pc_(dex_pc) {
3310    SetRawInputAt(0, object);
3311    SetRawInputAt(1, constant);
3312  }
3313
3314  bool CanBeMoved() const OVERRIDE { return true; }
3315
3316  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3317    return true;
3318  }
3319
3320  bool NeedsEnvironment() const OVERRIDE {
3321    return false;
3322  }
3323
3324  uint32_t GetDexPc() const { return dex_pc_; }
3325
3326  bool IsClassFinal() const { return class_is_final_; }
3327
3328  DECLARE_INSTRUCTION(InstanceOf);
3329
3330 private:
3331  const bool class_is_final_;
3332  const uint32_t dex_pc_;
3333
3334  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
3335};
3336
3337class HBoundType : public HExpression<1> {
3338 public:
3339  HBoundType(HInstruction* input, ReferenceTypeInfo bound_type)
3340      : HExpression(Primitive::kPrimNot, SideEffects::None()),
3341        bound_type_(bound_type) {
3342    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
3343    SetRawInputAt(0, input);
3344  }
3345
3346  const ReferenceTypeInfo& GetBoundType() const { return bound_type_; }
3347
3348  bool CanBeNull() const OVERRIDE {
3349    // `null instanceof ClassX` always return false so we can't be null.
3350    return false;
3351  }
3352
3353  DECLARE_INSTRUCTION(BoundType);
3354
3355 private:
3356  // Encodes the most upper class that this instruction can have. In other words
3357  // it is always the case that GetBoundType().IsSupertypeOf(GetReferenceType()).
3358  // It is used to bound the type in cases like `if (x instanceof ClassX) {}`
3359  const ReferenceTypeInfo bound_type_;
3360
3361  DISALLOW_COPY_AND_ASSIGN(HBoundType);
3362};
3363
3364class HCheckCast : public HTemplateInstruction<2> {
3365 public:
3366  HCheckCast(HInstruction* object,
3367             HLoadClass* constant,
3368             bool class_is_final,
3369             uint32_t dex_pc)
3370      : HTemplateInstruction(SideEffects::None()),
3371        class_is_final_(class_is_final),
3372        dex_pc_(dex_pc) {
3373    SetRawInputAt(0, object);
3374    SetRawInputAt(1, constant);
3375  }
3376
3377  bool CanBeMoved() const OVERRIDE { return true; }
3378
3379  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3380    return true;
3381  }
3382
3383  bool NeedsEnvironment() const OVERRIDE {
3384    // Instruction may throw a CheckCastError.
3385    return true;
3386  }
3387
3388  bool CanThrow() const OVERRIDE { return true; }
3389
3390  uint32_t GetDexPc() const { return dex_pc_; }
3391
3392  bool IsClassFinal() const { return class_is_final_; }
3393
3394  DECLARE_INSTRUCTION(CheckCast);
3395
3396 private:
3397  const bool class_is_final_;
3398  const uint32_t dex_pc_;
3399
3400  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
3401};
3402
3403class HMonitorOperation : public HTemplateInstruction<1> {
3404 public:
3405  enum OperationKind {
3406    kEnter,
3407    kExit,
3408  };
3409
3410  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
3411    : HTemplateInstruction(SideEffects::None()), kind_(kind), dex_pc_(dex_pc) {
3412    SetRawInputAt(0, object);
3413  }
3414
3415  // Instruction may throw a Java exception, so we need an environment.
3416  bool NeedsEnvironment() const OVERRIDE { return true; }
3417  bool CanThrow() const OVERRIDE { return true; }
3418
3419  uint32_t GetDexPc() const { return dex_pc_; }
3420
3421  bool IsEnter() const { return kind_ == kEnter; }
3422
3423  DECLARE_INSTRUCTION(MonitorOperation);
3424
3425 private:
3426  const OperationKind kind_;
3427  const uint32_t dex_pc_;
3428
3429 private:
3430  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
3431};
3432
3433class MoveOperands : public ArenaObject<kArenaAllocMisc> {
3434 public:
3435  MoveOperands(Location source, Location destination, HInstruction* instruction)
3436      : source_(source), destination_(destination), instruction_(instruction) {}
3437
3438  Location GetSource() const { return source_; }
3439  Location GetDestination() const { return destination_; }
3440
3441  void SetSource(Location value) { source_ = value; }
3442  void SetDestination(Location value) { destination_ = value; }
3443
3444  // The parallel move resolver marks moves as "in-progress" by clearing the
3445  // destination (but not the source).
3446  Location MarkPending() {
3447    DCHECK(!IsPending());
3448    Location dest = destination_;
3449    destination_ = Location::NoLocation();
3450    return dest;
3451  }
3452
3453  void ClearPending(Location dest) {
3454    DCHECK(IsPending());
3455    destination_ = dest;
3456  }
3457
3458  bool IsPending() const {
3459    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
3460    return destination_.IsInvalid() && !source_.IsInvalid();
3461  }
3462
3463  // True if this blocks a move from the given location.
3464  bool Blocks(Location loc) const {
3465    return !IsEliminated() && (source_.Contains(loc) || loc.Contains(source_));
3466  }
3467
3468  // A move is redundant if it's been eliminated, if its source and
3469  // destination are the same, or if its destination is unneeded.
3470  bool IsRedundant() const {
3471    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
3472  }
3473
3474  // We clear both operands to indicate move that's been eliminated.
3475  void Eliminate() {
3476    source_ = destination_ = Location::NoLocation();
3477  }
3478
3479  bool IsEliminated() const {
3480    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
3481    return source_.IsInvalid();
3482  }
3483
3484  HInstruction* GetInstruction() const { return instruction_; }
3485
3486 private:
3487  Location source_;
3488  Location destination_;
3489  // The instruction this move is assocatied with. Null when this move is
3490  // for moving an input in the expected locations of user (including a phi user).
3491  // This is only used in debug mode, to ensure we do not connect interval siblings
3492  // in the same parallel move.
3493  HInstruction* instruction_;
3494};
3495
3496static constexpr size_t kDefaultNumberOfMoves = 4;
3497
3498class HParallelMove : public HTemplateInstruction<0> {
3499 public:
3500  explicit HParallelMove(ArenaAllocator* arena)
3501      : HTemplateInstruction(SideEffects::None()), moves_(arena, kDefaultNumberOfMoves) {}
3502
3503  void AddMove(Location source, Location destination, HInstruction* instruction) {
3504    DCHECK(source.IsValid());
3505    DCHECK(destination.IsValid());
3506    if (kIsDebugBuild) {
3507      if (instruction != nullptr) {
3508        for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
3509          if (moves_.Get(i).GetInstruction() == instruction) {
3510            // Special case the situation where the move is for the spill slot
3511            // of the instruction.
3512            if ((GetPrevious() == instruction)
3513                || ((GetPrevious() == nullptr)
3514                    && instruction->IsPhi()
3515                    && instruction->GetBlock() == GetBlock())) {
3516              DCHECK_NE(destination.GetKind(), moves_.Get(i).GetDestination().GetKind())
3517                  << "Doing parallel moves for the same instruction.";
3518            } else {
3519              DCHECK(false) << "Doing parallel moves for the same instruction.";
3520            }
3521          }
3522        }
3523      }
3524      for (size_t i = 0, e = moves_.Size(); i < e; ++i) {
3525        DCHECK(!destination.Equals(moves_.Get(i).GetDestination()))
3526            << "Same destination for two moves in a parallel move.";
3527      }
3528    }
3529    moves_.Add(MoveOperands(source, destination, instruction));
3530  }
3531
3532  MoveOperands* MoveOperandsAt(size_t index) const {
3533    return moves_.GetRawStorage() + index;
3534  }
3535
3536  size_t NumMoves() const { return moves_.Size(); }
3537
3538  DECLARE_INSTRUCTION(ParallelMove);
3539
3540 private:
3541  GrowableArray<MoveOperands> moves_;
3542
3543  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
3544};
3545
3546class HGraphVisitor : public ValueObject {
3547 public:
3548  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
3549  virtual ~HGraphVisitor() {}
3550
3551  virtual void VisitInstruction(HInstruction* instruction) { UNUSED(instruction); }
3552  virtual void VisitBasicBlock(HBasicBlock* block);
3553
3554  // Visit the graph following basic block insertion order.
3555  void VisitInsertionOrder();
3556
3557  // Visit the graph following dominator tree reverse post-order.
3558  void VisitReversePostOrder();
3559
3560  HGraph* GetGraph() const { return graph_; }
3561
3562  // Visit functions for instruction classes.
3563#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
3564  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
3565
3566  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
3567
3568#undef DECLARE_VISIT_INSTRUCTION
3569
3570 private:
3571  HGraph* const graph_;
3572
3573  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
3574};
3575
3576class HGraphDelegateVisitor : public HGraphVisitor {
3577 public:
3578  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
3579  virtual ~HGraphDelegateVisitor() {}
3580
3581  // Visit functions that delegate to to super class.
3582#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
3583  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
3584
3585  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
3586
3587#undef DECLARE_VISIT_INSTRUCTION
3588
3589 private:
3590  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
3591};
3592
3593class HInsertionOrderIterator : public ValueObject {
3594 public:
3595  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
3596
3597  bool Done() const { return index_ == graph_.GetBlocks().Size(); }
3598  HBasicBlock* Current() const { return graph_.GetBlocks().Get(index_); }
3599  void Advance() { ++index_; }
3600
3601 private:
3602  const HGraph& graph_;
3603  size_t index_;
3604
3605  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
3606};
3607
3608class HReversePostOrderIterator : public ValueObject {
3609 public:
3610  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
3611    // Check that reverse post order of the graph has been built.
3612    DCHECK(!graph.GetReversePostOrder().IsEmpty());
3613  }
3614
3615  bool Done() const { return index_ == graph_.GetReversePostOrder().Size(); }
3616  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_); }
3617  void Advance() { ++index_; }
3618
3619 private:
3620  const HGraph& graph_;
3621  size_t index_;
3622
3623  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
3624};
3625
3626class HPostOrderIterator : public ValueObject {
3627 public:
3628  explicit HPostOrderIterator(const HGraph& graph)
3629      : graph_(graph), index_(graph_.GetReversePostOrder().Size()) {
3630    // Check that reverse post order of the graph has been built.
3631    DCHECK(!graph.GetReversePostOrder().IsEmpty());
3632  }
3633
3634  bool Done() const { return index_ == 0; }
3635  HBasicBlock* Current() const { return graph_.GetReversePostOrder().Get(index_ - 1); }
3636  void Advance() { --index_; }
3637
3638 private:
3639  const HGraph& graph_;
3640  size_t index_;
3641
3642  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
3643};
3644
3645// Iterator over the blocks that art part of the loop. Includes blocks part
3646// of an inner loop. The order in which the blocks are iterated is on their
3647// block id.
3648class HBlocksInLoopIterator : public ValueObject {
3649 public:
3650  explicit HBlocksInLoopIterator(const HLoopInformation& info)
3651      : blocks_in_loop_(info.GetBlocks()),
3652        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
3653        index_(0) {
3654    if (!blocks_in_loop_.IsBitSet(index_)) {
3655      Advance();
3656    }
3657  }
3658
3659  bool Done() const { return index_ == blocks_.Size(); }
3660  HBasicBlock* Current() const { return blocks_.Get(index_); }
3661  void Advance() {
3662    ++index_;
3663    for (size_t e = blocks_.Size(); index_ < e; ++index_) {
3664      if (blocks_in_loop_.IsBitSet(index_)) {
3665        break;
3666      }
3667    }
3668  }
3669
3670 private:
3671  const BitVector& blocks_in_loop_;
3672  const GrowableArray<HBasicBlock*>& blocks_;
3673  size_t index_;
3674
3675  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
3676};
3677
3678inline int64_t Int64FromConstant(HConstant* constant) {
3679  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
3680  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
3681                                   : constant->AsLongConstant()->GetValue();
3682}
3683
3684}  // namespace art
3685
3686#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
3687