nodes.h revision d26a411adee1e71b3f09dd604ab9b23018037138
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_bit_vector.h"
25#include "base/arena_containers.h"
26#include "base/arena_object.h"
27#include "base/stl_util.h"
28#include "dex/compiler_enums.h"
29#include "entrypoints/quick/quick_entrypoints_enum.h"
30#include "handle.h"
31#include "handle_scope.h"
32#include "invoke_type.h"
33#include "locations.h"
34#include "method_reference.h"
35#include "mirror/class.h"
36#include "offsets.h"
37#include "primitive.h"
38#include "utils/array_ref.h"
39
40namespace art {
41
42class GraphChecker;
43class HBasicBlock;
44class HCurrentMethod;
45class HDoubleConstant;
46class HEnvironment;
47class HFakeString;
48class HFloatConstant;
49class HGraphBuilder;
50class HGraphVisitor;
51class HInstruction;
52class HIntConstant;
53class HInvoke;
54class HLongConstant;
55class HNullConstant;
56class HPhi;
57class HSuspendCheck;
58class HTryBoundary;
59class LiveInterval;
60class LocationSummary;
61class SlowPathCode;
62class SsaBuilder;
63
64namespace mirror {
65class DexCache;
66}  // namespace mirror
67
68static const int kDefaultNumberOfBlocks = 8;
69static const int kDefaultNumberOfSuccessors = 2;
70static const int kDefaultNumberOfPredecessors = 2;
71static const int kDefaultNumberOfExceptionalPredecessors = 0;
72static const int kDefaultNumberOfDominatedBlocks = 1;
73static const int kDefaultNumberOfBackEdges = 1;
74
75static constexpr uint32_t kMaxIntShiftValue = 0x1f;
76static constexpr uint64_t kMaxLongShiftValue = 0x3f;
77
78static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
79static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
80
81static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
82
83static constexpr uint32_t kNoDexPc = -1;
84
85enum IfCondition {
86  // All types.
87  kCondEQ,  // ==
88  kCondNE,  // !=
89  // Signed integers and floating-point numbers.
90  kCondLT,  // <
91  kCondLE,  // <=
92  kCondGT,  // >
93  kCondGE,  // >=
94  // Unsigned integers.
95  kCondB,   // <
96  kCondBE,  // <=
97  kCondA,   // >
98  kCondAE,  // >=
99};
100
101class HInstructionList : public ValueObject {
102 public:
103  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
104
105  void AddInstruction(HInstruction* instruction);
106  void RemoveInstruction(HInstruction* instruction);
107
108  // Insert `instruction` before/after an existing instruction `cursor`.
109  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
110  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
111
112  // Return true if this list contains `instruction`.
113  bool Contains(HInstruction* instruction) const;
114
115  // Return true if `instruction1` is found before `instruction2` in
116  // this instruction list and false otherwise.  Abort if none
117  // of these instructions is found.
118  bool FoundBefore(const HInstruction* instruction1,
119                   const HInstruction* instruction2) const;
120
121  bool IsEmpty() const { return first_instruction_ == nullptr; }
122  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
123
124  // Update the block of all instructions to be `block`.
125  void SetBlockOfInstructions(HBasicBlock* block) const;
126
127  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
128  void Add(const HInstructionList& instruction_list);
129
130  // Return the number of instructions in the list. This is an expensive operation.
131  size_t CountSize() const;
132
133 private:
134  HInstruction* first_instruction_;
135  HInstruction* last_instruction_;
136
137  friend class HBasicBlock;
138  friend class HGraph;
139  friend class HInstruction;
140  friend class HInstructionIterator;
141  friend class HBackwardInstructionIterator;
142
143  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
144};
145
146// Control-flow graph of a method. Contains a list of basic blocks.
147class HGraph : public ArenaObject<kArenaAllocGraph> {
148 public:
149  HGraph(ArenaAllocator* arena,
150         const DexFile& dex_file,
151         uint32_t method_idx,
152         bool should_generate_constructor_barrier,
153         InstructionSet instruction_set,
154         InvokeType invoke_type = kInvalidInvokeType,
155         bool debuggable = false,
156         int start_instruction_id = 0)
157      : arena_(arena),
158        blocks_(arena->Adapter(kArenaAllocBlockList)),
159        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
160        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
161        entry_block_(nullptr),
162        exit_block_(nullptr),
163        maximum_number_of_out_vregs_(0),
164        number_of_vregs_(0),
165        number_of_in_vregs_(0),
166        temporaries_vreg_slots_(0),
167        has_bounds_checks_(false),
168        has_try_catch_(false),
169        debuggable_(debuggable),
170        current_instruction_id_(start_instruction_id),
171        dex_file_(dex_file),
172        method_idx_(method_idx),
173        invoke_type_(invoke_type),
174        in_ssa_form_(false),
175        should_generate_constructor_barrier_(should_generate_constructor_barrier),
176        instruction_set_(instruction_set),
177        cached_null_constant_(nullptr),
178        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
179        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
180        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
181        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
182        cached_current_method_(nullptr) {
183    blocks_.reserve(kDefaultNumberOfBlocks);
184  }
185
186  ArenaAllocator* GetArena() const { return arena_; }
187  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
188
189  bool IsInSsaForm() const { return in_ssa_form_; }
190
191  HBasicBlock* GetEntryBlock() const { return entry_block_; }
192  HBasicBlock* GetExitBlock() const { return exit_block_; }
193  bool HasExitBlock() const { return exit_block_ != nullptr; }
194
195  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
196  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
197
198  void AddBlock(HBasicBlock* block);
199
200  // Try building the SSA form of this graph, with dominance computation and loop
201  // recognition. Returns whether it was successful in doing all these steps.
202  bool TryBuildingSsa() {
203    BuildDominatorTree();
204    // The SSA builder requires loops to all be natural. Specifically, the dead phi
205    // elimination phase checks the consistency of the graph when doing a post-order
206    // visit for eliminating dead phis: a dead phi can only have loop header phi
207    // users remaining when being visited.
208    if (!AnalyzeNaturalLoops()) return false;
209    // Precompute per-block try membership before entering the SSA builder,
210    // which needs the information to build catch block phis from values of
211    // locals at throwing instructions inside try blocks.
212    ComputeTryBlockInformation();
213    TransformToSsa();
214    in_ssa_form_ = true;
215    return true;
216  }
217
218  void ComputeDominanceInformation();
219  void ClearDominanceInformation();
220
221  void BuildDominatorTree();
222  void TransformToSsa();
223  void SimplifyCFG();
224  void SimplifyCatchBlocks();
225
226  // Analyze all natural loops in this graph. Returns false if one
227  // loop is not natural, that is the header does not dominate the
228  // back edge.
229  bool AnalyzeNaturalLoops() const;
230
231  // Iterate over blocks to compute try block membership. Needs reverse post
232  // order and loop information.
233  void ComputeTryBlockInformation();
234
235  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
236  // Returns the instruction used to replace the invoke expression or null if the
237  // invoke is for a void method.
238  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
239
240  // Need to add a couple of blocks to test if the loop body is entered and
241  // put deoptimization instructions, etc.
242  void TransformLoopHeaderForBCE(HBasicBlock* header);
243
244  // Removes `block` from the graph. Assumes `block` has been disconnected from
245  // other blocks and has no instructions or phis.
246  void DeleteDeadEmptyBlock(HBasicBlock* block);
247
248  // Splits the edge between `block` and `successor` while preserving the
249  // indices in the predecessor/successor lists. If there are multiple edges
250  // between the blocks, the lowest indices are used.
251  // Returns the new block which is empty and has the same dex pc as `successor`.
252  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
253
254  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
255  void SimplifyLoop(HBasicBlock* header);
256
257  int32_t GetNextInstructionId() {
258    DCHECK_NE(current_instruction_id_, INT32_MAX);
259    return current_instruction_id_++;
260  }
261
262  int32_t GetCurrentInstructionId() const {
263    return current_instruction_id_;
264  }
265
266  void SetCurrentInstructionId(int32_t id) {
267    current_instruction_id_ = id;
268  }
269
270  uint16_t GetMaximumNumberOfOutVRegs() const {
271    return maximum_number_of_out_vregs_;
272  }
273
274  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
275    maximum_number_of_out_vregs_ = new_value;
276  }
277
278  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
279    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
280  }
281
282  void UpdateTemporariesVRegSlots(size_t slots) {
283    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
284  }
285
286  size_t GetTemporariesVRegSlots() const {
287    DCHECK(!in_ssa_form_);
288    return temporaries_vreg_slots_;
289  }
290
291  void SetNumberOfVRegs(uint16_t number_of_vregs) {
292    number_of_vregs_ = number_of_vregs;
293  }
294
295  uint16_t GetNumberOfVRegs() const {
296    return number_of_vregs_;
297  }
298
299  void SetNumberOfInVRegs(uint16_t value) {
300    number_of_in_vregs_ = value;
301  }
302
303  uint16_t GetNumberOfLocalVRegs() const {
304    DCHECK(!in_ssa_form_);
305    return number_of_vregs_ - number_of_in_vregs_;
306  }
307
308  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
309    return reverse_post_order_;
310  }
311
312  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
313    return linear_order_;
314  }
315
316  bool HasBoundsChecks() const {
317    return has_bounds_checks_;
318  }
319
320  void SetHasBoundsChecks(bool value) {
321    has_bounds_checks_ = value;
322  }
323
324  bool ShouldGenerateConstructorBarrier() const {
325    return should_generate_constructor_barrier_;
326  }
327
328  bool IsDebuggable() const { return debuggable_; }
329
330  // Returns a constant of the given type and value. If it does not exist
331  // already, it is created and inserted into the graph. This method is only for
332  // integral types.
333  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
334
335  // TODO: This is problematic for the consistency of reference type propagation
336  // because it can be created anytime after the pass and thus it will be left
337  // with an invalid type.
338  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
339
340  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
341    return CreateConstant(value, &cached_int_constants_, dex_pc);
342  }
343  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
344    return CreateConstant(value, &cached_long_constants_, dex_pc);
345  }
346  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
347    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
348  }
349  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
350    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
351  }
352
353  HCurrentMethod* GetCurrentMethod();
354
355  const DexFile& GetDexFile() const {
356    return dex_file_;
357  }
358
359  uint32_t GetMethodIdx() const {
360    return method_idx_;
361  }
362
363  InvokeType GetInvokeType() const {
364    return invoke_type_;
365  }
366
367  InstructionSet GetInstructionSet() const {
368    return instruction_set_;
369  }
370
371  bool HasTryCatch() const { return has_try_catch_; }
372  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
373
374 private:
375  void FindBackEdges(ArenaBitVector* visited);
376  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
377  void RemoveDeadBlocks(const ArenaBitVector& visited);
378
379  template <class InstructionType, typename ValueType>
380  InstructionType* CreateConstant(ValueType value,
381                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
382                                  uint32_t dex_pc = kNoDexPc) {
383    // Try to find an existing constant of the given value.
384    InstructionType* constant = nullptr;
385    auto cached_constant = cache->find(value);
386    if (cached_constant != cache->end()) {
387      constant = cached_constant->second;
388    }
389
390    // If not found or previously deleted, create and cache a new instruction.
391    // Don't bother reviving a previously deleted instruction, for simplicity.
392    if (constant == nullptr || constant->GetBlock() == nullptr) {
393      constant = new (arena_) InstructionType(value, dex_pc);
394      cache->Overwrite(value, constant);
395      InsertConstant(constant);
396    }
397    return constant;
398  }
399
400  void InsertConstant(HConstant* instruction);
401
402  // Cache a float constant into the graph. This method should only be
403  // called by the SsaBuilder when creating "equivalent" instructions.
404  void CacheFloatConstant(HFloatConstant* constant);
405
406  // See CacheFloatConstant comment.
407  void CacheDoubleConstant(HDoubleConstant* constant);
408
409  ArenaAllocator* const arena_;
410
411  // List of blocks in insertion order.
412  ArenaVector<HBasicBlock*> blocks_;
413
414  // List of blocks to perform a reverse post order tree traversal.
415  ArenaVector<HBasicBlock*> reverse_post_order_;
416
417  // List of blocks to perform a linear order tree traversal.
418  ArenaVector<HBasicBlock*> linear_order_;
419
420  HBasicBlock* entry_block_;
421  HBasicBlock* exit_block_;
422
423  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
424  uint16_t maximum_number_of_out_vregs_;
425
426  // The number of virtual registers in this method. Contains the parameters.
427  uint16_t number_of_vregs_;
428
429  // The number of virtual registers used by parameters of this method.
430  uint16_t number_of_in_vregs_;
431
432  // Number of vreg size slots that the temporaries use (used in baseline compiler).
433  size_t temporaries_vreg_slots_;
434
435  // Has bounds checks. We can totally skip BCE if it's false.
436  bool has_bounds_checks_;
437
438  // Flag whether there are any try/catch blocks in the graph. We will skip
439  // try/catch-related passes if false.
440  bool has_try_catch_;
441
442  // Indicates whether the graph should be compiled in a way that
443  // ensures full debuggability. If false, we can apply more
444  // aggressive optimizations that may limit the level of debugging.
445  const bool debuggable_;
446
447  // The current id to assign to a newly added instruction. See HInstruction.id_.
448  int32_t current_instruction_id_;
449
450  // The dex file from which the method is from.
451  const DexFile& dex_file_;
452
453  // The method index in the dex file.
454  const uint32_t method_idx_;
455
456  // If inlined, this encodes how the callee is being invoked.
457  const InvokeType invoke_type_;
458
459  // Whether the graph has been transformed to SSA form. Only used
460  // in debug mode to ensure we are not using properties only valid
461  // for non-SSA form (like the number of temporaries).
462  bool in_ssa_form_;
463
464  const bool should_generate_constructor_barrier_;
465
466  const InstructionSet instruction_set_;
467
468  // Cached constants.
469  HNullConstant* cached_null_constant_;
470  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
471  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
472  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
473  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
474
475  HCurrentMethod* cached_current_method_;
476
477  friend class SsaBuilder;           // For caching constants.
478  friend class SsaLivenessAnalysis;  // For the linear order.
479  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
480  DISALLOW_COPY_AND_ASSIGN(HGraph);
481};
482
483class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
484 public:
485  HLoopInformation(HBasicBlock* header, HGraph* graph)
486      : header_(header),
487        suspend_check_(nullptr),
488        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
489        // Make bit vector growable, as the number of blocks may change.
490        blocks_(graph->GetArena(), graph->GetBlocks().size(), true) {
491    back_edges_.reserve(kDefaultNumberOfBackEdges);
492  }
493
494  HBasicBlock* GetHeader() const {
495    return header_;
496  }
497
498  void SetHeader(HBasicBlock* block) {
499    header_ = block;
500  }
501
502  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
503  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
504  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
505
506  void AddBackEdge(HBasicBlock* back_edge) {
507    back_edges_.push_back(back_edge);
508  }
509
510  void RemoveBackEdge(HBasicBlock* back_edge) {
511    RemoveElement(back_edges_, back_edge);
512  }
513
514  bool IsBackEdge(const HBasicBlock& block) const {
515    return ContainsElement(back_edges_, &block);
516  }
517
518  size_t NumberOfBackEdges() const {
519    return back_edges_.size();
520  }
521
522  HBasicBlock* GetPreHeader() const;
523
524  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
525    return back_edges_;
526  }
527
528  // Returns the lifetime position of the back edge that has the
529  // greatest lifetime position.
530  size_t GetLifetimeEnd() const;
531
532  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
533    ReplaceElement(back_edges_, existing, new_back_edge);
534  }
535
536  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
537  // that is the header dominates the back edge.
538  bool Populate();
539
540  // Reanalyzes the loop by removing loop info from its blocks and re-running
541  // Populate(). If there are no back edges left, the loop info is completely
542  // removed as well as its SuspendCheck instruction. It must be run on nested
543  // inner loops first.
544  void Update();
545
546  // Returns whether this loop information contains `block`.
547  // Note that this loop information *must* be populated before entering this function.
548  bool Contains(const HBasicBlock& block) const;
549
550  // Returns whether this loop information is an inner loop of `other`.
551  // Note that `other` *must* be populated before entering this function.
552  bool IsIn(const HLoopInformation& other) const;
553
554  // Returns true if instruction is not defined within this loop or any loop nested inside
555  // this loop. If must_dominate is set, only definitions that actually dominate the loop
556  // header can be invariant. Otherwise, any definition outside the loop, including
557  // definitions that appear after the loop, is invariant.
558  bool IsLoopInvariant(HInstruction* instruction, bool must_dominate) const;
559
560  const ArenaBitVector& GetBlocks() const { return blocks_; }
561
562  void Add(HBasicBlock* block);
563  void Remove(HBasicBlock* block);
564
565 private:
566  // Internal recursive implementation of `Populate`.
567  void PopulateRecursive(HBasicBlock* block);
568
569  HBasicBlock* header_;
570  HSuspendCheck* suspend_check_;
571  ArenaVector<HBasicBlock*> back_edges_;
572  ArenaBitVector blocks_;
573
574  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
575};
576
577// Stores try/catch information for basic blocks.
578// Note that HGraph is constructed so that catch blocks cannot simultaneously
579// be try blocks.
580class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
581 public:
582  // Try block information constructor.
583  explicit TryCatchInformation(const HTryBoundary& try_entry)
584      : try_entry_(&try_entry),
585        catch_dex_file_(nullptr),
586        catch_type_index_(DexFile::kDexNoIndex16) {
587    DCHECK(try_entry_ != nullptr);
588  }
589
590  // Catch block information constructor.
591  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
592      : try_entry_(nullptr),
593        catch_dex_file_(&dex_file),
594        catch_type_index_(catch_type_index) {}
595
596  bool IsTryBlock() const { return try_entry_ != nullptr; }
597
598  const HTryBoundary& GetTryEntry() const {
599    DCHECK(IsTryBlock());
600    return *try_entry_;
601  }
602
603  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
604
605  bool IsCatchAllTypeIndex() const {
606    DCHECK(IsCatchBlock());
607    return catch_type_index_ == DexFile::kDexNoIndex16;
608  }
609
610  uint16_t GetCatchTypeIndex() const {
611    DCHECK(IsCatchBlock());
612    return catch_type_index_;
613  }
614
615  const DexFile& GetCatchDexFile() const {
616    DCHECK(IsCatchBlock());
617    return *catch_dex_file_;
618  }
619
620 private:
621  // One of possibly several TryBoundary instructions entering the block's try.
622  // Only set for try blocks.
623  const HTryBoundary* try_entry_;
624
625  // Exception type information. Only set for catch blocks.
626  const DexFile* catch_dex_file_;
627  const uint16_t catch_type_index_;
628};
629
630static constexpr size_t kNoLifetime = -1;
631static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
632
633// A block in a method. Contains the list of instructions represented
634// as a double linked list. Each block knows its predecessors and
635// successors.
636
637class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
638 public:
639  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
640      : graph_(graph),
641        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
642        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
643        loop_information_(nullptr),
644        dominator_(nullptr),
645        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
646        block_id_(kInvalidBlockId),
647        dex_pc_(dex_pc),
648        lifetime_start_(kNoLifetime),
649        lifetime_end_(kNoLifetime),
650        try_catch_information_(nullptr) {
651    predecessors_.reserve(kDefaultNumberOfPredecessors);
652    successors_.reserve(kDefaultNumberOfSuccessors);
653    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
654  }
655
656  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
657    return predecessors_;
658  }
659
660  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
661    return successors_;
662  }
663
664  ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
665  ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
666
667  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
668    return ContainsElement(successors_, block, start_from);
669  }
670
671  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
672    return dominated_blocks_;
673  }
674
675  bool IsEntryBlock() const {
676    return graph_->GetEntryBlock() == this;
677  }
678
679  bool IsExitBlock() const {
680    return graph_->GetExitBlock() == this;
681  }
682
683  bool IsSingleGoto() const;
684  bool IsSingleTryBoundary() const;
685
686  // Returns true if this block emits nothing but a jump.
687  bool IsSingleJump() const {
688    HLoopInformation* loop_info = GetLoopInformation();
689    return (IsSingleGoto() || IsSingleTryBoundary())
690           // Back edges generate a suspend check.
691           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
692  }
693
694  void AddBackEdge(HBasicBlock* back_edge) {
695    if (loop_information_ == nullptr) {
696      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
697    }
698    DCHECK_EQ(loop_information_->GetHeader(), this);
699    loop_information_->AddBackEdge(back_edge);
700  }
701
702  HGraph* GetGraph() const { return graph_; }
703  void SetGraph(HGraph* graph) { graph_ = graph; }
704
705  uint32_t GetBlockId() const { return block_id_; }
706  void SetBlockId(int id) { block_id_ = id; }
707  uint32_t GetDexPc() const { return dex_pc_; }
708
709  HBasicBlock* GetDominator() const { return dominator_; }
710  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
711  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
712
713  void RemoveDominatedBlock(HBasicBlock* block) {
714    RemoveElement(dominated_blocks_, block);
715  }
716
717  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
718    ReplaceElement(dominated_blocks_, existing, new_block);
719  }
720
721  void ClearDominanceInformation();
722
723  int NumberOfBackEdges() const {
724    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
725  }
726
727  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
728  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
729  const HInstructionList& GetInstructions() const { return instructions_; }
730  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
731  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
732  const HInstructionList& GetPhis() const { return phis_; }
733
734  void AddSuccessor(HBasicBlock* block) {
735    successors_.push_back(block);
736    block->predecessors_.push_back(this);
737  }
738
739  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
740    size_t successor_index = GetSuccessorIndexOf(existing);
741    existing->RemovePredecessor(this);
742    new_block->predecessors_.push_back(this);
743    successors_[successor_index] = new_block;
744  }
745
746  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
747    size_t predecessor_index = GetPredecessorIndexOf(existing);
748    existing->RemoveSuccessor(this);
749    new_block->successors_.push_back(this);
750    predecessors_[predecessor_index] = new_block;
751  }
752
753  // Insert `this` between `predecessor` and `successor. This method
754  // preserves the indicies, and will update the first edge found between
755  // `predecessor` and `successor`.
756  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
757    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
758    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
759    successor->predecessors_[predecessor_index] = this;
760    predecessor->successors_[successor_index] = this;
761    successors_.push_back(successor);
762    predecessors_.push_back(predecessor);
763  }
764
765  void RemovePredecessor(HBasicBlock* block) {
766    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
767  }
768
769  void RemoveSuccessor(HBasicBlock* block) {
770    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
771  }
772
773  void ClearAllPredecessors() {
774    predecessors_.clear();
775  }
776
777  void AddPredecessor(HBasicBlock* block) {
778    predecessors_.push_back(block);
779    block->successors_.push_back(this);
780  }
781
782  void SwapPredecessors() {
783    DCHECK_EQ(predecessors_.size(), 2u);
784    std::swap(predecessors_[0], predecessors_[1]);
785  }
786
787  void SwapSuccessors() {
788    DCHECK_EQ(successors_.size(), 2u);
789    std::swap(successors_[0], successors_[1]);
790  }
791
792  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
793    return IndexOfElement(predecessors_, predecessor);
794  }
795
796  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
797    return IndexOfElement(successors_, successor);
798  }
799
800  HBasicBlock* GetSinglePredecessor() const {
801    DCHECK_EQ(GetPredecessors().size(), 1u);
802    return GetPredecessors()[0];
803  }
804
805  HBasicBlock* GetSingleSuccessor() const {
806    DCHECK_EQ(GetSuccessors().size(), 1u);
807    return GetSuccessors()[0];
808  }
809
810  // Returns whether the first occurrence of `predecessor` in the list of
811  // predecessors is at index `idx`.
812  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
813    DCHECK_EQ(GetPredecessors()[idx], predecessor);
814    return GetPredecessorIndexOf(predecessor) == idx;
815  }
816
817  // Create a new block between this block and its predecessors. The new block
818  // is added to the graph, all predecessor edges are relinked to it and an edge
819  // is created to `this`. Returns the new empty block. Reverse post order or
820  // loop and try/catch information are not updated.
821  HBasicBlock* CreateImmediateDominator();
822
823  // Split the block into two blocks just before `cursor`. Returns the newly
824  // created, latter block. Note that this method will add the block to the
825  // graph, create a Goto at the end of the former block and will create an edge
826  // between the blocks. It will not, however, update the reverse post order or
827  // loop and try/catch information.
828  HBasicBlock* SplitBefore(HInstruction* cursor);
829
830  // Split the block into two blocks just after `cursor`. Returns the newly
831  // created block. Note that this method just updates raw block information,
832  // like predecessors, successors, dominators, and instruction list. It does not
833  // update the graph, reverse post order, loop information, nor make sure the
834  // blocks are consistent (for example ending with a control flow instruction).
835  HBasicBlock* SplitAfter(HInstruction* cursor);
836
837  // Split catch block into two blocks after the original move-exception bytecode
838  // instruction, or at the beginning if not present. Returns the newly created,
839  // latter block, or nullptr if such block could not be created (must be dead
840  // in that case). Note that this method just updates raw block information,
841  // like predecessors, successors, dominators, and instruction list. It does not
842  // update the graph, reverse post order, loop information, nor make sure the
843  // blocks are consistent (for example ending with a control flow instruction).
844  HBasicBlock* SplitCatchBlockAfterMoveException();
845
846  // Merge `other` at the end of `this`. Successors and dominated blocks of
847  // `other` are changed to be successors and dominated blocks of `this`. Note
848  // that this method does not update the graph, reverse post order, loop
849  // information, nor make sure the blocks are consistent (for example ending
850  // with a control flow instruction).
851  void MergeWithInlined(HBasicBlock* other);
852
853  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
854  // of `this` are moved to `other`.
855  // Note that this method does not update the graph, reverse post order, loop
856  // information, nor make sure the blocks are consistent (for example ending
857  // with a control flow instruction).
858  void ReplaceWith(HBasicBlock* other);
859
860  // Merge `other` at the end of `this`. This method updates loops, reverse post
861  // order, links to predecessors, successors, dominators and deletes the block
862  // from the graph. The two blocks must be successive, i.e. `this` the only
863  // predecessor of `other` and vice versa.
864  void MergeWith(HBasicBlock* other);
865
866  // Disconnects `this` from all its predecessors, successors and dominator,
867  // removes it from all loops it is included in and eventually from the graph.
868  // The block must not dominate any other block. Predecessors and successors
869  // are safely updated.
870  void DisconnectAndDelete();
871
872  void AddInstruction(HInstruction* instruction);
873  // Insert `instruction` before/after an existing instruction `cursor`.
874  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
875  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
876  // Replace instruction `initial` with `replacement` within this block.
877  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
878                                       HInstruction* replacement);
879  void AddPhi(HPhi* phi);
880  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
881  // RemoveInstruction and RemovePhi delete a given instruction from the respective
882  // instruction list. With 'ensure_safety' set to true, it verifies that the
883  // instruction is not in use and removes it from the use lists of its inputs.
884  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
885  void RemovePhi(HPhi* phi, bool ensure_safety = true);
886  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
887
888  bool IsLoopHeader() const {
889    return IsInLoop() && (loop_information_->GetHeader() == this);
890  }
891
892  bool IsLoopPreHeaderFirstPredecessor() const {
893    DCHECK(IsLoopHeader());
894    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
895  }
896
897  HLoopInformation* GetLoopInformation() const {
898    return loop_information_;
899  }
900
901  // Set the loop_information_ on this block. Overrides the current
902  // loop_information if it is an outer loop of the passed loop information.
903  // Note that this method is called while creating the loop information.
904  void SetInLoop(HLoopInformation* info) {
905    if (IsLoopHeader()) {
906      // Nothing to do. This just means `info` is an outer loop.
907    } else if (!IsInLoop()) {
908      loop_information_ = info;
909    } else if (loop_information_->Contains(*info->GetHeader())) {
910      // Block is currently part of an outer loop. Make it part of this inner loop.
911      // Note that a non loop header having a loop information means this loop information
912      // has already been populated
913      loop_information_ = info;
914    } else {
915      // Block is part of an inner loop. Do not update the loop information.
916      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
917      // at this point, because this method is being called while populating `info`.
918    }
919  }
920
921  // Raw update of the loop information.
922  void SetLoopInformation(HLoopInformation* info) {
923    loop_information_ = info;
924  }
925
926  bool IsInLoop() const { return loop_information_ != nullptr; }
927
928  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
929
930  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
931    try_catch_information_ = try_catch_information;
932  }
933
934  bool IsTryBlock() const {
935    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
936  }
937
938  bool IsCatchBlock() const {
939    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
940  }
941
942  // Returns the try entry that this block's successors should have. They will
943  // be in the same try, unless the block ends in a try boundary. In that case,
944  // the appropriate try entry will be returned.
945  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
946
947  bool HasThrowingInstructions() const;
948
949  // Returns whether this block dominates the blocked passed as parameter.
950  bool Dominates(HBasicBlock* block) const;
951
952  size_t GetLifetimeStart() const { return lifetime_start_; }
953  size_t GetLifetimeEnd() const { return lifetime_end_; }
954
955  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
956  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
957
958  bool EndsWithControlFlowInstruction() const;
959  bool EndsWithIf() const;
960  bool EndsWithTryBoundary() const;
961  bool HasSinglePhi() const;
962
963 private:
964  HGraph* graph_;
965  ArenaVector<HBasicBlock*> predecessors_;
966  ArenaVector<HBasicBlock*> successors_;
967  HInstructionList instructions_;
968  HInstructionList phis_;
969  HLoopInformation* loop_information_;
970  HBasicBlock* dominator_;
971  ArenaVector<HBasicBlock*> dominated_blocks_;
972  uint32_t block_id_;
973  // The dex program counter of the first instruction of this block.
974  const uint32_t dex_pc_;
975  size_t lifetime_start_;
976  size_t lifetime_end_;
977  TryCatchInformation* try_catch_information_;
978
979  friend class HGraph;
980  friend class HInstruction;
981
982  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
983};
984
985// Iterates over the LoopInformation of all loops which contain 'block'
986// from the innermost to the outermost.
987class HLoopInformationOutwardIterator : public ValueObject {
988 public:
989  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
990      : current_(block.GetLoopInformation()) {}
991
992  bool Done() const { return current_ == nullptr; }
993
994  void Advance() {
995    DCHECK(!Done());
996    current_ = current_->GetPreHeader()->GetLoopInformation();
997  }
998
999  HLoopInformation* Current() const {
1000    DCHECK(!Done());
1001    return current_;
1002  }
1003
1004 private:
1005  HLoopInformation* current_;
1006
1007  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1008};
1009
1010#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1011  M(Above, Condition)                                                   \
1012  M(AboveOrEqual, Condition)                                            \
1013  M(Add, BinaryOperation)                                               \
1014  M(And, BinaryOperation)                                               \
1015  M(ArrayGet, Instruction)                                              \
1016  M(ArrayLength, Instruction)                                           \
1017  M(ArraySet, Instruction)                                              \
1018  M(Below, Condition)                                                   \
1019  M(BelowOrEqual, Condition)                                            \
1020  M(BooleanNot, UnaryOperation)                                         \
1021  M(BoundsCheck, Instruction)                                           \
1022  M(BoundType, Instruction)                                             \
1023  M(CheckCast, Instruction)                                             \
1024  M(ClearException, Instruction)                                        \
1025  M(ClinitCheck, Instruction)                                           \
1026  M(Compare, BinaryOperation)                                           \
1027  M(Condition, BinaryOperation)                                         \
1028  M(CurrentMethod, Instruction)                                         \
1029  M(Deoptimize, Instruction)                                            \
1030  M(Div, BinaryOperation)                                               \
1031  M(DivZeroCheck, Instruction)                                          \
1032  M(DoubleConstant, Constant)                                           \
1033  M(Equal, Condition)                                                   \
1034  M(Exit, Instruction)                                                  \
1035  M(FakeString, Instruction)                                            \
1036  M(FloatConstant, Constant)                                            \
1037  M(Goto, Instruction)                                                  \
1038  M(GreaterThan, Condition)                                             \
1039  M(GreaterThanOrEqual, Condition)                                      \
1040  M(If, Instruction)                                                    \
1041  M(InstanceFieldGet, Instruction)                                      \
1042  M(InstanceFieldSet, Instruction)                                      \
1043  M(InstanceOf, Instruction)                                            \
1044  M(IntConstant, Constant)                                              \
1045  M(InvokeUnresolved, Invoke)                                           \
1046  M(InvokeInterface, Invoke)                                            \
1047  M(InvokeStaticOrDirect, Invoke)                                       \
1048  M(InvokeVirtual, Invoke)                                              \
1049  M(LessThan, Condition)                                                \
1050  M(LessThanOrEqual, Condition)                                         \
1051  M(LoadClass, Instruction)                                             \
1052  M(LoadException, Instruction)                                         \
1053  M(LoadLocal, Instruction)                                             \
1054  M(LoadString, Instruction)                                            \
1055  M(Local, Instruction)                                                 \
1056  M(LongConstant, Constant)                                             \
1057  M(MemoryBarrier, Instruction)                                         \
1058  M(MonitorOperation, Instruction)                                      \
1059  M(Mul, BinaryOperation)                                               \
1060  M(Neg, UnaryOperation)                                                \
1061  M(NewArray, Instruction)                                              \
1062  M(NewInstance, Instruction)                                           \
1063  M(Not, UnaryOperation)                                                \
1064  M(NotEqual, Condition)                                                \
1065  M(NullConstant, Instruction)                                          \
1066  M(NullCheck, Instruction)                                             \
1067  M(Or, BinaryOperation)                                                \
1068  M(PackedSwitch, Instruction)                                          \
1069  M(ParallelMove, Instruction)                                          \
1070  M(ParameterValue, Instruction)                                        \
1071  M(Phi, Instruction)                                                   \
1072  M(Rem, BinaryOperation)                                               \
1073  M(Return, Instruction)                                                \
1074  M(ReturnVoid, Instruction)                                            \
1075  M(Shl, BinaryOperation)                                               \
1076  M(Shr, BinaryOperation)                                               \
1077  M(StaticFieldGet, Instruction)                                        \
1078  M(StaticFieldSet, Instruction)                                        \
1079  M(UnresolvedInstanceFieldGet, Instruction)                            \
1080  M(UnresolvedInstanceFieldSet, Instruction)                            \
1081  M(UnresolvedStaticFieldGet, Instruction)                              \
1082  M(UnresolvedStaticFieldSet, Instruction)                              \
1083  M(StoreLocal, Instruction)                                            \
1084  M(Sub, BinaryOperation)                                               \
1085  M(SuspendCheck, Instruction)                                          \
1086  M(Temporary, Instruction)                                             \
1087  M(Throw, Instruction)                                                 \
1088  M(TryBoundary, Instruction)                                           \
1089  M(TypeConversion, Instruction)                                        \
1090  M(UShr, BinaryOperation)                                              \
1091  M(Xor, BinaryOperation)                                               \
1092
1093#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1094
1095#ifndef ART_ENABLE_CODEGEN_arm64
1096#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1097#else
1098#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1099  M(Arm64IntermediateAddress, Instruction)
1100#endif
1101
1102#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1103
1104#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1105
1106#ifndef ART_ENABLE_CODEGEN_x86
1107#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1108#else
1109#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1110  M(X86ComputeBaseMethodAddress, Instruction)                           \
1111  M(X86LoadFromConstantTable, Instruction)                              \
1112  M(X86PackedSwitch, Instruction)
1113#endif
1114
1115#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1116
1117#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1118  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1119  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1120  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1121  FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
1122  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1123  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1124  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1125
1126#define FOR_EACH_INSTRUCTION(M)                                         \
1127  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1128  M(Constant, Instruction)                                              \
1129  M(UnaryOperation, Instruction)                                        \
1130  M(BinaryOperation, Instruction)                                       \
1131  M(Invoke, Instruction)
1132
1133#define FORWARD_DECLARATION(type, super) class H##type;
1134FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1135#undef FORWARD_DECLARATION
1136
1137#define DECLARE_INSTRUCTION(type)                                       \
1138  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
1139  const char* DebugName() const OVERRIDE { return #type; }              \
1140  const H##type* As##type() const OVERRIDE { return this; }             \
1141  H##type* As##type() OVERRIDE { return this; }                         \
1142  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1143    return other->Is##type();                                           \
1144  }                                                                     \
1145  void Accept(HGraphVisitor* visitor) OVERRIDE
1146
1147template <typename T> class HUseList;
1148
1149template <typename T>
1150class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1151 public:
1152  HUseListNode* GetPrevious() const { return prev_; }
1153  HUseListNode* GetNext() const { return next_; }
1154  T GetUser() const { return user_; }
1155  size_t GetIndex() const { return index_; }
1156  void SetIndex(size_t index) { index_ = index; }
1157
1158 private:
1159  HUseListNode(T user, size_t index)
1160      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1161
1162  T const user_;
1163  size_t index_;
1164  HUseListNode<T>* prev_;
1165  HUseListNode<T>* next_;
1166
1167  friend class HUseList<T>;
1168
1169  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1170};
1171
1172template <typename T>
1173class HUseList : public ValueObject {
1174 public:
1175  HUseList() : first_(nullptr) {}
1176
1177  void Clear() {
1178    first_ = nullptr;
1179  }
1180
1181  // Adds a new entry at the beginning of the use list and returns
1182  // the newly created node.
1183  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1184    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1185    if (IsEmpty()) {
1186      first_ = new_node;
1187    } else {
1188      first_->prev_ = new_node;
1189      new_node->next_ = first_;
1190      first_ = new_node;
1191    }
1192    return new_node;
1193  }
1194
1195  HUseListNode<T>* GetFirst() const {
1196    return first_;
1197  }
1198
1199  void Remove(HUseListNode<T>* node) {
1200    DCHECK(node != nullptr);
1201    DCHECK(Contains(node));
1202
1203    if (node->prev_ != nullptr) {
1204      node->prev_->next_ = node->next_;
1205    }
1206    if (node->next_ != nullptr) {
1207      node->next_->prev_ = node->prev_;
1208    }
1209    if (node == first_) {
1210      first_ = node->next_;
1211    }
1212  }
1213
1214  bool Contains(const HUseListNode<T>* node) const {
1215    if (node == nullptr) {
1216      return false;
1217    }
1218    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1219      if (current == node) {
1220        return true;
1221      }
1222    }
1223    return false;
1224  }
1225
1226  bool IsEmpty() const {
1227    return first_ == nullptr;
1228  }
1229
1230  bool HasOnlyOneUse() const {
1231    return first_ != nullptr && first_->next_ == nullptr;
1232  }
1233
1234  size_t SizeSlow() const {
1235    size_t count = 0;
1236    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1237      ++count;
1238    }
1239    return count;
1240  }
1241
1242 private:
1243  HUseListNode<T>* first_;
1244};
1245
1246template<typename T>
1247class HUseIterator : public ValueObject {
1248 public:
1249  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1250
1251  bool Done() const { return current_ == nullptr; }
1252
1253  void Advance() {
1254    DCHECK(!Done());
1255    current_ = current_->GetNext();
1256  }
1257
1258  HUseListNode<T>* Current() const {
1259    DCHECK(!Done());
1260    return current_;
1261  }
1262
1263 private:
1264  HUseListNode<T>* current_;
1265
1266  friend class HValue;
1267};
1268
1269// This class is used by HEnvironment and HInstruction classes to record the
1270// instructions they use and pointers to the corresponding HUseListNodes kept
1271// by the used instructions.
1272template <typename T>
1273class HUserRecord : public ValueObject {
1274 public:
1275  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1276  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1277
1278  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1279    : instruction_(old_record.instruction_), use_node_(use_node) {
1280    DCHECK(instruction_ != nullptr);
1281    DCHECK(use_node_ != nullptr);
1282    DCHECK(old_record.use_node_ == nullptr);
1283  }
1284
1285  HInstruction* GetInstruction() const { return instruction_; }
1286  HUseListNode<T>* GetUseNode() const { return use_node_; }
1287
1288 private:
1289  // Instruction used by the user.
1290  HInstruction* instruction_;
1291
1292  // Corresponding entry in the use list kept by 'instruction_'.
1293  HUseListNode<T>* use_node_;
1294};
1295
1296/**
1297 * Side-effects representation.
1298 *
1299 * For write/read dependences on fields/arrays, the dependence analysis uses
1300 * type disambiguation (e.g. a float field write cannot modify the value of an
1301 * integer field read) and the access type (e.g.  a reference array write cannot
1302 * modify the value of a reference field read [although it may modify the
1303 * reference fetch prior to reading the field, which is represented by its own
1304 * write/read dependence]). The analysis makes conservative points-to
1305 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1306 * the same, and any reference read depends on any reference read without
1307 * further regard of its type).
1308 *
1309 * The internal representation uses 38-bit and is described in the table below.
1310 * The first line indicates the side effect, and for field/array accesses the
1311 * second line indicates the type of the access (in the order of the
1312 * Primitive::Type enum).
1313 * The two numbered lines below indicate the bit position in the bitfield (read
1314 * vertically).
1315 *
1316 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1317 *   +-------------+---------+---------+--------------+---------+---------+
1318 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1319 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1320 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1321 *
1322 * Note that, to ease the implementation, 'changes' bits are least significant
1323 * bits, while 'dependency' bits are most significant bits.
1324 */
1325class SideEffects : public ValueObject {
1326 public:
1327  SideEffects() : flags_(0) {}
1328
1329  static SideEffects None() {
1330    return SideEffects(0);
1331  }
1332
1333  static SideEffects All() {
1334    return SideEffects(kAllChangeBits | kAllDependOnBits);
1335  }
1336
1337  static SideEffects AllChanges() {
1338    return SideEffects(kAllChangeBits);
1339  }
1340
1341  static SideEffects AllDependencies() {
1342    return SideEffects(kAllDependOnBits);
1343  }
1344
1345  static SideEffects AllExceptGCDependency() {
1346    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1347  }
1348
1349  static SideEffects AllWritesAndReads() {
1350    return SideEffects(kAllWrites | kAllReads);
1351  }
1352
1353  static SideEffects AllWrites() {
1354    return SideEffects(kAllWrites);
1355  }
1356
1357  static SideEffects AllReads() {
1358    return SideEffects(kAllReads);
1359  }
1360
1361  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1362    return is_volatile
1363        ? AllWritesAndReads()
1364        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1365  }
1366
1367  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1368    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1369  }
1370
1371  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1372    return is_volatile
1373        ? AllWritesAndReads()
1374        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1375  }
1376
1377  static SideEffects ArrayReadOfType(Primitive::Type type) {
1378    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1379  }
1380
1381  static SideEffects CanTriggerGC() {
1382    return SideEffects(1ULL << kCanTriggerGCBit);
1383  }
1384
1385  static SideEffects DependsOnGC() {
1386    return SideEffects(1ULL << kDependsOnGCBit);
1387  }
1388
1389  // Combines the side-effects of this and the other.
1390  SideEffects Union(SideEffects other) const {
1391    return SideEffects(flags_ | other.flags_);
1392  }
1393
1394  SideEffects Exclusion(SideEffects other) const {
1395    return SideEffects(flags_ & ~other.flags_);
1396  }
1397
1398  void Add(SideEffects other) {
1399    flags_ |= other.flags_;
1400  }
1401
1402  bool Includes(SideEffects other) const {
1403    return (other.flags_ & flags_) == other.flags_;
1404  }
1405
1406  bool HasSideEffects() const {
1407    return (flags_ & kAllChangeBits);
1408  }
1409
1410  bool HasDependencies() const {
1411    return (flags_ & kAllDependOnBits);
1412  }
1413
1414  // Returns true if there are no side effects or dependencies.
1415  bool DoesNothing() const {
1416    return flags_ == 0;
1417  }
1418
1419  // Returns true if something is written.
1420  bool DoesAnyWrite() const {
1421    return (flags_ & kAllWrites);
1422  }
1423
1424  // Returns true if something is read.
1425  bool DoesAnyRead() const {
1426    return (flags_ & kAllReads);
1427  }
1428
1429  // Returns true if potentially everything is written and read
1430  // (every type and every kind of access).
1431  bool DoesAllReadWrite() const {
1432    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1433  }
1434
1435  bool DoesAll() const {
1436    return flags_ == (kAllChangeBits | kAllDependOnBits);
1437  }
1438
1439  // Returns true if this may read something written by other.
1440  bool MayDependOn(SideEffects other) const {
1441    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1442    return (other.flags_ & depends_on_flags);
1443  }
1444
1445  // Returns string representation of flags (for debugging only).
1446  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1447  std::string ToString() const {
1448    std::string flags = "|";
1449    for (int s = kLastBit; s >= 0; s--) {
1450      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1451      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1452        // This is a bit for the GC side effect.
1453        if (current_bit_is_set) {
1454          flags += "GC";
1455        }
1456        flags += "|";
1457      } else {
1458        // This is a bit for the array/field analysis.
1459        // The underscore character stands for the 'can trigger GC' bit.
1460        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1461        if (current_bit_is_set) {
1462          flags += kDebug[s];
1463        }
1464        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1465            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1466          flags += "|";
1467        }
1468      }
1469    }
1470    return flags;
1471  }
1472
1473  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1474
1475 private:
1476  static constexpr int kFieldArrayAnalysisBits = 9;
1477
1478  static constexpr int kFieldWriteOffset = 0;
1479  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1480  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1481  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1482
1483  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1484
1485  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1486  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1487  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1488  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1489
1490  static constexpr int kLastBit = kDependsOnGCBit;
1491  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1492
1493  // Aliases.
1494
1495  static_assert(kChangeBits == kDependOnBits,
1496                "the 'change' bits should match the 'depend on' bits.");
1497
1498  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1499  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1500  static constexpr uint64_t kAllWrites =
1501      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1502  static constexpr uint64_t kAllReads =
1503      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1504
1505  // Work around the fact that HIR aliases I/F and J/D.
1506  // TODO: remove this interceptor once HIR types are clean
1507  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1508    switch (type) {
1509      case Primitive::kPrimInt:
1510      case Primitive::kPrimFloat:
1511        return TypeFlag(Primitive::kPrimInt, offset) |
1512               TypeFlag(Primitive::kPrimFloat, offset);
1513      case Primitive::kPrimLong:
1514      case Primitive::kPrimDouble:
1515        return TypeFlag(Primitive::kPrimLong, offset) |
1516               TypeFlag(Primitive::kPrimDouble, offset);
1517      default:
1518        return TypeFlag(type, offset);
1519    }
1520  }
1521
1522  // Translates type to bit flag.
1523  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1524    CHECK_NE(type, Primitive::kPrimVoid);
1525    const uint64_t one = 1;
1526    const int shift = type;  // 0-based consecutive enum
1527    DCHECK_LE(kFieldWriteOffset, shift);
1528    DCHECK_LT(shift, kArrayWriteOffset);
1529    return one << (type + offset);
1530  }
1531
1532  // Private constructor on direct flags value.
1533  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1534
1535  uint64_t flags_;
1536};
1537
1538// A HEnvironment object contains the values of virtual registers at a given location.
1539class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1540 public:
1541  HEnvironment(ArenaAllocator* arena,
1542               size_t number_of_vregs,
1543               const DexFile& dex_file,
1544               uint32_t method_idx,
1545               uint32_t dex_pc,
1546               InvokeType invoke_type,
1547               HInstruction* holder)
1548     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1549       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1550       parent_(nullptr),
1551       dex_file_(dex_file),
1552       method_idx_(method_idx),
1553       dex_pc_(dex_pc),
1554       invoke_type_(invoke_type),
1555       holder_(holder) {
1556  }
1557
1558  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1559      : HEnvironment(arena,
1560                     to_copy.Size(),
1561                     to_copy.GetDexFile(),
1562                     to_copy.GetMethodIdx(),
1563                     to_copy.GetDexPc(),
1564                     to_copy.GetInvokeType(),
1565                     holder) {}
1566
1567  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1568    if (parent_ != nullptr) {
1569      parent_->SetAndCopyParentChain(allocator, parent);
1570    } else {
1571      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1572      parent_->CopyFrom(parent);
1573      if (parent->GetParent() != nullptr) {
1574        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1575      }
1576    }
1577  }
1578
1579  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1580  void CopyFrom(HEnvironment* environment);
1581
1582  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1583  // input to the loop phi instead. This is for inserting instructions that
1584  // require an environment (like HDeoptimization) in the loop pre-header.
1585  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1586
1587  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1588    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1589  }
1590
1591  HInstruction* GetInstructionAt(size_t index) const {
1592    return vregs_[index].GetInstruction();
1593  }
1594
1595  void RemoveAsUserOfInput(size_t index) const;
1596
1597  size_t Size() const { return vregs_.size(); }
1598
1599  HEnvironment* GetParent() const { return parent_; }
1600
1601  void SetLocationAt(size_t index, Location location) {
1602    locations_[index] = location;
1603  }
1604
1605  Location GetLocationAt(size_t index) const {
1606    return locations_[index];
1607  }
1608
1609  uint32_t GetDexPc() const {
1610    return dex_pc_;
1611  }
1612
1613  uint32_t GetMethodIdx() const {
1614    return method_idx_;
1615  }
1616
1617  InvokeType GetInvokeType() const {
1618    return invoke_type_;
1619  }
1620
1621  const DexFile& GetDexFile() const {
1622    return dex_file_;
1623  }
1624
1625  HInstruction* GetHolder() const {
1626    return holder_;
1627  }
1628
1629 private:
1630  // Record instructions' use entries of this environment for constant-time removal.
1631  // It should only be called by HInstruction when a new environment use is added.
1632  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1633    DCHECK(env_use->GetUser() == this);
1634    size_t index = env_use->GetIndex();
1635    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1636  }
1637
1638  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1639  ArenaVector<Location> locations_;
1640  HEnvironment* parent_;
1641  const DexFile& dex_file_;
1642  const uint32_t method_idx_;
1643  const uint32_t dex_pc_;
1644  const InvokeType invoke_type_;
1645
1646  // The instruction that holds this environment.
1647  HInstruction* const holder_;
1648
1649  friend class HInstruction;
1650
1651  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1652};
1653
1654class ReferenceTypeInfo : ValueObject {
1655 public:
1656  typedef Handle<mirror::Class> TypeHandle;
1657
1658  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1659    // The constructor will check that the type_handle is valid.
1660    return ReferenceTypeInfo(type_handle, is_exact);
1661  }
1662
1663  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1664
1665  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1666    return handle.GetReference() != nullptr;
1667  }
1668
1669  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1670    return IsValidHandle(type_handle_);
1671  }
1672
1673  bool IsExact() const { return is_exact_; }
1674
1675  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1676    DCHECK(IsValid());
1677    return GetTypeHandle()->IsObjectClass();
1678  }
1679
1680  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1681    DCHECK(IsValid());
1682    return GetTypeHandle()->IsStringClass();
1683  }
1684
1685  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
1686    DCHECK(IsValid());
1687    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
1688  }
1689
1690  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1691    DCHECK(IsValid());
1692    return GetTypeHandle()->IsInterface();
1693  }
1694
1695  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1696    DCHECK(IsValid());
1697    return GetTypeHandle()->IsArrayClass();
1698  }
1699
1700  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1701    DCHECK(IsValid());
1702    return GetTypeHandle()->IsPrimitiveArray();
1703  }
1704
1705  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1706    DCHECK(IsValid());
1707    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
1708  }
1709
1710  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1711    DCHECK(IsValid());
1712    if (!IsExact()) return false;
1713    if (!IsArrayClass()) return false;
1714    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
1715  }
1716
1717  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1718    DCHECK(IsValid());
1719    if (!IsExact()) return false;
1720    if (!IsArrayClass()) return false;
1721    if (!rti.IsArrayClass()) return false;
1722    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
1723        rti.GetTypeHandle()->GetComponentType());
1724  }
1725
1726  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1727
1728  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1729    DCHECK(IsValid());
1730    DCHECK(rti.IsValid());
1731    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1732  }
1733
1734  // Returns true if the type information provide the same amount of details.
1735  // Note that it does not mean that the instructions have the same actual type
1736  // (because the type can be the result of a merge).
1737  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1738    if (!IsValid() && !rti.IsValid()) {
1739      // Invalid types are equal.
1740      return true;
1741    }
1742    if (!IsValid() || !rti.IsValid()) {
1743      // One is valid, the other not.
1744      return false;
1745    }
1746    return IsExact() == rti.IsExact()
1747        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1748  }
1749
1750 private:
1751  ReferenceTypeInfo();
1752  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1753
1754  // The class of the object.
1755  TypeHandle type_handle_;
1756  // Whether or not the type is exact or a superclass of the actual type.
1757  // Whether or not we have any information about this type.
1758  bool is_exact_;
1759};
1760
1761std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1762
1763class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1764 public:
1765  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1766      : previous_(nullptr),
1767        next_(nullptr),
1768        block_(nullptr),
1769        dex_pc_(dex_pc),
1770        id_(-1),
1771        ssa_index_(-1),
1772        environment_(nullptr),
1773        locations_(nullptr),
1774        live_interval_(nullptr),
1775        lifetime_position_(kNoLifetime),
1776        side_effects_(side_effects),
1777        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1778
1779  virtual ~HInstruction() {}
1780
1781#define DECLARE_KIND(type, super) k##type,
1782  enum InstructionKind {
1783    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1784  };
1785#undef DECLARE_KIND
1786
1787  HInstruction* GetNext() const { return next_; }
1788  HInstruction* GetPrevious() const { return previous_; }
1789
1790  HInstruction* GetNextDisregardingMoves() const;
1791  HInstruction* GetPreviousDisregardingMoves() const;
1792
1793  HBasicBlock* GetBlock() const { return block_; }
1794  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1795  void SetBlock(HBasicBlock* block) { block_ = block; }
1796  bool IsInBlock() const { return block_ != nullptr; }
1797  bool IsInLoop() const { return block_->IsInLoop(); }
1798  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1799
1800  virtual size_t InputCount() const = 0;
1801  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1802
1803  virtual void Accept(HGraphVisitor* visitor) = 0;
1804  virtual const char* DebugName() const = 0;
1805
1806  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1807  void SetRawInputAt(size_t index, HInstruction* input) {
1808    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1809  }
1810
1811  virtual bool NeedsEnvironment() const { return false; }
1812
1813  uint32_t GetDexPc() const { return dex_pc_; }
1814
1815  virtual bool IsControlFlow() const { return false; }
1816
1817  virtual bool CanThrow() const { return false; }
1818  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1819
1820  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1821  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1822
1823  // Does not apply for all instructions, but having this at top level greatly
1824  // simplifies the null check elimination.
1825  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1826  virtual bool CanBeNull() const {
1827    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1828    return true;
1829  }
1830
1831  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1832    return false;
1833  }
1834
1835  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1836
1837  ReferenceTypeInfo GetReferenceTypeInfo() const {
1838    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1839    return reference_type_info_;
1840  }
1841
1842  void AddUseAt(HInstruction* user, size_t index) {
1843    DCHECK(user != nullptr);
1844    HUseListNode<HInstruction*>* use =
1845        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1846    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1847  }
1848
1849  void AddEnvUseAt(HEnvironment* user, size_t index) {
1850    DCHECK(user != nullptr);
1851    HUseListNode<HEnvironment*>* env_use =
1852        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1853    user->RecordEnvUse(env_use);
1854  }
1855
1856  void RemoveAsUserOfInput(size_t input) {
1857    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1858    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1859  }
1860
1861  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1862  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1863
1864  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1865  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1866  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1867  bool HasOnlyOneNonEnvironmentUse() const {
1868    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1869  }
1870
1871  // Does this instruction strictly dominate `other_instruction`?
1872  // Returns false if this instruction and `other_instruction` are the same.
1873  // Aborts if this instruction and `other_instruction` are both phis.
1874  bool StrictlyDominates(HInstruction* other_instruction) const;
1875
1876  int GetId() const { return id_; }
1877  void SetId(int id) { id_ = id; }
1878
1879  int GetSsaIndex() const { return ssa_index_; }
1880  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1881  bool HasSsaIndex() const { return ssa_index_ != -1; }
1882
1883  bool HasEnvironment() const { return environment_ != nullptr; }
1884  HEnvironment* GetEnvironment() const { return environment_; }
1885  // Set the `environment_` field. Raw because this method does not
1886  // update the uses lists.
1887  void SetRawEnvironment(HEnvironment* environment) {
1888    DCHECK(environment_ == nullptr);
1889    DCHECK_EQ(environment->GetHolder(), this);
1890    environment_ = environment;
1891  }
1892
1893  // Set the environment of this instruction, copying it from `environment`. While
1894  // copying, the uses lists are being updated.
1895  void CopyEnvironmentFrom(HEnvironment* environment) {
1896    DCHECK(environment_ == nullptr);
1897    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1898    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1899    environment_->CopyFrom(environment);
1900    if (environment->GetParent() != nullptr) {
1901      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1902    }
1903  }
1904
1905  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1906                                                HBasicBlock* block) {
1907    DCHECK(environment_ == nullptr);
1908    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1909    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1910    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1911    if (environment->GetParent() != nullptr) {
1912      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1913    }
1914  }
1915
1916  // Returns the number of entries in the environment. Typically, that is the
1917  // number of dex registers in a method. It could be more in case of inlining.
1918  size_t EnvironmentSize() const;
1919
1920  LocationSummary* GetLocations() const { return locations_; }
1921  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1922
1923  void ReplaceWith(HInstruction* instruction);
1924  void ReplaceInput(HInstruction* replacement, size_t index);
1925
1926  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1927  // uses of this instruction by `other` are *not* updated.
1928  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1929    ReplaceWith(other);
1930    other->ReplaceInput(this, use_index);
1931  }
1932
1933  // Move `this` instruction before `cursor`.
1934  void MoveBefore(HInstruction* cursor);
1935
1936#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1937  bool Is##type() const { return (As##type() != nullptr); }                    \
1938  virtual const H##type* As##type() const { return nullptr; }                  \
1939  virtual H##type* As##type() { return nullptr; }
1940
1941  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1942#undef INSTRUCTION_TYPE_CHECK
1943
1944  // Returns whether the instruction can be moved within the graph.
1945  virtual bool CanBeMoved() const { return false; }
1946
1947  // Returns whether the two instructions are of the same kind.
1948  virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1949    return false;
1950  }
1951
1952  // Returns whether any data encoded in the two instructions is equal.
1953  // This method does not look at the inputs. Both instructions must be
1954  // of the same type, otherwise the method has undefined behavior.
1955  virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1956    return false;
1957  }
1958
1959  // Returns whether two instructions are equal, that is:
1960  // 1) They have the same type and contain the same data (InstructionDataEquals).
1961  // 2) Their inputs are identical.
1962  bool Equals(HInstruction* other) const;
1963
1964  virtual InstructionKind GetKind() const = 0;
1965
1966  virtual size_t ComputeHashCode() const {
1967    size_t result = GetKind();
1968    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1969      result = (result * 31) + InputAt(i)->GetId();
1970    }
1971    return result;
1972  }
1973
1974  SideEffects GetSideEffects() const { return side_effects_; }
1975  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
1976
1977  size_t GetLifetimePosition() const { return lifetime_position_; }
1978  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1979  LiveInterval* GetLiveInterval() const { return live_interval_; }
1980  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1981  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1982
1983  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1984
1985  // Returns whether the code generation of the instruction will require to have access
1986  // to the current method. Such instructions are:
1987  // (1): Instructions that require an environment, as calling the runtime requires
1988  //      to walk the stack and have the current method stored at a specific stack address.
1989  // (2): Object literals like classes and strings, that are loaded from the dex cache
1990  //      fields of the current method.
1991  bool NeedsCurrentMethod() const {
1992    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1993  }
1994
1995  // Returns whether the code generation of the instruction will require to have access
1996  // to the dex cache of the current method's declaring class via the current method.
1997  virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
1998
1999  // Does this instruction have any use in an environment before
2000  // control flow hits 'other'?
2001  bool HasAnyEnvironmentUseBefore(HInstruction* other);
2002
2003  // Remove all references to environment uses of this instruction.
2004  // The caller must ensure that this is safe to do.
2005  void RemoveEnvironmentUsers();
2006
2007 protected:
2008  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
2009  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
2010
2011 private:
2012  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
2013
2014  HInstruction* previous_;
2015  HInstruction* next_;
2016  HBasicBlock* block_;
2017  const uint32_t dex_pc_;
2018
2019  // An instruction gets an id when it is added to the graph.
2020  // It reflects creation order. A negative id means the instruction
2021  // has not been added to the graph.
2022  int id_;
2023
2024  // When doing liveness analysis, instructions that have uses get an SSA index.
2025  int ssa_index_;
2026
2027  // List of instructions that have this instruction as input.
2028  HUseList<HInstruction*> uses_;
2029
2030  // List of environments that contain this instruction.
2031  HUseList<HEnvironment*> env_uses_;
2032
2033  // The environment associated with this instruction. Not null if the instruction
2034  // might jump out of the method.
2035  HEnvironment* environment_;
2036
2037  // Set by the code generator.
2038  LocationSummary* locations_;
2039
2040  // Set by the liveness analysis.
2041  LiveInterval* live_interval_;
2042
2043  // Set by the liveness analysis, this is the position in a linear
2044  // order of blocks where this instruction's live interval start.
2045  size_t lifetime_position_;
2046
2047  SideEffects side_effects_;
2048
2049  // TODO: for primitive types this should be marked as invalid.
2050  ReferenceTypeInfo reference_type_info_;
2051
2052  friend class GraphChecker;
2053  friend class HBasicBlock;
2054  friend class HEnvironment;
2055  friend class HGraph;
2056  friend class HInstructionList;
2057
2058  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2059};
2060std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2061
2062class HInputIterator : public ValueObject {
2063 public:
2064  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2065
2066  bool Done() const { return index_ == instruction_->InputCount(); }
2067  HInstruction* Current() const { return instruction_->InputAt(index_); }
2068  void Advance() { index_++; }
2069
2070 private:
2071  HInstruction* instruction_;
2072  size_t index_;
2073
2074  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2075};
2076
2077class HInstructionIterator : public ValueObject {
2078 public:
2079  explicit HInstructionIterator(const HInstructionList& instructions)
2080      : instruction_(instructions.first_instruction_) {
2081    next_ = Done() ? nullptr : instruction_->GetNext();
2082  }
2083
2084  bool Done() const { return instruction_ == nullptr; }
2085  HInstruction* Current() const { return instruction_; }
2086  void Advance() {
2087    instruction_ = next_;
2088    next_ = Done() ? nullptr : instruction_->GetNext();
2089  }
2090
2091 private:
2092  HInstruction* instruction_;
2093  HInstruction* next_;
2094
2095  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2096};
2097
2098class HBackwardInstructionIterator : public ValueObject {
2099 public:
2100  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2101      : instruction_(instructions.last_instruction_) {
2102    next_ = Done() ? nullptr : instruction_->GetPrevious();
2103  }
2104
2105  bool Done() const { return instruction_ == nullptr; }
2106  HInstruction* Current() const { return instruction_; }
2107  void Advance() {
2108    instruction_ = next_;
2109    next_ = Done() ? nullptr : instruction_->GetPrevious();
2110  }
2111
2112 private:
2113  HInstruction* instruction_;
2114  HInstruction* next_;
2115
2116  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2117};
2118
2119template<size_t N>
2120class HTemplateInstruction: public HInstruction {
2121 public:
2122  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2123      : HInstruction(side_effects, dex_pc), inputs_() {}
2124  virtual ~HTemplateInstruction() {}
2125
2126  size_t InputCount() const OVERRIDE { return N; }
2127
2128 protected:
2129  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2130    DCHECK_LT(i, N);
2131    return inputs_[i];
2132  }
2133
2134  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2135    DCHECK_LT(i, N);
2136    inputs_[i] = input;
2137  }
2138
2139 private:
2140  std::array<HUserRecord<HInstruction*>, N> inputs_;
2141
2142  friend class SsaBuilder;
2143};
2144
2145// HTemplateInstruction specialization for N=0.
2146template<>
2147class HTemplateInstruction<0>: public HInstruction {
2148 public:
2149  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2150      : HInstruction(side_effects, dex_pc) {}
2151
2152  virtual ~HTemplateInstruction() {}
2153
2154  size_t InputCount() const OVERRIDE { return 0; }
2155
2156 protected:
2157  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2158    LOG(FATAL) << "Unreachable";
2159    UNREACHABLE();
2160  }
2161
2162  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2163                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2164    LOG(FATAL) << "Unreachable";
2165    UNREACHABLE();
2166  }
2167
2168 private:
2169  friend class SsaBuilder;
2170};
2171
2172template<intptr_t N>
2173class HExpression : public HTemplateInstruction<N> {
2174 public:
2175  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2176      : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {}
2177  virtual ~HExpression() {}
2178
2179  Primitive::Type GetType() const OVERRIDE { return type_; }
2180
2181 protected:
2182  Primitive::Type type_;
2183};
2184
2185// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2186// instruction that branches to the exit block.
2187class HReturnVoid : public HTemplateInstruction<0> {
2188 public:
2189  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2190      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2191
2192  bool IsControlFlow() const OVERRIDE { return true; }
2193
2194  DECLARE_INSTRUCTION(ReturnVoid);
2195
2196 private:
2197  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2198};
2199
2200// Represents dex's RETURN opcodes. A HReturn is a control flow
2201// instruction that branches to the exit block.
2202class HReturn : public HTemplateInstruction<1> {
2203 public:
2204  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2205      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2206    SetRawInputAt(0, value);
2207  }
2208
2209  bool IsControlFlow() const OVERRIDE { return true; }
2210
2211  DECLARE_INSTRUCTION(Return);
2212
2213 private:
2214  DISALLOW_COPY_AND_ASSIGN(HReturn);
2215};
2216
2217// The exit instruction is the only instruction of the exit block.
2218// Instructions aborting the method (HThrow and HReturn) must branch to the
2219// exit block.
2220class HExit : public HTemplateInstruction<0> {
2221 public:
2222  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2223
2224  bool IsControlFlow() const OVERRIDE { return true; }
2225
2226  DECLARE_INSTRUCTION(Exit);
2227
2228 private:
2229  DISALLOW_COPY_AND_ASSIGN(HExit);
2230};
2231
2232// Jumps from one block to another.
2233class HGoto : public HTemplateInstruction<0> {
2234 public:
2235  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2236
2237  bool IsControlFlow() const OVERRIDE { return true; }
2238
2239  HBasicBlock* GetSuccessor() const {
2240    return GetBlock()->GetSingleSuccessor();
2241  }
2242
2243  DECLARE_INSTRUCTION(Goto);
2244
2245 private:
2246  DISALLOW_COPY_AND_ASSIGN(HGoto);
2247};
2248
2249class HConstant : public HExpression<0> {
2250 public:
2251  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2252      : HExpression(type, SideEffects::None(), dex_pc) {}
2253
2254  bool CanBeMoved() const OVERRIDE { return true; }
2255
2256  virtual bool IsMinusOne() const { return false; }
2257  virtual bool IsZero() const { return false; }
2258  virtual bool IsOne() const { return false; }
2259
2260  virtual uint64_t GetValueAsUint64() const = 0;
2261
2262  DECLARE_INSTRUCTION(Constant);
2263
2264 private:
2265  DISALLOW_COPY_AND_ASSIGN(HConstant);
2266};
2267
2268class HNullConstant : public HConstant {
2269 public:
2270  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2271    return true;
2272  }
2273
2274  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2275
2276  size_t ComputeHashCode() const OVERRIDE { return 0; }
2277
2278  DECLARE_INSTRUCTION(NullConstant);
2279
2280 private:
2281  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2282
2283  friend class HGraph;
2284  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2285};
2286
2287// Constants of the type int. Those can be from Dex instructions, or
2288// synthesized (for example with the if-eqz instruction).
2289class HIntConstant : public HConstant {
2290 public:
2291  int32_t GetValue() const { return value_; }
2292
2293  uint64_t GetValueAsUint64() const OVERRIDE {
2294    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2295  }
2296
2297  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2298    DCHECK(other->IsIntConstant());
2299    return other->AsIntConstant()->value_ == value_;
2300  }
2301
2302  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2303
2304  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2305  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2306  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2307
2308  DECLARE_INSTRUCTION(IntConstant);
2309
2310 private:
2311  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2312      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2313  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2314      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2315
2316  const int32_t value_;
2317
2318  friend class HGraph;
2319  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2320  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2321  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2322};
2323
2324class HLongConstant : public HConstant {
2325 public:
2326  int64_t GetValue() const { return value_; }
2327
2328  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2329
2330  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2331    DCHECK(other->IsLongConstant());
2332    return other->AsLongConstant()->value_ == value_;
2333  }
2334
2335  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2336
2337  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2338  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2339  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2340
2341  DECLARE_INSTRUCTION(LongConstant);
2342
2343 private:
2344  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2345      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2346
2347  const int64_t value_;
2348
2349  friend class HGraph;
2350  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2351};
2352
2353// Conditional branch. A block ending with an HIf instruction must have
2354// two successors.
2355class HIf : public HTemplateInstruction<1> {
2356 public:
2357  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2358      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2359    SetRawInputAt(0, input);
2360  }
2361
2362  bool IsControlFlow() const OVERRIDE { return true; }
2363
2364  HBasicBlock* IfTrueSuccessor() const {
2365    return GetBlock()->GetSuccessors()[0];
2366  }
2367
2368  HBasicBlock* IfFalseSuccessor() const {
2369    return GetBlock()->GetSuccessors()[1];
2370  }
2371
2372  DECLARE_INSTRUCTION(If);
2373
2374 private:
2375  DISALLOW_COPY_AND_ASSIGN(HIf);
2376};
2377
2378
2379// Abstract instruction which marks the beginning and/or end of a try block and
2380// links it to the respective exception handlers. Behaves the same as a Goto in
2381// non-exceptional control flow.
2382// Normal-flow successor is stored at index zero, exception handlers under
2383// higher indices in no particular order.
2384class HTryBoundary : public HTemplateInstruction<0> {
2385 public:
2386  enum BoundaryKind {
2387    kEntry,
2388    kExit,
2389  };
2390
2391  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2392      : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {}
2393
2394  bool IsControlFlow() const OVERRIDE { return true; }
2395
2396  // Returns the block's non-exceptional successor (index zero).
2397  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2398
2399  ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
2400    return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
2401  }
2402
2403  // Returns whether `handler` is among its exception handlers (non-zero index
2404  // successors).
2405  bool HasExceptionHandler(const HBasicBlock& handler) const {
2406    DCHECK(handler.IsCatchBlock());
2407    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2408  }
2409
2410  // If not present already, adds `handler` to its block's list of exception
2411  // handlers.
2412  void AddExceptionHandler(HBasicBlock* handler) {
2413    if (!HasExceptionHandler(*handler)) {
2414      GetBlock()->AddSuccessor(handler);
2415    }
2416  }
2417
2418  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2419
2420  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2421
2422  DECLARE_INSTRUCTION(TryBoundary);
2423
2424 private:
2425  const BoundaryKind kind_;
2426
2427  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2428};
2429
2430// Deoptimize to interpreter, upon checking a condition.
2431class HDeoptimize : public HTemplateInstruction<1> {
2432 public:
2433  explicit HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2434      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2435    SetRawInputAt(0, cond);
2436  }
2437
2438  bool NeedsEnvironment() const OVERRIDE { return true; }
2439  bool CanThrow() const OVERRIDE { return true; }
2440
2441  DECLARE_INSTRUCTION(Deoptimize);
2442
2443 private:
2444  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2445};
2446
2447// Represents the ArtMethod that was passed as a first argument to
2448// the method. It is used by instructions that depend on it, like
2449// instructions that work with the dex cache.
2450class HCurrentMethod : public HExpression<0> {
2451 public:
2452  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2453      : HExpression(type, SideEffects::None(), dex_pc) {}
2454
2455  DECLARE_INSTRUCTION(CurrentMethod);
2456
2457 private:
2458  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2459};
2460
2461// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2462// have one successor for each entry in the switch table, and the final successor
2463// will be the block containing the next Dex opcode.
2464class HPackedSwitch : public HTemplateInstruction<1> {
2465 public:
2466  HPackedSwitch(int32_t start_value,
2467                uint32_t num_entries,
2468                HInstruction* input,
2469                uint32_t dex_pc = kNoDexPc)
2470    : HTemplateInstruction(SideEffects::None(), dex_pc),
2471      start_value_(start_value),
2472      num_entries_(num_entries) {
2473    SetRawInputAt(0, input);
2474  }
2475
2476  bool IsControlFlow() const OVERRIDE { return true; }
2477
2478  int32_t GetStartValue() const { return start_value_; }
2479
2480  uint32_t GetNumEntries() const { return num_entries_; }
2481
2482  HBasicBlock* GetDefaultBlock() const {
2483    // Last entry is the default block.
2484    return GetBlock()->GetSuccessors()[num_entries_];
2485  }
2486  DECLARE_INSTRUCTION(PackedSwitch);
2487
2488 private:
2489  const int32_t start_value_;
2490  const uint32_t num_entries_;
2491
2492  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2493};
2494
2495class HUnaryOperation : public HExpression<1> {
2496 public:
2497  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2498      : HExpression(result_type, SideEffects::None(), dex_pc) {
2499    SetRawInputAt(0, input);
2500  }
2501
2502  HInstruction* GetInput() const { return InputAt(0); }
2503  Primitive::Type GetResultType() const { return GetType(); }
2504
2505  bool CanBeMoved() const OVERRIDE { return true; }
2506  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2507    return true;
2508  }
2509
2510  // Try to statically evaluate `operation` and return a HConstant
2511  // containing the result of this evaluation.  If `operation` cannot
2512  // be evaluated as a constant, return null.
2513  HConstant* TryStaticEvaluation() const;
2514
2515  // Apply this operation to `x`.
2516  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2517  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2518
2519  DECLARE_INSTRUCTION(UnaryOperation);
2520
2521 private:
2522  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2523};
2524
2525class HBinaryOperation : public HExpression<2> {
2526 public:
2527  HBinaryOperation(Primitive::Type result_type,
2528                   HInstruction* left,
2529                   HInstruction* right,
2530                   SideEffects side_effects = SideEffects::None(),
2531                   uint32_t dex_pc = kNoDexPc)
2532      : HExpression(result_type, side_effects, dex_pc) {
2533    SetRawInputAt(0, left);
2534    SetRawInputAt(1, right);
2535  }
2536
2537  HInstruction* GetLeft() const { return InputAt(0); }
2538  HInstruction* GetRight() const { return InputAt(1); }
2539  Primitive::Type GetResultType() const { return GetType(); }
2540
2541  virtual bool IsCommutative() const { return false; }
2542
2543  // Put constant on the right.
2544  // Returns whether order is changed.
2545  bool OrderInputsWithConstantOnTheRight() {
2546    HInstruction* left = InputAt(0);
2547    HInstruction* right = InputAt(1);
2548    if (left->IsConstant() && !right->IsConstant()) {
2549      ReplaceInput(right, 0);
2550      ReplaceInput(left, 1);
2551      return true;
2552    }
2553    return false;
2554  }
2555
2556  // Order inputs by instruction id, but favor constant on the right side.
2557  // This helps GVN for commutative ops.
2558  void OrderInputs() {
2559    DCHECK(IsCommutative());
2560    HInstruction* left = InputAt(0);
2561    HInstruction* right = InputAt(1);
2562    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2563      return;
2564    }
2565    if (OrderInputsWithConstantOnTheRight()) {
2566      return;
2567    }
2568    // Order according to instruction id.
2569    if (left->GetId() > right->GetId()) {
2570      ReplaceInput(right, 0);
2571      ReplaceInput(left, 1);
2572    }
2573  }
2574
2575  bool CanBeMoved() const OVERRIDE { return true; }
2576  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2577    return true;
2578  }
2579
2580  // Try to statically evaluate `operation` and return a HConstant
2581  // containing the result of this evaluation.  If `operation` cannot
2582  // be evaluated as a constant, return null.
2583  HConstant* TryStaticEvaluation() const;
2584
2585  // Apply this operation to `x` and `y`.
2586  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2587  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2588  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2589                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2590    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2591    return nullptr;
2592  }
2593  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2594                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2595    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2596    return nullptr;
2597  }
2598
2599  // Returns an input that can legally be used as the right input and is
2600  // constant, or null.
2601  HConstant* GetConstantRight() const;
2602
2603  // If `GetConstantRight()` returns one of the input, this returns the other
2604  // one. Otherwise it returns null.
2605  HInstruction* GetLeastConstantLeft() const;
2606
2607  DECLARE_INSTRUCTION(BinaryOperation);
2608
2609 private:
2610  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2611};
2612
2613// The comparison bias applies for floating point operations and indicates how NaN
2614// comparisons are treated:
2615enum class ComparisonBias {
2616  kNoBias,  // bias is not applicable (i.e. for long operation)
2617  kGtBias,  // return 1 for NaN comparisons
2618  kLtBias,  // return -1 for NaN comparisons
2619};
2620
2621class HCondition : public HBinaryOperation {
2622 public:
2623  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2624      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc),
2625        needs_materialization_(true),
2626        bias_(ComparisonBias::kNoBias) {}
2627
2628  bool NeedsMaterialization() const { return needs_materialization_; }
2629  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2630
2631  // For code generation purposes, returns whether this instruction is just before
2632  // `instruction`, and disregard moves in between.
2633  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2634
2635  DECLARE_INSTRUCTION(Condition);
2636
2637  virtual IfCondition GetCondition() const = 0;
2638
2639  virtual IfCondition GetOppositeCondition() const = 0;
2640
2641  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2642
2643  void SetBias(ComparisonBias bias) { bias_ = bias; }
2644
2645  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2646    return bias_ == other->AsCondition()->bias_;
2647  }
2648
2649  bool IsFPConditionTrueIfNaN() const {
2650    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2651    IfCondition if_cond = GetCondition();
2652    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2653  }
2654
2655  bool IsFPConditionFalseIfNaN() const {
2656    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2657    IfCondition if_cond = GetCondition();
2658    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2659  }
2660
2661 private:
2662  // For register allocation purposes, returns whether this instruction needs to be
2663  // materialized (that is, not just be in the processor flags).
2664  bool needs_materialization_;
2665
2666  // Needed if we merge a HCompare into a HCondition.
2667  ComparisonBias bias_;
2668
2669  DISALLOW_COPY_AND_ASSIGN(HCondition);
2670};
2671
2672// Instruction to check if two inputs are equal to each other.
2673class HEqual : public HCondition {
2674 public:
2675  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2676      : HCondition(first, second, dex_pc) {}
2677
2678  bool IsCommutative() const OVERRIDE { return true; }
2679
2680  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2681    return GetBlock()->GetGraph()->GetIntConstant(
2682        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2683  }
2684  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2685    return GetBlock()->GetGraph()->GetIntConstant(
2686        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2687  }
2688
2689  DECLARE_INSTRUCTION(Equal);
2690
2691  IfCondition GetCondition() const OVERRIDE {
2692    return kCondEQ;
2693  }
2694
2695  IfCondition GetOppositeCondition() const OVERRIDE {
2696    return kCondNE;
2697  }
2698
2699 private:
2700  template <typename T> bool Compute(T x, T y) const { return x == y; }
2701
2702  DISALLOW_COPY_AND_ASSIGN(HEqual);
2703};
2704
2705class HNotEqual : public HCondition {
2706 public:
2707  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2708      : HCondition(first, second, dex_pc) {}
2709
2710  bool IsCommutative() const OVERRIDE { return true; }
2711
2712  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2713    return GetBlock()->GetGraph()->GetIntConstant(
2714        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2715  }
2716  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2717    return GetBlock()->GetGraph()->GetIntConstant(
2718        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2719  }
2720
2721  DECLARE_INSTRUCTION(NotEqual);
2722
2723  IfCondition GetCondition() const OVERRIDE {
2724    return kCondNE;
2725  }
2726
2727  IfCondition GetOppositeCondition() const OVERRIDE {
2728    return kCondEQ;
2729  }
2730
2731 private:
2732  template <typename T> bool Compute(T x, T y) const { return x != y; }
2733
2734  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2735};
2736
2737class HLessThan : public HCondition {
2738 public:
2739  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2740      : HCondition(first, second, dex_pc) {}
2741
2742  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2743    return GetBlock()->GetGraph()->GetIntConstant(
2744        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2745  }
2746  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2747    return GetBlock()->GetGraph()->GetIntConstant(
2748        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2749  }
2750
2751  DECLARE_INSTRUCTION(LessThan);
2752
2753  IfCondition GetCondition() const OVERRIDE {
2754    return kCondLT;
2755  }
2756
2757  IfCondition GetOppositeCondition() const OVERRIDE {
2758    return kCondGE;
2759  }
2760
2761 private:
2762  template <typename T> bool Compute(T x, T y) const { return x < y; }
2763
2764  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2765};
2766
2767class HLessThanOrEqual : public HCondition {
2768 public:
2769  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2770      : HCondition(first, second, dex_pc) {}
2771
2772  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2773    return GetBlock()->GetGraph()->GetIntConstant(
2774        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2775  }
2776  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2777    return GetBlock()->GetGraph()->GetIntConstant(
2778        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2779  }
2780
2781  DECLARE_INSTRUCTION(LessThanOrEqual);
2782
2783  IfCondition GetCondition() const OVERRIDE {
2784    return kCondLE;
2785  }
2786
2787  IfCondition GetOppositeCondition() const OVERRIDE {
2788    return kCondGT;
2789  }
2790
2791 private:
2792  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2793
2794  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2795};
2796
2797class HGreaterThan : public HCondition {
2798 public:
2799  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2800      : HCondition(first, second, dex_pc) {}
2801
2802  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2803    return GetBlock()->GetGraph()->GetIntConstant(
2804        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2805  }
2806  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2807    return GetBlock()->GetGraph()->GetIntConstant(
2808        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2809  }
2810
2811  DECLARE_INSTRUCTION(GreaterThan);
2812
2813  IfCondition GetCondition() const OVERRIDE {
2814    return kCondGT;
2815  }
2816
2817  IfCondition GetOppositeCondition() const OVERRIDE {
2818    return kCondLE;
2819  }
2820
2821 private:
2822  template <typename T> bool Compute(T x, T y) const { return x > y; }
2823
2824  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2825};
2826
2827class HGreaterThanOrEqual : public HCondition {
2828 public:
2829  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2830      : HCondition(first, second, dex_pc) {}
2831
2832  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2833    return GetBlock()->GetGraph()->GetIntConstant(
2834        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2835  }
2836  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2837    return GetBlock()->GetGraph()->GetIntConstant(
2838        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2839  }
2840
2841  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2842
2843  IfCondition GetCondition() const OVERRIDE {
2844    return kCondGE;
2845  }
2846
2847  IfCondition GetOppositeCondition() const OVERRIDE {
2848    return kCondLT;
2849  }
2850
2851 private:
2852  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2853
2854  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2855};
2856
2857class HBelow : public HCondition {
2858 public:
2859  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2860      : HCondition(first, second, dex_pc) {}
2861
2862  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2863    return GetBlock()->GetGraph()->GetIntConstant(
2864        Compute(static_cast<uint32_t>(x->GetValue()),
2865                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2866  }
2867  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2868    return GetBlock()->GetGraph()->GetIntConstant(
2869        Compute(static_cast<uint64_t>(x->GetValue()),
2870                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2871  }
2872
2873  DECLARE_INSTRUCTION(Below);
2874
2875  IfCondition GetCondition() const OVERRIDE {
2876    return kCondB;
2877  }
2878
2879  IfCondition GetOppositeCondition() const OVERRIDE {
2880    return kCondAE;
2881  }
2882
2883 private:
2884  template <typename T> bool Compute(T x, T y) const { return x < y; }
2885
2886  DISALLOW_COPY_AND_ASSIGN(HBelow);
2887};
2888
2889class HBelowOrEqual : public HCondition {
2890 public:
2891  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2892      : HCondition(first, second, dex_pc) {}
2893
2894  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2895    return GetBlock()->GetGraph()->GetIntConstant(
2896        Compute(static_cast<uint32_t>(x->GetValue()),
2897                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2898  }
2899  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2900    return GetBlock()->GetGraph()->GetIntConstant(
2901        Compute(static_cast<uint64_t>(x->GetValue()),
2902                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2903  }
2904
2905  DECLARE_INSTRUCTION(BelowOrEqual);
2906
2907  IfCondition GetCondition() const OVERRIDE {
2908    return kCondBE;
2909  }
2910
2911  IfCondition GetOppositeCondition() const OVERRIDE {
2912    return kCondA;
2913  }
2914
2915 private:
2916  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2917
2918  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
2919};
2920
2921class HAbove : public HCondition {
2922 public:
2923  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2924      : HCondition(first, second, dex_pc) {}
2925
2926  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2927    return GetBlock()->GetGraph()->GetIntConstant(
2928        Compute(static_cast<uint32_t>(x->GetValue()),
2929                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2930  }
2931  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2932    return GetBlock()->GetGraph()->GetIntConstant(
2933        Compute(static_cast<uint64_t>(x->GetValue()),
2934                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2935  }
2936
2937  DECLARE_INSTRUCTION(Above);
2938
2939  IfCondition GetCondition() const OVERRIDE {
2940    return kCondA;
2941  }
2942
2943  IfCondition GetOppositeCondition() const OVERRIDE {
2944    return kCondBE;
2945  }
2946
2947 private:
2948  template <typename T> bool Compute(T x, T y) const { return x > y; }
2949
2950  DISALLOW_COPY_AND_ASSIGN(HAbove);
2951};
2952
2953class HAboveOrEqual : public HCondition {
2954 public:
2955  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2956      : HCondition(first, second, dex_pc) {}
2957
2958  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2959    return GetBlock()->GetGraph()->GetIntConstant(
2960        Compute(static_cast<uint32_t>(x->GetValue()),
2961                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2962  }
2963  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2964    return GetBlock()->GetGraph()->GetIntConstant(
2965        Compute(static_cast<uint64_t>(x->GetValue()),
2966                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2967  }
2968
2969  DECLARE_INSTRUCTION(AboveOrEqual);
2970
2971  IfCondition GetCondition() const OVERRIDE {
2972    return kCondAE;
2973  }
2974
2975  IfCondition GetOppositeCondition() const OVERRIDE {
2976    return kCondB;
2977  }
2978
2979 private:
2980  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2981
2982  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
2983};
2984
2985// Instruction to check how two inputs compare to each other.
2986// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
2987class HCompare : public HBinaryOperation {
2988 public:
2989  HCompare(Primitive::Type type,
2990           HInstruction* first,
2991           HInstruction* second,
2992           ComparisonBias bias,
2993           uint32_t dex_pc)
2994      : HBinaryOperation(Primitive::kPrimInt,
2995                         first,
2996                         second,
2997                         SideEffectsForArchRuntimeCalls(type),
2998                         dex_pc),
2999        bias_(bias) {
3000    DCHECK_EQ(type, first->GetType());
3001    DCHECK_EQ(type, second->GetType());
3002  }
3003
3004  template <typename T>
3005  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
3006
3007  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3008    return GetBlock()->GetGraph()->GetIntConstant(
3009        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3010  }
3011  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3012    return GetBlock()->GetGraph()->GetIntConstant(
3013        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3014  }
3015
3016  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3017    return bias_ == other->AsCompare()->bias_;
3018  }
3019
3020  ComparisonBias GetBias() const { return bias_; }
3021
3022  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
3023
3024
3025  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
3026    // MIPS64 uses a runtime call for FP comparisons.
3027    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
3028  }
3029
3030  DECLARE_INSTRUCTION(Compare);
3031
3032 private:
3033  const ComparisonBias bias_;
3034
3035  DISALLOW_COPY_AND_ASSIGN(HCompare);
3036};
3037
3038// A local in the graph. Corresponds to a Dex register.
3039class HLocal : public HTemplateInstruction<0> {
3040 public:
3041  explicit HLocal(uint16_t reg_number)
3042      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
3043
3044  DECLARE_INSTRUCTION(Local);
3045
3046  uint16_t GetRegNumber() const { return reg_number_; }
3047
3048 private:
3049  // The Dex register number.
3050  const uint16_t reg_number_;
3051
3052  DISALLOW_COPY_AND_ASSIGN(HLocal);
3053};
3054
3055// Load a given local. The local is an input of this instruction.
3056class HLoadLocal : public HExpression<1> {
3057 public:
3058  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
3059      : HExpression(type, SideEffects::None(), dex_pc) {
3060    SetRawInputAt(0, local);
3061  }
3062
3063  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3064
3065  DECLARE_INSTRUCTION(LoadLocal);
3066
3067 private:
3068  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
3069};
3070
3071// Store a value in a given local. This instruction has two inputs: the value
3072// and the local.
3073class HStoreLocal : public HTemplateInstruction<2> {
3074 public:
3075  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
3076      : HTemplateInstruction(SideEffects::None(), dex_pc) {
3077    SetRawInputAt(0, local);
3078    SetRawInputAt(1, value);
3079  }
3080
3081  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3082
3083  DECLARE_INSTRUCTION(StoreLocal);
3084
3085 private:
3086  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
3087};
3088
3089class HFloatConstant : public HConstant {
3090 public:
3091  float GetValue() const { return value_; }
3092
3093  uint64_t GetValueAsUint64() const OVERRIDE {
3094    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3095  }
3096
3097  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3098    DCHECK(other->IsFloatConstant());
3099    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3100  }
3101
3102  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3103
3104  bool IsMinusOne() const OVERRIDE {
3105    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3106  }
3107  bool IsZero() const OVERRIDE {
3108    return value_ == 0.0f;
3109  }
3110  bool IsOne() const OVERRIDE {
3111    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3112  }
3113  bool IsNaN() const {
3114    return std::isnan(value_);
3115  }
3116
3117  DECLARE_INSTRUCTION(FloatConstant);
3118
3119 private:
3120  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3121      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
3122  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3123      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
3124
3125  const float value_;
3126
3127  // Only the SsaBuilder and HGraph can create floating-point constants.
3128  friend class SsaBuilder;
3129  friend class HGraph;
3130  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
3131};
3132
3133class HDoubleConstant : public HConstant {
3134 public:
3135  double GetValue() const { return value_; }
3136
3137  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
3138
3139  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3140    DCHECK(other->IsDoubleConstant());
3141    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3142  }
3143
3144  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3145
3146  bool IsMinusOne() const OVERRIDE {
3147    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3148  }
3149  bool IsZero() const OVERRIDE {
3150    return value_ == 0.0;
3151  }
3152  bool IsOne() const OVERRIDE {
3153    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3154  }
3155  bool IsNaN() const {
3156    return std::isnan(value_);
3157  }
3158
3159  DECLARE_INSTRUCTION(DoubleConstant);
3160
3161 private:
3162  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3163      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
3164  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3165      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
3166
3167  const double value_;
3168
3169  // Only the SsaBuilder and HGraph can create floating-point constants.
3170  friend class SsaBuilder;
3171  friend class HGraph;
3172  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
3173};
3174
3175enum class Intrinsics {
3176#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache) k ## Name,
3177#include "intrinsics_list.h"
3178  kNone,
3179  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3180#undef INTRINSICS_LIST
3181#undef OPTIMIZING_INTRINSICS
3182};
3183std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3184
3185enum IntrinsicNeedsEnvironmentOrCache {
3186  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3187  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3188};
3189
3190class HInvoke : public HInstruction {
3191 public:
3192  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3193
3194  bool NeedsEnvironment() const OVERRIDE;
3195
3196  void SetArgumentAt(size_t index, HInstruction* argument) {
3197    SetRawInputAt(index, argument);
3198  }
3199
3200  // Return the number of arguments.  This number can be lower than
3201  // the number of inputs returned by InputCount(), as some invoke
3202  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3203  // inputs at the end of their list of inputs.
3204  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3205
3206  Primitive::Type GetType() const OVERRIDE { return return_type_; }
3207
3208
3209  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3210  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3211
3212  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
3213
3214  Intrinsics GetIntrinsic() const {
3215    return intrinsic_;
3216  }
3217
3218  void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache);
3219
3220  bool IsFromInlinedInvoke() const {
3221    return GetEnvironment()->GetParent() != nullptr;
3222  }
3223
3224  bool CanThrow() const OVERRIDE { return true; }
3225
3226  uint32_t* GetIntrinsicOptimizations() {
3227    return &intrinsic_optimizations_;
3228  }
3229
3230  const uint32_t* GetIntrinsicOptimizations() const {
3231    return &intrinsic_optimizations_;
3232  }
3233
3234  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3235
3236  DECLARE_INSTRUCTION(Invoke);
3237
3238 protected:
3239  HInvoke(ArenaAllocator* arena,
3240          uint32_t number_of_arguments,
3241          uint32_t number_of_other_inputs,
3242          Primitive::Type return_type,
3243          uint32_t dex_pc,
3244          uint32_t dex_method_index,
3245          InvokeType original_invoke_type)
3246    : HInstruction(
3247          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3248      number_of_arguments_(number_of_arguments),
3249      inputs_(number_of_arguments + number_of_other_inputs,
3250              arena->Adapter(kArenaAllocInvokeInputs)),
3251      return_type_(return_type),
3252      dex_method_index_(dex_method_index),
3253      original_invoke_type_(original_invoke_type),
3254      intrinsic_(Intrinsics::kNone),
3255      intrinsic_optimizations_(0) {
3256  }
3257
3258  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3259    return inputs_[index];
3260  }
3261
3262  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3263    inputs_[index] = input;
3264  }
3265
3266  uint32_t number_of_arguments_;
3267  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3268  const Primitive::Type return_type_;
3269  const uint32_t dex_method_index_;
3270  const InvokeType original_invoke_type_;
3271  Intrinsics intrinsic_;
3272
3273  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3274  uint32_t intrinsic_optimizations_;
3275
3276 private:
3277  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3278};
3279
3280class HInvokeUnresolved : public HInvoke {
3281 public:
3282  HInvokeUnresolved(ArenaAllocator* arena,
3283                    uint32_t number_of_arguments,
3284                    Primitive::Type return_type,
3285                    uint32_t dex_pc,
3286                    uint32_t dex_method_index,
3287                    InvokeType invoke_type)
3288      : HInvoke(arena,
3289                number_of_arguments,
3290                0u /* number_of_other_inputs */,
3291                return_type,
3292                dex_pc,
3293                dex_method_index,
3294                invoke_type) {
3295  }
3296
3297  DECLARE_INSTRUCTION(InvokeUnresolved);
3298
3299 private:
3300  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3301};
3302
3303class HInvokeStaticOrDirect : public HInvoke {
3304 public:
3305  // Requirements of this method call regarding the class
3306  // initialization (clinit) check of its declaring class.
3307  enum class ClinitCheckRequirement {
3308    kNone,      // Class already initialized.
3309    kExplicit,  // Static call having explicit clinit check as last input.
3310    kImplicit,  // Static call implicitly requiring a clinit check.
3311  };
3312
3313  // Determines how to load the target ArtMethod*.
3314  enum class MethodLoadKind {
3315    // Use a String init ArtMethod* loaded from Thread entrypoints.
3316    kStringInit,
3317
3318    // Use the method's own ArtMethod* loaded by the register allocator.
3319    kRecursive,
3320
3321    // Use ArtMethod* at a known address, embed the direct address in the code.
3322    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3323    kDirectAddress,
3324
3325    // Use ArtMethod* at an address that will be known at link time, embed the direct
3326    // address in the code. If the image is relocatable, emit .patch_oat entry.
3327    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3328    // the image relocatable or not.
3329    kDirectAddressWithFixup,
3330
3331    // Load from resoved methods array in the dex cache using a PC-relative load.
3332    // Used when we need to use the dex cache, for example for invoke-static that
3333    // may cause class initialization (the entry may point to a resolution method),
3334    // and we know that we can access the dex cache arrays using a PC-relative load.
3335    kDexCachePcRelative,
3336
3337    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3338    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3339    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3340    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3341    kDexCacheViaMethod,
3342  };
3343
3344  // Determines the location of the code pointer.
3345  enum class CodePtrLocation {
3346    // Recursive call, use local PC-relative call instruction.
3347    kCallSelf,
3348
3349    // Use PC-relative call instruction patched at link time.
3350    // Used for calls within an oat file, boot->boot or app->app.
3351    kCallPCRelative,
3352
3353    // Call to a known target address, embed the direct address in code.
3354    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3355    kCallDirect,
3356
3357    // Call to a target address that will be known at link time, embed the direct
3358    // address in code. If the image is relocatable, emit .patch_oat entry.
3359    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3360    // the image relocatable or not.
3361    kCallDirectWithFixup,
3362
3363    // Use code pointer from the ArtMethod*.
3364    // Used when we don't know the target code. This is also the last-resort-kind used when
3365    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3366    kCallArtMethod,
3367  };
3368
3369  struct DispatchInfo {
3370    MethodLoadKind method_load_kind;
3371    CodePtrLocation code_ptr_location;
3372    // The method load data holds
3373    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3374    //     Note that there are multiple string init methods, each having its own offset.
3375    //   - the method address for kDirectAddress
3376    //   - the dex cache arrays offset for kDexCachePcRel.
3377    uint64_t method_load_data;
3378    uint64_t direct_code_ptr;
3379  };
3380
3381  HInvokeStaticOrDirect(ArenaAllocator* arena,
3382                        uint32_t number_of_arguments,
3383                        Primitive::Type return_type,
3384                        uint32_t dex_pc,
3385                        uint32_t method_index,
3386                        MethodReference target_method,
3387                        DispatchInfo dispatch_info,
3388                        InvokeType original_invoke_type,
3389                        InvokeType invoke_type,
3390                        ClinitCheckRequirement clinit_check_requirement)
3391      : HInvoke(arena,
3392                number_of_arguments,
3393                // There is potentially one extra argument for the HCurrentMethod node, and
3394                // potentially one other if the clinit check is explicit, and potentially
3395                // one other if the method is a string factory.
3396                (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
3397                    (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u) +
3398                    (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3399                return_type,
3400                dex_pc,
3401                method_index,
3402                original_invoke_type),
3403        invoke_type_(invoke_type),
3404        clinit_check_requirement_(clinit_check_requirement),
3405        target_method_(target_method),
3406        dispatch_info_(dispatch_info) { }
3407
3408  void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3409    bool had_current_method_input = HasCurrentMethodInput();
3410    bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
3411
3412    // Using the current method is the default and once we find a better
3413    // method load kind, we should not go back to using the current method.
3414    DCHECK(had_current_method_input || !needs_current_method_input);
3415
3416    if (had_current_method_input && !needs_current_method_input) {
3417      DCHECK_EQ(InputAt(GetCurrentMethodInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
3418      RemoveInputAt(GetCurrentMethodInputIndex());
3419    }
3420    dispatch_info_ = dispatch_info;
3421  }
3422
3423  void RemoveInputAt(size_t index);
3424
3425  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3426    // We access the method via the dex cache so we can't do an implicit null check.
3427    // TODO: for intrinsics we can generate implicit null checks.
3428    return false;
3429  }
3430
3431  bool CanBeNull() const OVERRIDE {
3432    return return_type_ == Primitive::kPrimNot && !IsStringInit();
3433  }
3434
3435  InvokeType GetInvokeType() const { return invoke_type_; }
3436  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3437  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3438  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3439  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
3440  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3441  uint32_t GetCurrentMethodInputIndex() const { return GetNumberOfArguments(); }
3442  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3443  bool HasPcRelDexCache() const {
3444    return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
3445  }
3446  bool HasCurrentMethodInput() const {
3447    // This function can be called only after the invoke has been fully initialized by the builder.
3448    if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
3449      DCHECK(InputAt(GetCurrentMethodInputIndex())->IsCurrentMethod());
3450      return true;
3451    } else {
3452      DCHECK(InputCount() == GetCurrentMethodInputIndex() ||
3453             !InputAt(GetCurrentMethodInputIndex())->IsCurrentMethod());
3454      return false;
3455    }
3456  }
3457  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3458  MethodReference GetTargetMethod() const { return target_method_; }
3459
3460  int32_t GetStringInitOffset() const {
3461    DCHECK(IsStringInit());
3462    return dispatch_info_.method_load_data;
3463  }
3464
3465  uint64_t GetMethodAddress() const {
3466    DCHECK(HasMethodAddress());
3467    return dispatch_info_.method_load_data;
3468  }
3469
3470  uint32_t GetDexCacheArrayOffset() const {
3471    DCHECK(HasPcRelDexCache());
3472    return dispatch_info_.method_load_data;
3473  }
3474
3475  uint64_t GetDirectCodePtr() const {
3476    DCHECK(HasDirectCodePtr());
3477    return dispatch_info_.direct_code_ptr;
3478  }
3479
3480  ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; }
3481
3482  // Is this instruction a call to a static method?
3483  bool IsStatic() const {
3484    return GetInvokeType() == kStatic;
3485  }
3486
3487  // Remove the art::HLoadClass instruction set as last input by
3488  // art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of
3489  // the initial art::HClinitCheck instruction (only relevant for
3490  // static calls with explicit clinit check).
3491  void RemoveLoadClassAsLastInput() {
3492    DCHECK(IsStaticWithExplicitClinitCheck());
3493    size_t last_input_index = InputCount() - 1;
3494    HInstruction* last_input = InputAt(last_input_index);
3495    DCHECK(last_input != nullptr);
3496    DCHECK(last_input->IsLoadClass()) << last_input->DebugName();
3497    RemoveAsUserOfInput(last_input_index);
3498    inputs_.pop_back();
3499    clinit_check_requirement_ = ClinitCheckRequirement::kImplicit;
3500    DCHECK(IsStaticWithImplicitClinitCheck());
3501  }
3502
3503  bool IsStringFactoryFor(HFakeString* str) const {
3504    if (!IsStringInit()) return false;
3505    DCHECK(!HasCurrentMethodInput());
3506    if (InputCount() == (number_of_arguments_)) return false;
3507    return InputAt(InputCount() - 1)->AsFakeString() == str;
3508  }
3509
3510  void RemoveFakeStringArgumentAsLastInput() {
3511    DCHECK(IsStringInit());
3512    size_t last_input_index = InputCount() - 1;
3513    HInstruction* last_input = InputAt(last_input_index);
3514    DCHECK(last_input != nullptr);
3515    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
3516    RemoveAsUserOfInput(last_input_index);
3517    inputs_.pop_back();
3518  }
3519
3520  // Is this a call to a static method whose declaring class has an
3521  // explicit intialization check in the graph?
3522  bool IsStaticWithExplicitClinitCheck() const {
3523    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3524  }
3525
3526  // Is this a call to a static method whose declaring class has an
3527  // implicit intialization check requirement?
3528  bool IsStaticWithImplicitClinitCheck() const {
3529    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3530  }
3531
3532  // Does this method load kind need the current method as an input?
3533  static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
3534    return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kDexCacheViaMethod;
3535  }
3536
3537  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3538
3539 protected:
3540  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3541    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3542    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3543      HInstruction* input = input_record.GetInstruction();
3544      // `input` is the last input of a static invoke marked as having
3545      // an explicit clinit check. It must either be:
3546      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3547      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3548      DCHECK(input != nullptr);
3549      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3550    }
3551    return input_record;
3552  }
3553
3554 private:
3555  const InvokeType invoke_type_;
3556  ClinitCheckRequirement clinit_check_requirement_;
3557  // The target method may refer to different dex file or method index than the original
3558  // invoke. This happens for sharpened calls and for calls where a method was redeclared
3559  // in derived class to increase visibility.
3560  MethodReference target_method_;
3561  DispatchInfo dispatch_info_;
3562
3563  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3564};
3565
3566class HInvokeVirtual : public HInvoke {
3567 public:
3568  HInvokeVirtual(ArenaAllocator* arena,
3569                 uint32_t number_of_arguments,
3570                 Primitive::Type return_type,
3571                 uint32_t dex_pc,
3572                 uint32_t dex_method_index,
3573                 uint32_t vtable_index)
3574      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3575        vtable_index_(vtable_index) {}
3576
3577  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3578    // TODO: Add implicit null checks in intrinsics.
3579    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3580  }
3581
3582  uint32_t GetVTableIndex() const { return vtable_index_; }
3583
3584  DECLARE_INSTRUCTION(InvokeVirtual);
3585
3586 private:
3587  const uint32_t vtable_index_;
3588
3589  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3590};
3591
3592class HInvokeInterface : public HInvoke {
3593 public:
3594  HInvokeInterface(ArenaAllocator* arena,
3595                   uint32_t number_of_arguments,
3596                   Primitive::Type return_type,
3597                   uint32_t dex_pc,
3598                   uint32_t dex_method_index,
3599                   uint32_t imt_index)
3600      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3601        imt_index_(imt_index) {}
3602
3603  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3604    // TODO: Add implicit null checks in intrinsics.
3605    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3606  }
3607
3608  uint32_t GetImtIndex() const { return imt_index_; }
3609  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3610
3611  DECLARE_INSTRUCTION(InvokeInterface);
3612
3613 private:
3614  const uint32_t imt_index_;
3615
3616  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3617};
3618
3619class HNewInstance : public HExpression<1> {
3620 public:
3621  HNewInstance(HCurrentMethod* current_method,
3622               uint32_t dex_pc,
3623               uint16_t type_index,
3624               const DexFile& dex_file,
3625               QuickEntrypointEnum entrypoint)
3626      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3627        type_index_(type_index),
3628        dex_file_(dex_file),
3629        entrypoint_(entrypoint) {
3630    SetRawInputAt(0, current_method);
3631  }
3632
3633  uint16_t GetTypeIndex() const { return type_index_; }
3634  const DexFile& GetDexFile() const { return dex_file_; }
3635
3636  // Calls runtime so needs an environment.
3637  bool NeedsEnvironment() const OVERRIDE { return true; }
3638  // It may throw when called on:
3639  //   - interfaces
3640  //   - abstract/innaccessible/unknown classes
3641  // TODO: optimize when possible.
3642  bool CanThrow() const OVERRIDE { return true; }
3643
3644  bool CanBeNull() const OVERRIDE { return false; }
3645
3646  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3647
3648  DECLARE_INSTRUCTION(NewInstance);
3649
3650 private:
3651  const uint16_t type_index_;
3652  const DexFile& dex_file_;
3653  const QuickEntrypointEnum entrypoint_;
3654
3655  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3656};
3657
3658class HNeg : public HUnaryOperation {
3659 public:
3660  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3661      : HUnaryOperation(result_type, input, dex_pc) {}
3662
3663  template <typename T> T Compute(T x) const { return -x; }
3664
3665  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3666    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3667  }
3668  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3669    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3670  }
3671
3672  DECLARE_INSTRUCTION(Neg);
3673
3674 private:
3675  DISALLOW_COPY_AND_ASSIGN(HNeg);
3676};
3677
3678class HNewArray : public HExpression<2> {
3679 public:
3680  HNewArray(HInstruction* length,
3681            HCurrentMethod* current_method,
3682            uint32_t dex_pc,
3683            uint16_t type_index,
3684            const DexFile& dex_file,
3685            QuickEntrypointEnum entrypoint)
3686      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3687        type_index_(type_index),
3688        dex_file_(dex_file),
3689        entrypoint_(entrypoint) {
3690    SetRawInputAt(0, length);
3691    SetRawInputAt(1, current_method);
3692  }
3693
3694  uint16_t GetTypeIndex() const { return type_index_; }
3695  const DexFile& GetDexFile() const { return dex_file_; }
3696
3697  // Calls runtime so needs an environment.
3698  bool NeedsEnvironment() const OVERRIDE { return true; }
3699
3700  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3701  bool CanThrow() const OVERRIDE { return true; }
3702
3703  bool CanBeNull() const OVERRIDE { return false; }
3704
3705  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3706
3707  DECLARE_INSTRUCTION(NewArray);
3708
3709 private:
3710  const uint16_t type_index_;
3711  const DexFile& dex_file_;
3712  const QuickEntrypointEnum entrypoint_;
3713
3714  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3715};
3716
3717class HAdd : public HBinaryOperation {
3718 public:
3719  HAdd(Primitive::Type result_type,
3720       HInstruction* left,
3721       HInstruction* right,
3722       uint32_t dex_pc = kNoDexPc)
3723      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3724
3725  bool IsCommutative() const OVERRIDE { return true; }
3726
3727  template <typename T> T Compute(T x, T y) const { return x + y; }
3728
3729  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3730    return GetBlock()->GetGraph()->GetIntConstant(
3731        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3732  }
3733  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3734    return GetBlock()->GetGraph()->GetLongConstant(
3735        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3736  }
3737
3738  DECLARE_INSTRUCTION(Add);
3739
3740 private:
3741  DISALLOW_COPY_AND_ASSIGN(HAdd);
3742};
3743
3744class HSub : public HBinaryOperation {
3745 public:
3746  HSub(Primitive::Type result_type,
3747       HInstruction* left,
3748       HInstruction* right,
3749       uint32_t dex_pc = kNoDexPc)
3750      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3751
3752  template <typename T> T Compute(T x, T y) const { return x - y; }
3753
3754  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3755    return GetBlock()->GetGraph()->GetIntConstant(
3756        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3757  }
3758  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3759    return GetBlock()->GetGraph()->GetLongConstant(
3760        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3761  }
3762
3763  DECLARE_INSTRUCTION(Sub);
3764
3765 private:
3766  DISALLOW_COPY_AND_ASSIGN(HSub);
3767};
3768
3769class HMul : public HBinaryOperation {
3770 public:
3771  HMul(Primitive::Type result_type,
3772       HInstruction* left,
3773       HInstruction* right,
3774       uint32_t dex_pc = kNoDexPc)
3775      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3776
3777  bool IsCommutative() const OVERRIDE { return true; }
3778
3779  template <typename T> T Compute(T x, T y) const { return x * y; }
3780
3781  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3782    return GetBlock()->GetGraph()->GetIntConstant(
3783        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3784  }
3785  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3786    return GetBlock()->GetGraph()->GetLongConstant(
3787        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3788  }
3789
3790  DECLARE_INSTRUCTION(Mul);
3791
3792 private:
3793  DISALLOW_COPY_AND_ASSIGN(HMul);
3794};
3795
3796class HDiv : public HBinaryOperation {
3797 public:
3798  HDiv(Primitive::Type result_type,
3799       HInstruction* left,
3800       HInstruction* right,
3801       uint32_t dex_pc)
3802      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3803
3804  template <typename T>
3805  T Compute(T x, T y) const {
3806    // Our graph structure ensures we never have 0 for `y` during
3807    // constant folding.
3808    DCHECK_NE(y, 0);
3809    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3810    return (y == -1) ? -x : x / y;
3811  }
3812
3813  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3814    return GetBlock()->GetGraph()->GetIntConstant(
3815        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3816  }
3817  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3818    return GetBlock()->GetGraph()->GetLongConstant(
3819        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3820  }
3821
3822  static SideEffects SideEffectsForArchRuntimeCalls() {
3823    // The generated code can use a runtime call.
3824    return SideEffects::CanTriggerGC();
3825  }
3826
3827  DECLARE_INSTRUCTION(Div);
3828
3829 private:
3830  DISALLOW_COPY_AND_ASSIGN(HDiv);
3831};
3832
3833class HRem : public HBinaryOperation {
3834 public:
3835  HRem(Primitive::Type result_type,
3836       HInstruction* left,
3837       HInstruction* right,
3838       uint32_t dex_pc)
3839      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3840
3841  template <typename T>
3842  T Compute(T x, T y) const {
3843    // Our graph structure ensures we never have 0 for `y` during
3844    // constant folding.
3845    DCHECK_NE(y, 0);
3846    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3847    return (y == -1) ? 0 : x % y;
3848  }
3849
3850  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3851    return GetBlock()->GetGraph()->GetIntConstant(
3852        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3853  }
3854  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3855    return GetBlock()->GetGraph()->GetLongConstant(
3856        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3857  }
3858
3859
3860  static SideEffects SideEffectsForArchRuntimeCalls() {
3861    return SideEffects::CanTriggerGC();
3862  }
3863
3864  DECLARE_INSTRUCTION(Rem);
3865
3866 private:
3867  DISALLOW_COPY_AND_ASSIGN(HRem);
3868};
3869
3870class HDivZeroCheck : public HExpression<1> {
3871 public:
3872  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
3873      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
3874    SetRawInputAt(0, value);
3875  }
3876
3877  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
3878
3879  bool CanBeMoved() const OVERRIDE { return true; }
3880
3881  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3882    return true;
3883  }
3884
3885  bool NeedsEnvironment() const OVERRIDE { return true; }
3886  bool CanThrow() const OVERRIDE { return true; }
3887
3888  DECLARE_INSTRUCTION(DivZeroCheck);
3889
3890 private:
3891  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
3892};
3893
3894class HShl : public HBinaryOperation {
3895 public:
3896  HShl(Primitive::Type result_type,
3897       HInstruction* left,
3898       HInstruction* right,
3899       uint32_t dex_pc = kNoDexPc)
3900      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3901
3902  template <typename T, typename U, typename V>
3903  T Compute(T x, U y, V max_shift_value) const {
3904    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3905                  "V is not the unsigned integer type corresponding to T");
3906    return x << (y & max_shift_value);
3907  }
3908
3909  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3910    return GetBlock()->GetGraph()->GetIntConstant(
3911        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3912  }
3913  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3914  // case is handled as `x << static_cast<int>(y)`.
3915  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3916    return GetBlock()->GetGraph()->GetLongConstant(
3917        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3918  }
3919  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3920    return GetBlock()->GetGraph()->GetLongConstant(
3921        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3922  }
3923
3924  DECLARE_INSTRUCTION(Shl);
3925
3926 private:
3927  DISALLOW_COPY_AND_ASSIGN(HShl);
3928};
3929
3930class HShr : public HBinaryOperation {
3931 public:
3932  HShr(Primitive::Type result_type,
3933       HInstruction* left,
3934       HInstruction* right,
3935       uint32_t dex_pc = kNoDexPc)
3936      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3937
3938  template <typename T, typename U, typename V>
3939  T Compute(T x, U y, V max_shift_value) const {
3940    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3941                  "V is not the unsigned integer type corresponding to T");
3942    return x >> (y & max_shift_value);
3943  }
3944
3945  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3946    return GetBlock()->GetGraph()->GetIntConstant(
3947        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3948  }
3949  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3950  // case is handled as `x >> static_cast<int>(y)`.
3951  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3952    return GetBlock()->GetGraph()->GetLongConstant(
3953        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3954  }
3955  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3956    return GetBlock()->GetGraph()->GetLongConstant(
3957        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3958  }
3959
3960  DECLARE_INSTRUCTION(Shr);
3961
3962 private:
3963  DISALLOW_COPY_AND_ASSIGN(HShr);
3964};
3965
3966class HUShr : public HBinaryOperation {
3967 public:
3968  HUShr(Primitive::Type result_type,
3969        HInstruction* left,
3970        HInstruction* right,
3971        uint32_t dex_pc = kNoDexPc)
3972      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3973
3974  template <typename T, typename U, typename V>
3975  T Compute(T x, U y, V max_shift_value) const {
3976    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3977                  "V is not the unsigned integer type corresponding to T");
3978    V ux = static_cast<V>(x);
3979    return static_cast<T>(ux >> (y & max_shift_value));
3980  }
3981
3982  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3983    return GetBlock()->GetGraph()->GetIntConstant(
3984        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3985  }
3986  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3987  // case is handled as `x >>> static_cast<int>(y)`.
3988  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3989    return GetBlock()->GetGraph()->GetLongConstant(
3990        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3991  }
3992  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3993    return GetBlock()->GetGraph()->GetLongConstant(
3994        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3995  }
3996
3997  DECLARE_INSTRUCTION(UShr);
3998
3999 private:
4000  DISALLOW_COPY_AND_ASSIGN(HUShr);
4001};
4002
4003class HAnd : public HBinaryOperation {
4004 public:
4005  HAnd(Primitive::Type result_type,
4006       HInstruction* left,
4007       HInstruction* right,
4008       uint32_t dex_pc = kNoDexPc)
4009      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4010
4011  bool IsCommutative() const OVERRIDE { return true; }
4012
4013  template <typename T, typename U>
4014  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
4015
4016  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4017    return GetBlock()->GetGraph()->GetIntConstant(
4018        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4019  }
4020  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4021    return GetBlock()->GetGraph()->GetLongConstant(
4022        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4023  }
4024  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4025    return GetBlock()->GetGraph()->GetLongConstant(
4026        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4027  }
4028  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4029    return GetBlock()->GetGraph()->GetLongConstant(
4030        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4031  }
4032
4033  DECLARE_INSTRUCTION(And);
4034
4035 private:
4036  DISALLOW_COPY_AND_ASSIGN(HAnd);
4037};
4038
4039class HOr : public HBinaryOperation {
4040 public:
4041  HOr(Primitive::Type result_type,
4042      HInstruction* left,
4043      HInstruction* right,
4044      uint32_t dex_pc = kNoDexPc)
4045      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4046
4047  bool IsCommutative() const OVERRIDE { return true; }
4048
4049  template <typename T, typename U>
4050  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
4051
4052  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4053    return GetBlock()->GetGraph()->GetIntConstant(
4054        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4055  }
4056  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4057    return GetBlock()->GetGraph()->GetLongConstant(
4058        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4059  }
4060  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4061    return GetBlock()->GetGraph()->GetLongConstant(
4062        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4063  }
4064  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4065    return GetBlock()->GetGraph()->GetLongConstant(
4066        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4067  }
4068
4069  DECLARE_INSTRUCTION(Or);
4070
4071 private:
4072  DISALLOW_COPY_AND_ASSIGN(HOr);
4073};
4074
4075class HXor : public HBinaryOperation {
4076 public:
4077  HXor(Primitive::Type result_type,
4078       HInstruction* left,
4079       HInstruction* right,
4080       uint32_t dex_pc = kNoDexPc)
4081      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4082
4083  bool IsCommutative() const OVERRIDE { return true; }
4084
4085  template <typename T, typename U>
4086  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
4087
4088  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4089    return GetBlock()->GetGraph()->GetIntConstant(
4090        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4091  }
4092  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4093    return GetBlock()->GetGraph()->GetLongConstant(
4094        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4095  }
4096  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4097    return GetBlock()->GetGraph()->GetLongConstant(
4098        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4099  }
4100  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4101    return GetBlock()->GetGraph()->GetLongConstant(
4102        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4103  }
4104
4105  DECLARE_INSTRUCTION(Xor);
4106
4107 private:
4108  DISALLOW_COPY_AND_ASSIGN(HXor);
4109};
4110
4111// The value of a parameter in this method. Its location depends on
4112// the calling convention.
4113class HParameterValue : public HExpression<0> {
4114 public:
4115  HParameterValue(const DexFile& dex_file,
4116                  uint16_t type_index,
4117                  uint8_t index,
4118                  Primitive::Type parameter_type,
4119                  bool is_this = false)
4120      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4121        dex_file_(dex_file),
4122        type_index_(type_index),
4123        index_(index),
4124        is_this_(is_this),
4125        can_be_null_(!is_this) {}
4126
4127  const DexFile& GetDexFile() const { return dex_file_; }
4128  uint16_t GetTypeIndex() const { return type_index_; }
4129  uint8_t GetIndex() const { return index_; }
4130  bool IsThis() const { return is_this_; }
4131
4132  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4133  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4134
4135  DECLARE_INSTRUCTION(ParameterValue);
4136
4137 private:
4138  const DexFile& dex_file_;
4139  const uint16_t type_index_;
4140  // The index of this parameter in the parameters list. Must be less
4141  // than HGraph::number_of_in_vregs_.
4142  const uint8_t index_;
4143
4144  // Whether or not the parameter value corresponds to 'this' argument.
4145  const bool is_this_;
4146
4147  bool can_be_null_;
4148
4149  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4150};
4151
4152class HNot : public HUnaryOperation {
4153 public:
4154  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4155      : HUnaryOperation(result_type, input, dex_pc) {}
4156
4157  bool CanBeMoved() const OVERRIDE { return true; }
4158  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4159    return true;
4160  }
4161
4162  template <typename T> T Compute(T x) const { return ~x; }
4163
4164  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4165    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4166  }
4167  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4168    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4169  }
4170
4171  DECLARE_INSTRUCTION(Not);
4172
4173 private:
4174  DISALLOW_COPY_AND_ASSIGN(HNot);
4175};
4176
4177class HBooleanNot : public HUnaryOperation {
4178 public:
4179  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4180      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4181
4182  bool CanBeMoved() const OVERRIDE { return true; }
4183  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4184    return true;
4185  }
4186
4187  template <typename T> bool Compute(T x) const {
4188    DCHECK(IsUint<1>(x));
4189    return !x;
4190  }
4191
4192  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4193    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4194  }
4195  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4196    LOG(FATAL) << DebugName() << " is not defined for long values";
4197    UNREACHABLE();
4198  }
4199
4200  DECLARE_INSTRUCTION(BooleanNot);
4201
4202 private:
4203  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4204};
4205
4206class HTypeConversion : public HExpression<1> {
4207 public:
4208  // Instantiate a type conversion of `input` to `result_type`.
4209  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4210      : HExpression(result_type,
4211                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4212                    dex_pc) {
4213    SetRawInputAt(0, input);
4214    DCHECK_NE(input->GetType(), result_type);
4215  }
4216
4217  HInstruction* GetInput() const { return InputAt(0); }
4218  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4219  Primitive::Type GetResultType() const { return GetType(); }
4220
4221  // Required by the x86, ARM, MIPS and MIPS64 code generators when producing calls
4222  // to the runtime.
4223
4224  bool CanBeMoved() const OVERRIDE { return true; }
4225  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4226
4227  // Try to statically evaluate the conversion and return a HConstant
4228  // containing the result.  If the input cannot be converted, return nullptr.
4229  HConstant* TryStaticEvaluation() const;
4230
4231  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4232                                                    Primitive::Type result_type) {
4233    // Some architectures may not require the 'GC' side effects, but at this point
4234    // in the compilation process we do not know what architecture we will
4235    // generate code for, so we must be conservative.
4236    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4237        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4238      return SideEffects::CanTriggerGC();
4239    }
4240    return SideEffects::None();
4241  }
4242
4243  DECLARE_INSTRUCTION(TypeConversion);
4244
4245 private:
4246  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4247};
4248
4249static constexpr uint32_t kNoRegNumber = -1;
4250
4251class HPhi : public HInstruction {
4252 public:
4253  HPhi(ArenaAllocator* arena,
4254       uint32_t reg_number,
4255       size_t number_of_inputs,
4256       Primitive::Type type,
4257       uint32_t dex_pc = kNoDexPc)
4258      : HInstruction(SideEffects::None(), dex_pc),
4259        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4260        reg_number_(reg_number),
4261        type_(type),
4262        is_live_(false),
4263        can_be_null_(true) {
4264  }
4265
4266  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4267  static Primitive::Type ToPhiType(Primitive::Type type) {
4268    switch (type) {
4269      case Primitive::kPrimBoolean:
4270      case Primitive::kPrimByte:
4271      case Primitive::kPrimShort:
4272      case Primitive::kPrimChar:
4273        return Primitive::kPrimInt;
4274      default:
4275        return type;
4276    }
4277  }
4278
4279  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4280
4281  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4282
4283  void AddInput(HInstruction* input);
4284  void RemoveInputAt(size_t index);
4285
4286  Primitive::Type GetType() const OVERRIDE { return type_; }
4287  void SetType(Primitive::Type type) { type_ = type; }
4288
4289  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4290  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4291
4292  uint32_t GetRegNumber() const { return reg_number_; }
4293
4294  void SetDead() { is_live_ = false; }
4295  void SetLive() { is_live_ = true; }
4296  bool IsDead() const { return !is_live_; }
4297  bool IsLive() const { return is_live_; }
4298
4299  bool IsVRegEquivalentOf(HInstruction* other) const {
4300    return other != nullptr
4301        && other->IsPhi()
4302        && other->AsPhi()->GetBlock() == GetBlock()
4303        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4304  }
4305
4306  // Returns the next equivalent phi (starting from the current one) or null if there is none.
4307  // An equivalent phi is a phi having the same dex register and type.
4308  // It assumes that phis with the same dex register are adjacent.
4309  HPhi* GetNextEquivalentPhiWithSameType() {
4310    HInstruction* next = GetNext();
4311    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
4312      if (next->GetType() == GetType()) {
4313        return next->AsPhi();
4314      }
4315      next = next->GetNext();
4316    }
4317    return nullptr;
4318  }
4319
4320  DECLARE_INSTRUCTION(Phi);
4321
4322 protected:
4323  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
4324    return inputs_[index];
4325  }
4326
4327  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
4328    inputs_[index] = input;
4329  }
4330
4331 private:
4332  ArenaVector<HUserRecord<HInstruction*> > inputs_;
4333  const uint32_t reg_number_;
4334  Primitive::Type type_;
4335  bool is_live_;
4336  bool can_be_null_;
4337
4338  DISALLOW_COPY_AND_ASSIGN(HPhi);
4339};
4340
4341class HNullCheck : public HExpression<1> {
4342 public:
4343  HNullCheck(HInstruction* value, uint32_t dex_pc)
4344      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
4345    SetRawInputAt(0, value);
4346  }
4347
4348  bool CanBeMoved() const OVERRIDE { return true; }
4349  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4350    return true;
4351  }
4352
4353  bool NeedsEnvironment() const OVERRIDE { return true; }
4354
4355  bool CanThrow() const OVERRIDE { return true; }
4356
4357  bool CanBeNull() const OVERRIDE { return false; }
4358
4359
4360  DECLARE_INSTRUCTION(NullCheck);
4361
4362 private:
4363  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4364};
4365
4366class FieldInfo : public ValueObject {
4367 public:
4368  FieldInfo(MemberOffset field_offset,
4369            Primitive::Type field_type,
4370            bool is_volatile,
4371            uint32_t index,
4372            uint16_t declaring_class_def_index,
4373            const DexFile& dex_file,
4374            Handle<mirror::DexCache> dex_cache)
4375      : field_offset_(field_offset),
4376        field_type_(field_type),
4377        is_volatile_(is_volatile),
4378        index_(index),
4379        declaring_class_def_index_(declaring_class_def_index),
4380        dex_file_(dex_file),
4381        dex_cache_(dex_cache) {}
4382
4383  MemberOffset GetFieldOffset() const { return field_offset_; }
4384  Primitive::Type GetFieldType() const { return field_type_; }
4385  uint32_t GetFieldIndex() const { return index_; }
4386  uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
4387  const DexFile& GetDexFile() const { return dex_file_; }
4388  bool IsVolatile() const { return is_volatile_; }
4389  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4390
4391 private:
4392  const MemberOffset field_offset_;
4393  const Primitive::Type field_type_;
4394  const bool is_volatile_;
4395  const uint32_t index_;
4396  const uint16_t declaring_class_def_index_;
4397  const DexFile& dex_file_;
4398  const Handle<mirror::DexCache> dex_cache_;
4399};
4400
4401class HInstanceFieldGet : public HExpression<1> {
4402 public:
4403  HInstanceFieldGet(HInstruction* value,
4404                    Primitive::Type field_type,
4405                    MemberOffset field_offset,
4406                    bool is_volatile,
4407                    uint32_t field_idx,
4408                    uint16_t declaring_class_def_index,
4409                    const DexFile& dex_file,
4410                    Handle<mirror::DexCache> dex_cache,
4411                    uint32_t dex_pc)
4412      : HExpression(field_type,
4413                    SideEffects::FieldReadOfType(field_type, is_volatile),
4414                    dex_pc),
4415        field_info_(field_offset,
4416                    field_type,
4417                    is_volatile,
4418                    field_idx,
4419                    declaring_class_def_index,
4420                    dex_file,
4421                    dex_cache) {
4422    SetRawInputAt(0, value);
4423  }
4424
4425  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4426
4427  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4428    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
4429    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4430  }
4431
4432  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4433    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4434  }
4435
4436  size_t ComputeHashCode() const OVERRIDE {
4437    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4438  }
4439
4440  const FieldInfo& GetFieldInfo() const { return field_info_; }
4441  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4442  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4443  bool IsVolatile() const { return field_info_.IsVolatile(); }
4444
4445  DECLARE_INSTRUCTION(InstanceFieldGet);
4446
4447 private:
4448  const FieldInfo field_info_;
4449
4450  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
4451};
4452
4453class HInstanceFieldSet : public HTemplateInstruction<2> {
4454 public:
4455  HInstanceFieldSet(HInstruction* object,
4456                    HInstruction* value,
4457                    Primitive::Type field_type,
4458                    MemberOffset field_offset,
4459                    bool is_volatile,
4460                    uint32_t field_idx,
4461                    uint16_t declaring_class_def_index,
4462                    const DexFile& dex_file,
4463                    Handle<mirror::DexCache> dex_cache,
4464                    uint32_t dex_pc)
4465      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4466                             dex_pc),
4467        field_info_(field_offset,
4468                    field_type,
4469                    is_volatile,
4470                    field_idx,
4471                    declaring_class_def_index,
4472                    dex_file,
4473                    dex_cache),
4474        value_can_be_null_(true) {
4475    SetRawInputAt(0, object);
4476    SetRawInputAt(1, value);
4477  }
4478
4479  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4480    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4481  }
4482
4483  const FieldInfo& GetFieldInfo() const { return field_info_; }
4484  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4485  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4486  bool IsVolatile() const { return field_info_.IsVolatile(); }
4487  HInstruction* GetValue() const { return InputAt(1); }
4488  bool GetValueCanBeNull() const { return value_can_be_null_; }
4489  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4490
4491  DECLARE_INSTRUCTION(InstanceFieldSet);
4492
4493 private:
4494  const FieldInfo field_info_;
4495  bool value_can_be_null_;
4496
4497  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
4498};
4499
4500class HArrayGet : public HExpression<2> {
4501 public:
4502  HArrayGet(HInstruction* array,
4503            HInstruction* index,
4504            Primitive::Type type,
4505            uint32_t dex_pc,
4506            SideEffects additional_side_effects = SideEffects::None())
4507      : HExpression(type,
4508                    SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
4509                    dex_pc) {
4510    SetRawInputAt(0, array);
4511    SetRawInputAt(1, index);
4512  }
4513
4514  bool CanBeMoved() const OVERRIDE { return true; }
4515  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4516    return true;
4517  }
4518  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4519    // TODO: We can be smarter here.
4520    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
4521    // which generates the implicit null check. There are cases when these can be removed
4522    // to produce better code. If we ever add optimizations to do so we should allow an
4523    // implicit check here (as long as the address falls in the first page).
4524    return false;
4525  }
4526
4527  void SetType(Primitive::Type type) { type_ = type; }
4528
4529  HInstruction* GetArray() const { return InputAt(0); }
4530  HInstruction* GetIndex() const { return InputAt(1); }
4531
4532  DECLARE_INSTRUCTION(ArrayGet);
4533
4534 private:
4535  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4536};
4537
4538class HArraySet : public HTemplateInstruction<3> {
4539 public:
4540  HArraySet(HInstruction* array,
4541            HInstruction* index,
4542            HInstruction* value,
4543            Primitive::Type expected_component_type,
4544            uint32_t dex_pc,
4545            SideEffects additional_side_effects = SideEffects::None())
4546      : HTemplateInstruction(
4547            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4548                SideEffectsForArchRuntimeCalls(value->GetType())).Union(
4549                    additional_side_effects),
4550            dex_pc),
4551        expected_component_type_(expected_component_type),
4552        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4553        value_can_be_null_(true),
4554        static_type_of_array_is_object_array_(false) {
4555    SetRawInputAt(0, array);
4556    SetRawInputAt(1, index);
4557    SetRawInputAt(2, value);
4558  }
4559
4560  bool NeedsEnvironment() const OVERRIDE {
4561    // We currently always call a runtime method to catch array store
4562    // exceptions.
4563    return needs_type_check_;
4564  }
4565
4566  // Can throw ArrayStoreException.
4567  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4568
4569  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4570    // TODO: Same as for ArrayGet.
4571    return false;
4572  }
4573
4574  void ClearNeedsTypeCheck() {
4575    needs_type_check_ = false;
4576  }
4577
4578  void ClearValueCanBeNull() {
4579    value_can_be_null_ = false;
4580  }
4581
4582  void SetStaticTypeOfArrayIsObjectArray() {
4583    static_type_of_array_is_object_array_ = true;
4584  }
4585
4586  bool GetValueCanBeNull() const { return value_can_be_null_; }
4587  bool NeedsTypeCheck() const { return needs_type_check_; }
4588  bool StaticTypeOfArrayIsObjectArray() const { return static_type_of_array_is_object_array_; }
4589
4590  HInstruction* GetArray() const { return InputAt(0); }
4591  HInstruction* GetIndex() const { return InputAt(1); }
4592  HInstruction* GetValue() const { return InputAt(2); }
4593
4594  Primitive::Type GetComponentType() const {
4595    // The Dex format does not type floating point index operations. Since the
4596    // `expected_component_type_` is set during building and can therefore not
4597    // be correct, we also check what is the value type. If it is a floating
4598    // point type, we must use that type.
4599    Primitive::Type value_type = GetValue()->GetType();
4600    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4601        ? value_type
4602        : expected_component_type_;
4603  }
4604
4605  Primitive::Type GetRawExpectedComponentType() const {
4606    return expected_component_type_;
4607  }
4608
4609  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4610    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4611  }
4612
4613  DECLARE_INSTRUCTION(ArraySet);
4614
4615 private:
4616  const Primitive::Type expected_component_type_;
4617  bool needs_type_check_;
4618  bool value_can_be_null_;
4619  // Cached information for the reference_type_info_ so that codegen
4620  // does not need to inspect the static type.
4621  bool static_type_of_array_is_object_array_;
4622
4623  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4624};
4625
4626class HArrayLength : public HExpression<1> {
4627 public:
4628  HArrayLength(HInstruction* array, uint32_t dex_pc)
4629      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
4630    // Note that arrays do not change length, so the instruction does not
4631    // depend on any write.
4632    SetRawInputAt(0, array);
4633  }
4634
4635  bool CanBeMoved() const OVERRIDE { return true; }
4636  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4637    return true;
4638  }
4639  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4640    return obj == InputAt(0);
4641  }
4642
4643  DECLARE_INSTRUCTION(ArrayLength);
4644
4645 private:
4646  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4647};
4648
4649class HBoundsCheck : public HExpression<2> {
4650 public:
4651  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4652      : HExpression(index->GetType(), SideEffects::None(), dex_pc) {
4653    DCHECK(index->GetType() == Primitive::kPrimInt);
4654    SetRawInputAt(0, index);
4655    SetRawInputAt(1, length);
4656  }
4657
4658  bool CanBeMoved() const OVERRIDE { return true; }
4659  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4660    return true;
4661  }
4662
4663  bool NeedsEnvironment() const OVERRIDE { return true; }
4664
4665  bool CanThrow() const OVERRIDE { return true; }
4666
4667  HInstruction* GetIndex() const { return InputAt(0); }
4668
4669  DECLARE_INSTRUCTION(BoundsCheck);
4670
4671 private:
4672  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4673};
4674
4675/**
4676 * Some DEX instructions are folded into multiple HInstructions that need
4677 * to stay live until the last HInstruction. This class
4678 * is used as a marker for the baseline compiler to ensure its preceding
4679 * HInstruction stays live. `index` represents the stack location index of the
4680 * instruction (the actual offset is computed as index * vreg_size).
4681 */
4682class HTemporary : public HTemplateInstruction<0> {
4683 public:
4684  explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc)
4685      : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {}
4686
4687  size_t GetIndex() const { return index_; }
4688
4689  Primitive::Type GetType() const OVERRIDE {
4690    // The previous instruction is the one that will be stored in the temporary location.
4691    DCHECK(GetPrevious() != nullptr);
4692    return GetPrevious()->GetType();
4693  }
4694
4695  DECLARE_INSTRUCTION(Temporary);
4696
4697 private:
4698  const size_t index_;
4699  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4700};
4701
4702class HSuspendCheck : public HTemplateInstruction<0> {
4703 public:
4704  explicit HSuspendCheck(uint32_t dex_pc)
4705      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
4706
4707  bool NeedsEnvironment() const OVERRIDE {
4708    return true;
4709  }
4710
4711  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4712  SlowPathCode* GetSlowPath() const { return slow_path_; }
4713
4714  DECLARE_INSTRUCTION(SuspendCheck);
4715
4716 private:
4717  // Only used for code generation, in order to share the same slow path between back edges
4718  // of a same loop.
4719  SlowPathCode* slow_path_;
4720
4721  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4722};
4723
4724/**
4725 * Instruction to load a Class object.
4726 */
4727class HLoadClass : public HExpression<1> {
4728 public:
4729  HLoadClass(HCurrentMethod* current_method,
4730             uint16_t type_index,
4731             const DexFile& dex_file,
4732             bool is_referrers_class,
4733             uint32_t dex_pc,
4734             bool needs_access_check)
4735      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4736        type_index_(type_index),
4737        dex_file_(dex_file),
4738        is_referrers_class_(is_referrers_class),
4739        generate_clinit_check_(false),
4740        needs_access_check_(needs_access_check),
4741        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4742    // Referrers class should not need access check. We never inline unverified
4743    // methods so we can't possibly end up in this situation.
4744    DCHECK(!is_referrers_class_ || !needs_access_check_);
4745    SetRawInputAt(0, current_method);
4746  }
4747
4748  bool CanBeMoved() const OVERRIDE { return true; }
4749
4750  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4751    // Note that we don't need to test for generate_clinit_check_.
4752    // Whether or not we need to generate the clinit check is processed in
4753    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
4754    return other->AsLoadClass()->type_index_ == type_index_ &&
4755        other->AsLoadClass()->needs_access_check_ == needs_access_check_;
4756  }
4757
4758  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4759
4760  uint16_t GetTypeIndex() const { return type_index_; }
4761  bool IsReferrersClass() const { return is_referrers_class_; }
4762  bool CanBeNull() const OVERRIDE { return false; }
4763
4764  bool NeedsEnvironment() const OVERRIDE {
4765    // Will call runtime and load the class if the class is not loaded yet.
4766    // TODO: finer grain decision.
4767    return !is_referrers_class_;
4768  }
4769
4770  bool MustGenerateClinitCheck() const {
4771    return generate_clinit_check_;
4772  }
4773  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4774    // The entrypoint the code generator is going to call does not do
4775    // clinit of the class.
4776    DCHECK(!NeedsAccessCheck());
4777    generate_clinit_check_ = generate_clinit_check;
4778  }
4779
4780  bool CanCallRuntime() const {
4781    return MustGenerateClinitCheck() || !is_referrers_class_ || needs_access_check_;
4782  }
4783
4784  bool NeedsAccessCheck() const {
4785    return needs_access_check_;
4786  }
4787
4788  bool CanThrow() const OVERRIDE {
4789    // May call runtime and and therefore can throw.
4790    // TODO: finer grain decision.
4791    return CanCallRuntime();
4792  }
4793
4794  ReferenceTypeInfo GetLoadedClassRTI() {
4795    return loaded_class_rti_;
4796  }
4797
4798  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4799    // Make sure we only set exact types (the loaded class should never be merged).
4800    DCHECK(rti.IsExact());
4801    loaded_class_rti_ = rti;
4802  }
4803
4804  const DexFile& GetDexFile() { return dex_file_; }
4805
4806  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !is_referrers_class_; }
4807
4808  static SideEffects SideEffectsForArchRuntimeCalls() {
4809    return SideEffects::CanTriggerGC();
4810  }
4811
4812  DECLARE_INSTRUCTION(LoadClass);
4813
4814 private:
4815  const uint16_t type_index_;
4816  const DexFile& dex_file_;
4817  const bool is_referrers_class_;
4818  // Whether this instruction must generate the initialization check.
4819  // Used for code generation.
4820  bool generate_clinit_check_;
4821  bool needs_access_check_;
4822
4823  ReferenceTypeInfo loaded_class_rti_;
4824
4825  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
4826};
4827
4828class HLoadString : public HExpression<1> {
4829 public:
4830  HLoadString(HCurrentMethod* current_method, uint32_t string_index, uint32_t dex_pc)
4831      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4832        string_index_(string_index) {
4833    SetRawInputAt(0, current_method);
4834  }
4835
4836  bool CanBeMoved() const OVERRIDE { return true; }
4837
4838  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4839    return other->AsLoadString()->string_index_ == string_index_;
4840  }
4841
4842  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
4843
4844  uint32_t GetStringIndex() const { return string_index_; }
4845
4846  // TODO: Can we deopt or debug when we resolve a string?
4847  bool NeedsEnvironment() const OVERRIDE { return false; }
4848  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return true; }
4849  bool CanBeNull() const OVERRIDE { return false; }
4850
4851  static SideEffects SideEffectsForArchRuntimeCalls() {
4852    return SideEffects::CanTriggerGC();
4853  }
4854
4855  DECLARE_INSTRUCTION(LoadString);
4856
4857 private:
4858  const uint32_t string_index_;
4859
4860  DISALLOW_COPY_AND_ASSIGN(HLoadString);
4861};
4862
4863/**
4864 * Performs an initialization check on its Class object input.
4865 */
4866class HClinitCheck : public HExpression<1> {
4867 public:
4868  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
4869      : HExpression(
4870            Primitive::kPrimNot,
4871            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
4872            dex_pc) {
4873    SetRawInputAt(0, constant);
4874  }
4875
4876  bool CanBeMoved() const OVERRIDE { return true; }
4877  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4878    return true;
4879  }
4880
4881  bool NeedsEnvironment() const OVERRIDE {
4882    // May call runtime to initialize the class.
4883    return true;
4884  }
4885
4886
4887  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
4888
4889  DECLARE_INSTRUCTION(ClinitCheck);
4890
4891 private:
4892  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
4893};
4894
4895class HStaticFieldGet : public HExpression<1> {
4896 public:
4897  HStaticFieldGet(HInstruction* cls,
4898                  Primitive::Type field_type,
4899                  MemberOffset field_offset,
4900                  bool is_volatile,
4901                  uint32_t field_idx,
4902                  uint16_t declaring_class_def_index,
4903                  const DexFile& dex_file,
4904                  Handle<mirror::DexCache> dex_cache,
4905                  uint32_t dex_pc)
4906      : HExpression(field_type,
4907                    SideEffects::FieldReadOfType(field_type, is_volatile),
4908                    dex_pc),
4909        field_info_(field_offset,
4910                    field_type,
4911                    is_volatile,
4912                    field_idx,
4913                    declaring_class_def_index,
4914                    dex_file,
4915                    dex_cache) {
4916    SetRawInputAt(0, cls);
4917  }
4918
4919
4920  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4921
4922  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4923    HStaticFieldGet* other_get = other->AsStaticFieldGet();
4924    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4925  }
4926
4927  size_t ComputeHashCode() const OVERRIDE {
4928    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4929  }
4930
4931  const FieldInfo& GetFieldInfo() const { return field_info_; }
4932  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4933  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4934  bool IsVolatile() const { return field_info_.IsVolatile(); }
4935
4936  DECLARE_INSTRUCTION(StaticFieldGet);
4937
4938 private:
4939  const FieldInfo field_info_;
4940
4941  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
4942};
4943
4944class HStaticFieldSet : public HTemplateInstruction<2> {
4945 public:
4946  HStaticFieldSet(HInstruction* cls,
4947                  HInstruction* value,
4948                  Primitive::Type field_type,
4949                  MemberOffset field_offset,
4950                  bool is_volatile,
4951                  uint32_t field_idx,
4952                  uint16_t declaring_class_def_index,
4953                  const DexFile& dex_file,
4954                  Handle<mirror::DexCache> dex_cache,
4955                  uint32_t dex_pc)
4956      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4957                             dex_pc),
4958        field_info_(field_offset,
4959                    field_type,
4960                    is_volatile,
4961                    field_idx,
4962                    declaring_class_def_index,
4963                    dex_file,
4964                    dex_cache),
4965        value_can_be_null_(true) {
4966    SetRawInputAt(0, cls);
4967    SetRawInputAt(1, value);
4968  }
4969
4970  const FieldInfo& GetFieldInfo() const { return field_info_; }
4971  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4972  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4973  bool IsVolatile() const { return field_info_.IsVolatile(); }
4974
4975  HInstruction* GetValue() const { return InputAt(1); }
4976  bool GetValueCanBeNull() const { return value_can_be_null_; }
4977  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4978
4979  DECLARE_INSTRUCTION(StaticFieldSet);
4980
4981 private:
4982  const FieldInfo field_info_;
4983  bool value_can_be_null_;
4984
4985  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
4986};
4987
4988class HUnresolvedInstanceFieldGet : public HExpression<1> {
4989 public:
4990  HUnresolvedInstanceFieldGet(HInstruction* obj,
4991                              Primitive::Type field_type,
4992                              uint32_t field_index,
4993                              uint32_t dex_pc)
4994      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
4995        field_index_(field_index) {
4996    SetRawInputAt(0, obj);
4997  }
4998
4999  bool NeedsEnvironment() const OVERRIDE { return true; }
5000  bool CanThrow() const OVERRIDE { return true; }
5001
5002  Primitive::Type GetFieldType() const { return GetType(); }
5003  uint32_t GetFieldIndex() const { return field_index_; }
5004
5005  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
5006
5007 private:
5008  const uint32_t field_index_;
5009
5010  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
5011};
5012
5013class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
5014 public:
5015  HUnresolvedInstanceFieldSet(HInstruction* obj,
5016                              HInstruction* value,
5017                              Primitive::Type field_type,
5018                              uint32_t field_index,
5019                              uint32_t dex_pc)
5020      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5021        field_type_(field_type),
5022        field_index_(field_index) {
5023    DCHECK_EQ(field_type, value->GetType());
5024    SetRawInputAt(0, obj);
5025    SetRawInputAt(1, value);
5026  }
5027
5028  bool NeedsEnvironment() const OVERRIDE { return true; }
5029  bool CanThrow() const OVERRIDE { return true; }
5030
5031  Primitive::Type GetFieldType() const { return field_type_; }
5032  uint32_t GetFieldIndex() const { return field_index_; }
5033
5034  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
5035
5036 private:
5037  const Primitive::Type field_type_;
5038  const uint32_t field_index_;
5039
5040  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
5041};
5042
5043class HUnresolvedStaticFieldGet : public HExpression<0> {
5044 public:
5045  HUnresolvedStaticFieldGet(Primitive::Type field_type,
5046                            uint32_t field_index,
5047                            uint32_t dex_pc)
5048      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5049        field_index_(field_index) {
5050  }
5051
5052  bool NeedsEnvironment() const OVERRIDE { return true; }
5053  bool CanThrow() const OVERRIDE { return true; }
5054
5055  Primitive::Type GetFieldType() const { return GetType(); }
5056  uint32_t GetFieldIndex() const { return field_index_; }
5057
5058  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
5059
5060 private:
5061  const uint32_t field_index_;
5062
5063  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
5064};
5065
5066class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
5067 public:
5068  HUnresolvedStaticFieldSet(HInstruction* value,
5069                            Primitive::Type field_type,
5070                            uint32_t field_index,
5071                            uint32_t dex_pc)
5072      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5073        field_type_(field_type),
5074        field_index_(field_index) {
5075    DCHECK_EQ(field_type, value->GetType());
5076    SetRawInputAt(0, value);
5077  }
5078
5079  bool NeedsEnvironment() const OVERRIDE { return true; }
5080  bool CanThrow() const OVERRIDE { return true; }
5081
5082  Primitive::Type GetFieldType() const { return field_type_; }
5083  uint32_t GetFieldIndex() const { return field_index_; }
5084
5085  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
5086
5087 private:
5088  const Primitive::Type field_type_;
5089  const uint32_t field_index_;
5090
5091  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
5092};
5093
5094// Implement the move-exception DEX instruction.
5095class HLoadException : public HExpression<0> {
5096 public:
5097  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
5098      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
5099
5100  bool CanBeNull() const OVERRIDE { return false; }
5101
5102  DECLARE_INSTRUCTION(LoadException);
5103
5104 private:
5105  DISALLOW_COPY_AND_ASSIGN(HLoadException);
5106};
5107
5108// Implicit part of move-exception which clears thread-local exception storage.
5109// Must not be removed because the runtime expects the TLS to get cleared.
5110class HClearException : public HTemplateInstruction<0> {
5111 public:
5112  explicit HClearException(uint32_t dex_pc = kNoDexPc)
5113      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
5114
5115  DECLARE_INSTRUCTION(ClearException);
5116
5117 private:
5118  DISALLOW_COPY_AND_ASSIGN(HClearException);
5119};
5120
5121class HThrow : public HTemplateInstruction<1> {
5122 public:
5123  HThrow(HInstruction* exception, uint32_t dex_pc)
5124      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
5125    SetRawInputAt(0, exception);
5126  }
5127
5128  bool IsControlFlow() const OVERRIDE { return true; }
5129
5130  bool NeedsEnvironment() const OVERRIDE { return true; }
5131
5132  bool CanThrow() const OVERRIDE { return true; }
5133
5134
5135  DECLARE_INSTRUCTION(Throw);
5136
5137 private:
5138  DISALLOW_COPY_AND_ASSIGN(HThrow);
5139};
5140
5141/**
5142 * Implementation strategies for the code generator of a HInstanceOf
5143 * or `HCheckCast`.
5144 */
5145enum class TypeCheckKind {
5146  kUnresolvedCheck,       // Check against an unresolved type.
5147  kExactCheck,            // Can do a single class compare.
5148  kClassHierarchyCheck,   // Can just walk the super class chain.
5149  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
5150  kInterfaceCheck,        // No optimization yet when checking against an interface.
5151  kArrayObjectCheck,      // Can just check if the array is not primitive.
5152  kArrayCheck             // No optimization yet when checking against a generic array.
5153};
5154
5155class HInstanceOf : public HExpression<2> {
5156 public:
5157  HInstanceOf(HInstruction* object,
5158              HLoadClass* constant,
5159              TypeCheckKind check_kind,
5160              uint32_t dex_pc)
5161      : HExpression(Primitive::kPrimBoolean,
5162                    SideEffectsForArchRuntimeCalls(check_kind),
5163                    dex_pc),
5164        check_kind_(check_kind),
5165        must_do_null_check_(true) {
5166    SetRawInputAt(0, object);
5167    SetRawInputAt(1, constant);
5168  }
5169
5170  bool CanBeMoved() const OVERRIDE { return true; }
5171
5172  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5173    return true;
5174  }
5175
5176  bool NeedsEnvironment() const OVERRIDE {
5177    return false;
5178  }
5179
5180  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5181
5182  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5183
5184  // Used only in code generation.
5185  bool MustDoNullCheck() const { return must_do_null_check_; }
5186  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5187
5188  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
5189    return (check_kind == TypeCheckKind::kExactCheck)
5190        ? SideEffects::None()
5191        // Mips currently does runtime calls for any other checks.
5192        : SideEffects::CanTriggerGC();
5193  }
5194
5195  DECLARE_INSTRUCTION(InstanceOf);
5196
5197 private:
5198  const TypeCheckKind check_kind_;
5199  bool must_do_null_check_;
5200
5201  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
5202};
5203
5204class HBoundType : public HExpression<1> {
5205 public:
5206  // Constructs an HBoundType with the given upper_bound.
5207  // Ensures that the upper_bound is valid.
5208  HBoundType(HInstruction* input,
5209             ReferenceTypeInfo upper_bound,
5210             bool upper_can_be_null,
5211             uint32_t dex_pc = kNoDexPc)
5212      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
5213        upper_bound_(upper_bound),
5214        upper_can_be_null_(upper_can_be_null),
5215        can_be_null_(upper_can_be_null) {
5216    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
5217    SetRawInputAt(0, input);
5218    SetReferenceTypeInfo(upper_bound_);
5219  }
5220
5221  // GetUpper* should only be used in reference type propagation.
5222  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
5223  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
5224
5225  void SetCanBeNull(bool can_be_null) {
5226    DCHECK(upper_can_be_null_ || !can_be_null);
5227    can_be_null_ = can_be_null;
5228  }
5229
5230  bool CanBeNull() const OVERRIDE { return can_be_null_; }
5231
5232  DECLARE_INSTRUCTION(BoundType);
5233
5234 private:
5235  // Encodes the most upper class that this instruction can have. In other words
5236  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
5237  // It is used to bound the type in cases like:
5238  //   if (x instanceof ClassX) {
5239  //     // uper_bound_ will be ClassX
5240  //   }
5241  const ReferenceTypeInfo upper_bound_;
5242  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
5243  // is false then can_be_null_ cannot be true).
5244  const bool upper_can_be_null_;
5245  bool can_be_null_;
5246
5247  DISALLOW_COPY_AND_ASSIGN(HBoundType);
5248};
5249
5250class HCheckCast : public HTemplateInstruction<2> {
5251 public:
5252  HCheckCast(HInstruction* object,
5253             HLoadClass* constant,
5254             TypeCheckKind check_kind,
5255             uint32_t dex_pc)
5256      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc),
5257        check_kind_(check_kind),
5258        must_do_null_check_(true) {
5259    SetRawInputAt(0, object);
5260    SetRawInputAt(1, constant);
5261  }
5262
5263  bool CanBeMoved() const OVERRIDE { return true; }
5264
5265  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5266    return true;
5267  }
5268
5269  bool NeedsEnvironment() const OVERRIDE {
5270    // Instruction may throw a CheckCastError.
5271    return true;
5272  }
5273
5274  bool CanThrow() const OVERRIDE { return true; }
5275
5276  bool MustDoNullCheck() const { return must_do_null_check_; }
5277  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5278  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5279
5280  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5281
5282  DECLARE_INSTRUCTION(CheckCast);
5283
5284 private:
5285  const TypeCheckKind check_kind_;
5286  bool must_do_null_check_;
5287
5288  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
5289};
5290
5291class HMemoryBarrier : public HTemplateInstruction<0> {
5292 public:
5293  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
5294      : HTemplateInstruction(
5295            SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays.
5296        barrier_kind_(barrier_kind) {}
5297
5298  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
5299
5300  DECLARE_INSTRUCTION(MemoryBarrier);
5301
5302 private:
5303  const MemBarrierKind barrier_kind_;
5304
5305  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
5306};
5307
5308class HMonitorOperation : public HTemplateInstruction<1> {
5309 public:
5310  enum OperationKind {
5311    kEnter,
5312    kExit,
5313  };
5314
5315  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
5316    : HTemplateInstruction(
5317          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
5318      kind_(kind) {
5319    SetRawInputAt(0, object);
5320  }
5321
5322  // Instruction may throw a Java exception, so we need an environment.
5323  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
5324
5325  bool CanThrow() const OVERRIDE {
5326    // Verifier guarantees that monitor-exit cannot throw.
5327    // This is important because it allows the HGraphBuilder to remove
5328    // a dead throw-catch loop generated for `synchronized` blocks/methods.
5329    return IsEnter();
5330  }
5331
5332
5333  bool IsEnter() const { return kind_ == kEnter; }
5334
5335  DECLARE_INSTRUCTION(MonitorOperation);
5336
5337 private:
5338  const OperationKind kind_;
5339
5340 private:
5341  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
5342};
5343
5344/**
5345 * A HInstruction used as a marker for the replacement of new + <init>
5346 * of a String to a call to a StringFactory. Only baseline will see
5347 * the node at code generation, where it will be be treated as null.
5348 * When compiling non-baseline, `HFakeString` instructions are being removed
5349 * in the instruction simplifier.
5350 */
5351class HFakeString : public HTemplateInstruction<0> {
5352 public:
5353  explicit HFakeString(uint32_t dex_pc = kNoDexPc)
5354      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
5355
5356  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
5357
5358  DECLARE_INSTRUCTION(FakeString);
5359
5360 private:
5361  DISALLOW_COPY_AND_ASSIGN(HFakeString);
5362};
5363
5364class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
5365 public:
5366  MoveOperands(Location source,
5367               Location destination,
5368               Primitive::Type type,
5369               HInstruction* instruction)
5370      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
5371
5372  Location GetSource() const { return source_; }
5373  Location GetDestination() const { return destination_; }
5374
5375  void SetSource(Location value) { source_ = value; }
5376  void SetDestination(Location value) { destination_ = value; }
5377
5378  // The parallel move resolver marks moves as "in-progress" by clearing the
5379  // destination (but not the source).
5380  Location MarkPending() {
5381    DCHECK(!IsPending());
5382    Location dest = destination_;
5383    destination_ = Location::NoLocation();
5384    return dest;
5385  }
5386
5387  void ClearPending(Location dest) {
5388    DCHECK(IsPending());
5389    destination_ = dest;
5390  }
5391
5392  bool IsPending() const {
5393    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5394    return destination_.IsInvalid() && !source_.IsInvalid();
5395  }
5396
5397  // True if this blocks a move from the given location.
5398  bool Blocks(Location loc) const {
5399    return !IsEliminated() && source_.OverlapsWith(loc);
5400  }
5401
5402  // A move is redundant if it's been eliminated, if its source and
5403  // destination are the same, or if its destination is unneeded.
5404  bool IsRedundant() const {
5405    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
5406  }
5407
5408  // We clear both operands to indicate move that's been eliminated.
5409  void Eliminate() {
5410    source_ = destination_ = Location::NoLocation();
5411  }
5412
5413  bool IsEliminated() const {
5414    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5415    return source_.IsInvalid();
5416  }
5417
5418  Primitive::Type GetType() const { return type_; }
5419
5420  bool Is64BitMove() const {
5421    return Primitive::Is64BitType(type_);
5422  }
5423
5424  HInstruction* GetInstruction() const { return instruction_; }
5425
5426 private:
5427  Location source_;
5428  Location destination_;
5429  // The type this move is for.
5430  Primitive::Type type_;
5431  // The instruction this move is assocatied with. Null when this move is
5432  // for moving an input in the expected locations of user (including a phi user).
5433  // This is only used in debug mode, to ensure we do not connect interval siblings
5434  // in the same parallel move.
5435  HInstruction* instruction_;
5436};
5437
5438static constexpr size_t kDefaultNumberOfMoves = 4;
5439
5440class HParallelMove : public HTemplateInstruction<0> {
5441 public:
5442  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
5443      : HTemplateInstruction(SideEffects::None(), dex_pc),
5444        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
5445    moves_.reserve(kDefaultNumberOfMoves);
5446  }
5447
5448  void AddMove(Location source,
5449               Location destination,
5450               Primitive::Type type,
5451               HInstruction* instruction) {
5452    DCHECK(source.IsValid());
5453    DCHECK(destination.IsValid());
5454    if (kIsDebugBuild) {
5455      if (instruction != nullptr) {
5456        for (const MoveOperands& move : moves_) {
5457          if (move.GetInstruction() == instruction) {
5458            // Special case the situation where the move is for the spill slot
5459            // of the instruction.
5460            if ((GetPrevious() == instruction)
5461                || ((GetPrevious() == nullptr)
5462                    && instruction->IsPhi()
5463                    && instruction->GetBlock() == GetBlock())) {
5464              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
5465                  << "Doing parallel moves for the same instruction.";
5466            } else {
5467              DCHECK(false) << "Doing parallel moves for the same instruction.";
5468            }
5469          }
5470        }
5471      }
5472      for (const MoveOperands& move : moves_) {
5473        DCHECK(!destination.OverlapsWith(move.GetDestination()))
5474            << "Overlapped destination for two moves in a parallel move: "
5475            << move.GetSource() << " ==> " << move.GetDestination() << " and "
5476            << source << " ==> " << destination;
5477      }
5478    }
5479    moves_.emplace_back(source, destination, type, instruction);
5480  }
5481
5482  MoveOperands* MoveOperandsAt(size_t index) {
5483    return &moves_[index];
5484  }
5485
5486  size_t NumMoves() const { return moves_.size(); }
5487
5488  DECLARE_INSTRUCTION(ParallelMove);
5489
5490 private:
5491  ArenaVector<MoveOperands> moves_;
5492
5493  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
5494};
5495
5496}  // namespace art
5497
5498#ifdef ART_ENABLE_CODEGEN_arm64
5499#include "nodes_arm64.h"
5500#endif
5501#ifdef ART_ENABLE_CODEGEN_x86
5502#include "nodes_x86.h"
5503#endif
5504
5505namespace art {
5506
5507class HGraphVisitor : public ValueObject {
5508 public:
5509  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
5510  virtual ~HGraphVisitor() {}
5511
5512  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
5513  virtual void VisitBasicBlock(HBasicBlock* block);
5514
5515  // Visit the graph following basic block insertion order.
5516  void VisitInsertionOrder();
5517
5518  // Visit the graph following dominator tree reverse post-order.
5519  void VisitReversePostOrder();
5520
5521  HGraph* GetGraph() const { return graph_; }
5522
5523  // Visit functions for instruction classes.
5524#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5525  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
5526
5527  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5528
5529#undef DECLARE_VISIT_INSTRUCTION
5530
5531 private:
5532  HGraph* const graph_;
5533
5534  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
5535};
5536
5537class HGraphDelegateVisitor : public HGraphVisitor {
5538 public:
5539  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
5540  virtual ~HGraphDelegateVisitor() {}
5541
5542  // Visit functions that delegate to to super class.
5543#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5544  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
5545
5546  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5547
5548#undef DECLARE_VISIT_INSTRUCTION
5549
5550 private:
5551  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
5552};
5553
5554class HInsertionOrderIterator : public ValueObject {
5555 public:
5556  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
5557
5558  bool Done() const { return index_ == graph_.GetBlocks().size(); }
5559  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
5560  void Advance() { ++index_; }
5561
5562 private:
5563  const HGraph& graph_;
5564  size_t index_;
5565
5566  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
5567};
5568
5569class HReversePostOrderIterator : public ValueObject {
5570 public:
5571  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
5572    // Check that reverse post order of the graph has been built.
5573    DCHECK(!graph.GetReversePostOrder().empty());
5574  }
5575
5576  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
5577  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
5578  void Advance() { ++index_; }
5579
5580 private:
5581  const HGraph& graph_;
5582  size_t index_;
5583
5584  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
5585};
5586
5587class HPostOrderIterator : public ValueObject {
5588 public:
5589  explicit HPostOrderIterator(const HGraph& graph)
5590      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
5591    // Check that reverse post order of the graph has been built.
5592    DCHECK(!graph.GetReversePostOrder().empty());
5593  }
5594
5595  bool Done() const { return index_ == 0; }
5596  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
5597  void Advance() { --index_; }
5598
5599 private:
5600  const HGraph& graph_;
5601  size_t index_;
5602
5603  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
5604};
5605
5606class HLinearPostOrderIterator : public ValueObject {
5607 public:
5608  explicit HLinearPostOrderIterator(const HGraph& graph)
5609      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
5610
5611  bool Done() const { return index_ == 0; }
5612
5613  HBasicBlock* Current() const { return order_[index_ - 1u]; }
5614
5615  void Advance() {
5616    --index_;
5617    DCHECK_GE(index_, 0U);
5618  }
5619
5620 private:
5621  const ArenaVector<HBasicBlock*>& order_;
5622  size_t index_;
5623
5624  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
5625};
5626
5627class HLinearOrderIterator : public ValueObject {
5628 public:
5629  explicit HLinearOrderIterator(const HGraph& graph)
5630      : order_(graph.GetLinearOrder()), index_(0) {}
5631
5632  bool Done() const { return index_ == order_.size(); }
5633  HBasicBlock* Current() const { return order_[index_]; }
5634  void Advance() { ++index_; }
5635
5636 private:
5637  const ArenaVector<HBasicBlock*>& order_;
5638  size_t index_;
5639
5640  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
5641};
5642
5643// Iterator over the blocks that art part of the loop. Includes blocks part
5644// of an inner loop. The order in which the blocks are iterated is on their
5645// block id.
5646class HBlocksInLoopIterator : public ValueObject {
5647 public:
5648  explicit HBlocksInLoopIterator(const HLoopInformation& info)
5649      : blocks_in_loop_(info.GetBlocks()),
5650        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
5651        index_(0) {
5652    if (!blocks_in_loop_.IsBitSet(index_)) {
5653      Advance();
5654    }
5655  }
5656
5657  bool Done() const { return index_ == blocks_.size(); }
5658  HBasicBlock* Current() const { return blocks_[index_]; }
5659  void Advance() {
5660    ++index_;
5661    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5662      if (blocks_in_loop_.IsBitSet(index_)) {
5663        break;
5664      }
5665    }
5666  }
5667
5668 private:
5669  const BitVector& blocks_in_loop_;
5670  const ArenaVector<HBasicBlock*>& blocks_;
5671  size_t index_;
5672
5673  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
5674};
5675
5676// Iterator over the blocks that art part of the loop. Includes blocks part
5677// of an inner loop. The order in which the blocks are iterated is reverse
5678// post order.
5679class HBlocksInLoopReversePostOrderIterator : public ValueObject {
5680 public:
5681  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
5682      : blocks_in_loop_(info.GetBlocks()),
5683        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
5684        index_(0) {
5685    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5686      Advance();
5687    }
5688  }
5689
5690  bool Done() const { return index_ == blocks_.size(); }
5691  HBasicBlock* Current() const { return blocks_[index_]; }
5692  void Advance() {
5693    ++index_;
5694    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5695      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5696        break;
5697      }
5698    }
5699  }
5700
5701 private:
5702  const BitVector& blocks_in_loop_;
5703  const ArenaVector<HBasicBlock*>& blocks_;
5704  size_t index_;
5705
5706  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
5707};
5708
5709inline int64_t Int64FromConstant(HConstant* constant) {
5710  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
5711  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
5712                                   : constant->AsLongConstant()->GetValue();
5713}
5714
5715inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
5716  // For the purposes of the compiler, the dex files must actually be the same object
5717  // if we want to safely treat them as the same. This is especially important for JIT
5718  // as custom class loaders can open the same underlying file (or memory) multiple
5719  // times and provide different class resolution but no two class loaders should ever
5720  // use the same DexFile object - doing so is an unsupported hack that can lead to
5721  // all sorts of weird failures.
5722  return &lhs == &rhs;
5723}
5724
5725}  // namespace art
5726
5727#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
5728