nodes.h revision d930929be93798d790c91dd05adf2c038508f1b0
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18#define ART_COMPILER_OPTIMIZING_NODES_H_
19
20#include <algorithm>
21#include <array>
22#include <type_traits>
23
24#include "base/arena_bit_vector.h"
25#include "base/arena_containers.h"
26#include "base/arena_object.h"
27#include "base/stl_util.h"
28#include "dex/compiler_enums.h"
29#include "entrypoints/quick/quick_entrypoints_enum.h"
30#include "handle.h"
31#include "handle_scope.h"
32#include "invoke_type.h"
33#include "locations.h"
34#include "method_reference.h"
35#include "mirror/class.h"
36#include "offsets.h"
37#include "primitive.h"
38
39namespace art {
40
41class GraphChecker;
42class HBasicBlock;
43class HCurrentMethod;
44class HDoubleConstant;
45class HEnvironment;
46class HFakeString;
47class HFloatConstant;
48class HGraphBuilder;
49class HGraphVisitor;
50class HInstruction;
51class HIntConstant;
52class HInvoke;
53class HLongConstant;
54class HNullConstant;
55class HPhi;
56class HSuspendCheck;
57class HTryBoundary;
58class LiveInterval;
59class LocationSummary;
60class SlowPathCode;
61class SsaBuilder;
62
63namespace mirror {
64class DexCache;
65}  // namespace mirror
66
67static const int kDefaultNumberOfBlocks = 8;
68static const int kDefaultNumberOfSuccessors = 2;
69static const int kDefaultNumberOfPredecessors = 2;
70static const int kDefaultNumberOfExceptionalPredecessors = 0;
71static const int kDefaultNumberOfDominatedBlocks = 1;
72static const int kDefaultNumberOfBackEdges = 1;
73
74static constexpr uint32_t kMaxIntShiftValue = 0x1f;
75static constexpr uint64_t kMaxLongShiftValue = 0x3f;
76
77static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
78static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
79
80static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
81
82static constexpr uint32_t kNoDexPc = -1;
83
84enum IfCondition {
85  // All types.
86  kCondEQ,  // ==
87  kCondNE,  // !=
88  // Signed integers and floating-point numbers.
89  kCondLT,  // <
90  kCondLE,  // <=
91  kCondGT,  // >
92  kCondGE,  // >=
93  // Unsigned integers.
94  kCondB,   // <
95  kCondBE,  // <=
96  kCondA,   // >
97  kCondAE,  // >=
98};
99
100class HInstructionList : public ValueObject {
101 public:
102  HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
103
104  void AddInstruction(HInstruction* instruction);
105  void RemoveInstruction(HInstruction* instruction);
106
107  // Insert `instruction` before/after an existing instruction `cursor`.
108  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
109  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
110
111  // Return true if this list contains `instruction`.
112  bool Contains(HInstruction* instruction) const;
113
114  // Return true if `instruction1` is found before `instruction2` in
115  // this instruction list and false otherwise.  Abort if none
116  // of these instructions is found.
117  bool FoundBefore(const HInstruction* instruction1,
118                   const HInstruction* instruction2) const;
119
120  bool IsEmpty() const { return first_instruction_ == nullptr; }
121  void Clear() { first_instruction_ = last_instruction_ = nullptr; }
122
123  // Update the block of all instructions to be `block`.
124  void SetBlockOfInstructions(HBasicBlock* block) const;
125
126  void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
127  void Add(const HInstructionList& instruction_list);
128
129  // Return the number of instructions in the list. This is an expensive operation.
130  size_t CountSize() const;
131
132 private:
133  HInstruction* first_instruction_;
134  HInstruction* last_instruction_;
135
136  friend class HBasicBlock;
137  friend class HGraph;
138  friend class HInstruction;
139  friend class HInstructionIterator;
140  friend class HBackwardInstructionIterator;
141
142  DISALLOW_COPY_AND_ASSIGN(HInstructionList);
143};
144
145// Control-flow graph of a method. Contains a list of basic blocks.
146class HGraph : public ArenaObject<kArenaAllocGraph> {
147 public:
148  HGraph(ArenaAllocator* arena,
149         const DexFile& dex_file,
150         uint32_t method_idx,
151         bool should_generate_constructor_barrier,
152         InstructionSet instruction_set,
153         InvokeType invoke_type = kInvalidInvokeType,
154         bool debuggable = false,
155         int start_instruction_id = 0)
156      : arena_(arena),
157        blocks_(arena->Adapter(kArenaAllocBlockList)),
158        reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
159        linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
160        entry_block_(nullptr),
161        exit_block_(nullptr),
162        maximum_number_of_out_vregs_(0),
163        number_of_vregs_(0),
164        number_of_in_vregs_(0),
165        temporaries_vreg_slots_(0),
166        has_bounds_checks_(false),
167        has_try_catch_(false),
168        debuggable_(debuggable),
169        current_instruction_id_(start_instruction_id),
170        dex_file_(dex_file),
171        method_idx_(method_idx),
172        invoke_type_(invoke_type),
173        in_ssa_form_(false),
174        should_generate_constructor_barrier_(should_generate_constructor_barrier),
175        instruction_set_(instruction_set),
176        cached_null_constant_(nullptr),
177        cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
178        cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
179        cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
180        cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
181        cached_current_method_(nullptr) {
182    blocks_.reserve(kDefaultNumberOfBlocks);
183  }
184
185  ArenaAllocator* GetArena() const { return arena_; }
186  const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
187
188  bool IsInSsaForm() const { return in_ssa_form_; }
189
190  HBasicBlock* GetEntryBlock() const { return entry_block_; }
191  HBasicBlock* GetExitBlock() const { return exit_block_; }
192  bool HasExitBlock() const { return exit_block_ != nullptr; }
193
194  void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
195  void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
196
197  void AddBlock(HBasicBlock* block);
198
199  // Try building the SSA form of this graph, with dominance computation and loop
200  // recognition. Returns whether it was successful in doing all these steps.
201  bool TryBuildingSsa() {
202    BuildDominatorTree();
203    // The SSA builder requires loops to all be natural. Specifically, the dead phi
204    // elimination phase checks the consistency of the graph when doing a post-order
205    // visit for eliminating dead phis: a dead phi can only have loop header phi
206    // users remaining when being visited.
207    if (!AnalyzeNaturalLoops()) return false;
208    // Precompute per-block try membership before entering the SSA builder,
209    // which needs the information to build catch block phis from values of
210    // locals at throwing instructions inside try blocks.
211    ComputeTryBlockInformation();
212    TransformToSsa();
213    in_ssa_form_ = true;
214    return true;
215  }
216
217  void ComputeDominanceInformation();
218  void ClearDominanceInformation();
219
220  void BuildDominatorTree();
221  void TransformToSsa();
222  void SimplifyCFG();
223  void SimplifyCatchBlocks();
224
225  // Analyze all natural loops in this graph. Returns false if one
226  // loop is not natural, that is the header does not dominate the
227  // back edge.
228  bool AnalyzeNaturalLoops() const;
229
230  // Iterate over blocks to compute try block membership. Needs reverse post
231  // order and loop information.
232  void ComputeTryBlockInformation();
233
234  // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
235  // Returns the instruction used to replace the invoke expression or null if the
236  // invoke is for a void method.
237  HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
238
239  // Need to add a couple of blocks to test if the loop body is entered and
240  // put deoptimization instructions, etc.
241  void TransformLoopHeaderForBCE(HBasicBlock* header);
242
243  // Removes `block` from the graph.
244  void DeleteDeadBlock(HBasicBlock* block);
245
246  // Splits the edge between `block` and `successor` while preserving the
247  // indices in the predecessor/successor lists. If there are multiple edges
248  // between the blocks, the lowest indices are used.
249  // Returns the new block which is empty and has the same dex pc as `successor`.
250  HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
251
252  void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
253  void SimplifyLoop(HBasicBlock* header);
254
255  int32_t GetNextInstructionId() {
256    DCHECK_NE(current_instruction_id_, INT32_MAX);
257    return current_instruction_id_++;
258  }
259
260  int32_t GetCurrentInstructionId() const {
261    return current_instruction_id_;
262  }
263
264  void SetCurrentInstructionId(int32_t id) {
265    current_instruction_id_ = id;
266  }
267
268  uint16_t GetMaximumNumberOfOutVRegs() const {
269    return maximum_number_of_out_vregs_;
270  }
271
272  void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
273    maximum_number_of_out_vregs_ = new_value;
274  }
275
276  void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
277    maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
278  }
279
280  void UpdateTemporariesVRegSlots(size_t slots) {
281    temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
282  }
283
284  size_t GetTemporariesVRegSlots() const {
285    DCHECK(!in_ssa_form_);
286    return temporaries_vreg_slots_;
287  }
288
289  void SetNumberOfVRegs(uint16_t number_of_vregs) {
290    number_of_vregs_ = number_of_vregs;
291  }
292
293  uint16_t GetNumberOfVRegs() const {
294    return number_of_vregs_;
295  }
296
297  void SetNumberOfInVRegs(uint16_t value) {
298    number_of_in_vregs_ = value;
299  }
300
301  uint16_t GetNumberOfLocalVRegs() const {
302    DCHECK(!in_ssa_form_);
303    return number_of_vregs_ - number_of_in_vregs_;
304  }
305
306  const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
307    return reverse_post_order_;
308  }
309
310  const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
311    return linear_order_;
312  }
313
314  bool HasBoundsChecks() const {
315    return has_bounds_checks_;
316  }
317
318  void SetHasBoundsChecks(bool value) {
319    has_bounds_checks_ = value;
320  }
321
322  bool ShouldGenerateConstructorBarrier() const {
323    return should_generate_constructor_barrier_;
324  }
325
326  bool IsDebuggable() const { return debuggable_; }
327
328  // Returns a constant of the given type and value. If it does not exist
329  // already, it is created and inserted into the graph. This method is only for
330  // integral types.
331  HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
332
333  // TODO: This is problematic for the consistency of reference type propagation
334  // because it can be created anytime after the pass and thus it will be left
335  // with an invalid type.
336  HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
337
338  HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
339    return CreateConstant(value, &cached_int_constants_, dex_pc);
340  }
341  HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
342    return CreateConstant(value, &cached_long_constants_, dex_pc);
343  }
344  HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
345    return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
346  }
347  HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
348    return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
349  }
350
351  HCurrentMethod* GetCurrentMethod();
352
353  HBasicBlock* FindCommonDominator(HBasicBlock* first, HBasicBlock* second) const;
354
355  const DexFile& GetDexFile() const {
356    return dex_file_;
357  }
358
359  uint32_t GetMethodIdx() const {
360    return method_idx_;
361  }
362
363  InvokeType GetInvokeType() const {
364    return invoke_type_;
365  }
366
367  InstructionSet GetInstructionSet() const {
368    return instruction_set_;
369  }
370
371  bool HasTryCatch() const { return has_try_catch_; }
372  void SetHasTryCatch(bool value) { has_try_catch_ = value; }
373
374 private:
375  void FindBackEdges(ArenaBitVector* visited);
376  void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
377  void RemoveDeadBlocks(const ArenaBitVector& visited);
378
379  template <class InstructionType, typename ValueType>
380  InstructionType* CreateConstant(ValueType value,
381                                  ArenaSafeMap<ValueType, InstructionType*>* cache,
382                                  uint32_t dex_pc = kNoDexPc) {
383    // Try to find an existing constant of the given value.
384    InstructionType* constant = nullptr;
385    auto cached_constant = cache->find(value);
386    if (cached_constant != cache->end()) {
387      constant = cached_constant->second;
388    }
389
390    // If not found or previously deleted, create and cache a new instruction.
391    // Don't bother reviving a previously deleted instruction, for simplicity.
392    if (constant == nullptr || constant->GetBlock() == nullptr) {
393      constant = new (arena_) InstructionType(value, dex_pc);
394      cache->Overwrite(value, constant);
395      InsertConstant(constant);
396    }
397    return constant;
398  }
399
400  void InsertConstant(HConstant* instruction);
401
402  // Cache a float constant into the graph. This method should only be
403  // called by the SsaBuilder when creating "equivalent" instructions.
404  void CacheFloatConstant(HFloatConstant* constant);
405
406  // See CacheFloatConstant comment.
407  void CacheDoubleConstant(HDoubleConstant* constant);
408
409  ArenaAllocator* const arena_;
410
411  // List of blocks in insertion order.
412  ArenaVector<HBasicBlock*> blocks_;
413
414  // List of blocks to perform a reverse post order tree traversal.
415  ArenaVector<HBasicBlock*> reverse_post_order_;
416
417  // List of blocks to perform a linear order tree traversal.
418  ArenaVector<HBasicBlock*> linear_order_;
419
420  HBasicBlock* entry_block_;
421  HBasicBlock* exit_block_;
422
423  // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
424  uint16_t maximum_number_of_out_vregs_;
425
426  // The number of virtual registers in this method. Contains the parameters.
427  uint16_t number_of_vregs_;
428
429  // The number of virtual registers used by parameters of this method.
430  uint16_t number_of_in_vregs_;
431
432  // Number of vreg size slots that the temporaries use (used in baseline compiler).
433  size_t temporaries_vreg_slots_;
434
435  // Has bounds checks. We can totally skip BCE if it's false.
436  bool has_bounds_checks_;
437
438  // Flag whether there are any try/catch blocks in the graph. We will skip
439  // try/catch-related passes if false.
440  bool has_try_catch_;
441
442  // Indicates whether the graph should be compiled in a way that
443  // ensures full debuggability. If false, we can apply more
444  // aggressive optimizations that may limit the level of debugging.
445  const bool debuggable_;
446
447  // The current id to assign to a newly added instruction. See HInstruction.id_.
448  int32_t current_instruction_id_;
449
450  // The dex file from which the method is from.
451  const DexFile& dex_file_;
452
453  // The method index in the dex file.
454  const uint32_t method_idx_;
455
456  // If inlined, this encodes how the callee is being invoked.
457  const InvokeType invoke_type_;
458
459  // Whether the graph has been transformed to SSA form. Only used
460  // in debug mode to ensure we are not using properties only valid
461  // for non-SSA form (like the number of temporaries).
462  bool in_ssa_form_;
463
464  const bool should_generate_constructor_barrier_;
465
466  const InstructionSet instruction_set_;
467
468  // Cached constants.
469  HNullConstant* cached_null_constant_;
470  ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
471  ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
472  ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
473  ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
474
475  HCurrentMethod* cached_current_method_;
476
477  friend class SsaBuilder;           // For caching constants.
478  friend class SsaLivenessAnalysis;  // For the linear order.
479  ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
480  DISALLOW_COPY_AND_ASSIGN(HGraph);
481};
482
483class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
484 public:
485  HLoopInformation(HBasicBlock* header, HGraph* graph)
486      : header_(header),
487        suspend_check_(nullptr),
488        back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
489        // Make bit vector growable, as the number of blocks may change.
490        blocks_(graph->GetArena(), graph->GetBlocks().size(), true) {
491    back_edges_.reserve(kDefaultNumberOfBackEdges);
492  }
493
494  HBasicBlock* GetHeader() const {
495    return header_;
496  }
497
498  void SetHeader(HBasicBlock* block) {
499    header_ = block;
500  }
501
502  HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
503  void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
504  bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
505
506  void AddBackEdge(HBasicBlock* back_edge) {
507    back_edges_.push_back(back_edge);
508  }
509
510  void RemoveBackEdge(HBasicBlock* back_edge) {
511    RemoveElement(back_edges_, back_edge);
512  }
513
514  bool IsBackEdge(const HBasicBlock& block) const {
515    return ContainsElement(back_edges_, &block);
516  }
517
518  size_t NumberOfBackEdges() const {
519    return back_edges_.size();
520  }
521
522  HBasicBlock* GetPreHeader() const;
523
524  const ArenaVector<HBasicBlock*>& GetBackEdges() const {
525    return back_edges_;
526  }
527
528  // Returns the lifetime position of the back edge that has the
529  // greatest lifetime position.
530  size_t GetLifetimeEnd() const;
531
532  void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
533    ReplaceElement(back_edges_, existing, new_back_edge);
534  }
535
536  // Finds blocks that are part of this loop. Returns whether the loop is a natural loop,
537  // that is the header dominates the back edge.
538  bool Populate();
539
540  // Reanalyzes the loop by removing loop info from its blocks and re-running
541  // Populate(). If there are no back edges left, the loop info is completely
542  // removed as well as its SuspendCheck instruction. It must be run on nested
543  // inner loops first.
544  void Update();
545
546  // Returns whether this loop information contains `block`.
547  // Note that this loop information *must* be populated before entering this function.
548  bool Contains(const HBasicBlock& block) const;
549
550  // Returns whether this loop information is an inner loop of `other`.
551  // Note that `other` *must* be populated before entering this function.
552  bool IsIn(const HLoopInformation& other) const;
553
554  // Returns true if instruction is not defined within this loop or any loop nested inside
555  // this loop. If must_dominate is set, only definitions that actually dominate the loop
556  // header can be invariant. Otherwise, any definition outside the loop, including
557  // definitions that appear after the loop, is invariant.
558  bool IsLoopInvariant(HInstruction* instruction, bool must_dominate) const;
559
560  const ArenaBitVector& GetBlocks() const { return blocks_; }
561
562  void Add(HBasicBlock* block);
563  void Remove(HBasicBlock* block);
564
565 private:
566  // Internal recursive implementation of `Populate`.
567  void PopulateRecursive(HBasicBlock* block);
568
569  HBasicBlock* header_;
570  HSuspendCheck* suspend_check_;
571  ArenaVector<HBasicBlock*> back_edges_;
572  ArenaBitVector blocks_;
573
574  DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
575};
576
577// Stores try/catch information for basic blocks.
578// Note that HGraph is constructed so that catch blocks cannot simultaneously
579// be try blocks.
580class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
581 public:
582  // Try block information constructor.
583  explicit TryCatchInformation(const HTryBoundary& try_entry)
584      : try_entry_(&try_entry),
585        catch_dex_file_(nullptr),
586        catch_type_index_(DexFile::kDexNoIndex16) {
587    DCHECK(try_entry_ != nullptr);
588  }
589
590  // Catch block information constructor.
591  TryCatchInformation(uint16_t catch_type_index, const DexFile& dex_file)
592      : try_entry_(nullptr),
593        catch_dex_file_(&dex_file),
594        catch_type_index_(catch_type_index) {}
595
596  bool IsTryBlock() const { return try_entry_ != nullptr; }
597
598  const HTryBoundary& GetTryEntry() const {
599    DCHECK(IsTryBlock());
600    return *try_entry_;
601  }
602
603  bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
604
605  bool IsCatchAllTypeIndex() const {
606    DCHECK(IsCatchBlock());
607    return catch_type_index_ == DexFile::kDexNoIndex16;
608  }
609
610  uint16_t GetCatchTypeIndex() const {
611    DCHECK(IsCatchBlock());
612    return catch_type_index_;
613  }
614
615  const DexFile& GetCatchDexFile() const {
616    DCHECK(IsCatchBlock());
617    return *catch_dex_file_;
618  }
619
620 private:
621  // One of possibly several TryBoundary instructions entering the block's try.
622  // Only set for try blocks.
623  const HTryBoundary* try_entry_;
624
625  // Exception type information. Only set for catch blocks.
626  const DexFile* catch_dex_file_;
627  const uint16_t catch_type_index_;
628};
629
630static constexpr size_t kNoLifetime = -1;
631static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
632
633// A block in a method. Contains the list of instructions represented
634// as a double linked list. Each block knows its predecessors and
635// successors.
636
637class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
638 public:
639  HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
640      : graph_(graph),
641        predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
642        successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
643        loop_information_(nullptr),
644        dominator_(nullptr),
645        dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
646        block_id_(kInvalidBlockId),
647        dex_pc_(dex_pc),
648        lifetime_start_(kNoLifetime),
649        lifetime_end_(kNoLifetime),
650        try_catch_information_(nullptr) {
651    predecessors_.reserve(kDefaultNumberOfPredecessors);
652    successors_.reserve(kDefaultNumberOfSuccessors);
653    dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
654  }
655
656  const ArenaVector<HBasicBlock*>& GetPredecessors() const {
657    return predecessors_;
658  }
659
660  const ArenaVector<HBasicBlock*>& GetSuccessors() const {
661    return successors_;
662  }
663
664  bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
665    return ContainsElement(successors_, block, start_from);
666  }
667
668  const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
669    return dominated_blocks_;
670  }
671
672  bool IsEntryBlock() const {
673    return graph_->GetEntryBlock() == this;
674  }
675
676  bool IsExitBlock() const {
677    return graph_->GetExitBlock() == this;
678  }
679
680  bool IsSingleGoto() const;
681  bool IsSingleTryBoundary() const;
682
683  // Returns true if this block emits nothing but a jump.
684  bool IsSingleJump() const {
685    HLoopInformation* loop_info = GetLoopInformation();
686    return (IsSingleGoto() || IsSingleTryBoundary())
687           // Back edges generate a suspend check.
688           && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
689  }
690
691  void AddBackEdge(HBasicBlock* back_edge) {
692    if (loop_information_ == nullptr) {
693      loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
694    }
695    DCHECK_EQ(loop_information_->GetHeader(), this);
696    loop_information_->AddBackEdge(back_edge);
697  }
698
699  HGraph* GetGraph() const { return graph_; }
700  void SetGraph(HGraph* graph) { graph_ = graph; }
701
702  uint32_t GetBlockId() const { return block_id_; }
703  void SetBlockId(int id) { block_id_ = id; }
704  uint32_t GetDexPc() const { return dex_pc_; }
705
706  HBasicBlock* GetDominator() const { return dominator_; }
707  void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
708  void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
709
710  void RemoveDominatedBlock(HBasicBlock* block) {
711    RemoveElement(dominated_blocks_, block);
712  }
713
714  void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
715    ReplaceElement(dominated_blocks_, existing, new_block);
716  }
717
718  void ClearDominanceInformation();
719
720  int NumberOfBackEdges() const {
721    return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
722  }
723
724  HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
725  HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
726  const HInstructionList& GetInstructions() const { return instructions_; }
727  HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
728  HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
729  const HInstructionList& GetPhis() const { return phis_; }
730
731  void AddSuccessor(HBasicBlock* block) {
732    successors_.push_back(block);
733    block->predecessors_.push_back(this);
734  }
735
736  void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
737    size_t successor_index = GetSuccessorIndexOf(existing);
738    existing->RemovePredecessor(this);
739    new_block->predecessors_.push_back(this);
740    successors_[successor_index] = new_block;
741  }
742
743  void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
744    size_t predecessor_index = GetPredecessorIndexOf(existing);
745    existing->RemoveSuccessor(this);
746    new_block->successors_.push_back(this);
747    predecessors_[predecessor_index] = new_block;
748  }
749
750  // Insert `this` between `predecessor` and `successor. This method
751  // preserves the indicies, and will update the first edge found between
752  // `predecessor` and `successor`.
753  void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
754    size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
755    size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
756    successor->predecessors_[predecessor_index] = this;
757    predecessor->successors_[successor_index] = this;
758    successors_.push_back(successor);
759    predecessors_.push_back(predecessor);
760  }
761
762  void RemovePredecessor(HBasicBlock* block) {
763    predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
764  }
765
766  void RemoveSuccessor(HBasicBlock* block) {
767    successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
768  }
769
770  void ClearAllPredecessors() {
771    predecessors_.clear();
772  }
773
774  void AddPredecessor(HBasicBlock* block) {
775    predecessors_.push_back(block);
776    block->successors_.push_back(this);
777  }
778
779  void SwapPredecessors() {
780    DCHECK_EQ(predecessors_.size(), 2u);
781    std::swap(predecessors_[0], predecessors_[1]);
782  }
783
784  void SwapSuccessors() {
785    DCHECK_EQ(successors_.size(), 2u);
786    std::swap(successors_[0], successors_[1]);
787  }
788
789  size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
790    return IndexOfElement(predecessors_, predecessor);
791  }
792
793  size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
794    return IndexOfElement(successors_, successor);
795  }
796
797  HBasicBlock* GetSinglePredecessor() const {
798    DCHECK_EQ(GetPredecessors().size(), 1u);
799    return GetPredecessors()[0];
800  }
801
802  HBasicBlock* GetSingleSuccessor() const {
803    DCHECK_EQ(GetSuccessors().size(), 1u);
804    return GetSuccessors()[0];
805  }
806
807  // Returns whether the first occurrence of `predecessor` in the list of
808  // predecessors is at index `idx`.
809  bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
810    DCHECK_EQ(GetPredecessors()[idx], predecessor);
811    return GetPredecessorIndexOf(predecessor) == idx;
812  }
813
814  // Returns the number of non-exceptional successors. SsaChecker ensures that
815  // these are stored at the beginning of the successor list.
816  size_t NumberOfNormalSuccessors() const {
817    return EndsWithTryBoundary() ? 1 : GetSuccessors().size();
818  }
819
820  // Create a new block between this block and its predecessors. The new block
821  // is added to the graph, all predecessor edges are relinked to it and an edge
822  // is created to `this`. Returns the new empty block. Reverse post order or
823  // loop and try/catch information are not updated.
824  HBasicBlock* CreateImmediateDominator();
825
826  // Split the block into two blocks just before `cursor`. Returns the newly
827  // created, latter block. Note that this method will add the block to the
828  // graph, create a Goto at the end of the former block and will create an edge
829  // between the blocks. It will not, however, update the reverse post order or
830  // loop and try/catch information.
831  HBasicBlock* SplitBefore(HInstruction* cursor);
832
833  // Split the block into two blocks just after `cursor`. Returns the newly
834  // created block. Note that this method just updates raw block information,
835  // like predecessors, successors, dominators, and instruction list. It does not
836  // update the graph, reverse post order, loop information, nor make sure the
837  // blocks are consistent (for example ending with a control flow instruction).
838  HBasicBlock* SplitAfter(HInstruction* cursor);
839
840  // Merge `other` at the end of `this`. Successors and dominated blocks of
841  // `other` are changed to be successors and dominated blocks of `this`. Note
842  // that this method does not update the graph, reverse post order, loop
843  // information, nor make sure the blocks are consistent (for example ending
844  // with a control flow instruction).
845  void MergeWithInlined(HBasicBlock* other);
846
847  // Replace `this` with `other`. Predecessors, successors, and dominated blocks
848  // of `this` are moved to `other`.
849  // Note that this method does not update the graph, reverse post order, loop
850  // information, nor make sure the blocks are consistent (for example ending
851  // with a control flow instruction).
852  void ReplaceWith(HBasicBlock* other);
853
854  // Merge `other` at the end of `this`. This method updates loops, reverse post
855  // order, links to predecessors, successors, dominators and deletes the block
856  // from the graph. The two blocks must be successive, i.e. `this` the only
857  // predecessor of `other` and vice versa.
858  void MergeWith(HBasicBlock* other);
859
860  // Disconnects `this` from all its predecessors, successors and dominator,
861  // removes it from all loops it is included in and eventually from the graph.
862  // The block must not dominate any other block. Predecessors and successors
863  // are safely updated.
864  void DisconnectAndDelete();
865
866  void AddInstruction(HInstruction* instruction);
867  // Insert `instruction` before/after an existing instruction `cursor`.
868  void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
869  void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
870  // Replace instruction `initial` with `replacement` within this block.
871  void ReplaceAndRemoveInstructionWith(HInstruction* initial,
872                                       HInstruction* replacement);
873  void AddPhi(HPhi* phi);
874  void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
875  // RemoveInstruction and RemovePhi delete a given instruction from the respective
876  // instruction list. With 'ensure_safety' set to true, it verifies that the
877  // instruction is not in use and removes it from the use lists of its inputs.
878  void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
879  void RemovePhi(HPhi* phi, bool ensure_safety = true);
880  void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
881
882  bool IsLoopHeader() const {
883    return IsInLoop() && (loop_information_->GetHeader() == this);
884  }
885
886  bool IsLoopPreHeaderFirstPredecessor() const {
887    DCHECK(IsLoopHeader());
888    return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
889  }
890
891  HLoopInformation* GetLoopInformation() const {
892    return loop_information_;
893  }
894
895  // Set the loop_information_ on this block. Overrides the current
896  // loop_information if it is an outer loop of the passed loop information.
897  // Note that this method is called while creating the loop information.
898  void SetInLoop(HLoopInformation* info) {
899    if (IsLoopHeader()) {
900      // Nothing to do. This just means `info` is an outer loop.
901    } else if (!IsInLoop()) {
902      loop_information_ = info;
903    } else if (loop_information_->Contains(*info->GetHeader())) {
904      // Block is currently part of an outer loop. Make it part of this inner loop.
905      // Note that a non loop header having a loop information means this loop information
906      // has already been populated
907      loop_information_ = info;
908    } else {
909      // Block is part of an inner loop. Do not update the loop information.
910      // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
911      // at this point, because this method is being called while populating `info`.
912    }
913  }
914
915  // Raw update of the loop information.
916  void SetLoopInformation(HLoopInformation* info) {
917    loop_information_ = info;
918  }
919
920  bool IsInLoop() const { return loop_information_ != nullptr; }
921
922  TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
923
924  void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
925    try_catch_information_ = try_catch_information;
926  }
927
928  bool IsTryBlock() const {
929    return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
930  }
931
932  bool IsCatchBlock() const {
933    return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
934  }
935
936  // Returns the try entry that this block's successors should have. They will
937  // be in the same try, unless the block ends in a try boundary. In that case,
938  // the appropriate try entry will be returned.
939  const HTryBoundary* ComputeTryEntryOfSuccessors() const;
940
941  bool HasThrowingInstructions() const;
942
943  // Returns whether this block dominates the blocked passed as parameter.
944  bool Dominates(HBasicBlock* block) const;
945
946  size_t GetLifetimeStart() const { return lifetime_start_; }
947  size_t GetLifetimeEnd() const { return lifetime_end_; }
948
949  void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
950  void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
951
952  bool EndsWithControlFlowInstruction() const;
953  bool EndsWithIf() const;
954  bool EndsWithTryBoundary() const;
955  bool HasSinglePhi() const;
956
957 private:
958  HGraph* graph_;
959  ArenaVector<HBasicBlock*> predecessors_;
960  ArenaVector<HBasicBlock*> successors_;
961  HInstructionList instructions_;
962  HInstructionList phis_;
963  HLoopInformation* loop_information_;
964  HBasicBlock* dominator_;
965  ArenaVector<HBasicBlock*> dominated_blocks_;
966  uint32_t block_id_;
967  // The dex program counter of the first instruction of this block.
968  const uint32_t dex_pc_;
969  size_t lifetime_start_;
970  size_t lifetime_end_;
971  TryCatchInformation* try_catch_information_;
972
973  friend class HGraph;
974  friend class HInstruction;
975
976  DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
977};
978
979// Iterates over the LoopInformation of all loops which contain 'block'
980// from the innermost to the outermost.
981class HLoopInformationOutwardIterator : public ValueObject {
982 public:
983  explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
984      : current_(block.GetLoopInformation()) {}
985
986  bool Done() const { return current_ == nullptr; }
987
988  void Advance() {
989    DCHECK(!Done());
990    current_ = current_->GetPreHeader()->GetLoopInformation();
991  }
992
993  HLoopInformation* Current() const {
994    DCHECK(!Done());
995    return current_;
996  }
997
998 private:
999  HLoopInformation* current_;
1000
1001  DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1002};
1003
1004#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
1005  M(Above, Condition)                                                   \
1006  M(AboveOrEqual, Condition)                                            \
1007  M(Add, BinaryOperation)                                               \
1008  M(And, BinaryOperation)                                               \
1009  M(ArrayGet, Instruction)                                              \
1010  M(ArrayLength, Instruction)                                           \
1011  M(ArraySet, Instruction)                                              \
1012  M(Below, Condition)                                                   \
1013  M(BelowOrEqual, Condition)                                            \
1014  M(BooleanNot, UnaryOperation)                                         \
1015  M(BoundsCheck, Instruction)                                           \
1016  M(BoundType, Instruction)                                             \
1017  M(CheckCast, Instruction)                                             \
1018  M(ClearException, Instruction)                                        \
1019  M(ClinitCheck, Instruction)                                           \
1020  M(Compare, BinaryOperation)                                           \
1021  M(Condition, BinaryOperation)                                         \
1022  M(CurrentMethod, Instruction)                                         \
1023  M(Deoptimize, Instruction)                                            \
1024  M(Div, BinaryOperation)                                               \
1025  M(DivZeroCheck, Instruction)                                          \
1026  M(DoubleConstant, Constant)                                           \
1027  M(Equal, Condition)                                                   \
1028  M(Exit, Instruction)                                                  \
1029  M(FakeString, Instruction)                                            \
1030  M(FloatConstant, Constant)                                            \
1031  M(Goto, Instruction)                                                  \
1032  M(GreaterThan, Condition)                                             \
1033  M(GreaterThanOrEqual, Condition)                                      \
1034  M(If, Instruction)                                                    \
1035  M(InstanceFieldGet, Instruction)                                      \
1036  M(InstanceFieldSet, Instruction)                                      \
1037  M(InstanceOf, Instruction)                                            \
1038  M(IntConstant, Constant)                                              \
1039  M(InvokeUnresolved, Invoke)                                           \
1040  M(InvokeInterface, Invoke)                                            \
1041  M(InvokeStaticOrDirect, Invoke)                                       \
1042  M(InvokeVirtual, Invoke)                                              \
1043  M(LessThan, Condition)                                                \
1044  M(LessThanOrEqual, Condition)                                         \
1045  M(LoadClass, Instruction)                                             \
1046  M(LoadException, Instruction)                                         \
1047  M(LoadLocal, Instruction)                                             \
1048  M(LoadString, Instruction)                                            \
1049  M(Local, Instruction)                                                 \
1050  M(LongConstant, Constant)                                             \
1051  M(MemoryBarrier, Instruction)                                         \
1052  M(MonitorOperation, Instruction)                                      \
1053  M(Mul, BinaryOperation)                                               \
1054  M(Neg, UnaryOperation)                                                \
1055  M(NewArray, Instruction)                                              \
1056  M(NewInstance, Instruction)                                           \
1057  M(Not, UnaryOperation)                                                \
1058  M(NotEqual, Condition)                                                \
1059  M(NullConstant, Instruction)                                          \
1060  M(NullCheck, Instruction)                                             \
1061  M(Or, BinaryOperation)                                                \
1062  M(PackedSwitch, Instruction)                                          \
1063  M(ParallelMove, Instruction)                                          \
1064  M(ParameterValue, Instruction)                                        \
1065  M(Phi, Instruction)                                                   \
1066  M(Rem, BinaryOperation)                                               \
1067  M(Return, Instruction)                                                \
1068  M(ReturnVoid, Instruction)                                            \
1069  M(Shl, BinaryOperation)                                               \
1070  M(Shr, BinaryOperation)                                               \
1071  M(StaticFieldGet, Instruction)                                        \
1072  M(StaticFieldSet, Instruction)                                        \
1073  M(UnresolvedInstanceFieldGet, Instruction)                            \
1074  M(UnresolvedInstanceFieldSet, Instruction)                            \
1075  M(UnresolvedStaticFieldGet, Instruction)                              \
1076  M(UnresolvedStaticFieldSet, Instruction)                              \
1077  M(StoreLocal, Instruction)                                            \
1078  M(Sub, BinaryOperation)                                               \
1079  M(SuspendCheck, Instruction)                                          \
1080  M(Temporary, Instruction)                                             \
1081  M(Throw, Instruction)                                                 \
1082  M(TryBoundary, Instruction)                                           \
1083  M(TypeConversion, Instruction)                                        \
1084  M(UShr, BinaryOperation)                                              \
1085  M(Xor, BinaryOperation)                                               \
1086
1087#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1088
1089#ifndef ART_ENABLE_CODEGEN_arm64
1090#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1091#else
1092#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                          \
1093  M(Arm64IntermediateAddress, Instruction)
1094#endif
1095
1096#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1097
1098#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1099
1100#ifndef ART_ENABLE_CODEGEN_x86
1101#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1102#else
1103#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
1104  M(X86ComputeBaseMethodAddress, Instruction)                           \
1105  M(X86LoadFromConstantTable, Instruction)                              \
1106  M(X86PackedSwitch, Instruction)
1107#endif
1108
1109#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1110
1111#define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
1112  FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
1113  FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
1114  FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
1115  FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
1116  FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
1117  FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
1118  FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1119
1120#define FOR_EACH_INSTRUCTION(M)                                         \
1121  FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
1122  M(Constant, Instruction)                                              \
1123  M(UnaryOperation, Instruction)                                        \
1124  M(BinaryOperation, Instruction)                                       \
1125  M(Invoke, Instruction)
1126
1127#define FORWARD_DECLARATION(type, super) class H##type;
1128FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1129#undef FORWARD_DECLARATION
1130
1131#define DECLARE_INSTRUCTION(type)                                       \
1132  InstructionKind GetKind() const OVERRIDE { return k##type; }          \
1133  const char* DebugName() const OVERRIDE { return #type; }              \
1134  const H##type* As##type() const OVERRIDE { return this; }             \
1135  H##type* As##type() OVERRIDE { return this; }                         \
1136  bool InstructionTypeEquals(HInstruction* other) const OVERRIDE {      \
1137    return other->Is##type();                                           \
1138  }                                                                     \
1139  void Accept(HGraphVisitor* visitor) OVERRIDE
1140
1141template <typename T> class HUseList;
1142
1143template <typename T>
1144class HUseListNode : public ArenaObject<kArenaAllocUseListNode> {
1145 public:
1146  HUseListNode* GetPrevious() const { return prev_; }
1147  HUseListNode* GetNext() const { return next_; }
1148  T GetUser() const { return user_; }
1149  size_t GetIndex() const { return index_; }
1150  void SetIndex(size_t index) { index_ = index; }
1151
1152 private:
1153  HUseListNode(T user, size_t index)
1154      : user_(user), index_(index), prev_(nullptr), next_(nullptr) {}
1155
1156  T const user_;
1157  size_t index_;
1158  HUseListNode<T>* prev_;
1159  HUseListNode<T>* next_;
1160
1161  friend class HUseList<T>;
1162
1163  DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1164};
1165
1166template <typename T>
1167class HUseList : public ValueObject {
1168 public:
1169  HUseList() : first_(nullptr) {}
1170
1171  void Clear() {
1172    first_ = nullptr;
1173  }
1174
1175  // Adds a new entry at the beginning of the use list and returns
1176  // the newly created node.
1177  HUseListNode<T>* AddUse(T user, size_t index, ArenaAllocator* arena) {
1178    HUseListNode<T>* new_node = new (arena) HUseListNode<T>(user, index);
1179    if (IsEmpty()) {
1180      first_ = new_node;
1181    } else {
1182      first_->prev_ = new_node;
1183      new_node->next_ = first_;
1184      first_ = new_node;
1185    }
1186    return new_node;
1187  }
1188
1189  HUseListNode<T>* GetFirst() const {
1190    return first_;
1191  }
1192
1193  void Remove(HUseListNode<T>* node) {
1194    DCHECK(node != nullptr);
1195    DCHECK(Contains(node));
1196
1197    if (node->prev_ != nullptr) {
1198      node->prev_->next_ = node->next_;
1199    }
1200    if (node->next_ != nullptr) {
1201      node->next_->prev_ = node->prev_;
1202    }
1203    if (node == first_) {
1204      first_ = node->next_;
1205    }
1206  }
1207
1208  bool Contains(const HUseListNode<T>* node) const {
1209    if (node == nullptr) {
1210      return false;
1211    }
1212    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1213      if (current == node) {
1214        return true;
1215      }
1216    }
1217    return false;
1218  }
1219
1220  bool IsEmpty() const {
1221    return first_ == nullptr;
1222  }
1223
1224  bool HasOnlyOneUse() const {
1225    return first_ != nullptr && first_->next_ == nullptr;
1226  }
1227
1228  size_t SizeSlow() const {
1229    size_t count = 0;
1230    for (HUseListNode<T>* current = first_; current != nullptr; current = current->GetNext()) {
1231      ++count;
1232    }
1233    return count;
1234  }
1235
1236 private:
1237  HUseListNode<T>* first_;
1238};
1239
1240template<typename T>
1241class HUseIterator : public ValueObject {
1242 public:
1243  explicit HUseIterator(const HUseList<T>& uses) : current_(uses.GetFirst()) {}
1244
1245  bool Done() const { return current_ == nullptr; }
1246
1247  void Advance() {
1248    DCHECK(!Done());
1249    current_ = current_->GetNext();
1250  }
1251
1252  HUseListNode<T>* Current() const {
1253    DCHECK(!Done());
1254    return current_;
1255  }
1256
1257 private:
1258  HUseListNode<T>* current_;
1259
1260  friend class HValue;
1261};
1262
1263// This class is used by HEnvironment and HInstruction classes to record the
1264// instructions they use and pointers to the corresponding HUseListNodes kept
1265// by the used instructions.
1266template <typename T>
1267class HUserRecord : public ValueObject {
1268 public:
1269  HUserRecord() : instruction_(nullptr), use_node_(nullptr) {}
1270  explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), use_node_(nullptr) {}
1271
1272  HUserRecord(const HUserRecord<T>& old_record, HUseListNode<T>* use_node)
1273    : instruction_(old_record.instruction_), use_node_(use_node) {
1274    DCHECK(instruction_ != nullptr);
1275    DCHECK(use_node_ != nullptr);
1276    DCHECK(old_record.use_node_ == nullptr);
1277  }
1278
1279  HInstruction* GetInstruction() const { return instruction_; }
1280  HUseListNode<T>* GetUseNode() const { return use_node_; }
1281
1282 private:
1283  // Instruction used by the user.
1284  HInstruction* instruction_;
1285
1286  // Corresponding entry in the use list kept by 'instruction_'.
1287  HUseListNode<T>* use_node_;
1288};
1289
1290/**
1291 * Side-effects representation.
1292 *
1293 * For write/read dependences on fields/arrays, the dependence analysis uses
1294 * type disambiguation (e.g. a float field write cannot modify the value of an
1295 * integer field read) and the access type (e.g.  a reference array write cannot
1296 * modify the value of a reference field read [although it may modify the
1297 * reference fetch prior to reading the field, which is represented by its own
1298 * write/read dependence]). The analysis makes conservative points-to
1299 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1300 * the same, and any reference read depends on any reference read without
1301 * further regard of its type).
1302 *
1303 * The internal representation uses 38-bit and is described in the table below.
1304 * The first line indicates the side effect, and for field/array accesses the
1305 * second line indicates the type of the access (in the order of the
1306 * Primitive::Type enum).
1307 * The two numbered lines below indicate the bit position in the bitfield (read
1308 * vertically).
1309 *
1310 *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
1311 *   +-------------+---------+---------+--------------+---------+---------+
1312 *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
1313 *   |      3      |333333322|222222221|       1      |111111110|000000000|
1314 *   |      7      |654321098|765432109|       8      |765432109|876543210|
1315 *
1316 * Note that, to ease the implementation, 'changes' bits are least significant
1317 * bits, while 'dependency' bits are most significant bits.
1318 */
1319class SideEffects : public ValueObject {
1320 public:
1321  SideEffects() : flags_(0) {}
1322
1323  static SideEffects None() {
1324    return SideEffects(0);
1325  }
1326
1327  static SideEffects All() {
1328    return SideEffects(kAllChangeBits | kAllDependOnBits);
1329  }
1330
1331  static SideEffects AllChanges() {
1332    return SideEffects(kAllChangeBits);
1333  }
1334
1335  static SideEffects AllDependencies() {
1336    return SideEffects(kAllDependOnBits);
1337  }
1338
1339  static SideEffects AllExceptGCDependency() {
1340    return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1341  }
1342
1343  static SideEffects AllWritesAndReads() {
1344    return SideEffects(kAllWrites | kAllReads);
1345  }
1346
1347  static SideEffects AllWrites() {
1348    return SideEffects(kAllWrites);
1349  }
1350
1351  static SideEffects AllReads() {
1352    return SideEffects(kAllReads);
1353  }
1354
1355  static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1356    return is_volatile
1357        ? AllWritesAndReads()
1358        : SideEffects(TypeFlagWithAlias(type, kFieldWriteOffset));
1359  }
1360
1361  static SideEffects ArrayWriteOfType(Primitive::Type type) {
1362    return SideEffects(TypeFlagWithAlias(type, kArrayWriteOffset));
1363  }
1364
1365  static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1366    return is_volatile
1367        ? AllWritesAndReads()
1368        : SideEffects(TypeFlagWithAlias(type, kFieldReadOffset));
1369  }
1370
1371  static SideEffects ArrayReadOfType(Primitive::Type type) {
1372    return SideEffects(TypeFlagWithAlias(type, kArrayReadOffset));
1373  }
1374
1375  static SideEffects CanTriggerGC() {
1376    return SideEffects(1ULL << kCanTriggerGCBit);
1377  }
1378
1379  static SideEffects DependsOnGC() {
1380    return SideEffects(1ULL << kDependsOnGCBit);
1381  }
1382
1383  // Combines the side-effects of this and the other.
1384  SideEffects Union(SideEffects other) const {
1385    return SideEffects(flags_ | other.flags_);
1386  }
1387
1388  SideEffects Exclusion(SideEffects other) const {
1389    return SideEffects(flags_ & ~other.flags_);
1390  }
1391
1392  void Add(SideEffects other) {
1393    flags_ |= other.flags_;
1394  }
1395
1396  bool Includes(SideEffects other) const {
1397    return (other.flags_ & flags_) == other.flags_;
1398  }
1399
1400  bool HasSideEffects() const {
1401    return (flags_ & kAllChangeBits);
1402  }
1403
1404  bool HasDependencies() const {
1405    return (flags_ & kAllDependOnBits);
1406  }
1407
1408  // Returns true if there are no side effects or dependencies.
1409  bool DoesNothing() const {
1410    return flags_ == 0;
1411  }
1412
1413  // Returns true if something is written.
1414  bool DoesAnyWrite() const {
1415    return (flags_ & kAllWrites);
1416  }
1417
1418  // Returns true if something is read.
1419  bool DoesAnyRead() const {
1420    return (flags_ & kAllReads);
1421  }
1422
1423  // Returns true if potentially everything is written and read
1424  // (every type and every kind of access).
1425  bool DoesAllReadWrite() const {
1426    return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1427  }
1428
1429  bool DoesAll() const {
1430    return flags_ == (kAllChangeBits | kAllDependOnBits);
1431  }
1432
1433  // Returns true if this may read something written by other.
1434  bool MayDependOn(SideEffects other) const {
1435    const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1436    return (other.flags_ & depends_on_flags);
1437  }
1438
1439  // Returns string representation of flags (for debugging only).
1440  // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
1441  std::string ToString() const {
1442    std::string flags = "|";
1443    for (int s = kLastBit; s >= 0; s--) {
1444      bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1445      if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1446        // This is a bit for the GC side effect.
1447        if (current_bit_is_set) {
1448          flags += "GC";
1449        }
1450        flags += "|";
1451      } else {
1452        // This is a bit for the array/field analysis.
1453        // The underscore character stands for the 'can trigger GC' bit.
1454        static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1455        if (current_bit_is_set) {
1456          flags += kDebug[s];
1457        }
1458        if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1459            (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1460          flags += "|";
1461        }
1462      }
1463    }
1464    return flags;
1465  }
1466
1467  bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1468
1469 private:
1470  static constexpr int kFieldArrayAnalysisBits = 9;
1471
1472  static constexpr int kFieldWriteOffset = 0;
1473  static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1474  static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1475  static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1476
1477  static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1478
1479  static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1480  static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1481  static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1482  static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1483
1484  static constexpr int kLastBit = kDependsOnGCBit;
1485  static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1486
1487  // Aliases.
1488
1489  static_assert(kChangeBits == kDependOnBits,
1490                "the 'change' bits should match the 'depend on' bits.");
1491
1492  static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1493  static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1494  static constexpr uint64_t kAllWrites =
1495      ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1496  static constexpr uint64_t kAllReads =
1497      ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1498
1499  // Work around the fact that HIR aliases I/F and J/D.
1500  // TODO: remove this interceptor once HIR types are clean
1501  static uint64_t TypeFlagWithAlias(Primitive::Type type, int offset) {
1502    switch (type) {
1503      case Primitive::kPrimInt:
1504      case Primitive::kPrimFloat:
1505        return TypeFlag(Primitive::kPrimInt, offset) |
1506               TypeFlag(Primitive::kPrimFloat, offset);
1507      case Primitive::kPrimLong:
1508      case Primitive::kPrimDouble:
1509        return TypeFlag(Primitive::kPrimLong, offset) |
1510               TypeFlag(Primitive::kPrimDouble, offset);
1511      default:
1512        return TypeFlag(type, offset);
1513    }
1514  }
1515
1516  // Translates type to bit flag.
1517  static uint64_t TypeFlag(Primitive::Type type, int offset) {
1518    CHECK_NE(type, Primitive::kPrimVoid);
1519    const uint64_t one = 1;
1520    const int shift = type;  // 0-based consecutive enum
1521    DCHECK_LE(kFieldWriteOffset, shift);
1522    DCHECK_LT(shift, kArrayWriteOffset);
1523    return one << (type + offset);
1524  }
1525
1526  // Private constructor on direct flags value.
1527  explicit SideEffects(uint64_t flags) : flags_(flags) {}
1528
1529  uint64_t flags_;
1530};
1531
1532// A HEnvironment object contains the values of virtual registers at a given location.
1533class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1534 public:
1535  HEnvironment(ArenaAllocator* arena,
1536               size_t number_of_vregs,
1537               const DexFile& dex_file,
1538               uint32_t method_idx,
1539               uint32_t dex_pc,
1540               InvokeType invoke_type,
1541               HInstruction* holder)
1542     : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1543       locations_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentLocations)),
1544       parent_(nullptr),
1545       dex_file_(dex_file),
1546       method_idx_(method_idx),
1547       dex_pc_(dex_pc),
1548       invoke_type_(invoke_type),
1549       holder_(holder) {
1550  }
1551
1552  HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1553      : HEnvironment(arena,
1554                     to_copy.Size(),
1555                     to_copy.GetDexFile(),
1556                     to_copy.GetMethodIdx(),
1557                     to_copy.GetDexPc(),
1558                     to_copy.GetInvokeType(),
1559                     holder) {}
1560
1561  void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1562    if (parent_ != nullptr) {
1563      parent_->SetAndCopyParentChain(allocator, parent);
1564    } else {
1565      parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1566      parent_->CopyFrom(parent);
1567      if (parent->GetParent() != nullptr) {
1568        parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1569      }
1570    }
1571  }
1572
1573  void CopyFrom(const ArenaVector<HInstruction*>& locals);
1574  void CopyFrom(HEnvironment* environment);
1575
1576  // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1577  // input to the loop phi instead. This is for inserting instructions that
1578  // require an environment (like HDeoptimization) in the loop pre-header.
1579  void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1580
1581  void SetRawEnvAt(size_t index, HInstruction* instruction) {
1582    vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1583  }
1584
1585  HInstruction* GetInstructionAt(size_t index) const {
1586    return vregs_[index].GetInstruction();
1587  }
1588
1589  void RemoveAsUserOfInput(size_t index) const;
1590
1591  size_t Size() const { return vregs_.size(); }
1592
1593  HEnvironment* GetParent() const { return parent_; }
1594
1595  void SetLocationAt(size_t index, Location location) {
1596    locations_[index] = location;
1597  }
1598
1599  Location GetLocationAt(size_t index) const {
1600    return locations_[index];
1601  }
1602
1603  uint32_t GetDexPc() const {
1604    return dex_pc_;
1605  }
1606
1607  uint32_t GetMethodIdx() const {
1608    return method_idx_;
1609  }
1610
1611  InvokeType GetInvokeType() const {
1612    return invoke_type_;
1613  }
1614
1615  const DexFile& GetDexFile() const {
1616    return dex_file_;
1617  }
1618
1619  HInstruction* GetHolder() const {
1620    return holder_;
1621  }
1622
1623 private:
1624  // Record instructions' use entries of this environment for constant-time removal.
1625  // It should only be called by HInstruction when a new environment use is added.
1626  void RecordEnvUse(HUseListNode<HEnvironment*>* env_use) {
1627    DCHECK(env_use->GetUser() == this);
1628    size_t index = env_use->GetIndex();
1629    vregs_[index] = HUserRecord<HEnvironment*>(vregs_[index], env_use);
1630  }
1631
1632  ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1633  ArenaVector<Location> locations_;
1634  HEnvironment* parent_;
1635  const DexFile& dex_file_;
1636  const uint32_t method_idx_;
1637  const uint32_t dex_pc_;
1638  const InvokeType invoke_type_;
1639
1640  // The instruction that holds this environment.
1641  HInstruction* const holder_;
1642
1643  friend class HInstruction;
1644
1645  DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1646};
1647
1648class ReferenceTypeInfo : ValueObject {
1649 public:
1650  typedef Handle<mirror::Class> TypeHandle;
1651
1652  static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact) {
1653    // The constructor will check that the type_handle is valid.
1654    return ReferenceTypeInfo(type_handle, is_exact);
1655  }
1656
1657  static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
1658
1659  static bool IsValidHandle(TypeHandle handle) SHARED_REQUIRES(Locks::mutator_lock_) {
1660    return handle.GetReference() != nullptr;
1661  }
1662
1663  bool IsValid() const SHARED_REQUIRES(Locks::mutator_lock_) {
1664    return IsValidHandle(type_handle_);
1665  }
1666
1667  bool IsExact() const { return is_exact_; }
1668
1669  bool IsObjectClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1670    DCHECK(IsValid());
1671    return GetTypeHandle()->IsObjectClass();
1672  }
1673
1674  bool IsStringClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1675    DCHECK(IsValid());
1676    return GetTypeHandle()->IsStringClass();
1677  }
1678
1679  bool IsObjectArray() const SHARED_REQUIRES(Locks::mutator_lock_) {
1680    DCHECK(IsValid());
1681    return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
1682  }
1683
1684  bool IsInterface() const SHARED_REQUIRES(Locks::mutator_lock_) {
1685    DCHECK(IsValid());
1686    return GetTypeHandle()->IsInterface();
1687  }
1688
1689  bool IsArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1690    DCHECK(IsValid());
1691    return GetTypeHandle()->IsArrayClass();
1692  }
1693
1694  bool IsPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1695    DCHECK(IsValid());
1696    return GetTypeHandle()->IsPrimitiveArray();
1697  }
1698
1699  bool IsNonPrimitiveArrayClass() const SHARED_REQUIRES(Locks::mutator_lock_) {
1700    DCHECK(IsValid());
1701    return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
1702  }
1703
1704  bool CanArrayHold(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1705    DCHECK(IsValid());
1706    if (!IsExact()) return false;
1707    if (!IsArrayClass()) return false;
1708    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
1709  }
1710
1711  bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const SHARED_REQUIRES(Locks::mutator_lock_) {
1712    DCHECK(IsValid());
1713    if (!IsExact()) return false;
1714    if (!IsArrayClass()) return false;
1715    if (!rti.IsArrayClass()) return false;
1716    return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
1717        rti.GetTypeHandle()->GetComponentType());
1718  }
1719
1720  Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
1721
1722  bool IsSupertypeOf(ReferenceTypeInfo rti) const SHARED_REQUIRES(Locks::mutator_lock_) {
1723    DCHECK(IsValid());
1724    DCHECK(rti.IsValid());
1725    return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
1726  }
1727
1728  // Returns true if the type information provide the same amount of details.
1729  // Note that it does not mean that the instructions have the same actual type
1730  // (because the type can be the result of a merge).
1731  bool IsEqual(ReferenceTypeInfo rti) SHARED_REQUIRES(Locks::mutator_lock_) {
1732    if (!IsValid() && !rti.IsValid()) {
1733      // Invalid types are equal.
1734      return true;
1735    }
1736    if (!IsValid() || !rti.IsValid()) {
1737      // One is valid, the other not.
1738      return false;
1739    }
1740    return IsExact() == rti.IsExact()
1741        && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
1742  }
1743
1744 private:
1745  ReferenceTypeInfo();
1746  ReferenceTypeInfo(TypeHandle type_handle, bool is_exact);
1747
1748  // The class of the object.
1749  TypeHandle type_handle_;
1750  // Whether or not the type is exact or a superclass of the actual type.
1751  // Whether or not we have any information about this type.
1752  bool is_exact_;
1753};
1754
1755std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
1756
1757class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1758 public:
1759  HInstruction(SideEffects side_effects, uint32_t dex_pc)
1760      : previous_(nullptr),
1761        next_(nullptr),
1762        block_(nullptr),
1763        dex_pc_(dex_pc),
1764        id_(-1),
1765        ssa_index_(-1),
1766        environment_(nullptr),
1767        locations_(nullptr),
1768        live_interval_(nullptr),
1769        lifetime_position_(kNoLifetime),
1770        side_effects_(side_effects),
1771        reference_type_info_(ReferenceTypeInfo::CreateInvalid()) {}
1772
1773  virtual ~HInstruction() {}
1774
1775#define DECLARE_KIND(type, super) k##type,
1776  enum InstructionKind {
1777    FOR_EACH_INSTRUCTION(DECLARE_KIND)
1778  };
1779#undef DECLARE_KIND
1780
1781  HInstruction* GetNext() const { return next_; }
1782  HInstruction* GetPrevious() const { return previous_; }
1783
1784  HInstruction* GetNextDisregardingMoves() const;
1785  HInstruction* GetPreviousDisregardingMoves() const;
1786
1787  HBasicBlock* GetBlock() const { return block_; }
1788  ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
1789  void SetBlock(HBasicBlock* block) { block_ = block; }
1790  bool IsInBlock() const { return block_ != nullptr; }
1791  bool IsInLoop() const { return block_->IsInLoop(); }
1792  bool IsLoopHeaderPhi() { return IsPhi() && block_->IsLoopHeader(); }
1793
1794  virtual size_t InputCount() const = 0;
1795  HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1796
1797  virtual void Accept(HGraphVisitor* visitor) = 0;
1798  virtual const char* DebugName() const = 0;
1799
1800  virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1801  void SetRawInputAt(size_t index, HInstruction* input) {
1802    SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1803  }
1804
1805  virtual bool NeedsEnvironment() const { return false; }
1806
1807  uint32_t GetDexPc() const { return dex_pc_; }
1808
1809  virtual bool IsControlFlow() const { return false; }
1810
1811  virtual bool CanThrow() const { return false; }
1812  bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1813
1814  bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
1815  bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1816
1817  // Does not apply for all instructions, but having this at top level greatly
1818  // simplifies the null check elimination.
1819  // TODO: Consider merging can_be_null into ReferenceTypeInfo.
1820  virtual bool CanBeNull() const {
1821    DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1822    return true;
1823  }
1824
1825  virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1826    return false;
1827  }
1828
1829  void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1830
1831  ReferenceTypeInfo GetReferenceTypeInfo() const {
1832    DCHECK_EQ(GetType(), Primitive::kPrimNot);
1833    return reference_type_info_;
1834  }
1835
1836  void AddUseAt(HInstruction* user, size_t index) {
1837    DCHECK(user != nullptr);
1838    HUseListNode<HInstruction*>* use =
1839        uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1840    user->SetRawInputRecordAt(index, HUserRecord<HInstruction*>(user->InputRecordAt(index), use));
1841  }
1842
1843  void AddEnvUseAt(HEnvironment* user, size_t index) {
1844    DCHECK(user != nullptr);
1845    HUseListNode<HEnvironment*>* env_use =
1846        env_uses_.AddUse(user, index, GetBlock()->GetGraph()->GetArena());
1847    user->RecordEnvUse(env_use);
1848  }
1849
1850  void RemoveAsUserOfInput(size_t input) {
1851    HUserRecord<HInstruction*> input_use = InputRecordAt(input);
1852    input_use.GetInstruction()->uses_.Remove(input_use.GetUseNode());
1853  }
1854
1855  const HUseList<HInstruction*>& GetUses() const { return uses_; }
1856  const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
1857
1858  bool HasUses() const { return !uses_.IsEmpty() || !env_uses_.IsEmpty(); }
1859  bool HasEnvironmentUses() const { return !env_uses_.IsEmpty(); }
1860  bool HasNonEnvironmentUses() const { return !uses_.IsEmpty(); }
1861  bool HasOnlyOneNonEnvironmentUse() const {
1862    return !HasEnvironmentUses() && GetUses().HasOnlyOneUse();
1863  }
1864
1865  // Does this instruction strictly dominate `other_instruction`?
1866  // Returns false if this instruction and `other_instruction` are the same.
1867  // Aborts if this instruction and `other_instruction` are both phis.
1868  bool StrictlyDominates(HInstruction* other_instruction) const;
1869
1870  int GetId() const { return id_; }
1871  void SetId(int id) { id_ = id; }
1872
1873  int GetSsaIndex() const { return ssa_index_; }
1874  void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
1875  bool HasSsaIndex() const { return ssa_index_ != -1; }
1876
1877  bool HasEnvironment() const { return environment_ != nullptr; }
1878  HEnvironment* GetEnvironment() const { return environment_; }
1879  // Set the `environment_` field. Raw because this method does not
1880  // update the uses lists.
1881  void SetRawEnvironment(HEnvironment* environment) {
1882    DCHECK(environment_ == nullptr);
1883    DCHECK_EQ(environment->GetHolder(), this);
1884    environment_ = environment;
1885  }
1886
1887  // Set the environment of this instruction, copying it from `environment`. While
1888  // copying, the uses lists are being updated.
1889  void CopyEnvironmentFrom(HEnvironment* environment) {
1890    DCHECK(environment_ == nullptr);
1891    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1892    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1893    environment_->CopyFrom(environment);
1894    if (environment->GetParent() != nullptr) {
1895      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1896    }
1897  }
1898
1899  void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
1900                                                HBasicBlock* block) {
1901    DCHECK(environment_ == nullptr);
1902    ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
1903    environment_ = new (allocator) HEnvironment(allocator, *environment, this);
1904    environment_->CopyFromWithLoopPhiAdjustment(environment, block);
1905    if (environment->GetParent() != nullptr) {
1906      environment_->SetAndCopyParentChain(allocator, environment->GetParent());
1907    }
1908  }
1909
1910  // Returns the number of entries in the environment. Typically, that is the
1911  // number of dex registers in a method. It could be more in case of inlining.
1912  size_t EnvironmentSize() const;
1913
1914  LocationSummary* GetLocations() const { return locations_; }
1915  void SetLocations(LocationSummary* locations) { locations_ = locations; }
1916
1917  void ReplaceWith(HInstruction* instruction);
1918  void ReplaceInput(HInstruction* replacement, size_t index);
1919
1920  // This is almost the same as doing `ReplaceWith()`. But in this helper, the
1921  // uses of this instruction by `other` are *not* updated.
1922  void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
1923    ReplaceWith(other);
1924    other->ReplaceInput(this, use_index);
1925  }
1926
1927  // Move `this` instruction before `cursor`.
1928  void MoveBefore(HInstruction* cursor);
1929
1930#define INSTRUCTION_TYPE_CHECK(type, super)                                    \
1931  bool Is##type() const { return (As##type() != nullptr); }                    \
1932  virtual const H##type* As##type() const { return nullptr; }                  \
1933  virtual H##type* As##type() { return nullptr; }
1934
1935  FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
1936#undef INSTRUCTION_TYPE_CHECK
1937
1938  // Returns whether the instruction can be moved within the graph.
1939  virtual bool CanBeMoved() const { return false; }
1940
1941  // Returns whether the two instructions are of the same kind.
1942  virtual bool InstructionTypeEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1943    return false;
1944  }
1945
1946  // Returns whether any data encoded in the two instructions is equal.
1947  // This method does not look at the inputs. Both instructions must be
1948  // of the same type, otherwise the method has undefined behavior.
1949  virtual bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const {
1950    return false;
1951  }
1952
1953  // Returns whether two instructions are equal, that is:
1954  // 1) They have the same type and contain the same data (InstructionDataEquals).
1955  // 2) Their inputs are identical.
1956  bool Equals(HInstruction* other) const;
1957
1958  virtual InstructionKind GetKind() const = 0;
1959
1960  virtual size_t ComputeHashCode() const {
1961    size_t result = GetKind();
1962    for (size_t i = 0, e = InputCount(); i < e; ++i) {
1963      result = (result * 31) + InputAt(i)->GetId();
1964    }
1965    return result;
1966  }
1967
1968  SideEffects GetSideEffects() const { return side_effects_; }
1969  void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
1970
1971  size_t GetLifetimePosition() const { return lifetime_position_; }
1972  void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
1973  LiveInterval* GetLiveInterval() const { return live_interval_; }
1974  void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
1975  bool HasLiveInterval() const { return live_interval_ != nullptr; }
1976
1977  bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
1978
1979  // Returns whether the code generation of the instruction will require to have access
1980  // to the current method. Such instructions are:
1981  // (1): Instructions that require an environment, as calling the runtime requires
1982  //      to walk the stack and have the current method stored at a specific stack address.
1983  // (2): Object literals like classes and strings, that are loaded from the dex cache
1984  //      fields of the current method.
1985  bool NeedsCurrentMethod() const {
1986    return NeedsEnvironment() || IsLoadClass() || IsLoadString();
1987  }
1988
1989  // Returns whether the code generation of the instruction will require to have access
1990  // to the dex cache of the current method's declaring class via the current method.
1991  virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
1992
1993  // Does this instruction have any use in an environment before
1994  // control flow hits 'other'?
1995  bool HasAnyEnvironmentUseBefore(HInstruction* other);
1996
1997  // Remove all references to environment uses of this instruction.
1998  // The caller must ensure that this is safe to do.
1999  void RemoveEnvironmentUsers();
2000
2001 protected:
2002  virtual const HUserRecord<HInstruction*> InputRecordAt(size_t i) const = 0;
2003  virtual void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) = 0;
2004
2005 private:
2006  void RemoveEnvironmentUser(HUseListNode<HEnvironment*>* use_node) { env_uses_.Remove(use_node); }
2007
2008  HInstruction* previous_;
2009  HInstruction* next_;
2010  HBasicBlock* block_;
2011  const uint32_t dex_pc_;
2012
2013  // An instruction gets an id when it is added to the graph.
2014  // It reflects creation order. A negative id means the instruction
2015  // has not been added to the graph.
2016  int id_;
2017
2018  // When doing liveness analysis, instructions that have uses get an SSA index.
2019  int ssa_index_;
2020
2021  // List of instructions that have this instruction as input.
2022  HUseList<HInstruction*> uses_;
2023
2024  // List of environments that contain this instruction.
2025  HUseList<HEnvironment*> env_uses_;
2026
2027  // The environment associated with this instruction. Not null if the instruction
2028  // might jump out of the method.
2029  HEnvironment* environment_;
2030
2031  // Set by the code generator.
2032  LocationSummary* locations_;
2033
2034  // Set by the liveness analysis.
2035  LiveInterval* live_interval_;
2036
2037  // Set by the liveness analysis, this is the position in a linear
2038  // order of blocks where this instruction's live interval start.
2039  size_t lifetime_position_;
2040
2041  SideEffects side_effects_;
2042
2043  // TODO: for primitive types this should be marked as invalid.
2044  ReferenceTypeInfo reference_type_info_;
2045
2046  friend class GraphChecker;
2047  friend class HBasicBlock;
2048  friend class HEnvironment;
2049  friend class HGraph;
2050  friend class HInstructionList;
2051
2052  DISALLOW_COPY_AND_ASSIGN(HInstruction);
2053};
2054std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2055
2056class HInputIterator : public ValueObject {
2057 public:
2058  explicit HInputIterator(HInstruction* instruction) : instruction_(instruction), index_(0) {}
2059
2060  bool Done() const { return index_ == instruction_->InputCount(); }
2061  HInstruction* Current() const { return instruction_->InputAt(index_); }
2062  void Advance() { index_++; }
2063
2064 private:
2065  HInstruction* instruction_;
2066  size_t index_;
2067
2068  DISALLOW_COPY_AND_ASSIGN(HInputIterator);
2069};
2070
2071class HInstructionIterator : public ValueObject {
2072 public:
2073  explicit HInstructionIterator(const HInstructionList& instructions)
2074      : instruction_(instructions.first_instruction_) {
2075    next_ = Done() ? nullptr : instruction_->GetNext();
2076  }
2077
2078  bool Done() const { return instruction_ == nullptr; }
2079  HInstruction* Current() const { return instruction_; }
2080  void Advance() {
2081    instruction_ = next_;
2082    next_ = Done() ? nullptr : instruction_->GetNext();
2083  }
2084
2085 private:
2086  HInstruction* instruction_;
2087  HInstruction* next_;
2088
2089  DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2090};
2091
2092class HBackwardInstructionIterator : public ValueObject {
2093 public:
2094  explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2095      : instruction_(instructions.last_instruction_) {
2096    next_ = Done() ? nullptr : instruction_->GetPrevious();
2097  }
2098
2099  bool Done() const { return instruction_ == nullptr; }
2100  HInstruction* Current() const { return instruction_; }
2101  void Advance() {
2102    instruction_ = next_;
2103    next_ = Done() ? nullptr : instruction_->GetPrevious();
2104  }
2105
2106 private:
2107  HInstruction* instruction_;
2108  HInstruction* next_;
2109
2110  DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2111};
2112
2113template<size_t N>
2114class HTemplateInstruction: public HInstruction {
2115 public:
2116  HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
2117      : HInstruction(side_effects, dex_pc), inputs_() {}
2118  virtual ~HTemplateInstruction() {}
2119
2120  size_t InputCount() const OVERRIDE { return N; }
2121
2122 protected:
2123  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
2124    DCHECK_LT(i, N);
2125    return inputs_[i];
2126  }
2127
2128  void SetRawInputRecordAt(size_t i, const HUserRecord<HInstruction*>& input) OVERRIDE {
2129    DCHECK_LT(i, N);
2130    inputs_[i] = input;
2131  }
2132
2133 private:
2134  std::array<HUserRecord<HInstruction*>, N> inputs_;
2135
2136  friend class SsaBuilder;
2137};
2138
2139// HTemplateInstruction specialization for N=0.
2140template<>
2141class HTemplateInstruction<0>: public HInstruction {
2142 public:
2143  explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
2144      : HInstruction(side_effects, dex_pc) {}
2145
2146  virtual ~HTemplateInstruction() {}
2147
2148  size_t InputCount() const OVERRIDE { return 0; }
2149
2150 protected:
2151  const HUserRecord<HInstruction*> InputRecordAt(size_t i ATTRIBUTE_UNUSED) const OVERRIDE {
2152    LOG(FATAL) << "Unreachable";
2153    UNREACHABLE();
2154  }
2155
2156  void SetRawInputRecordAt(size_t i ATTRIBUTE_UNUSED,
2157                           const HUserRecord<HInstruction*>& input ATTRIBUTE_UNUSED) OVERRIDE {
2158    LOG(FATAL) << "Unreachable";
2159    UNREACHABLE();
2160  }
2161
2162 private:
2163  friend class SsaBuilder;
2164};
2165
2166template<intptr_t N>
2167class HExpression : public HTemplateInstruction<N> {
2168 public:
2169  HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2170      : HTemplateInstruction<N>(side_effects, dex_pc), type_(type) {}
2171  virtual ~HExpression() {}
2172
2173  Primitive::Type GetType() const OVERRIDE { return type_; }
2174
2175 protected:
2176  Primitive::Type type_;
2177};
2178
2179// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2180// instruction that branches to the exit block.
2181class HReturnVoid : public HTemplateInstruction<0> {
2182 public:
2183  explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
2184      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2185
2186  bool IsControlFlow() const OVERRIDE { return true; }
2187
2188  DECLARE_INSTRUCTION(ReturnVoid);
2189
2190 private:
2191  DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2192};
2193
2194// Represents dex's RETURN opcodes. A HReturn is a control flow
2195// instruction that branches to the exit block.
2196class HReturn : public HTemplateInstruction<1> {
2197 public:
2198  explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
2199      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2200    SetRawInputAt(0, value);
2201  }
2202
2203  bool IsControlFlow() const OVERRIDE { return true; }
2204
2205  DECLARE_INSTRUCTION(Return);
2206
2207 private:
2208  DISALLOW_COPY_AND_ASSIGN(HReturn);
2209};
2210
2211// The exit instruction is the only instruction of the exit block.
2212// Instructions aborting the method (HThrow and HReturn) must branch to the
2213// exit block.
2214class HExit : public HTemplateInstruction<0> {
2215 public:
2216  explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2217
2218  bool IsControlFlow() const OVERRIDE { return true; }
2219
2220  DECLARE_INSTRUCTION(Exit);
2221
2222 private:
2223  DISALLOW_COPY_AND_ASSIGN(HExit);
2224};
2225
2226// Jumps from one block to another.
2227class HGoto : public HTemplateInstruction<0> {
2228 public:
2229  explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2230
2231  bool IsControlFlow() const OVERRIDE { return true; }
2232
2233  HBasicBlock* GetSuccessor() const {
2234    return GetBlock()->GetSingleSuccessor();
2235  }
2236
2237  DECLARE_INSTRUCTION(Goto);
2238
2239 private:
2240  DISALLOW_COPY_AND_ASSIGN(HGoto);
2241};
2242
2243class HConstant : public HExpression<0> {
2244 public:
2245  explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2246      : HExpression(type, SideEffects::None(), dex_pc) {}
2247
2248  bool CanBeMoved() const OVERRIDE { return true; }
2249
2250  virtual bool IsMinusOne() const { return false; }
2251  virtual bool IsZero() const { return false; }
2252  virtual bool IsOne() const { return false; }
2253
2254  virtual uint64_t GetValueAsUint64() const = 0;
2255
2256  DECLARE_INSTRUCTION(Constant);
2257
2258 private:
2259  DISALLOW_COPY_AND_ASSIGN(HConstant);
2260};
2261
2262class HNullConstant : public HConstant {
2263 public:
2264  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2265    return true;
2266  }
2267
2268  uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2269
2270  size_t ComputeHashCode() const OVERRIDE { return 0; }
2271
2272  DECLARE_INSTRUCTION(NullConstant);
2273
2274 private:
2275  explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2276
2277  friend class HGraph;
2278  DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2279};
2280
2281// Constants of the type int. Those can be from Dex instructions, or
2282// synthesized (for example with the if-eqz instruction).
2283class HIntConstant : public HConstant {
2284 public:
2285  int32_t GetValue() const { return value_; }
2286
2287  uint64_t GetValueAsUint64() const OVERRIDE {
2288    return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2289  }
2290
2291  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2292    DCHECK(other->IsIntConstant());
2293    return other->AsIntConstant()->value_ == value_;
2294  }
2295
2296  size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2297
2298  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2299  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2300  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2301
2302  DECLARE_INSTRUCTION(IntConstant);
2303
2304 private:
2305  explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
2306      : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2307  explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
2308      : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2309
2310  const int32_t value_;
2311
2312  friend class HGraph;
2313  ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2314  ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2315  DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2316};
2317
2318class HLongConstant : public HConstant {
2319 public:
2320  int64_t GetValue() const { return value_; }
2321
2322  uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2323
2324  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2325    DCHECK(other->IsLongConstant());
2326    return other->AsLongConstant()->value_ == value_;
2327  }
2328
2329  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2330
2331  bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
2332  bool IsZero() const OVERRIDE { return GetValue() == 0; }
2333  bool IsOne() const OVERRIDE { return GetValue() == 1; }
2334
2335  DECLARE_INSTRUCTION(LongConstant);
2336
2337 private:
2338  explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
2339      : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2340
2341  const int64_t value_;
2342
2343  friend class HGraph;
2344  DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2345};
2346
2347// Conditional branch. A block ending with an HIf instruction must have
2348// two successors.
2349class HIf : public HTemplateInstruction<1> {
2350 public:
2351  explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
2352      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2353    SetRawInputAt(0, input);
2354  }
2355
2356  bool IsControlFlow() const OVERRIDE { return true; }
2357
2358  HBasicBlock* IfTrueSuccessor() const {
2359    return GetBlock()->GetSuccessors()[0];
2360  }
2361
2362  HBasicBlock* IfFalseSuccessor() const {
2363    return GetBlock()->GetSuccessors()[1];
2364  }
2365
2366  DECLARE_INSTRUCTION(If);
2367
2368 private:
2369  DISALLOW_COPY_AND_ASSIGN(HIf);
2370};
2371
2372
2373// Abstract instruction which marks the beginning and/or end of a try block and
2374// links it to the respective exception handlers. Behaves the same as a Goto in
2375// non-exceptional control flow.
2376// Normal-flow successor is stored at index zero, exception handlers under
2377// higher indices in no particular order.
2378class HTryBoundary : public HTemplateInstruction<0> {
2379 public:
2380  enum BoundaryKind {
2381    kEntry,
2382    kExit,
2383  };
2384
2385  explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
2386      : HTemplateInstruction(SideEffects::None(), dex_pc), kind_(kind) {}
2387
2388  bool IsControlFlow() const OVERRIDE { return true; }
2389
2390  // Returns the block's non-exceptional successor (index zero).
2391  HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2392
2393  // Returns whether `handler` is among its exception handlers (non-zero index
2394  // successors).
2395  bool HasExceptionHandler(const HBasicBlock& handler) const {
2396    DCHECK(handler.IsCatchBlock());
2397    return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2398  }
2399
2400  // If not present already, adds `handler` to its block's list of exception
2401  // handlers.
2402  void AddExceptionHandler(HBasicBlock* handler) {
2403    if (!HasExceptionHandler(*handler)) {
2404      GetBlock()->AddSuccessor(handler);
2405    }
2406  }
2407
2408  bool IsEntry() const { return kind_ == BoundaryKind::kEntry; }
2409
2410  bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2411
2412  DECLARE_INSTRUCTION(TryBoundary);
2413
2414 private:
2415  const BoundaryKind kind_;
2416
2417  DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2418};
2419
2420// Iterator over exception handlers of a given HTryBoundary, i.e. over
2421// exceptional successors of its basic block.
2422class HExceptionHandlerIterator : public ValueObject {
2423 public:
2424  explicit HExceptionHandlerIterator(const HTryBoundary& try_boundary)
2425    : block_(*try_boundary.GetBlock()), index_(block_.NumberOfNormalSuccessors()) {}
2426
2427  bool Done() const { return index_ == block_.GetSuccessors().size(); }
2428  HBasicBlock* Current() const { return block_.GetSuccessors()[index_]; }
2429  size_t CurrentSuccessorIndex() const { return index_; }
2430  void Advance() { ++index_; }
2431
2432 private:
2433  const HBasicBlock& block_;
2434  size_t index_;
2435
2436  DISALLOW_COPY_AND_ASSIGN(HExceptionHandlerIterator);
2437};
2438
2439// Deoptimize to interpreter, upon checking a condition.
2440class HDeoptimize : public HTemplateInstruction<1> {
2441 public:
2442  explicit HDeoptimize(HInstruction* cond, uint32_t dex_pc)
2443      : HTemplateInstruction(SideEffects::None(), dex_pc) {
2444    SetRawInputAt(0, cond);
2445  }
2446
2447  bool NeedsEnvironment() const OVERRIDE { return true; }
2448  bool CanThrow() const OVERRIDE { return true; }
2449
2450  DECLARE_INSTRUCTION(Deoptimize);
2451
2452 private:
2453  DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
2454};
2455
2456// Represents the ArtMethod that was passed as a first argument to
2457// the method. It is used by instructions that depend on it, like
2458// instructions that work with the dex cache.
2459class HCurrentMethod : public HExpression<0> {
2460 public:
2461  explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
2462      : HExpression(type, SideEffects::None(), dex_pc) {}
2463
2464  DECLARE_INSTRUCTION(CurrentMethod);
2465
2466 private:
2467  DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
2468};
2469
2470// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
2471// have one successor for each entry in the switch table, and the final successor
2472// will be the block containing the next Dex opcode.
2473class HPackedSwitch : public HTemplateInstruction<1> {
2474 public:
2475  HPackedSwitch(int32_t start_value,
2476                uint32_t num_entries,
2477                HInstruction* input,
2478                uint32_t dex_pc = kNoDexPc)
2479    : HTemplateInstruction(SideEffects::None(), dex_pc),
2480      start_value_(start_value),
2481      num_entries_(num_entries) {
2482    SetRawInputAt(0, input);
2483  }
2484
2485  bool IsControlFlow() const OVERRIDE { return true; }
2486
2487  int32_t GetStartValue() const { return start_value_; }
2488
2489  uint32_t GetNumEntries() const { return num_entries_; }
2490
2491  HBasicBlock* GetDefaultBlock() const {
2492    // Last entry is the default block.
2493    return GetBlock()->GetSuccessors()[num_entries_];
2494  }
2495  DECLARE_INSTRUCTION(PackedSwitch);
2496
2497 private:
2498  const int32_t start_value_;
2499  const uint32_t num_entries_;
2500
2501  DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
2502};
2503
2504class HUnaryOperation : public HExpression<1> {
2505 public:
2506  HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
2507      : HExpression(result_type, SideEffects::None(), dex_pc) {
2508    SetRawInputAt(0, input);
2509  }
2510
2511  HInstruction* GetInput() const { return InputAt(0); }
2512  Primitive::Type GetResultType() const { return GetType(); }
2513
2514  bool CanBeMoved() const OVERRIDE { return true; }
2515  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2516    return true;
2517  }
2518
2519  // Try to statically evaluate `operation` and return a HConstant
2520  // containing the result of this evaluation.  If `operation` cannot
2521  // be evaluated as a constant, return null.
2522  HConstant* TryStaticEvaluation() const;
2523
2524  // Apply this operation to `x`.
2525  virtual HConstant* Evaluate(HIntConstant* x) const = 0;
2526  virtual HConstant* Evaluate(HLongConstant* x) const = 0;
2527
2528  DECLARE_INSTRUCTION(UnaryOperation);
2529
2530 private:
2531  DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
2532};
2533
2534class HBinaryOperation : public HExpression<2> {
2535 public:
2536  HBinaryOperation(Primitive::Type result_type,
2537                   HInstruction* left,
2538                   HInstruction* right,
2539                   SideEffects side_effects = SideEffects::None(),
2540                   uint32_t dex_pc = kNoDexPc)
2541      : HExpression(result_type, side_effects, dex_pc) {
2542    SetRawInputAt(0, left);
2543    SetRawInputAt(1, right);
2544  }
2545
2546  HInstruction* GetLeft() const { return InputAt(0); }
2547  HInstruction* GetRight() const { return InputAt(1); }
2548  Primitive::Type GetResultType() const { return GetType(); }
2549
2550  virtual bool IsCommutative() const { return false; }
2551
2552  // Put constant on the right.
2553  // Returns whether order is changed.
2554  bool OrderInputsWithConstantOnTheRight() {
2555    HInstruction* left = InputAt(0);
2556    HInstruction* right = InputAt(1);
2557    if (left->IsConstant() && !right->IsConstant()) {
2558      ReplaceInput(right, 0);
2559      ReplaceInput(left, 1);
2560      return true;
2561    }
2562    return false;
2563  }
2564
2565  // Order inputs by instruction id, but favor constant on the right side.
2566  // This helps GVN for commutative ops.
2567  void OrderInputs() {
2568    DCHECK(IsCommutative());
2569    HInstruction* left = InputAt(0);
2570    HInstruction* right = InputAt(1);
2571    if (left == right || (!left->IsConstant() && right->IsConstant())) {
2572      return;
2573    }
2574    if (OrderInputsWithConstantOnTheRight()) {
2575      return;
2576    }
2577    // Order according to instruction id.
2578    if (left->GetId() > right->GetId()) {
2579      ReplaceInput(right, 0);
2580      ReplaceInput(left, 1);
2581    }
2582  }
2583
2584  bool CanBeMoved() const OVERRIDE { return true; }
2585  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2586    return true;
2587  }
2588
2589  // Try to statically evaluate `operation` and return a HConstant
2590  // containing the result of this evaluation.  If `operation` cannot
2591  // be evaluated as a constant, return null.
2592  HConstant* TryStaticEvaluation() const;
2593
2594  // Apply this operation to `x` and `y`.
2595  virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
2596  virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
2597  virtual HConstant* Evaluate(HIntConstant* x ATTRIBUTE_UNUSED,
2598                              HLongConstant* y ATTRIBUTE_UNUSED) const {
2599    VLOG(compiler) << DebugName() << " is not defined for the (int, long) case.";
2600    return nullptr;
2601  }
2602  virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
2603                              HIntConstant* y ATTRIBUTE_UNUSED) const {
2604    VLOG(compiler) << DebugName() << " is not defined for the (long, int) case.";
2605    return nullptr;
2606  }
2607
2608  // Returns an input that can legally be used as the right input and is
2609  // constant, or null.
2610  HConstant* GetConstantRight() const;
2611
2612  // If `GetConstantRight()` returns one of the input, this returns the other
2613  // one. Otherwise it returns null.
2614  HInstruction* GetLeastConstantLeft() const;
2615
2616  DECLARE_INSTRUCTION(BinaryOperation);
2617
2618 private:
2619  DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
2620};
2621
2622// The comparison bias applies for floating point operations and indicates how NaN
2623// comparisons are treated:
2624enum class ComparisonBias {
2625  kNoBias,  // bias is not applicable (i.e. for long operation)
2626  kGtBias,  // return 1 for NaN comparisons
2627  kLtBias,  // return -1 for NaN comparisons
2628};
2629
2630class HCondition : public HBinaryOperation {
2631 public:
2632  HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2633      : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc),
2634        needs_materialization_(true),
2635        bias_(ComparisonBias::kNoBias) {}
2636
2637  bool NeedsMaterialization() const { return needs_materialization_; }
2638  void ClearNeedsMaterialization() { needs_materialization_ = false; }
2639
2640  // For code generation purposes, returns whether this instruction is just before
2641  // `instruction`, and disregard moves in between.
2642  bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
2643
2644  DECLARE_INSTRUCTION(Condition);
2645
2646  virtual IfCondition GetCondition() const = 0;
2647
2648  virtual IfCondition GetOppositeCondition() const = 0;
2649
2650  bool IsGtBias() const { return bias_ == ComparisonBias::kGtBias; }
2651
2652  void SetBias(ComparisonBias bias) { bias_ = bias; }
2653
2654  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
2655    return bias_ == other->AsCondition()->bias_;
2656  }
2657
2658  bool IsFPConditionTrueIfNaN() const {
2659    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2660    IfCondition if_cond = GetCondition();
2661    return IsGtBias() ? ((if_cond == kCondGT) || (if_cond == kCondGE)) : (if_cond == kCondNE);
2662  }
2663
2664  bool IsFPConditionFalseIfNaN() const {
2665    DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType()));
2666    IfCondition if_cond = GetCondition();
2667    return IsGtBias() ? ((if_cond == kCondLT) || (if_cond == kCondLE)) : (if_cond == kCondEQ);
2668  }
2669
2670 private:
2671  // For register allocation purposes, returns whether this instruction needs to be
2672  // materialized (that is, not just be in the processor flags).
2673  bool needs_materialization_;
2674
2675  // Needed if we merge a HCompare into a HCondition.
2676  ComparisonBias bias_;
2677
2678  DISALLOW_COPY_AND_ASSIGN(HCondition);
2679};
2680
2681// Instruction to check if two inputs are equal to each other.
2682class HEqual : public HCondition {
2683 public:
2684  HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2685      : HCondition(first, second, dex_pc) {}
2686
2687  bool IsCommutative() const OVERRIDE { return true; }
2688
2689  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2690    return GetBlock()->GetGraph()->GetIntConstant(
2691        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2692  }
2693  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2694    return GetBlock()->GetGraph()->GetIntConstant(
2695        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2696  }
2697
2698  DECLARE_INSTRUCTION(Equal);
2699
2700  IfCondition GetCondition() const OVERRIDE {
2701    return kCondEQ;
2702  }
2703
2704  IfCondition GetOppositeCondition() const OVERRIDE {
2705    return kCondNE;
2706  }
2707
2708 private:
2709  template <typename T> bool Compute(T x, T y) const { return x == y; }
2710
2711  DISALLOW_COPY_AND_ASSIGN(HEqual);
2712};
2713
2714class HNotEqual : public HCondition {
2715 public:
2716  HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2717      : HCondition(first, second, dex_pc) {}
2718
2719  bool IsCommutative() const OVERRIDE { return true; }
2720
2721  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2722    return GetBlock()->GetGraph()->GetIntConstant(
2723        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2724  }
2725  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2726    return GetBlock()->GetGraph()->GetIntConstant(
2727        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2728  }
2729
2730  DECLARE_INSTRUCTION(NotEqual);
2731
2732  IfCondition GetCondition() const OVERRIDE {
2733    return kCondNE;
2734  }
2735
2736  IfCondition GetOppositeCondition() const OVERRIDE {
2737    return kCondEQ;
2738  }
2739
2740 private:
2741  template <typename T> bool Compute(T x, T y) const { return x != y; }
2742
2743  DISALLOW_COPY_AND_ASSIGN(HNotEqual);
2744};
2745
2746class HLessThan : public HCondition {
2747 public:
2748  HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2749      : HCondition(first, second, dex_pc) {}
2750
2751  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2752    return GetBlock()->GetGraph()->GetIntConstant(
2753        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2754  }
2755  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2756    return GetBlock()->GetGraph()->GetIntConstant(
2757        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2758  }
2759
2760  DECLARE_INSTRUCTION(LessThan);
2761
2762  IfCondition GetCondition() const OVERRIDE {
2763    return kCondLT;
2764  }
2765
2766  IfCondition GetOppositeCondition() const OVERRIDE {
2767    return kCondGE;
2768  }
2769
2770 private:
2771  template <typename T> bool Compute(T x, T y) const { return x < y; }
2772
2773  DISALLOW_COPY_AND_ASSIGN(HLessThan);
2774};
2775
2776class HLessThanOrEqual : public HCondition {
2777 public:
2778  HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2779      : HCondition(first, second, dex_pc) {}
2780
2781  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2782    return GetBlock()->GetGraph()->GetIntConstant(
2783        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2784  }
2785  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2786    return GetBlock()->GetGraph()->GetIntConstant(
2787        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2788  }
2789
2790  DECLARE_INSTRUCTION(LessThanOrEqual);
2791
2792  IfCondition GetCondition() const OVERRIDE {
2793    return kCondLE;
2794  }
2795
2796  IfCondition GetOppositeCondition() const OVERRIDE {
2797    return kCondGT;
2798  }
2799
2800 private:
2801  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2802
2803  DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
2804};
2805
2806class HGreaterThan : public HCondition {
2807 public:
2808  HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2809      : HCondition(first, second, dex_pc) {}
2810
2811  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2812    return GetBlock()->GetGraph()->GetIntConstant(
2813        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2814  }
2815  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2816    return GetBlock()->GetGraph()->GetIntConstant(
2817        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2818  }
2819
2820  DECLARE_INSTRUCTION(GreaterThan);
2821
2822  IfCondition GetCondition() const OVERRIDE {
2823    return kCondGT;
2824  }
2825
2826  IfCondition GetOppositeCondition() const OVERRIDE {
2827    return kCondLE;
2828  }
2829
2830 private:
2831  template <typename T> bool Compute(T x, T y) const { return x > y; }
2832
2833  DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
2834};
2835
2836class HGreaterThanOrEqual : public HCondition {
2837 public:
2838  HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2839      : HCondition(first, second, dex_pc) {}
2840
2841  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2842    return GetBlock()->GetGraph()->GetIntConstant(
2843        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2844  }
2845  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2846    return GetBlock()->GetGraph()->GetIntConstant(
2847        Compute(x->GetValue(), y->GetValue()), GetDexPc());
2848  }
2849
2850  DECLARE_INSTRUCTION(GreaterThanOrEqual);
2851
2852  IfCondition GetCondition() const OVERRIDE {
2853    return kCondGE;
2854  }
2855
2856  IfCondition GetOppositeCondition() const OVERRIDE {
2857    return kCondLT;
2858  }
2859
2860 private:
2861  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2862
2863  DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
2864};
2865
2866class HBelow : public HCondition {
2867 public:
2868  HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2869      : HCondition(first, second, dex_pc) {}
2870
2871  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2872    return GetBlock()->GetGraph()->GetIntConstant(
2873        Compute(static_cast<uint32_t>(x->GetValue()),
2874                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2875  }
2876  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2877    return GetBlock()->GetGraph()->GetIntConstant(
2878        Compute(static_cast<uint64_t>(x->GetValue()),
2879                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2880  }
2881
2882  DECLARE_INSTRUCTION(Below);
2883
2884  IfCondition GetCondition() const OVERRIDE {
2885    return kCondB;
2886  }
2887
2888  IfCondition GetOppositeCondition() const OVERRIDE {
2889    return kCondAE;
2890  }
2891
2892 private:
2893  template <typename T> bool Compute(T x, T y) const { return x < y; }
2894
2895  DISALLOW_COPY_AND_ASSIGN(HBelow);
2896};
2897
2898class HBelowOrEqual : public HCondition {
2899 public:
2900  HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2901      : HCondition(first, second, dex_pc) {}
2902
2903  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2904    return GetBlock()->GetGraph()->GetIntConstant(
2905        Compute(static_cast<uint32_t>(x->GetValue()),
2906                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2907  }
2908  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2909    return GetBlock()->GetGraph()->GetIntConstant(
2910        Compute(static_cast<uint64_t>(x->GetValue()),
2911                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2912  }
2913
2914  DECLARE_INSTRUCTION(BelowOrEqual);
2915
2916  IfCondition GetCondition() const OVERRIDE {
2917    return kCondBE;
2918  }
2919
2920  IfCondition GetOppositeCondition() const OVERRIDE {
2921    return kCondA;
2922  }
2923
2924 private:
2925  template <typename T> bool Compute(T x, T y) const { return x <= y; }
2926
2927  DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
2928};
2929
2930class HAbove : public HCondition {
2931 public:
2932  HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2933      : HCondition(first, second, dex_pc) {}
2934
2935  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2936    return GetBlock()->GetGraph()->GetIntConstant(
2937        Compute(static_cast<uint32_t>(x->GetValue()),
2938                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2939  }
2940  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2941    return GetBlock()->GetGraph()->GetIntConstant(
2942        Compute(static_cast<uint64_t>(x->GetValue()),
2943                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2944  }
2945
2946  DECLARE_INSTRUCTION(Above);
2947
2948  IfCondition GetCondition() const OVERRIDE {
2949    return kCondA;
2950  }
2951
2952  IfCondition GetOppositeCondition() const OVERRIDE {
2953    return kCondBE;
2954  }
2955
2956 private:
2957  template <typename T> bool Compute(T x, T y) const { return x > y; }
2958
2959  DISALLOW_COPY_AND_ASSIGN(HAbove);
2960};
2961
2962class HAboveOrEqual : public HCondition {
2963 public:
2964  HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
2965      : HCondition(first, second, dex_pc) {}
2966
2967  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
2968    return GetBlock()->GetGraph()->GetIntConstant(
2969        Compute(static_cast<uint32_t>(x->GetValue()),
2970                static_cast<uint32_t>(y->GetValue())), GetDexPc());
2971  }
2972  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
2973    return GetBlock()->GetGraph()->GetIntConstant(
2974        Compute(static_cast<uint64_t>(x->GetValue()),
2975                static_cast<uint64_t>(y->GetValue())), GetDexPc());
2976  }
2977
2978  DECLARE_INSTRUCTION(AboveOrEqual);
2979
2980  IfCondition GetCondition() const OVERRIDE {
2981    return kCondAE;
2982  }
2983
2984  IfCondition GetOppositeCondition() const OVERRIDE {
2985    return kCondB;
2986  }
2987
2988 private:
2989  template <typename T> bool Compute(T x, T y) const { return x >= y; }
2990
2991  DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
2992};
2993
2994// Instruction to check how two inputs compare to each other.
2995// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
2996class HCompare : public HBinaryOperation {
2997 public:
2998  HCompare(Primitive::Type type,
2999           HInstruction* first,
3000           HInstruction* second,
3001           ComparisonBias bias,
3002           uint32_t dex_pc)
3003      : HBinaryOperation(Primitive::kPrimInt,
3004                         first,
3005                         second,
3006                         SideEffectsForArchRuntimeCalls(type),
3007                         dex_pc),
3008        bias_(bias) {
3009    DCHECK_EQ(type, first->GetType());
3010    DCHECK_EQ(type, second->GetType());
3011  }
3012
3013  template <typename T>
3014  int32_t Compute(T x, T y) const { return x == y ? 0 : x > y ? 1 : -1; }
3015
3016  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3017    return GetBlock()->GetGraph()->GetIntConstant(
3018        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3019  }
3020  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3021    return GetBlock()->GetGraph()->GetIntConstant(
3022        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3023  }
3024
3025  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3026    return bias_ == other->AsCompare()->bias_;
3027  }
3028
3029  ComparisonBias GetBias() const { return bias_; }
3030
3031  bool IsGtBias() { return bias_ == ComparisonBias::kGtBias; }
3032
3033
3034  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type) {
3035    // MIPS64 uses a runtime call for FP comparisons.
3036    return Primitive::IsFloatingPointType(type) ? SideEffects::CanTriggerGC() : SideEffects::None();
3037  }
3038
3039  DECLARE_INSTRUCTION(Compare);
3040
3041 private:
3042  const ComparisonBias bias_;
3043
3044  DISALLOW_COPY_AND_ASSIGN(HCompare);
3045};
3046
3047// A local in the graph. Corresponds to a Dex register.
3048class HLocal : public HTemplateInstruction<0> {
3049 public:
3050  explicit HLocal(uint16_t reg_number)
3051      : HTemplateInstruction(SideEffects::None(), kNoDexPc), reg_number_(reg_number) {}
3052
3053  DECLARE_INSTRUCTION(Local);
3054
3055  uint16_t GetRegNumber() const { return reg_number_; }
3056
3057 private:
3058  // The Dex register number.
3059  const uint16_t reg_number_;
3060
3061  DISALLOW_COPY_AND_ASSIGN(HLocal);
3062};
3063
3064// Load a given local. The local is an input of this instruction.
3065class HLoadLocal : public HExpression<1> {
3066 public:
3067  HLoadLocal(HLocal* local, Primitive::Type type, uint32_t dex_pc = kNoDexPc)
3068      : HExpression(type, SideEffects::None(), dex_pc) {
3069    SetRawInputAt(0, local);
3070  }
3071
3072  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3073
3074  DECLARE_INSTRUCTION(LoadLocal);
3075
3076 private:
3077  DISALLOW_COPY_AND_ASSIGN(HLoadLocal);
3078};
3079
3080// Store a value in a given local. This instruction has two inputs: the value
3081// and the local.
3082class HStoreLocal : public HTemplateInstruction<2> {
3083 public:
3084  HStoreLocal(HLocal* local, HInstruction* value, uint32_t dex_pc = kNoDexPc)
3085      : HTemplateInstruction(SideEffects::None(), dex_pc) {
3086    SetRawInputAt(0, local);
3087    SetRawInputAt(1, value);
3088  }
3089
3090  HLocal* GetLocal() const { return reinterpret_cast<HLocal*>(InputAt(0)); }
3091
3092  DECLARE_INSTRUCTION(StoreLocal);
3093
3094 private:
3095  DISALLOW_COPY_AND_ASSIGN(HStoreLocal);
3096};
3097
3098class HFloatConstant : public HConstant {
3099 public:
3100  float GetValue() const { return value_; }
3101
3102  uint64_t GetValueAsUint64() const OVERRIDE {
3103    return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3104  }
3105
3106  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3107    DCHECK(other->IsFloatConstant());
3108    return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3109  }
3110
3111  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3112
3113  bool IsMinusOne() const OVERRIDE {
3114    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3115  }
3116  bool IsZero() const OVERRIDE {
3117    return value_ == 0.0f;
3118  }
3119  bool IsOne() const OVERRIDE {
3120    return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3121  }
3122  bool IsNaN() const {
3123    return std::isnan(value_);
3124  }
3125
3126  DECLARE_INSTRUCTION(FloatConstant);
3127
3128 private:
3129  explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
3130      : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
3131  explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
3132      : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
3133
3134  const float value_;
3135
3136  // Only the SsaBuilder and HGraph can create floating-point constants.
3137  friend class SsaBuilder;
3138  friend class HGraph;
3139  DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
3140};
3141
3142class HDoubleConstant : public HConstant {
3143 public:
3144  double GetValue() const { return value_; }
3145
3146  uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
3147
3148  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
3149    DCHECK(other->IsDoubleConstant());
3150    return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3151  }
3152
3153  size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
3154
3155  bool IsMinusOne() const OVERRIDE {
3156    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3157  }
3158  bool IsZero() const OVERRIDE {
3159    return value_ == 0.0;
3160  }
3161  bool IsOne() const OVERRIDE {
3162    return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3163  }
3164  bool IsNaN() const {
3165    return std::isnan(value_);
3166  }
3167
3168  DECLARE_INSTRUCTION(DoubleConstant);
3169
3170 private:
3171  explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
3172      : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
3173  explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
3174      : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
3175
3176  const double value_;
3177
3178  // Only the SsaBuilder and HGraph can create floating-point constants.
3179  friend class SsaBuilder;
3180  friend class HGraph;
3181  DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
3182};
3183
3184enum class Intrinsics {
3185#define OPTIMIZING_INTRINSICS(Name, IsStatic, NeedsEnvironmentOrCache) k ## Name,
3186#include "intrinsics_list.h"
3187  kNone,
3188  INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3189#undef INTRINSICS_LIST
3190#undef OPTIMIZING_INTRINSICS
3191};
3192std::ostream& operator<<(std::ostream& os, const Intrinsics& intrinsic);
3193
3194enum IntrinsicNeedsEnvironmentOrCache {
3195  kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
3196  kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
3197};
3198
3199class HInvoke : public HInstruction {
3200 public:
3201  size_t InputCount() const OVERRIDE { return inputs_.size(); }
3202
3203  bool NeedsEnvironment() const OVERRIDE;
3204
3205  void SetArgumentAt(size_t index, HInstruction* argument) {
3206    SetRawInputAt(index, argument);
3207  }
3208
3209  // Return the number of arguments.  This number can be lower than
3210  // the number of inputs returned by InputCount(), as some invoke
3211  // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3212  // inputs at the end of their list of inputs.
3213  uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
3214
3215  Primitive::Type GetType() const OVERRIDE { return return_type_; }
3216
3217
3218  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3219  const DexFile& GetDexFile() const { return GetEnvironment()->GetDexFile(); }
3220
3221  InvokeType GetOriginalInvokeType() const { return original_invoke_type_; }
3222
3223  Intrinsics GetIntrinsic() const {
3224    return intrinsic_;
3225  }
3226
3227  void SetIntrinsic(Intrinsics intrinsic, IntrinsicNeedsEnvironmentOrCache needs_env_or_cache);
3228
3229  bool IsFromInlinedInvoke() const {
3230    return GetEnvironment()->GetParent() != nullptr;
3231  }
3232
3233  bool CanThrow() const OVERRIDE { return true; }
3234
3235  uint32_t* GetIntrinsicOptimizations() {
3236    return &intrinsic_optimizations_;
3237  }
3238
3239  const uint32_t* GetIntrinsicOptimizations() const {
3240    return &intrinsic_optimizations_;
3241  }
3242
3243  bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
3244
3245  DECLARE_INSTRUCTION(Invoke);
3246
3247 protected:
3248  HInvoke(ArenaAllocator* arena,
3249          uint32_t number_of_arguments,
3250          uint32_t number_of_other_inputs,
3251          Primitive::Type return_type,
3252          uint32_t dex_pc,
3253          uint32_t dex_method_index,
3254          InvokeType original_invoke_type)
3255    : HInstruction(
3256          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
3257      number_of_arguments_(number_of_arguments),
3258      inputs_(number_of_arguments + number_of_other_inputs,
3259              arena->Adapter(kArenaAllocInvokeInputs)),
3260      return_type_(return_type),
3261      dex_method_index_(dex_method_index),
3262      original_invoke_type_(original_invoke_type),
3263      intrinsic_(Intrinsics::kNone),
3264      intrinsic_optimizations_(0) {
3265  }
3266
3267  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
3268    return inputs_[index];
3269  }
3270
3271  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
3272    inputs_[index] = input;
3273  }
3274
3275  uint32_t number_of_arguments_;
3276  ArenaVector<HUserRecord<HInstruction*>> inputs_;
3277  const Primitive::Type return_type_;
3278  const uint32_t dex_method_index_;
3279  const InvokeType original_invoke_type_;
3280  Intrinsics intrinsic_;
3281
3282  // A magic word holding optimizations for intrinsics. See intrinsics.h.
3283  uint32_t intrinsic_optimizations_;
3284
3285 private:
3286  DISALLOW_COPY_AND_ASSIGN(HInvoke);
3287};
3288
3289class HInvokeUnresolved : public HInvoke {
3290 public:
3291  HInvokeUnresolved(ArenaAllocator* arena,
3292                    uint32_t number_of_arguments,
3293                    Primitive::Type return_type,
3294                    uint32_t dex_pc,
3295                    uint32_t dex_method_index,
3296                    InvokeType invoke_type)
3297      : HInvoke(arena,
3298                number_of_arguments,
3299                0u /* number_of_other_inputs */,
3300                return_type,
3301                dex_pc,
3302                dex_method_index,
3303                invoke_type) {
3304  }
3305
3306  DECLARE_INSTRUCTION(InvokeUnresolved);
3307
3308 private:
3309  DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
3310};
3311
3312class HInvokeStaticOrDirect : public HInvoke {
3313 public:
3314  // Requirements of this method call regarding the class
3315  // initialization (clinit) check of its declaring class.
3316  enum class ClinitCheckRequirement {
3317    kNone,      // Class already initialized.
3318    kExplicit,  // Static call having explicit clinit check as last input.
3319    kImplicit,  // Static call implicitly requiring a clinit check.
3320  };
3321
3322  // Determines how to load the target ArtMethod*.
3323  enum class MethodLoadKind {
3324    // Use a String init ArtMethod* loaded from Thread entrypoints.
3325    kStringInit,
3326
3327    // Use the method's own ArtMethod* loaded by the register allocator.
3328    kRecursive,
3329
3330    // Use ArtMethod* at a known address, embed the direct address in the code.
3331    // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
3332    kDirectAddress,
3333
3334    // Use ArtMethod* at an address that will be known at link time, embed the direct
3335    // address in the code. If the image is relocatable, emit .patch_oat entry.
3336    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3337    // the image relocatable or not.
3338    kDirectAddressWithFixup,
3339
3340    // Load from resoved methods array in the dex cache using a PC-relative load.
3341    // Used when we need to use the dex cache, for example for invoke-static that
3342    // may cause class initialization (the entry may point to a resolution method),
3343    // and we know that we can access the dex cache arrays using a PC-relative load.
3344    kDexCachePcRelative,
3345
3346    // Use ArtMethod* from the resolved methods of the compiled method's own ArtMethod*.
3347    // Used for JIT when we need to use the dex cache. This is also the last-resort-kind
3348    // used when other kinds are unavailable (say, dex cache arrays are not PC-relative)
3349    // or unimplemented or impractical (i.e. slow) on a particular architecture.
3350    kDexCacheViaMethod,
3351  };
3352
3353  // Determines the location of the code pointer.
3354  enum class CodePtrLocation {
3355    // Recursive call, use local PC-relative call instruction.
3356    kCallSelf,
3357
3358    // Use PC-relative call instruction patched at link time.
3359    // Used for calls within an oat file, boot->boot or app->app.
3360    kCallPCRelative,
3361
3362    // Call to a known target address, embed the direct address in code.
3363    // Used for app->boot call with non-relocatable image and for JIT-compiled calls.
3364    kCallDirect,
3365
3366    // Call to a target address that will be known at link time, embed the direct
3367    // address in code. If the image is relocatable, emit .patch_oat entry.
3368    // Used for app->boot calls with relocatable image and boot->boot calls, whether
3369    // the image relocatable or not.
3370    kCallDirectWithFixup,
3371
3372    // Use code pointer from the ArtMethod*.
3373    // Used when we don't know the target code. This is also the last-resort-kind used when
3374    // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
3375    kCallArtMethod,
3376  };
3377
3378  struct DispatchInfo {
3379    MethodLoadKind method_load_kind;
3380    CodePtrLocation code_ptr_location;
3381    // The method load data holds
3382    //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
3383    //     Note that there are multiple string init methods, each having its own offset.
3384    //   - the method address for kDirectAddress
3385    //   - the dex cache arrays offset for kDexCachePcRel.
3386    uint64_t method_load_data;
3387    uint64_t direct_code_ptr;
3388  };
3389
3390  HInvokeStaticOrDirect(ArenaAllocator* arena,
3391                        uint32_t number_of_arguments,
3392                        Primitive::Type return_type,
3393                        uint32_t dex_pc,
3394                        uint32_t method_index,
3395                        MethodReference target_method,
3396                        DispatchInfo dispatch_info,
3397                        InvokeType original_invoke_type,
3398                        InvokeType invoke_type,
3399                        ClinitCheckRequirement clinit_check_requirement)
3400      : HInvoke(arena,
3401                number_of_arguments,
3402                // There is one extra argument for the HCurrentMethod node, and
3403                // potentially one other if the clinit check is explicit, and one other
3404                // if the method is a string factory.
3405                1u + (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u)
3406                   + (dispatch_info.method_load_kind == MethodLoadKind::kStringInit ? 1u : 0u),
3407                return_type,
3408                dex_pc,
3409                method_index,
3410                original_invoke_type),
3411        invoke_type_(invoke_type),
3412        clinit_check_requirement_(clinit_check_requirement),
3413        target_method_(target_method),
3414        dispatch_info_(dispatch_info) {}
3415
3416  void SetDispatchInfo(const DispatchInfo& dispatch_info) {
3417    dispatch_info_ = dispatch_info;
3418  }
3419
3420  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
3421    // We access the method via the dex cache so we can't do an implicit null check.
3422    // TODO: for intrinsics we can generate implicit null checks.
3423    return false;
3424  }
3425
3426  bool CanBeNull() const OVERRIDE {
3427    return return_type_ == Primitive::kPrimNot && !IsStringInit();
3428  }
3429
3430  InvokeType GetInvokeType() const { return invoke_type_; }
3431  MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
3432  CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
3433  bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
3434  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
3435  bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
3436  uint32_t GetCurrentMethodInputIndex() const { return GetNumberOfArguments(); }
3437  bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
3438  bool HasPcRelDexCache() const {
3439    return GetMethodLoadKind() == MethodLoadKind::kDexCachePcRelative;
3440  }
3441  bool HasDirectCodePtr() const { return GetCodePtrLocation() == CodePtrLocation::kCallDirect; }
3442  MethodReference GetTargetMethod() const { return target_method_; }
3443
3444  int32_t GetStringInitOffset() const {
3445    DCHECK(IsStringInit());
3446    return dispatch_info_.method_load_data;
3447  }
3448
3449  uint64_t GetMethodAddress() const {
3450    DCHECK(HasMethodAddress());
3451    return dispatch_info_.method_load_data;
3452  }
3453
3454  uint32_t GetDexCacheArrayOffset() const {
3455    DCHECK(HasPcRelDexCache());
3456    return dispatch_info_.method_load_data;
3457  }
3458
3459  uint64_t GetDirectCodePtr() const {
3460    DCHECK(HasDirectCodePtr());
3461    return dispatch_info_.direct_code_ptr;
3462  }
3463
3464  ClinitCheckRequirement GetClinitCheckRequirement() const { return clinit_check_requirement_; }
3465
3466  // Is this instruction a call to a static method?
3467  bool IsStatic() const {
3468    return GetInvokeType() == kStatic;
3469  }
3470
3471  // Remove the art::HLoadClass instruction set as last input by
3472  // art::PrepareForRegisterAllocation::VisitClinitCheck in lieu of
3473  // the initial art::HClinitCheck instruction (only relevant for
3474  // static calls with explicit clinit check).
3475  void RemoveLoadClassAsLastInput() {
3476    DCHECK(IsStaticWithExplicitClinitCheck());
3477    size_t last_input_index = InputCount() - 1;
3478    HInstruction* last_input = InputAt(last_input_index);
3479    DCHECK(last_input != nullptr);
3480    DCHECK(last_input->IsLoadClass()) << last_input->DebugName();
3481    RemoveAsUserOfInput(last_input_index);
3482    inputs_.pop_back();
3483    clinit_check_requirement_ = ClinitCheckRequirement::kImplicit;
3484    DCHECK(IsStaticWithImplicitClinitCheck());
3485  }
3486
3487  bool IsStringFactoryFor(HFakeString* str) const {
3488    if (!IsStringInit()) return false;
3489    // +1 for the current method.
3490    if (InputCount() == (number_of_arguments_ + 1)) return false;
3491    return InputAt(InputCount() - 1)->AsFakeString() == str;
3492  }
3493
3494  void RemoveFakeStringArgumentAsLastInput() {
3495    DCHECK(IsStringInit());
3496    size_t last_input_index = InputCount() - 1;
3497    HInstruction* last_input = InputAt(last_input_index);
3498    DCHECK(last_input != nullptr);
3499    DCHECK(last_input->IsFakeString()) << last_input->DebugName();
3500    RemoveAsUserOfInput(last_input_index);
3501    inputs_.pop_back();
3502  }
3503
3504  // Is this a call to a static method whose declaring class has an
3505  // explicit intialization check in the graph?
3506  bool IsStaticWithExplicitClinitCheck() const {
3507    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kExplicit);
3508  }
3509
3510  // Is this a call to a static method whose declaring class has an
3511  // implicit intialization check requirement?
3512  bool IsStaticWithImplicitClinitCheck() const {
3513    return IsStatic() && (clinit_check_requirement_ == ClinitCheckRequirement::kImplicit);
3514  }
3515
3516  DECLARE_INSTRUCTION(InvokeStaticOrDirect);
3517
3518 protected:
3519  const HUserRecord<HInstruction*> InputRecordAt(size_t i) const OVERRIDE {
3520    const HUserRecord<HInstruction*> input_record = HInvoke::InputRecordAt(i);
3521    if (kIsDebugBuild && IsStaticWithExplicitClinitCheck() && (i == InputCount() - 1)) {
3522      HInstruction* input = input_record.GetInstruction();
3523      // `input` is the last input of a static invoke marked as having
3524      // an explicit clinit check. It must either be:
3525      // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
3526      // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
3527      DCHECK(input != nullptr);
3528      DCHECK(input->IsClinitCheck() || input->IsLoadClass()) << input->DebugName();
3529    }
3530    return input_record;
3531  }
3532
3533 private:
3534  const InvokeType invoke_type_;
3535  ClinitCheckRequirement clinit_check_requirement_;
3536  // The target method may refer to different dex file or method index than the original
3537  // invoke. This happens for sharpened calls and for calls where a method was redeclared
3538  // in derived class to increase visibility.
3539  MethodReference target_method_;
3540  DispatchInfo dispatch_info_;
3541
3542  DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
3543};
3544
3545class HInvokeVirtual : public HInvoke {
3546 public:
3547  HInvokeVirtual(ArenaAllocator* arena,
3548                 uint32_t number_of_arguments,
3549                 Primitive::Type return_type,
3550                 uint32_t dex_pc,
3551                 uint32_t dex_method_index,
3552                 uint32_t vtable_index)
3553      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kVirtual),
3554        vtable_index_(vtable_index) {}
3555
3556  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3557    // TODO: Add implicit null checks in intrinsics.
3558    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3559  }
3560
3561  uint32_t GetVTableIndex() const { return vtable_index_; }
3562
3563  DECLARE_INSTRUCTION(InvokeVirtual);
3564
3565 private:
3566  const uint32_t vtable_index_;
3567
3568  DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
3569};
3570
3571class HInvokeInterface : public HInvoke {
3572 public:
3573  HInvokeInterface(ArenaAllocator* arena,
3574                   uint32_t number_of_arguments,
3575                   Primitive::Type return_type,
3576                   uint32_t dex_pc,
3577                   uint32_t dex_method_index,
3578                   uint32_t imt_index)
3579      : HInvoke(arena, number_of_arguments, 0u, return_type, dex_pc, dex_method_index, kInterface),
3580        imt_index_(imt_index) {}
3581
3582  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
3583    // TODO: Add implicit null checks in intrinsics.
3584    return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
3585  }
3586
3587  uint32_t GetImtIndex() const { return imt_index_; }
3588  uint32_t GetDexMethodIndex() const { return dex_method_index_; }
3589
3590  DECLARE_INSTRUCTION(InvokeInterface);
3591
3592 private:
3593  const uint32_t imt_index_;
3594
3595  DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
3596};
3597
3598class HNewInstance : public HExpression<1> {
3599 public:
3600  HNewInstance(HCurrentMethod* current_method,
3601               uint32_t dex_pc,
3602               uint16_t type_index,
3603               const DexFile& dex_file,
3604               QuickEntrypointEnum entrypoint)
3605      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3606        type_index_(type_index),
3607        dex_file_(dex_file),
3608        entrypoint_(entrypoint) {
3609    SetRawInputAt(0, current_method);
3610  }
3611
3612  uint16_t GetTypeIndex() const { return type_index_; }
3613  const DexFile& GetDexFile() const { return dex_file_; }
3614
3615  // Calls runtime so needs an environment.
3616  bool NeedsEnvironment() const OVERRIDE { return true; }
3617  // It may throw when called on:
3618  //   - interfaces
3619  //   - abstract/innaccessible/unknown classes
3620  // TODO: optimize when possible.
3621  bool CanThrow() const OVERRIDE { return true; }
3622
3623  bool CanBeNull() const OVERRIDE { return false; }
3624
3625  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3626
3627  DECLARE_INSTRUCTION(NewInstance);
3628
3629 private:
3630  const uint16_t type_index_;
3631  const DexFile& dex_file_;
3632  const QuickEntrypointEnum entrypoint_;
3633
3634  DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3635};
3636
3637class HNeg : public HUnaryOperation {
3638 public:
3639  HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
3640      : HUnaryOperation(result_type, input, dex_pc) {}
3641
3642  template <typename T> T Compute(T x) const { return -x; }
3643
3644  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
3645    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
3646  }
3647  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
3648    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
3649  }
3650
3651  DECLARE_INSTRUCTION(Neg);
3652
3653 private:
3654  DISALLOW_COPY_AND_ASSIGN(HNeg);
3655};
3656
3657class HNewArray : public HExpression<2> {
3658 public:
3659  HNewArray(HInstruction* length,
3660            HCurrentMethod* current_method,
3661            uint32_t dex_pc,
3662            uint16_t type_index,
3663            const DexFile& dex_file,
3664            QuickEntrypointEnum entrypoint)
3665      : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3666        type_index_(type_index),
3667        dex_file_(dex_file),
3668        entrypoint_(entrypoint) {
3669    SetRawInputAt(0, length);
3670    SetRawInputAt(1, current_method);
3671  }
3672
3673  uint16_t GetTypeIndex() const { return type_index_; }
3674  const DexFile& GetDexFile() const { return dex_file_; }
3675
3676  // Calls runtime so needs an environment.
3677  bool NeedsEnvironment() const OVERRIDE { return true; }
3678
3679  // May throw NegativeArraySizeException, OutOfMemoryError, etc.
3680  bool CanThrow() const OVERRIDE { return true; }
3681
3682  bool CanBeNull() const OVERRIDE { return false; }
3683
3684  QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3685
3686  DECLARE_INSTRUCTION(NewArray);
3687
3688 private:
3689  const uint16_t type_index_;
3690  const DexFile& dex_file_;
3691  const QuickEntrypointEnum entrypoint_;
3692
3693  DISALLOW_COPY_AND_ASSIGN(HNewArray);
3694};
3695
3696class HAdd : public HBinaryOperation {
3697 public:
3698  HAdd(Primitive::Type result_type,
3699       HInstruction* left,
3700       HInstruction* right,
3701       uint32_t dex_pc = kNoDexPc)
3702      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3703
3704  bool IsCommutative() const OVERRIDE { return true; }
3705
3706  template <typename T> T Compute(T x, T y) const { return x + y; }
3707
3708  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3709    return GetBlock()->GetGraph()->GetIntConstant(
3710        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3711  }
3712  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3713    return GetBlock()->GetGraph()->GetLongConstant(
3714        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3715  }
3716
3717  DECLARE_INSTRUCTION(Add);
3718
3719 private:
3720  DISALLOW_COPY_AND_ASSIGN(HAdd);
3721};
3722
3723class HSub : public HBinaryOperation {
3724 public:
3725  HSub(Primitive::Type result_type,
3726       HInstruction* left,
3727       HInstruction* right,
3728       uint32_t dex_pc = kNoDexPc)
3729      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3730
3731  template <typename T> T Compute(T x, T y) const { return x - y; }
3732
3733  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3734    return GetBlock()->GetGraph()->GetIntConstant(
3735        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3736  }
3737  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3738    return GetBlock()->GetGraph()->GetLongConstant(
3739        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3740  }
3741
3742  DECLARE_INSTRUCTION(Sub);
3743
3744 private:
3745  DISALLOW_COPY_AND_ASSIGN(HSub);
3746};
3747
3748class HMul : public HBinaryOperation {
3749 public:
3750  HMul(Primitive::Type result_type,
3751       HInstruction* left,
3752       HInstruction* right,
3753       uint32_t dex_pc = kNoDexPc)
3754      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3755
3756  bool IsCommutative() const OVERRIDE { return true; }
3757
3758  template <typename T> T Compute(T x, T y) const { return x * y; }
3759
3760  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3761    return GetBlock()->GetGraph()->GetIntConstant(
3762        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3763  }
3764  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3765    return GetBlock()->GetGraph()->GetLongConstant(
3766        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3767  }
3768
3769  DECLARE_INSTRUCTION(Mul);
3770
3771 private:
3772  DISALLOW_COPY_AND_ASSIGN(HMul);
3773};
3774
3775class HDiv : public HBinaryOperation {
3776 public:
3777  HDiv(Primitive::Type result_type,
3778       HInstruction* left,
3779       HInstruction* right,
3780       uint32_t dex_pc)
3781      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3782
3783  template <typename T>
3784  T Compute(T x, T y) const {
3785    // Our graph structure ensures we never have 0 for `y` during
3786    // constant folding.
3787    DCHECK_NE(y, 0);
3788    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3789    return (y == -1) ? -x : x / y;
3790  }
3791
3792  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3793    return GetBlock()->GetGraph()->GetIntConstant(
3794        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3795  }
3796  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3797    return GetBlock()->GetGraph()->GetLongConstant(
3798        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3799  }
3800
3801  static SideEffects SideEffectsForArchRuntimeCalls() {
3802    // The generated code can use a runtime call.
3803    return SideEffects::CanTriggerGC();
3804  }
3805
3806  DECLARE_INSTRUCTION(Div);
3807
3808 private:
3809  DISALLOW_COPY_AND_ASSIGN(HDiv);
3810};
3811
3812class HRem : public HBinaryOperation {
3813 public:
3814  HRem(Primitive::Type result_type,
3815       HInstruction* left,
3816       HInstruction* right,
3817       uint32_t dex_pc)
3818      : HBinaryOperation(result_type, left, right, SideEffectsForArchRuntimeCalls(), dex_pc) {}
3819
3820  template <typename T>
3821  T Compute(T x, T y) const {
3822    // Our graph structure ensures we never have 0 for `y` during
3823    // constant folding.
3824    DCHECK_NE(y, 0);
3825    // Special case -1 to avoid getting a SIGFPE on x86(_64).
3826    return (y == -1) ? 0 : x % y;
3827  }
3828
3829  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3830    return GetBlock()->GetGraph()->GetIntConstant(
3831        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3832  }
3833  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3834    return GetBlock()->GetGraph()->GetLongConstant(
3835        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3836  }
3837
3838
3839  static SideEffects SideEffectsForArchRuntimeCalls() {
3840    return SideEffects::CanTriggerGC();
3841  }
3842
3843  DECLARE_INSTRUCTION(Rem);
3844
3845 private:
3846  DISALLOW_COPY_AND_ASSIGN(HRem);
3847};
3848
3849class HDivZeroCheck : public HExpression<1> {
3850 public:
3851  HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
3852      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
3853    SetRawInputAt(0, value);
3854  }
3855
3856  Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
3857
3858  bool CanBeMoved() const OVERRIDE { return true; }
3859
3860  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3861    return true;
3862  }
3863
3864  bool NeedsEnvironment() const OVERRIDE { return true; }
3865  bool CanThrow() const OVERRIDE { return true; }
3866
3867  DECLARE_INSTRUCTION(DivZeroCheck);
3868
3869 private:
3870  DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
3871};
3872
3873class HShl : public HBinaryOperation {
3874 public:
3875  HShl(Primitive::Type result_type,
3876       HInstruction* left,
3877       HInstruction* right,
3878       uint32_t dex_pc = kNoDexPc)
3879      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3880
3881  template <typename T, typename U, typename V>
3882  T Compute(T x, U y, V max_shift_value) const {
3883    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3884                  "V is not the unsigned integer type corresponding to T");
3885    return x << (y & max_shift_value);
3886  }
3887
3888  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3889    return GetBlock()->GetGraph()->GetIntConstant(
3890        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3891  }
3892  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3893  // case is handled as `x << static_cast<int>(y)`.
3894  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3895    return GetBlock()->GetGraph()->GetLongConstant(
3896        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3897  }
3898  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3899    return GetBlock()->GetGraph()->GetLongConstant(
3900        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3901  }
3902
3903  DECLARE_INSTRUCTION(Shl);
3904
3905 private:
3906  DISALLOW_COPY_AND_ASSIGN(HShl);
3907};
3908
3909class HShr : public HBinaryOperation {
3910 public:
3911  HShr(Primitive::Type result_type,
3912       HInstruction* left,
3913       HInstruction* right,
3914       uint32_t dex_pc = kNoDexPc)
3915      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3916
3917  template <typename T, typename U, typename V>
3918  T Compute(T x, U y, V max_shift_value) const {
3919    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3920                  "V is not the unsigned integer type corresponding to T");
3921    return x >> (y & max_shift_value);
3922  }
3923
3924  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3925    return GetBlock()->GetGraph()->GetIntConstant(
3926        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3927  }
3928  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3929  // case is handled as `x >> static_cast<int>(y)`.
3930  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3931    return GetBlock()->GetGraph()->GetLongConstant(
3932        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3933  }
3934  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3935    return GetBlock()->GetGraph()->GetLongConstant(
3936        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3937  }
3938
3939  DECLARE_INSTRUCTION(Shr);
3940
3941 private:
3942  DISALLOW_COPY_AND_ASSIGN(HShr);
3943};
3944
3945class HUShr : public HBinaryOperation {
3946 public:
3947  HUShr(Primitive::Type result_type,
3948        HInstruction* left,
3949        HInstruction* right,
3950        uint32_t dex_pc = kNoDexPc)
3951      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3952
3953  template <typename T, typename U, typename V>
3954  T Compute(T x, U y, V max_shift_value) const {
3955    static_assert(std::is_same<V, typename std::make_unsigned<T>::type>::value,
3956                  "V is not the unsigned integer type corresponding to T");
3957    V ux = static_cast<V>(x);
3958    return static_cast<T>(ux >> (y & max_shift_value));
3959  }
3960
3961  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3962    return GetBlock()->GetGraph()->GetIntConstant(
3963        Compute(x->GetValue(), y->GetValue(), kMaxIntShiftValue), GetDexPc());
3964  }
3965  // There is no `Evaluate(HIntConstant* x, HLongConstant* y)`, as this
3966  // case is handled as `x >>> static_cast<int>(y)`.
3967  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
3968    return GetBlock()->GetGraph()->GetLongConstant(
3969        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3970  }
3971  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3972    return GetBlock()->GetGraph()->GetLongConstant(
3973        Compute(x->GetValue(), y->GetValue(), kMaxLongShiftValue), GetDexPc());
3974  }
3975
3976  DECLARE_INSTRUCTION(UShr);
3977
3978 private:
3979  DISALLOW_COPY_AND_ASSIGN(HUShr);
3980};
3981
3982class HAnd : public HBinaryOperation {
3983 public:
3984  HAnd(Primitive::Type result_type,
3985       HInstruction* left,
3986       HInstruction* right,
3987       uint32_t dex_pc = kNoDexPc)
3988      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
3989
3990  bool IsCommutative() const OVERRIDE { return true; }
3991
3992  template <typename T, typename U>
3993  auto Compute(T x, U y) const -> decltype(x & y) { return x & y; }
3994
3995  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3996    return GetBlock()->GetGraph()->GetIntConstant(
3997        Compute(x->GetValue(), y->GetValue()), GetDexPc());
3998  }
3999  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4000    return GetBlock()->GetGraph()->GetLongConstant(
4001        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4002  }
4003  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4004    return GetBlock()->GetGraph()->GetLongConstant(
4005        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4006  }
4007  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4008    return GetBlock()->GetGraph()->GetLongConstant(
4009        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4010  }
4011
4012  DECLARE_INSTRUCTION(And);
4013
4014 private:
4015  DISALLOW_COPY_AND_ASSIGN(HAnd);
4016};
4017
4018class HOr : public HBinaryOperation {
4019 public:
4020  HOr(Primitive::Type result_type,
4021      HInstruction* left,
4022      HInstruction* right,
4023      uint32_t dex_pc = kNoDexPc)
4024      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4025
4026  bool IsCommutative() const OVERRIDE { return true; }
4027
4028  template <typename T, typename U>
4029  auto Compute(T x, U y) const -> decltype(x | y) { return x | y; }
4030
4031  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4032    return GetBlock()->GetGraph()->GetIntConstant(
4033        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4034  }
4035  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4036    return GetBlock()->GetGraph()->GetLongConstant(
4037        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4038  }
4039  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4040    return GetBlock()->GetGraph()->GetLongConstant(
4041        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4042  }
4043  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4044    return GetBlock()->GetGraph()->GetLongConstant(
4045        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4046  }
4047
4048  DECLARE_INSTRUCTION(Or);
4049
4050 private:
4051  DISALLOW_COPY_AND_ASSIGN(HOr);
4052};
4053
4054class HXor : public HBinaryOperation {
4055 public:
4056  HXor(Primitive::Type result_type,
4057       HInstruction* left,
4058       HInstruction* right,
4059       uint32_t dex_pc = kNoDexPc)
4060      : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4061
4062  bool IsCommutative() const OVERRIDE { return true; }
4063
4064  template <typename T, typename U>
4065  auto Compute(T x, U y) const -> decltype(x ^ y) { return x ^ y; }
4066
4067  HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4068    return GetBlock()->GetGraph()->GetIntConstant(
4069        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4070  }
4071  HConstant* Evaluate(HIntConstant* x, HLongConstant* y) const OVERRIDE {
4072    return GetBlock()->GetGraph()->GetLongConstant(
4073        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4074  }
4075  HConstant* Evaluate(HLongConstant* x, HIntConstant* y) const OVERRIDE {
4076    return GetBlock()->GetGraph()->GetLongConstant(
4077        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4078  }
4079  HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4080    return GetBlock()->GetGraph()->GetLongConstant(
4081        Compute(x->GetValue(), y->GetValue()), GetDexPc());
4082  }
4083
4084  DECLARE_INSTRUCTION(Xor);
4085
4086 private:
4087  DISALLOW_COPY_AND_ASSIGN(HXor);
4088};
4089
4090// The value of a parameter in this method. Its location depends on
4091// the calling convention.
4092class HParameterValue : public HExpression<0> {
4093 public:
4094  HParameterValue(const DexFile& dex_file,
4095                  uint16_t type_index,
4096                  uint8_t index,
4097                  Primitive::Type parameter_type,
4098                  bool is_this = false)
4099      : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
4100        dex_file_(dex_file),
4101        type_index_(type_index),
4102        index_(index),
4103        is_this_(is_this),
4104        can_be_null_(!is_this) {}
4105
4106  const DexFile& GetDexFile() const { return dex_file_; }
4107  uint16_t GetTypeIndex() const { return type_index_; }
4108  uint8_t GetIndex() const { return index_; }
4109  bool IsThis() const { return is_this_; }
4110
4111  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4112  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4113
4114  DECLARE_INSTRUCTION(ParameterValue);
4115
4116 private:
4117  const DexFile& dex_file_;
4118  const uint16_t type_index_;
4119  // The index of this parameter in the parameters list. Must be less
4120  // than HGraph::number_of_in_vregs_.
4121  const uint8_t index_;
4122
4123  // Whether or not the parameter value corresponds to 'this' argument.
4124  const bool is_this_;
4125
4126  bool can_be_null_;
4127
4128  DISALLOW_COPY_AND_ASSIGN(HParameterValue);
4129};
4130
4131class HNot : public HUnaryOperation {
4132 public:
4133  HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
4134      : HUnaryOperation(result_type, input, dex_pc) {}
4135
4136  bool CanBeMoved() const OVERRIDE { return true; }
4137  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4138    return true;
4139  }
4140
4141  template <typename T> T Compute(T x) const { return ~x; }
4142
4143  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4144    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4145  }
4146  HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4147    return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4148  }
4149
4150  DECLARE_INSTRUCTION(Not);
4151
4152 private:
4153  DISALLOW_COPY_AND_ASSIGN(HNot);
4154};
4155
4156class HBooleanNot : public HUnaryOperation {
4157 public:
4158  explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
4159      : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
4160
4161  bool CanBeMoved() const OVERRIDE { return true; }
4162  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4163    return true;
4164  }
4165
4166  template <typename T> bool Compute(T x) const {
4167    DCHECK(IsUint<1>(x));
4168    return !x;
4169  }
4170
4171  HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4172    return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4173  }
4174  HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
4175    LOG(FATAL) << DebugName() << " is not defined for long values";
4176    UNREACHABLE();
4177  }
4178
4179  DECLARE_INSTRUCTION(BooleanNot);
4180
4181 private:
4182  DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
4183};
4184
4185class HTypeConversion : public HExpression<1> {
4186 public:
4187  // Instantiate a type conversion of `input` to `result_type`.
4188  HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
4189      : HExpression(result_type,
4190                    SideEffectsForArchRuntimeCalls(input->GetType(), result_type),
4191                    dex_pc) {
4192    SetRawInputAt(0, input);
4193    DCHECK_NE(input->GetType(), result_type);
4194  }
4195
4196  HInstruction* GetInput() const { return InputAt(0); }
4197  Primitive::Type GetInputType() const { return GetInput()->GetType(); }
4198  Primitive::Type GetResultType() const { return GetType(); }
4199
4200  // Required by the x86, ARM, MIPS and MIPS64 code generators when producing calls
4201  // to the runtime.
4202
4203  bool CanBeMoved() const OVERRIDE { return true; }
4204  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE { return true; }
4205
4206  // Try to statically evaluate the conversion and return a HConstant
4207  // containing the result.  If the input cannot be converted, return nullptr.
4208  HConstant* TryStaticEvaluation() const;
4209
4210  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type input_type,
4211                                                    Primitive::Type result_type) {
4212    // Some architectures may not require the 'GC' side effects, but at this point
4213    // in the compilation process we do not know what architecture we will
4214    // generate code for, so we must be conservative.
4215    if ((Primitive::IsFloatingPointType(input_type) && Primitive::IsIntegralType(result_type))
4216        || (input_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(result_type))) {
4217      return SideEffects::CanTriggerGC();
4218    }
4219    return SideEffects::None();
4220  }
4221
4222  DECLARE_INSTRUCTION(TypeConversion);
4223
4224 private:
4225  DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
4226};
4227
4228static constexpr uint32_t kNoRegNumber = -1;
4229
4230class HPhi : public HInstruction {
4231 public:
4232  HPhi(ArenaAllocator* arena,
4233       uint32_t reg_number,
4234       size_t number_of_inputs,
4235       Primitive::Type type,
4236       uint32_t dex_pc = kNoDexPc)
4237      : HInstruction(SideEffects::None(), dex_pc),
4238        inputs_(number_of_inputs, arena->Adapter(kArenaAllocPhiInputs)),
4239        reg_number_(reg_number),
4240        type_(type),
4241        is_live_(false),
4242        can_be_null_(true) {
4243  }
4244
4245  // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
4246  static Primitive::Type ToPhiType(Primitive::Type type) {
4247    switch (type) {
4248      case Primitive::kPrimBoolean:
4249      case Primitive::kPrimByte:
4250      case Primitive::kPrimShort:
4251      case Primitive::kPrimChar:
4252        return Primitive::kPrimInt;
4253      default:
4254        return type;
4255    }
4256  }
4257
4258  bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
4259
4260  size_t InputCount() const OVERRIDE { return inputs_.size(); }
4261
4262  void AddInput(HInstruction* input);
4263  void RemoveInputAt(size_t index);
4264
4265  Primitive::Type GetType() const OVERRIDE { return type_; }
4266  void SetType(Primitive::Type type) { type_ = type; }
4267
4268  bool CanBeNull() const OVERRIDE { return can_be_null_; }
4269  void SetCanBeNull(bool can_be_null) { can_be_null_ = can_be_null; }
4270
4271  uint32_t GetRegNumber() const { return reg_number_; }
4272
4273  void SetDead() { is_live_ = false; }
4274  void SetLive() { is_live_ = true; }
4275  bool IsDead() const { return !is_live_; }
4276  bool IsLive() const { return is_live_; }
4277
4278  bool IsVRegEquivalentOf(HInstruction* other) const {
4279    return other != nullptr
4280        && other->IsPhi()
4281        && other->AsPhi()->GetBlock() == GetBlock()
4282        && other->AsPhi()->GetRegNumber() == GetRegNumber();
4283  }
4284
4285  // Returns the next equivalent phi (starting from the current one) or null if there is none.
4286  // An equivalent phi is a phi having the same dex register and type.
4287  // It assumes that phis with the same dex register are adjacent.
4288  HPhi* GetNextEquivalentPhiWithSameType() {
4289    HInstruction* next = GetNext();
4290    while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
4291      if (next->GetType() == GetType()) {
4292        return next->AsPhi();
4293      }
4294      next = next->GetNext();
4295    }
4296    return nullptr;
4297  }
4298
4299  DECLARE_INSTRUCTION(Phi);
4300
4301 protected:
4302  const HUserRecord<HInstruction*> InputRecordAt(size_t index) const OVERRIDE {
4303    return inputs_[index];
4304  }
4305
4306  void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) OVERRIDE {
4307    inputs_[index] = input;
4308  }
4309
4310 private:
4311  ArenaVector<HUserRecord<HInstruction*> > inputs_;
4312  const uint32_t reg_number_;
4313  Primitive::Type type_;
4314  bool is_live_;
4315  bool can_be_null_;
4316
4317  DISALLOW_COPY_AND_ASSIGN(HPhi);
4318};
4319
4320class HNullCheck : public HExpression<1> {
4321 public:
4322  HNullCheck(HInstruction* value, uint32_t dex_pc)
4323      : HExpression(value->GetType(), SideEffects::None(), dex_pc) {
4324    SetRawInputAt(0, value);
4325  }
4326
4327  bool CanBeMoved() const OVERRIDE { return true; }
4328  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4329    return true;
4330  }
4331
4332  bool NeedsEnvironment() const OVERRIDE { return true; }
4333
4334  bool CanThrow() const OVERRIDE { return true; }
4335
4336  bool CanBeNull() const OVERRIDE { return false; }
4337
4338
4339  DECLARE_INSTRUCTION(NullCheck);
4340
4341 private:
4342  DISALLOW_COPY_AND_ASSIGN(HNullCheck);
4343};
4344
4345class FieldInfo : public ValueObject {
4346 public:
4347  FieldInfo(MemberOffset field_offset,
4348            Primitive::Type field_type,
4349            bool is_volatile,
4350            uint32_t index,
4351            uint16_t declaring_class_def_index,
4352            const DexFile& dex_file,
4353            Handle<mirror::DexCache> dex_cache)
4354      : field_offset_(field_offset),
4355        field_type_(field_type),
4356        is_volatile_(is_volatile),
4357        index_(index),
4358        declaring_class_def_index_(declaring_class_def_index),
4359        dex_file_(dex_file),
4360        dex_cache_(dex_cache) {}
4361
4362  MemberOffset GetFieldOffset() const { return field_offset_; }
4363  Primitive::Type GetFieldType() const { return field_type_; }
4364  uint32_t GetFieldIndex() const { return index_; }
4365  uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
4366  const DexFile& GetDexFile() const { return dex_file_; }
4367  bool IsVolatile() const { return is_volatile_; }
4368  Handle<mirror::DexCache> GetDexCache() const { return dex_cache_; }
4369
4370 private:
4371  const MemberOffset field_offset_;
4372  const Primitive::Type field_type_;
4373  const bool is_volatile_;
4374  const uint32_t index_;
4375  const uint16_t declaring_class_def_index_;
4376  const DexFile& dex_file_;
4377  const Handle<mirror::DexCache> dex_cache_;
4378};
4379
4380class HInstanceFieldGet : public HExpression<1> {
4381 public:
4382  HInstanceFieldGet(HInstruction* value,
4383                    Primitive::Type field_type,
4384                    MemberOffset field_offset,
4385                    bool is_volatile,
4386                    uint32_t field_idx,
4387                    uint16_t declaring_class_def_index,
4388                    const DexFile& dex_file,
4389                    Handle<mirror::DexCache> dex_cache,
4390                    uint32_t dex_pc)
4391      : HExpression(field_type,
4392                    SideEffects::FieldReadOfType(field_type, is_volatile),
4393                    dex_pc),
4394        field_info_(field_offset,
4395                    field_type,
4396                    is_volatile,
4397                    field_idx,
4398                    declaring_class_def_index,
4399                    dex_file,
4400                    dex_cache) {
4401    SetRawInputAt(0, value);
4402  }
4403
4404  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4405
4406  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4407    HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
4408    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4409  }
4410
4411  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4412    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4413  }
4414
4415  size_t ComputeHashCode() const OVERRIDE {
4416    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4417  }
4418
4419  const FieldInfo& GetFieldInfo() const { return field_info_; }
4420  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4421  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4422  bool IsVolatile() const { return field_info_.IsVolatile(); }
4423
4424  DECLARE_INSTRUCTION(InstanceFieldGet);
4425
4426 private:
4427  const FieldInfo field_info_;
4428
4429  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
4430};
4431
4432class HInstanceFieldSet : public HTemplateInstruction<2> {
4433 public:
4434  HInstanceFieldSet(HInstruction* object,
4435                    HInstruction* value,
4436                    Primitive::Type field_type,
4437                    MemberOffset field_offset,
4438                    bool is_volatile,
4439                    uint32_t field_idx,
4440                    uint16_t declaring_class_def_index,
4441                    const DexFile& dex_file,
4442                    Handle<mirror::DexCache> dex_cache,
4443                    uint32_t dex_pc)
4444      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4445                             dex_pc),
4446        field_info_(field_offset,
4447                    field_type,
4448                    is_volatile,
4449                    field_idx,
4450                    declaring_class_def_index,
4451                    dex_file,
4452                    dex_cache),
4453        value_can_be_null_(true) {
4454    SetRawInputAt(0, object);
4455    SetRawInputAt(1, value);
4456  }
4457
4458  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4459    return (obj == InputAt(0)) && GetFieldOffset().Uint32Value() < kPageSize;
4460  }
4461
4462  const FieldInfo& GetFieldInfo() const { return field_info_; }
4463  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4464  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4465  bool IsVolatile() const { return field_info_.IsVolatile(); }
4466  HInstruction* GetValue() const { return InputAt(1); }
4467  bool GetValueCanBeNull() const { return value_can_be_null_; }
4468  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4469
4470  DECLARE_INSTRUCTION(InstanceFieldSet);
4471
4472 private:
4473  const FieldInfo field_info_;
4474  bool value_can_be_null_;
4475
4476  DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
4477};
4478
4479class HArrayGet : public HExpression<2> {
4480 public:
4481  HArrayGet(HInstruction* array,
4482            HInstruction* index,
4483            Primitive::Type type,
4484            uint32_t dex_pc,
4485            SideEffects additional_side_effects = SideEffects::None())
4486      : HExpression(type,
4487                    SideEffects::ArrayReadOfType(type).Union(additional_side_effects),
4488                    dex_pc) {
4489    SetRawInputAt(0, array);
4490    SetRawInputAt(1, index);
4491  }
4492
4493  bool CanBeMoved() const OVERRIDE { return true; }
4494  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4495    return true;
4496  }
4497  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4498    // TODO: We can be smarter here.
4499    // Currently, the array access is always preceded by an ArrayLength or a NullCheck
4500    // which generates the implicit null check. There are cases when these can be removed
4501    // to produce better code. If we ever add optimizations to do so we should allow an
4502    // implicit check here (as long as the address falls in the first page).
4503    return false;
4504  }
4505
4506  void SetType(Primitive::Type type) { type_ = type; }
4507
4508  HInstruction* GetArray() const { return InputAt(0); }
4509  HInstruction* GetIndex() const { return InputAt(1); }
4510
4511  DECLARE_INSTRUCTION(ArrayGet);
4512
4513 private:
4514  DISALLOW_COPY_AND_ASSIGN(HArrayGet);
4515};
4516
4517class HArraySet : public HTemplateInstruction<3> {
4518 public:
4519  HArraySet(HInstruction* array,
4520            HInstruction* index,
4521            HInstruction* value,
4522            Primitive::Type expected_component_type,
4523            uint32_t dex_pc,
4524            SideEffects additional_side_effects = SideEffects::None())
4525      : HTemplateInstruction(
4526            SideEffects::ArrayWriteOfType(expected_component_type).Union(
4527                SideEffectsForArchRuntimeCalls(value->GetType())).Union(
4528                    additional_side_effects),
4529            dex_pc),
4530        expected_component_type_(expected_component_type),
4531        needs_type_check_(value->GetType() == Primitive::kPrimNot),
4532        value_can_be_null_(true),
4533        static_type_of_array_is_object_array_(false) {
4534    SetRawInputAt(0, array);
4535    SetRawInputAt(1, index);
4536    SetRawInputAt(2, value);
4537  }
4538
4539  bool NeedsEnvironment() const OVERRIDE {
4540    // We currently always call a runtime method to catch array store
4541    // exceptions.
4542    return needs_type_check_;
4543  }
4544
4545  // Can throw ArrayStoreException.
4546  bool CanThrow() const OVERRIDE { return needs_type_check_; }
4547
4548  bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4549    // TODO: Same as for ArrayGet.
4550    return false;
4551  }
4552
4553  void ClearNeedsTypeCheck() {
4554    needs_type_check_ = false;
4555  }
4556
4557  void ClearValueCanBeNull() {
4558    value_can_be_null_ = false;
4559  }
4560
4561  void SetStaticTypeOfArrayIsObjectArray() {
4562    static_type_of_array_is_object_array_ = true;
4563  }
4564
4565  bool GetValueCanBeNull() const { return value_can_be_null_; }
4566  bool NeedsTypeCheck() const { return needs_type_check_; }
4567  bool StaticTypeOfArrayIsObjectArray() const { return static_type_of_array_is_object_array_; }
4568
4569  HInstruction* GetArray() const { return InputAt(0); }
4570  HInstruction* GetIndex() const { return InputAt(1); }
4571  HInstruction* GetValue() const { return InputAt(2); }
4572
4573  Primitive::Type GetComponentType() const {
4574    // The Dex format does not type floating point index operations. Since the
4575    // `expected_component_type_` is set during building and can therefore not
4576    // be correct, we also check what is the value type. If it is a floating
4577    // point type, we must use that type.
4578    Primitive::Type value_type = GetValue()->GetType();
4579    return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
4580        ? value_type
4581        : expected_component_type_;
4582  }
4583
4584  Primitive::Type GetRawExpectedComponentType() const {
4585    return expected_component_type_;
4586  }
4587
4588  static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
4589    return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
4590  }
4591
4592  DECLARE_INSTRUCTION(ArraySet);
4593
4594 private:
4595  const Primitive::Type expected_component_type_;
4596  bool needs_type_check_;
4597  bool value_can_be_null_;
4598  // Cached information for the reference_type_info_ so that codegen
4599  // does not need to inspect the static type.
4600  bool static_type_of_array_is_object_array_;
4601
4602  DISALLOW_COPY_AND_ASSIGN(HArraySet);
4603};
4604
4605class HArrayLength : public HExpression<1> {
4606 public:
4607  HArrayLength(HInstruction* array, uint32_t dex_pc)
4608      : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
4609    // Note that arrays do not change length, so the instruction does not
4610    // depend on any write.
4611    SetRawInputAt(0, array);
4612  }
4613
4614  bool CanBeMoved() const OVERRIDE { return true; }
4615  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4616    return true;
4617  }
4618  bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4619    return obj == InputAt(0);
4620  }
4621
4622  DECLARE_INSTRUCTION(ArrayLength);
4623
4624 private:
4625  DISALLOW_COPY_AND_ASSIGN(HArrayLength);
4626};
4627
4628class HBoundsCheck : public HExpression<2> {
4629 public:
4630  HBoundsCheck(HInstruction* index, HInstruction* length, uint32_t dex_pc)
4631      : HExpression(index->GetType(), SideEffects::None(), dex_pc) {
4632    DCHECK(index->GetType() == Primitive::kPrimInt);
4633    SetRawInputAt(0, index);
4634    SetRawInputAt(1, length);
4635  }
4636
4637  bool CanBeMoved() const OVERRIDE { return true; }
4638  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4639    return true;
4640  }
4641
4642  bool NeedsEnvironment() const OVERRIDE { return true; }
4643
4644  bool CanThrow() const OVERRIDE { return true; }
4645
4646  HInstruction* GetIndex() const { return InputAt(0); }
4647
4648  DECLARE_INSTRUCTION(BoundsCheck);
4649
4650 private:
4651  DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
4652};
4653
4654/**
4655 * Some DEX instructions are folded into multiple HInstructions that need
4656 * to stay live until the last HInstruction. This class
4657 * is used as a marker for the baseline compiler to ensure its preceding
4658 * HInstruction stays live. `index` represents the stack location index of the
4659 * instruction (the actual offset is computed as index * vreg_size).
4660 */
4661class HTemporary : public HTemplateInstruction<0> {
4662 public:
4663  explicit HTemporary(size_t index, uint32_t dex_pc = kNoDexPc)
4664      : HTemplateInstruction(SideEffects::None(), dex_pc), index_(index) {}
4665
4666  size_t GetIndex() const { return index_; }
4667
4668  Primitive::Type GetType() const OVERRIDE {
4669    // The previous instruction is the one that will be stored in the temporary location.
4670    DCHECK(GetPrevious() != nullptr);
4671    return GetPrevious()->GetType();
4672  }
4673
4674  DECLARE_INSTRUCTION(Temporary);
4675
4676 private:
4677  const size_t index_;
4678  DISALLOW_COPY_AND_ASSIGN(HTemporary);
4679};
4680
4681class HSuspendCheck : public HTemplateInstruction<0> {
4682 public:
4683  explicit HSuspendCheck(uint32_t dex_pc)
4684      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
4685
4686  bool NeedsEnvironment() const OVERRIDE {
4687    return true;
4688  }
4689
4690  void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
4691  SlowPathCode* GetSlowPath() const { return slow_path_; }
4692
4693  DECLARE_INSTRUCTION(SuspendCheck);
4694
4695 private:
4696  // Only used for code generation, in order to share the same slow path between back edges
4697  // of a same loop.
4698  SlowPathCode* slow_path_;
4699
4700  DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
4701};
4702
4703/**
4704 * Instruction to load a Class object.
4705 */
4706class HLoadClass : public HExpression<1> {
4707 public:
4708  HLoadClass(HCurrentMethod* current_method,
4709             uint16_t type_index,
4710             const DexFile& dex_file,
4711             bool is_referrers_class,
4712             uint32_t dex_pc,
4713             bool needs_access_check)
4714      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4715        type_index_(type_index),
4716        dex_file_(dex_file),
4717        is_referrers_class_(is_referrers_class),
4718        generate_clinit_check_(false),
4719        needs_access_check_(needs_access_check),
4720        loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
4721    // Referrers class should not need access check. We never inline unverified
4722    // methods so we can't possibly end up in this situation.
4723    DCHECK(!is_referrers_class_ || !needs_access_check_);
4724    SetRawInputAt(0, current_method);
4725  }
4726
4727  bool CanBeMoved() const OVERRIDE { return true; }
4728
4729  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4730    // Note that we don't need to test for generate_clinit_check_.
4731    // Whether or not we need to generate the clinit check is processed in
4732    // prepare_for_register_allocator based on existing HInvokes and HClinitChecks.
4733    return other->AsLoadClass()->type_index_ == type_index_ &&
4734        other->AsLoadClass()->needs_access_check_ == needs_access_check_;
4735  }
4736
4737  size_t ComputeHashCode() const OVERRIDE { return type_index_; }
4738
4739  uint16_t GetTypeIndex() const { return type_index_; }
4740  bool IsReferrersClass() const { return is_referrers_class_; }
4741  bool CanBeNull() const OVERRIDE { return false; }
4742
4743  bool NeedsEnvironment() const OVERRIDE {
4744    // Will call runtime and load the class if the class is not loaded yet.
4745    // TODO: finer grain decision.
4746    return !is_referrers_class_;
4747  }
4748
4749  bool MustGenerateClinitCheck() const {
4750    return generate_clinit_check_;
4751  }
4752  void SetMustGenerateClinitCheck(bool generate_clinit_check) {
4753    // The entrypoint the code generator is going to call does not do
4754    // clinit of the class.
4755    DCHECK(!NeedsAccessCheck());
4756    generate_clinit_check_ = generate_clinit_check;
4757  }
4758
4759  bool CanCallRuntime() const {
4760    return MustGenerateClinitCheck() || !is_referrers_class_ || needs_access_check_;
4761  }
4762
4763  bool NeedsAccessCheck() const {
4764    return needs_access_check_;
4765  }
4766
4767  bool CanThrow() const OVERRIDE {
4768    // May call runtime and and therefore can throw.
4769    // TODO: finer grain decision.
4770    return CanCallRuntime();
4771  }
4772
4773  ReferenceTypeInfo GetLoadedClassRTI() {
4774    return loaded_class_rti_;
4775  }
4776
4777  void SetLoadedClassRTI(ReferenceTypeInfo rti) {
4778    // Make sure we only set exact types (the loaded class should never be merged).
4779    DCHECK(rti.IsExact());
4780    loaded_class_rti_ = rti;
4781  }
4782
4783  const DexFile& GetDexFile() { return dex_file_; }
4784
4785  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return !is_referrers_class_; }
4786
4787  static SideEffects SideEffectsForArchRuntimeCalls() {
4788    return SideEffects::CanTriggerGC();
4789  }
4790
4791  DECLARE_INSTRUCTION(LoadClass);
4792
4793 private:
4794  const uint16_t type_index_;
4795  const DexFile& dex_file_;
4796  const bool is_referrers_class_;
4797  // Whether this instruction must generate the initialization check.
4798  // Used for code generation.
4799  bool generate_clinit_check_;
4800  bool needs_access_check_;
4801
4802  ReferenceTypeInfo loaded_class_rti_;
4803
4804  DISALLOW_COPY_AND_ASSIGN(HLoadClass);
4805};
4806
4807class HLoadString : public HExpression<1> {
4808 public:
4809  HLoadString(HCurrentMethod* current_method, uint32_t string_index, uint32_t dex_pc)
4810      : HExpression(Primitive::kPrimNot, SideEffectsForArchRuntimeCalls(), dex_pc),
4811        string_index_(string_index) {
4812    SetRawInputAt(0, current_method);
4813  }
4814
4815  bool CanBeMoved() const OVERRIDE { return true; }
4816
4817  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4818    return other->AsLoadString()->string_index_ == string_index_;
4819  }
4820
4821  size_t ComputeHashCode() const OVERRIDE { return string_index_; }
4822
4823  uint32_t GetStringIndex() const { return string_index_; }
4824
4825  // TODO: Can we deopt or debug when we resolve a string?
4826  bool NeedsEnvironment() const OVERRIDE { return false; }
4827  bool NeedsDexCacheOfDeclaringClass() const OVERRIDE { return true; }
4828  bool CanBeNull() const OVERRIDE { return false; }
4829
4830  static SideEffects SideEffectsForArchRuntimeCalls() {
4831    return SideEffects::CanTriggerGC();
4832  }
4833
4834  DECLARE_INSTRUCTION(LoadString);
4835
4836 private:
4837  const uint32_t string_index_;
4838
4839  DISALLOW_COPY_AND_ASSIGN(HLoadString);
4840};
4841
4842/**
4843 * Performs an initialization check on its Class object input.
4844 */
4845class HClinitCheck : public HExpression<1> {
4846 public:
4847  HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
4848      : HExpression(
4849            Primitive::kPrimNot,
4850            SideEffects::AllChanges(),  // Assume write/read on all fields/arrays.
4851            dex_pc) {
4852    SetRawInputAt(0, constant);
4853  }
4854
4855  bool CanBeMoved() const OVERRIDE { return true; }
4856  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4857    return true;
4858  }
4859
4860  bool NeedsEnvironment() const OVERRIDE {
4861    // May call runtime to initialize the class.
4862    return true;
4863  }
4864
4865
4866  HLoadClass* GetLoadClass() const { return InputAt(0)->AsLoadClass(); }
4867
4868  DECLARE_INSTRUCTION(ClinitCheck);
4869
4870 private:
4871  DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
4872};
4873
4874class HStaticFieldGet : public HExpression<1> {
4875 public:
4876  HStaticFieldGet(HInstruction* cls,
4877                  Primitive::Type field_type,
4878                  MemberOffset field_offset,
4879                  bool is_volatile,
4880                  uint32_t field_idx,
4881                  uint16_t declaring_class_def_index,
4882                  const DexFile& dex_file,
4883                  Handle<mirror::DexCache> dex_cache,
4884                  uint32_t dex_pc)
4885      : HExpression(field_type,
4886                    SideEffects::FieldReadOfType(field_type, is_volatile),
4887                    dex_pc),
4888        field_info_(field_offset,
4889                    field_type,
4890                    is_volatile,
4891                    field_idx,
4892                    declaring_class_def_index,
4893                    dex_file,
4894                    dex_cache) {
4895    SetRawInputAt(0, cls);
4896  }
4897
4898
4899  bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
4900
4901  bool InstructionDataEquals(HInstruction* other) const OVERRIDE {
4902    HStaticFieldGet* other_get = other->AsStaticFieldGet();
4903    return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
4904  }
4905
4906  size_t ComputeHashCode() const OVERRIDE {
4907    return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
4908  }
4909
4910  const FieldInfo& GetFieldInfo() const { return field_info_; }
4911  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4912  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4913  bool IsVolatile() const { return field_info_.IsVolatile(); }
4914
4915  DECLARE_INSTRUCTION(StaticFieldGet);
4916
4917 private:
4918  const FieldInfo field_info_;
4919
4920  DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
4921};
4922
4923class HStaticFieldSet : public HTemplateInstruction<2> {
4924 public:
4925  HStaticFieldSet(HInstruction* cls,
4926                  HInstruction* value,
4927                  Primitive::Type field_type,
4928                  MemberOffset field_offset,
4929                  bool is_volatile,
4930                  uint32_t field_idx,
4931                  uint16_t declaring_class_def_index,
4932                  const DexFile& dex_file,
4933                  Handle<mirror::DexCache> dex_cache,
4934                  uint32_t dex_pc)
4935      : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile),
4936                             dex_pc),
4937        field_info_(field_offset,
4938                    field_type,
4939                    is_volatile,
4940                    field_idx,
4941                    declaring_class_def_index,
4942                    dex_file,
4943                    dex_cache),
4944        value_can_be_null_(true) {
4945    SetRawInputAt(0, cls);
4946    SetRawInputAt(1, value);
4947  }
4948
4949  const FieldInfo& GetFieldInfo() const { return field_info_; }
4950  MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
4951  Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
4952  bool IsVolatile() const { return field_info_.IsVolatile(); }
4953
4954  HInstruction* GetValue() const { return InputAt(1); }
4955  bool GetValueCanBeNull() const { return value_can_be_null_; }
4956  void ClearValueCanBeNull() { value_can_be_null_ = false; }
4957
4958  DECLARE_INSTRUCTION(StaticFieldSet);
4959
4960 private:
4961  const FieldInfo field_info_;
4962  bool value_can_be_null_;
4963
4964  DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
4965};
4966
4967class HUnresolvedInstanceFieldGet : public HExpression<1> {
4968 public:
4969  HUnresolvedInstanceFieldGet(HInstruction* obj,
4970                              Primitive::Type field_type,
4971                              uint32_t field_index,
4972                              uint32_t dex_pc)
4973      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
4974        field_index_(field_index) {
4975    SetRawInputAt(0, obj);
4976  }
4977
4978  bool NeedsEnvironment() const OVERRIDE { return true; }
4979  bool CanThrow() const OVERRIDE { return true; }
4980
4981  Primitive::Type GetFieldType() const { return GetType(); }
4982  uint32_t GetFieldIndex() const { return field_index_; }
4983
4984  DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
4985
4986 private:
4987  const uint32_t field_index_;
4988
4989  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
4990};
4991
4992class HUnresolvedInstanceFieldSet : public HTemplateInstruction<2> {
4993 public:
4994  HUnresolvedInstanceFieldSet(HInstruction* obj,
4995                              HInstruction* value,
4996                              Primitive::Type field_type,
4997                              uint32_t field_index,
4998                              uint32_t dex_pc)
4999      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5000        field_type_(field_type),
5001        field_index_(field_index) {
5002    DCHECK_EQ(field_type, value->GetType());
5003    SetRawInputAt(0, obj);
5004    SetRawInputAt(1, value);
5005  }
5006
5007  bool NeedsEnvironment() const OVERRIDE { return true; }
5008  bool CanThrow() const OVERRIDE { return true; }
5009
5010  Primitive::Type GetFieldType() const { return field_type_; }
5011  uint32_t GetFieldIndex() const { return field_index_; }
5012
5013  DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
5014
5015 private:
5016  const Primitive::Type field_type_;
5017  const uint32_t field_index_;
5018
5019  DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
5020};
5021
5022class HUnresolvedStaticFieldGet : public HExpression<0> {
5023 public:
5024  HUnresolvedStaticFieldGet(Primitive::Type field_type,
5025                            uint32_t field_index,
5026                            uint32_t dex_pc)
5027      : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
5028        field_index_(field_index) {
5029  }
5030
5031  bool NeedsEnvironment() const OVERRIDE { return true; }
5032  bool CanThrow() const OVERRIDE { return true; }
5033
5034  Primitive::Type GetFieldType() const { return GetType(); }
5035  uint32_t GetFieldIndex() const { return field_index_; }
5036
5037  DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
5038
5039 private:
5040  const uint32_t field_index_;
5041
5042  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
5043};
5044
5045class HUnresolvedStaticFieldSet : public HTemplateInstruction<1> {
5046 public:
5047  HUnresolvedStaticFieldSet(HInstruction* value,
5048                            Primitive::Type field_type,
5049                            uint32_t field_index,
5050                            uint32_t dex_pc)
5051      : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
5052        field_type_(field_type),
5053        field_index_(field_index) {
5054    DCHECK_EQ(field_type, value->GetType());
5055    SetRawInputAt(0, value);
5056  }
5057
5058  bool NeedsEnvironment() const OVERRIDE { return true; }
5059  bool CanThrow() const OVERRIDE { return true; }
5060
5061  Primitive::Type GetFieldType() const { return field_type_; }
5062  uint32_t GetFieldIndex() const { return field_index_; }
5063
5064  DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
5065
5066 private:
5067  const Primitive::Type field_type_;
5068  const uint32_t field_index_;
5069
5070  DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
5071};
5072
5073// Implement the move-exception DEX instruction.
5074class HLoadException : public HExpression<0> {
5075 public:
5076  explicit HLoadException(uint32_t dex_pc = kNoDexPc)
5077      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
5078
5079  bool CanBeNull() const OVERRIDE { return false; }
5080
5081  DECLARE_INSTRUCTION(LoadException);
5082
5083 private:
5084  DISALLOW_COPY_AND_ASSIGN(HLoadException);
5085};
5086
5087// Implicit part of move-exception which clears thread-local exception storage.
5088// Must not be removed because the runtime expects the TLS to get cleared.
5089class HClearException : public HTemplateInstruction<0> {
5090 public:
5091  explicit HClearException(uint32_t dex_pc = kNoDexPc)
5092      : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
5093
5094  DECLARE_INSTRUCTION(ClearException);
5095
5096 private:
5097  DISALLOW_COPY_AND_ASSIGN(HClearException);
5098};
5099
5100class HThrow : public HTemplateInstruction<1> {
5101 public:
5102  HThrow(HInstruction* exception, uint32_t dex_pc)
5103      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
5104    SetRawInputAt(0, exception);
5105  }
5106
5107  bool IsControlFlow() const OVERRIDE { return true; }
5108
5109  bool NeedsEnvironment() const OVERRIDE { return true; }
5110
5111  bool CanThrow() const OVERRIDE { return true; }
5112
5113
5114  DECLARE_INSTRUCTION(Throw);
5115
5116 private:
5117  DISALLOW_COPY_AND_ASSIGN(HThrow);
5118};
5119
5120/**
5121 * Implementation strategies for the code generator of a HInstanceOf
5122 * or `HCheckCast`.
5123 */
5124enum class TypeCheckKind {
5125  kUnresolvedCheck,       // Check against an unresolved type.
5126  kExactCheck,            // Can do a single class compare.
5127  kClassHierarchyCheck,   // Can just walk the super class chain.
5128  kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
5129  kInterfaceCheck,        // No optimization yet when checking against an interface.
5130  kArrayObjectCheck,      // Can just check if the array is not primitive.
5131  kArrayCheck             // No optimization yet when checking against a generic array.
5132};
5133
5134class HInstanceOf : public HExpression<2> {
5135 public:
5136  HInstanceOf(HInstruction* object,
5137              HLoadClass* constant,
5138              TypeCheckKind check_kind,
5139              uint32_t dex_pc)
5140      : HExpression(Primitive::kPrimBoolean,
5141                    SideEffectsForArchRuntimeCalls(check_kind),
5142                    dex_pc),
5143        check_kind_(check_kind),
5144        must_do_null_check_(true) {
5145    SetRawInputAt(0, object);
5146    SetRawInputAt(1, constant);
5147  }
5148
5149  bool CanBeMoved() const OVERRIDE { return true; }
5150
5151  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5152    return true;
5153  }
5154
5155  bool NeedsEnvironment() const OVERRIDE {
5156    return false;
5157  }
5158
5159  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5160
5161  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5162
5163  // Used only in code generation.
5164  bool MustDoNullCheck() const { return must_do_null_check_; }
5165  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5166
5167  static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
5168    return (check_kind == TypeCheckKind::kExactCheck)
5169        ? SideEffects::None()
5170        // Mips currently does runtime calls for any other checks.
5171        : SideEffects::CanTriggerGC();
5172  }
5173
5174  DECLARE_INSTRUCTION(InstanceOf);
5175
5176 private:
5177  const TypeCheckKind check_kind_;
5178  bool must_do_null_check_;
5179
5180  DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
5181};
5182
5183class HBoundType : public HExpression<1> {
5184 public:
5185  // Constructs an HBoundType with the given upper_bound.
5186  // Ensures that the upper_bound is valid.
5187  HBoundType(HInstruction* input,
5188             ReferenceTypeInfo upper_bound,
5189             bool upper_can_be_null,
5190             uint32_t dex_pc = kNoDexPc)
5191      : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
5192        upper_bound_(upper_bound),
5193        upper_can_be_null_(upper_can_be_null),
5194        can_be_null_(upper_can_be_null) {
5195    DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
5196    SetRawInputAt(0, input);
5197    SetReferenceTypeInfo(upper_bound_);
5198  }
5199
5200  // GetUpper* should only be used in reference type propagation.
5201  const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
5202  bool GetUpperCanBeNull() const { return upper_can_be_null_; }
5203
5204  void SetCanBeNull(bool can_be_null) {
5205    DCHECK(upper_can_be_null_ || !can_be_null);
5206    can_be_null_ = can_be_null;
5207  }
5208
5209  bool CanBeNull() const OVERRIDE { return can_be_null_; }
5210
5211  DECLARE_INSTRUCTION(BoundType);
5212
5213 private:
5214  // Encodes the most upper class that this instruction can have. In other words
5215  // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
5216  // It is used to bound the type in cases like:
5217  //   if (x instanceof ClassX) {
5218  //     // uper_bound_ will be ClassX
5219  //   }
5220  const ReferenceTypeInfo upper_bound_;
5221  // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
5222  // is false then can_be_null_ cannot be true).
5223  const bool upper_can_be_null_;
5224  bool can_be_null_;
5225
5226  DISALLOW_COPY_AND_ASSIGN(HBoundType);
5227};
5228
5229class HCheckCast : public HTemplateInstruction<2> {
5230 public:
5231  HCheckCast(HInstruction* object,
5232             HLoadClass* constant,
5233             TypeCheckKind check_kind,
5234             uint32_t dex_pc)
5235      : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc),
5236        check_kind_(check_kind),
5237        must_do_null_check_(true) {
5238    SetRawInputAt(0, object);
5239    SetRawInputAt(1, constant);
5240  }
5241
5242  bool CanBeMoved() const OVERRIDE { return true; }
5243
5244  bool InstructionDataEquals(HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5245    return true;
5246  }
5247
5248  bool NeedsEnvironment() const OVERRIDE {
5249    // Instruction may throw a CheckCastError.
5250    return true;
5251  }
5252
5253  bool CanThrow() const OVERRIDE { return true; }
5254
5255  bool MustDoNullCheck() const { return must_do_null_check_; }
5256  void ClearMustDoNullCheck() { must_do_null_check_ = false; }
5257  TypeCheckKind GetTypeCheckKind() const { return check_kind_; }
5258
5259  bool IsExactCheck() const { return check_kind_ == TypeCheckKind::kExactCheck; }
5260
5261  DECLARE_INSTRUCTION(CheckCast);
5262
5263 private:
5264  const TypeCheckKind check_kind_;
5265  bool must_do_null_check_;
5266
5267  DISALLOW_COPY_AND_ASSIGN(HCheckCast);
5268};
5269
5270class HMemoryBarrier : public HTemplateInstruction<0> {
5271 public:
5272  explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
5273      : HTemplateInstruction(
5274            SideEffects::AllWritesAndReads(), dex_pc),  // Assume write/read on all fields/arrays.
5275        barrier_kind_(barrier_kind) {}
5276
5277  MemBarrierKind GetBarrierKind() { return barrier_kind_; }
5278
5279  DECLARE_INSTRUCTION(MemoryBarrier);
5280
5281 private:
5282  const MemBarrierKind barrier_kind_;
5283
5284  DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
5285};
5286
5287class HMonitorOperation : public HTemplateInstruction<1> {
5288 public:
5289  enum OperationKind {
5290    kEnter,
5291    kExit,
5292  };
5293
5294  HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
5295    : HTemplateInstruction(
5296          SideEffects::AllExceptGCDependency(), dex_pc),  // Assume write/read on all fields/arrays.
5297      kind_(kind) {
5298    SetRawInputAt(0, object);
5299  }
5300
5301  // Instruction may throw a Java exception, so we need an environment.
5302  bool NeedsEnvironment() const OVERRIDE { return CanThrow(); }
5303
5304  bool CanThrow() const OVERRIDE {
5305    // Verifier guarantees that monitor-exit cannot throw.
5306    // This is important because it allows the HGraphBuilder to remove
5307    // a dead throw-catch loop generated for `synchronized` blocks/methods.
5308    return IsEnter();
5309  }
5310
5311
5312  bool IsEnter() const { return kind_ == kEnter; }
5313
5314  DECLARE_INSTRUCTION(MonitorOperation);
5315
5316 private:
5317  const OperationKind kind_;
5318
5319 private:
5320  DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
5321};
5322
5323/**
5324 * A HInstruction used as a marker for the replacement of new + <init>
5325 * of a String to a call to a StringFactory. Only baseline will see
5326 * the node at code generation, where it will be be treated as null.
5327 * When compiling non-baseline, `HFakeString` instructions are being removed
5328 * in the instruction simplifier.
5329 */
5330class HFakeString : public HTemplateInstruction<0> {
5331 public:
5332  explicit HFakeString(uint32_t dex_pc = kNoDexPc)
5333      : HTemplateInstruction(SideEffects::None(), dex_pc) {}
5334
5335  Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimNot; }
5336
5337  DECLARE_INSTRUCTION(FakeString);
5338
5339 private:
5340  DISALLOW_COPY_AND_ASSIGN(HFakeString);
5341};
5342
5343class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
5344 public:
5345  MoveOperands(Location source,
5346               Location destination,
5347               Primitive::Type type,
5348               HInstruction* instruction)
5349      : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
5350
5351  Location GetSource() const { return source_; }
5352  Location GetDestination() const { return destination_; }
5353
5354  void SetSource(Location value) { source_ = value; }
5355  void SetDestination(Location value) { destination_ = value; }
5356
5357  // The parallel move resolver marks moves as "in-progress" by clearing the
5358  // destination (but not the source).
5359  Location MarkPending() {
5360    DCHECK(!IsPending());
5361    Location dest = destination_;
5362    destination_ = Location::NoLocation();
5363    return dest;
5364  }
5365
5366  void ClearPending(Location dest) {
5367    DCHECK(IsPending());
5368    destination_ = dest;
5369  }
5370
5371  bool IsPending() const {
5372    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5373    return destination_.IsInvalid() && !source_.IsInvalid();
5374  }
5375
5376  // True if this blocks a move from the given location.
5377  bool Blocks(Location loc) const {
5378    return !IsEliminated() && source_.OverlapsWith(loc);
5379  }
5380
5381  // A move is redundant if it's been eliminated, if its source and
5382  // destination are the same, or if its destination is unneeded.
5383  bool IsRedundant() const {
5384    return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
5385  }
5386
5387  // We clear both operands to indicate move that's been eliminated.
5388  void Eliminate() {
5389    source_ = destination_ = Location::NoLocation();
5390  }
5391
5392  bool IsEliminated() const {
5393    DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
5394    return source_.IsInvalid();
5395  }
5396
5397  Primitive::Type GetType() const { return type_; }
5398
5399  bool Is64BitMove() const {
5400    return Primitive::Is64BitType(type_);
5401  }
5402
5403  HInstruction* GetInstruction() const { return instruction_; }
5404
5405 private:
5406  Location source_;
5407  Location destination_;
5408  // The type this move is for.
5409  Primitive::Type type_;
5410  // The instruction this move is assocatied with. Null when this move is
5411  // for moving an input in the expected locations of user (including a phi user).
5412  // This is only used in debug mode, to ensure we do not connect interval siblings
5413  // in the same parallel move.
5414  HInstruction* instruction_;
5415};
5416
5417static constexpr size_t kDefaultNumberOfMoves = 4;
5418
5419class HParallelMove : public HTemplateInstruction<0> {
5420 public:
5421  explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
5422      : HTemplateInstruction(SideEffects::None(), dex_pc),
5423        moves_(arena->Adapter(kArenaAllocMoveOperands)) {
5424    moves_.reserve(kDefaultNumberOfMoves);
5425  }
5426
5427  void AddMove(Location source,
5428               Location destination,
5429               Primitive::Type type,
5430               HInstruction* instruction) {
5431    DCHECK(source.IsValid());
5432    DCHECK(destination.IsValid());
5433    if (kIsDebugBuild) {
5434      if (instruction != nullptr) {
5435        for (const MoveOperands& move : moves_) {
5436          if (move.GetInstruction() == instruction) {
5437            // Special case the situation where the move is for the spill slot
5438            // of the instruction.
5439            if ((GetPrevious() == instruction)
5440                || ((GetPrevious() == nullptr)
5441                    && instruction->IsPhi()
5442                    && instruction->GetBlock() == GetBlock())) {
5443              DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
5444                  << "Doing parallel moves for the same instruction.";
5445            } else {
5446              DCHECK(false) << "Doing parallel moves for the same instruction.";
5447            }
5448          }
5449        }
5450      }
5451      for (const MoveOperands& move : moves_) {
5452        DCHECK(!destination.OverlapsWith(move.GetDestination()))
5453            << "Overlapped destination for two moves in a parallel move: "
5454            << move.GetSource() << " ==> " << move.GetDestination() << " and "
5455            << source << " ==> " << destination;
5456      }
5457    }
5458    moves_.emplace_back(source, destination, type, instruction);
5459  }
5460
5461  MoveOperands* MoveOperandsAt(size_t index) {
5462    return &moves_[index];
5463  }
5464
5465  size_t NumMoves() const { return moves_.size(); }
5466
5467  DECLARE_INSTRUCTION(ParallelMove);
5468
5469 private:
5470  ArenaVector<MoveOperands> moves_;
5471
5472  DISALLOW_COPY_AND_ASSIGN(HParallelMove);
5473};
5474
5475}  // namespace art
5476
5477#ifdef ART_ENABLE_CODEGEN_arm64
5478#include "nodes_arm64.h"
5479#endif
5480#ifdef ART_ENABLE_CODEGEN_x86
5481#include "nodes_x86.h"
5482#endif
5483
5484namespace art {
5485
5486class HGraphVisitor : public ValueObject {
5487 public:
5488  explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
5489  virtual ~HGraphVisitor() {}
5490
5491  virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
5492  virtual void VisitBasicBlock(HBasicBlock* block);
5493
5494  // Visit the graph following basic block insertion order.
5495  void VisitInsertionOrder();
5496
5497  // Visit the graph following dominator tree reverse post-order.
5498  void VisitReversePostOrder();
5499
5500  HGraph* GetGraph() const { return graph_; }
5501
5502  // Visit functions for instruction classes.
5503#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5504  virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
5505
5506  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5507
5508#undef DECLARE_VISIT_INSTRUCTION
5509
5510 private:
5511  HGraph* const graph_;
5512
5513  DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
5514};
5515
5516class HGraphDelegateVisitor : public HGraphVisitor {
5517 public:
5518  explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
5519  virtual ~HGraphDelegateVisitor() {}
5520
5521  // Visit functions that delegate to to super class.
5522#define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
5523  void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
5524
5525  FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
5526
5527#undef DECLARE_VISIT_INSTRUCTION
5528
5529 private:
5530  DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
5531};
5532
5533class HInsertionOrderIterator : public ValueObject {
5534 public:
5535  explicit HInsertionOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {}
5536
5537  bool Done() const { return index_ == graph_.GetBlocks().size(); }
5538  HBasicBlock* Current() const { return graph_.GetBlocks()[index_]; }
5539  void Advance() { ++index_; }
5540
5541 private:
5542  const HGraph& graph_;
5543  size_t index_;
5544
5545  DISALLOW_COPY_AND_ASSIGN(HInsertionOrderIterator);
5546};
5547
5548class HReversePostOrderIterator : public ValueObject {
5549 public:
5550  explicit HReversePostOrderIterator(const HGraph& graph) : graph_(graph), index_(0) {
5551    // Check that reverse post order of the graph has been built.
5552    DCHECK(!graph.GetReversePostOrder().empty());
5553  }
5554
5555  bool Done() const { return index_ == graph_.GetReversePostOrder().size(); }
5556  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_]; }
5557  void Advance() { ++index_; }
5558
5559 private:
5560  const HGraph& graph_;
5561  size_t index_;
5562
5563  DISALLOW_COPY_AND_ASSIGN(HReversePostOrderIterator);
5564};
5565
5566class HPostOrderIterator : public ValueObject {
5567 public:
5568  explicit HPostOrderIterator(const HGraph& graph)
5569      : graph_(graph), index_(graph_.GetReversePostOrder().size()) {
5570    // Check that reverse post order of the graph has been built.
5571    DCHECK(!graph.GetReversePostOrder().empty());
5572  }
5573
5574  bool Done() const { return index_ == 0; }
5575  HBasicBlock* Current() const { return graph_.GetReversePostOrder()[index_ - 1u]; }
5576  void Advance() { --index_; }
5577
5578 private:
5579  const HGraph& graph_;
5580  size_t index_;
5581
5582  DISALLOW_COPY_AND_ASSIGN(HPostOrderIterator);
5583};
5584
5585class HLinearPostOrderIterator : public ValueObject {
5586 public:
5587  explicit HLinearPostOrderIterator(const HGraph& graph)
5588      : order_(graph.GetLinearOrder()), index_(graph.GetLinearOrder().size()) {}
5589
5590  bool Done() const { return index_ == 0; }
5591
5592  HBasicBlock* Current() const { return order_[index_ - 1u]; }
5593
5594  void Advance() {
5595    --index_;
5596    DCHECK_GE(index_, 0U);
5597  }
5598
5599 private:
5600  const ArenaVector<HBasicBlock*>& order_;
5601  size_t index_;
5602
5603  DISALLOW_COPY_AND_ASSIGN(HLinearPostOrderIterator);
5604};
5605
5606class HLinearOrderIterator : public ValueObject {
5607 public:
5608  explicit HLinearOrderIterator(const HGraph& graph)
5609      : order_(graph.GetLinearOrder()), index_(0) {}
5610
5611  bool Done() const { return index_ == order_.size(); }
5612  HBasicBlock* Current() const { return order_[index_]; }
5613  void Advance() { ++index_; }
5614
5615 private:
5616  const ArenaVector<HBasicBlock*>& order_;
5617  size_t index_;
5618
5619  DISALLOW_COPY_AND_ASSIGN(HLinearOrderIterator);
5620};
5621
5622// Iterator over the blocks that art part of the loop. Includes blocks part
5623// of an inner loop. The order in which the blocks are iterated is on their
5624// block id.
5625class HBlocksInLoopIterator : public ValueObject {
5626 public:
5627  explicit HBlocksInLoopIterator(const HLoopInformation& info)
5628      : blocks_in_loop_(info.GetBlocks()),
5629        blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
5630        index_(0) {
5631    if (!blocks_in_loop_.IsBitSet(index_)) {
5632      Advance();
5633    }
5634  }
5635
5636  bool Done() const { return index_ == blocks_.size(); }
5637  HBasicBlock* Current() const { return blocks_[index_]; }
5638  void Advance() {
5639    ++index_;
5640    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5641      if (blocks_in_loop_.IsBitSet(index_)) {
5642        break;
5643      }
5644    }
5645  }
5646
5647 private:
5648  const BitVector& blocks_in_loop_;
5649  const ArenaVector<HBasicBlock*>& blocks_;
5650  size_t index_;
5651
5652  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
5653};
5654
5655// Iterator over the blocks that art part of the loop. Includes blocks part
5656// of an inner loop. The order in which the blocks are iterated is reverse
5657// post order.
5658class HBlocksInLoopReversePostOrderIterator : public ValueObject {
5659 public:
5660  explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
5661      : blocks_in_loop_(info.GetBlocks()),
5662        blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
5663        index_(0) {
5664    if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5665      Advance();
5666    }
5667  }
5668
5669  bool Done() const { return index_ == blocks_.size(); }
5670  HBasicBlock* Current() const { return blocks_[index_]; }
5671  void Advance() {
5672    ++index_;
5673    for (size_t e = blocks_.size(); index_ < e; ++index_) {
5674      if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
5675        break;
5676      }
5677    }
5678  }
5679
5680 private:
5681  const BitVector& blocks_in_loop_;
5682  const ArenaVector<HBasicBlock*>& blocks_;
5683  size_t index_;
5684
5685  DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
5686};
5687
5688inline int64_t Int64FromConstant(HConstant* constant) {
5689  DCHECK(constant->IsIntConstant() || constant->IsLongConstant());
5690  return constant->IsIntConstant() ? constant->AsIntConstant()->GetValue()
5691                                   : constant->AsLongConstant()->GetValue();
5692}
5693
5694inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
5695  // For the purposes of the compiler, the dex files must actually be the same object
5696  // if we want to safely treat them as the same. This is especially important for JIT
5697  // as custom class loaders can open the same underlying file (or memory) multiple
5698  // times and provide different class resolution but no two class loaders should ever
5699  // use the same DexFile object - doing so is an unsupported hack that can lead to
5700  // all sorts of weird failures.
5701  return &lhs == &rhs;
5702}
5703
5704}  // namespace art
5705
5706#endif  // ART_COMPILER_OPTIMIZING_NODES_H_
5707