mutex.h revision 2435a43f6c851c23922d8508fb17c6079248201c
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_BASE_MUTEX_H_
18#define ART_RUNTIME_BASE_MUTEX_H_
19
20#include <pthread.h>
21#include <stdint.h>
22
23#include <iosfwd>
24#include <string>
25
26#include "atomic.h"
27#include "base/logging.h"
28#include "base/macros.h"
29#include "globals.h"
30
31#if defined(__APPLE__)
32#define ART_USE_FUTEXES 0
33#else
34#define ART_USE_FUTEXES 1
35#endif
36
37// Currently Darwin doesn't support locks with timeouts.
38#if !defined(__APPLE__)
39#define HAVE_TIMED_RWLOCK 1
40#else
41#define HAVE_TIMED_RWLOCK 0
42#endif
43
44namespace art {
45
46class LOCKABLE ReaderWriterMutex;
47class ScopedContentionRecorder;
48class Thread;
49
50// LockLevel is used to impose a lock hierarchy [1] where acquisition of a Mutex at a higher or
51// equal level to a lock a thread holds is invalid. The lock hierarchy achieves a cycle free
52// partial ordering and thereby cause deadlock situations to fail checks.
53//
54// [1] http://www.drdobbs.com/parallel/use-lock-hierarchies-to-avoid-deadlock/204801163
55enum LockLevel {
56  kLoggingLock = 0,
57  kMemMapsLock,
58  kSwapMutexesLock,
59  kUnexpectedSignalLock,
60  kThreadSuspendCountLock,
61  kAbortLock,
62  kJdwpSocketLock,
63  kRegionSpaceRegionLock,
64  kReferenceQueueSoftReferencesLock,
65  kReferenceQueuePhantomReferencesLock,
66  kReferenceQueueFinalizerReferencesLock,
67  kReferenceQueueWeakReferencesLock,
68  kReferenceQueueClearedReferencesLock,
69  kReferenceProcessorLock,
70  kJitCodeCacheLock,
71  kRosAllocGlobalLock,
72  kRosAllocBracketLock,
73  kRosAllocBulkFreeLock,
74  kAllocSpaceLock,
75  kBumpPointerSpaceBlockLock,
76  kDexFileMethodInlinerLock,
77  kDexFileToMethodInlinerMapLock,
78  kMarkSweepMarkStackLock,
79  kTransactionLogLock,
80  kInternTableLock,
81  kOatFileSecondaryLookupLock,
82  kDefaultMutexLevel,
83  kMarkSweepLargeObjectLock,
84  kPinTableLock,
85  kJdwpObjectRegistryLock,
86  kModifyLdtLock,
87  kAllocatedThreadIdsLock,
88  kMonitorPoolLock,
89  kMethodVerifiersLock,
90  kClassLinkerClassesLock,
91  kBreakpointLock,
92  kMonitorLock,
93  kMonitorListLock,
94  kJniLoadLibraryLock,
95  kThreadListLock,
96  kBreakpointInvokeLock,
97  kAllocTrackerLock,
98  kDeoptimizationLock,
99  kProfilerLock,
100  kJdwpEventListLock,
101  kJdwpAttachLock,
102  kJdwpStartLock,
103  kRuntimeShutdownLock,
104  kTraceLock,
105  kHeapBitmapLock,
106  kMutatorLock,
107  kInstrumentEntrypointsLock,
108  kZygoteCreationLock,
109
110  kLockLevelCount  // Must come last.
111};
112std::ostream& operator<<(std::ostream& os, const LockLevel& rhs);
113
114const bool kDebugLocking = kIsDebugBuild;
115
116// Record Log contention information, dumpable via SIGQUIT.
117#ifdef ART_USE_FUTEXES
118// To enable lock contention logging, set this to true.
119const bool kLogLockContentions = false;
120#else
121// Keep this false as lock contention logging is supported only with
122// futex.
123const bool kLogLockContentions = false;
124#endif
125const size_t kContentionLogSize = 4;
126const size_t kContentionLogDataSize = kLogLockContentions ? 1 : 0;
127const size_t kAllMutexDataSize = kLogLockContentions ? 1 : 0;
128
129// Base class for all Mutex implementations
130class BaseMutex {
131 public:
132  const char* GetName() const {
133    return name_;
134  }
135
136  virtual bool IsMutex() const { return false; }
137  virtual bool IsReaderWriterMutex() const { return false; }
138
139  virtual void Dump(std::ostream& os) const = 0;
140
141  static void DumpAll(std::ostream& os);
142
143 protected:
144  friend class ConditionVariable;
145
146  BaseMutex(const char* name, LockLevel level);
147  virtual ~BaseMutex();
148  void RegisterAsLocked(Thread* self);
149  void RegisterAsUnlocked(Thread* self);
150  void CheckSafeToWait(Thread* self);
151
152  friend class ScopedContentionRecorder;
153
154  void RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked);
155  void DumpContention(std::ostream& os) const;
156
157  const LockLevel level_;  // Support for lock hierarchy.
158  const char* const name_;
159
160  // A log entry that records contention but makes no guarantee that either tid will be held live.
161  struct ContentionLogEntry {
162    ContentionLogEntry() : blocked_tid(0), owner_tid(0) {}
163    uint64_t blocked_tid;
164    uint64_t owner_tid;
165    AtomicInteger count;
166  };
167  struct ContentionLogData {
168    ContentionLogEntry contention_log[kContentionLogSize];
169    // The next entry in the contention log to be updated. Value ranges from 0 to
170    // kContentionLogSize - 1.
171    AtomicInteger cur_content_log_entry;
172    // Number of times the Mutex has been contended.
173    AtomicInteger contention_count;
174    // Sum of time waited by all contenders in ns.
175    Atomic<uint64_t> wait_time;
176    void AddToWaitTime(uint64_t value);
177    ContentionLogData() : wait_time(0) {}
178  };
179  ContentionLogData contention_log_data_[kContentionLogDataSize];
180
181 public:
182  bool HasEverContended() const {
183    if (kLogLockContentions) {
184      return contention_log_data_->contention_count.LoadSequentiallyConsistent() > 0;
185    }
186    return false;
187  }
188};
189
190// A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain
191// exclusive access to what it guards. A Mutex can be in one of two states:
192// - Free - not owned by any thread,
193// - Exclusive - owned by a single thread.
194//
195// The effect of locking and unlocking operations on the state is:
196// State     | ExclusiveLock | ExclusiveUnlock
197// -------------------------------------------
198// Free      | Exclusive     | error
199// Exclusive | Block*        | Free
200// * Mutex is not reentrant and so an attempt to ExclusiveLock on the same thread will result in
201//   an error. Being non-reentrant simplifies Waiting on ConditionVariables.
202std::ostream& operator<<(std::ostream& os, const Mutex& mu);
203class LOCKABLE Mutex : public BaseMutex {
204 public:
205  explicit Mutex(const char* name, LockLevel level = kDefaultMutexLevel, bool recursive = false);
206  ~Mutex();
207
208  virtual bool IsMutex() const { return true; }
209
210  // Block until mutex is free then acquire exclusive access.
211  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
212  void Lock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
213
214  // Returns true if acquires exclusive access, false otherwise.
215  bool ExclusiveTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
216  bool TryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true) { return ExclusiveTryLock(self); }
217
218  // Release exclusive access.
219  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
220  void Unlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
221
222  // Is the current thread the exclusive holder of the Mutex.
223  bool IsExclusiveHeld(const Thread* self) const;
224
225  // Assert that the Mutex is exclusively held by the current thread.
226  void AssertExclusiveHeld(const Thread* self) {
227    if (kDebugLocking && (gAborting == 0)) {
228      CHECK(IsExclusiveHeld(self)) << *this;
229    }
230  }
231  void AssertHeld(const Thread* self) { AssertExclusiveHeld(self); }
232
233  // Assert that the Mutex is not held by the current thread.
234  void AssertNotHeldExclusive(const Thread* self) {
235    if (kDebugLocking && (gAborting == 0)) {
236      CHECK(!IsExclusiveHeld(self)) << *this;
237    }
238  }
239  void AssertNotHeld(const Thread* self) { AssertNotHeldExclusive(self); }
240
241  // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
242  // than the owner.
243  uint64_t GetExclusiveOwnerTid() const;
244
245  // Returns how many times this Mutex has been locked, it is better to use AssertHeld/NotHeld.
246  unsigned int GetDepth() const {
247    return recursion_count_;
248  }
249
250  virtual void Dump(std::ostream& os) const;
251
252 private:
253#if ART_USE_FUTEXES
254  // 0 is unheld, 1 is held.
255  AtomicInteger state_;
256  // Exclusive owner.
257  volatile uint64_t exclusive_owner_;
258  // Number of waiting contenders.
259  AtomicInteger num_contenders_;
260#else
261  pthread_mutex_t mutex_;
262  volatile uint64_t exclusive_owner_;  // Guarded by mutex_.
263#endif
264  const bool recursive_;  // Can the lock be recursively held?
265  unsigned int recursion_count_;
266  friend class ConditionVariable;
267  DISALLOW_COPY_AND_ASSIGN(Mutex);
268};
269
270// A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex.
271// Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader)
272// access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a
273// condition variable. A ReaderWriterMutex can be in one of three states:
274// - Free - not owned by any thread,
275// - Exclusive - owned by a single thread,
276// - Shared(n) - shared amongst n threads.
277//
278// The effect of locking and unlocking operations on the state is:
279//
280// State     | ExclusiveLock | ExclusiveUnlock | SharedLock       | SharedUnlock
281// ----------------------------------------------------------------------------
282// Free      | Exclusive     | error           | SharedLock(1)    | error
283// Exclusive | Block         | Free            | Block            | error
284// Shared(n) | Block         | error           | SharedLock(n+1)* | Shared(n-1) or Free
285// * for large values of n the SharedLock may block.
286std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu);
287class LOCKABLE ReaderWriterMutex : public BaseMutex {
288 public:
289  explicit ReaderWriterMutex(const char* name, LockLevel level = kDefaultMutexLevel);
290  ~ReaderWriterMutex();
291
292  virtual bool IsReaderWriterMutex() const { return true; }
293
294  // Block until ReaderWriterMutex is free then acquire exclusive access.
295  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
296  void WriterLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
297
298  // Release exclusive access.
299  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
300  void WriterUnlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
301
302  // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success
303  // or false if timeout is reached.
304#if HAVE_TIMED_RWLOCK
305  bool ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns)
306      EXCLUSIVE_TRYLOCK_FUNCTION(true);
307#endif
308
309  // Block until ReaderWriterMutex is shared or free then acquire a share on the access.
310  void SharedLock(Thread* self) SHARED_LOCK_FUNCTION() ALWAYS_INLINE;
311  void ReaderLock(Thread* self) SHARED_LOCK_FUNCTION() { SharedLock(self); }
312
313  // Try to acquire share of ReaderWriterMutex.
314  bool SharedTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
315
316  // Release a share of the access.
317  void SharedUnlock(Thread* self) UNLOCK_FUNCTION() ALWAYS_INLINE;
318  void ReaderUnlock(Thread* self) UNLOCK_FUNCTION() { SharedUnlock(self); }
319
320  // Is the current thread the exclusive holder of the ReaderWriterMutex.
321  bool IsExclusiveHeld(const Thread* self) const;
322
323  // Assert the current thread has exclusive access to the ReaderWriterMutex.
324  void AssertExclusiveHeld(const Thread* self) {
325    if (kDebugLocking && (gAborting == 0)) {
326      CHECK(IsExclusiveHeld(self)) << *this;
327    }
328  }
329  void AssertWriterHeld(const Thread* self) { AssertExclusiveHeld(self); }
330
331  // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex.
332  void AssertNotExclusiveHeld(const Thread* self) {
333    if (kDebugLocking && (gAborting == 0)) {
334      CHECK(!IsExclusiveHeld(self)) << *this;
335    }
336  }
337  void AssertNotWriterHeld(const Thread* self) { AssertNotExclusiveHeld(self); }
338
339  // Is the current thread a shared holder of the ReaderWriterMutex.
340  bool IsSharedHeld(const Thread* self) const;
341
342  // Assert the current thread has shared access to the ReaderWriterMutex.
343  void AssertSharedHeld(const Thread* self) {
344    if (kDebugLocking && (gAborting == 0)) {
345      // TODO: we can only assert this well when self != NULL.
346      CHECK(IsSharedHeld(self) || self == NULL) << *this;
347    }
348  }
349  void AssertReaderHeld(const Thread* self) { AssertSharedHeld(self); }
350
351  // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive
352  // mode.
353  void AssertNotHeld(const Thread* self) {
354    if (kDebugLocking && (gAborting == 0)) {
355      CHECK(!IsSharedHeld(self)) << *this;
356    }
357  }
358
359  // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
360  // than the owner.
361  uint64_t GetExclusiveOwnerTid() const;
362
363  virtual void Dump(std::ostream& os) const;
364
365 private:
366#if ART_USE_FUTEXES
367  // Out-of-inline path for handling contention for a SharedLock.
368  void HandleSharedLockContention(Thread* self, int32_t cur_state);
369
370  // -1 implies held exclusive, +ve shared held by state_ many owners.
371  AtomicInteger state_;
372  // Exclusive owner. Modification guarded by this mutex.
373  volatile uint64_t exclusive_owner_;
374  // Number of contenders waiting for a reader share.
375  AtomicInteger num_pending_readers_;
376  // Number of contenders waiting to be the writer.
377  AtomicInteger num_pending_writers_;
378#else
379  pthread_rwlock_t rwlock_;
380  volatile uint64_t exclusive_owner_;  // Guarded by rwlock_.
381#endif
382  DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex);
383};
384
385// ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually
386// (Signal) or all at once (Broadcast).
387class ConditionVariable {
388 public:
389  explicit ConditionVariable(const char* name, Mutex& mutex);
390  ~ConditionVariable();
391
392  void Broadcast(Thread* self);
393  void Signal(Thread* self);
394  // TODO: No thread safety analysis on Wait and TimedWait as they call mutex operations via their
395  //       pointer copy, thereby defeating annotalysis.
396  void Wait(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
397  bool TimedWait(Thread* self, int64_t ms, int32_t ns) NO_THREAD_SAFETY_ANALYSIS;
398  // Variant of Wait that should be used with caution. Doesn't validate that no mutexes are held
399  // when waiting.
400  // TODO: remove this.
401  void WaitHoldingLocks(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
402
403 private:
404  const char* const name_;
405  // The Mutex being used by waiters. It is an error to mix condition variables between different
406  // Mutexes.
407  Mutex& guard_;
408#if ART_USE_FUTEXES
409  // A counter that is modified by signals and broadcasts. This ensures that when a waiter gives up
410  // their Mutex and another thread takes it and signals, the waiting thread observes that sequence_
411  // changed and doesn't enter the wait. Modified while holding guard_, but is read by futex wait
412  // without guard_ held.
413  AtomicInteger sequence_;
414  // Number of threads that have come into to wait, not the length of the waiters on the futex as
415  // waiters may have been requeued onto guard_. Guarded by guard_.
416  volatile int32_t num_waiters_;
417#else
418  pthread_cond_t cond_;
419#endif
420  DISALLOW_COPY_AND_ASSIGN(ConditionVariable);
421};
422
423// Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it
424// upon destruction.
425class SCOPED_LOCKABLE MutexLock {
426 public:
427  explicit MutexLock(Thread* self, Mutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : self_(self), mu_(mu) {
428    mu_.ExclusiveLock(self_);
429  }
430
431  ~MutexLock() UNLOCK_FUNCTION() {
432    mu_.ExclusiveUnlock(self_);
433  }
434
435 private:
436  Thread* const self_;
437  Mutex& mu_;
438  DISALLOW_COPY_AND_ASSIGN(MutexLock);
439};
440// Catch bug where variable name is omitted. "MutexLock (lock);" instead of "MutexLock mu(lock)".
441#define MutexLock(x) static_assert(0, "MutexLock declaration missing variable name")
442
443// Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon
444// construction and releases it upon destruction.
445class SCOPED_LOCKABLE ReaderMutexLock {
446 public:
447  explicit ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
448      self_(self), mu_(mu) {
449    mu_.SharedLock(self_);
450  }
451
452  ~ReaderMutexLock() UNLOCK_FUNCTION() {
453    mu_.SharedUnlock(self_);
454  }
455
456 private:
457  Thread* const self_;
458  ReaderWriterMutex& mu_;
459  DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock);
460};
461// Catch bug where variable name is omitted. "ReaderMutexLock (lock);" instead of
462// "ReaderMutexLock mu(lock)".
463#define ReaderMutexLock(x) static_assert(0, "ReaderMutexLock declaration missing variable name")
464
465// Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon
466// construction and releases it upon destruction.
467class SCOPED_LOCKABLE WriterMutexLock {
468 public:
469  explicit WriterMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
470      self_(self), mu_(mu) {
471    mu_.ExclusiveLock(self_);
472  }
473
474  ~WriterMutexLock() UNLOCK_FUNCTION() {
475    mu_.ExclusiveUnlock(self_);
476  }
477
478 private:
479  Thread* const self_;
480  ReaderWriterMutex& mu_;
481  DISALLOW_COPY_AND_ASSIGN(WriterMutexLock);
482};
483// Catch bug where variable name is omitted. "WriterMutexLock (lock);" instead of
484// "WriterMutexLock mu(lock)".
485#define WriterMutexLock(x) static_assert(0, "WriterMutexLock declaration missing variable name")
486
487// Global mutexes corresponding to the levels above.
488class Locks {
489 public:
490  static void Init();
491  static void InitConditions() NO_THREAD_SAFETY_ANALYSIS;  // Condition variables.
492  // Guards allocation entrypoint instrumenting.
493  static Mutex* instrument_entrypoints_lock_;
494
495  // The mutator_lock_ is used to allow mutators to execute in a shared (reader) mode or to block
496  // mutators by having an exclusive (writer) owner. In normal execution each mutator thread holds
497  // a share on the mutator_lock_. The garbage collector may also execute with shared access but
498  // at times requires exclusive access to the heap (not to be confused with the heap meta-data
499  // guarded by the heap_lock_ below). When the garbage collector requires exclusive access it asks
500  // the mutators to suspend themselves which also involves usage of the thread_suspend_count_lock_
501  // to cover weaknesses in using ReaderWriterMutexes with ConditionVariables. We use a condition
502  // variable to wait upon in the suspension logic as releasing and then re-acquiring a share on
503  // the mutator lock doesn't necessarily allow the exclusive user (e.g the garbage collector)
504  // chance to acquire the lock.
505  //
506  // Thread suspension:
507  // Shared users                                  | Exclusive user
508  // (holding mutator lock and in kRunnable state) |   .. running ..
509  //   .. running ..                               | Request thread suspension by:
510  //   .. running ..                               |   - acquiring thread_suspend_count_lock_
511  //   .. running ..                               |   - incrementing Thread::suspend_count_ on
512  //   .. running ..                               |     all mutator threads
513  //   .. running ..                               |   - releasing thread_suspend_count_lock_
514  //   .. running ..                               | Block trying to acquire exclusive mutator lock
515  // Poll Thread::suspend_count_ and enter full    |   .. blocked ..
516  // suspend code.                                 |   .. blocked ..
517  // Change state to kSuspended                    |   .. blocked ..
518  // x: Release share on mutator_lock_             | Carry out exclusive access
519  // Acquire thread_suspend_count_lock_            |   .. exclusive ..
520  // while Thread::suspend_count_ > 0              |   .. exclusive ..
521  //   - wait on Thread::resume_cond_              |   .. exclusive ..
522  //     (releases thread_suspend_count_lock_)     |   .. exclusive ..
523  //   .. waiting ..                               | Release mutator_lock_
524  //   .. waiting ..                               | Request thread resumption by:
525  //   .. waiting ..                               |   - acquiring thread_suspend_count_lock_
526  //   .. waiting ..                               |   - decrementing Thread::suspend_count_ on
527  //   .. waiting ..                               |     all mutator threads
528  //   .. waiting ..                               |   - notifying on Thread::resume_cond_
529  //    - re-acquire thread_suspend_count_lock_    |   - releasing thread_suspend_count_lock_
530  // Release thread_suspend_count_lock_            |  .. running ..
531  // Acquire share on mutator_lock_                |  .. running ..
532  //  - This could block but the thread still      |  .. running ..
533  //    has a state of kSuspended and so this      |  .. running ..
534  //    isn't an issue.                            |  .. running ..
535  // Acquire thread_suspend_count_lock_            |  .. running ..
536  //  - we poll here as we're transitioning into   |  .. running ..
537  //    kRunnable and an individual thread suspend |  .. running ..
538  //    request (e.g for debugging) won't try      |  .. running ..
539  //    to acquire the mutator lock (which would   |  .. running ..
540  //    block as we hold the mutator lock). This   |  .. running ..
541  //    poll ensures that if the suspender thought |  .. running ..
542  //    we were suspended by incrementing our      |  .. running ..
543  //    Thread::suspend_count_ and then reading    |  .. running ..
544  //    our state we go back to waiting on         |  .. running ..
545  //    Thread::resume_cond_.                      |  .. running ..
546  // can_go_runnable = Thread::suspend_count_ == 0 |  .. running ..
547  // Release thread_suspend_count_lock_            |  .. running ..
548  // if can_go_runnable                            |  .. running ..
549  //   Change state to kRunnable                   |  .. running ..
550  // else                                          |  .. running ..
551  //   Goto x                                      |  .. running ..
552  //  .. running ..                                |  .. running ..
553  static ReaderWriterMutex* mutator_lock_ ACQUIRED_AFTER(instrument_entrypoints_lock_);
554
555  // Allow reader-writer mutual exclusion on the mark and live bitmaps of the heap.
556  static ReaderWriterMutex* heap_bitmap_lock_ ACQUIRED_AFTER(mutator_lock_);
557
558  // Guards shutdown of the runtime.
559  static Mutex* runtime_shutdown_lock_ ACQUIRED_AFTER(heap_bitmap_lock_);
560
561  // Guards background profiler global state.
562  static Mutex* profiler_lock_ ACQUIRED_AFTER(runtime_shutdown_lock_);
563
564  // Guards trace (ie traceview) requests.
565  static Mutex* trace_lock_ ACQUIRED_AFTER(profiler_lock_);
566
567  // Guards debugger recent allocation records.
568  static Mutex* alloc_tracker_lock_ ACQUIRED_AFTER(trace_lock_);
569
570  // Guards updates to instrumentation to ensure mutual exclusion of
571  // events like deoptimization requests.
572  // TODO: improve name, perhaps instrumentation_update_lock_.
573  static Mutex* deoptimization_lock_ ACQUIRED_AFTER(alloc_tracker_lock_);
574
575  // The thread_list_lock_ guards ThreadList::list_. It is also commonly held to stop threads
576  // attaching and detaching.
577  static Mutex* thread_list_lock_ ACQUIRED_AFTER(deoptimization_lock_);
578
579  // Signaled when threads terminate. Used to determine when all non-daemons have terminated.
580  static ConditionVariable* thread_exit_cond_ GUARDED_BY(Locks::thread_list_lock_);
581
582  // Guards maintaining loading library data structures.
583  static Mutex* jni_libraries_lock_ ACQUIRED_AFTER(thread_list_lock_);
584
585  // Guards breakpoints.
586  static ReaderWriterMutex* breakpoint_lock_ ACQUIRED_AFTER(jni_libraries_lock_);
587
588  // Guards lists of classes within the class linker.
589  static ReaderWriterMutex* classlinker_classes_lock_ ACQUIRED_AFTER(breakpoint_lock_);
590
591  static Mutex* method_verifiers_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
592
593  // When declaring any Mutex add DEFAULT_MUTEX_ACQUIRED_AFTER to use annotalysis to check the code
594  // doesn't try to hold a higher level Mutex.
595  #define DEFAULT_MUTEX_ACQUIRED_AFTER ACQUIRED_AFTER(Locks::method_verifiers_lock_)
596
597  static Mutex* allocated_monitor_ids_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
598
599  // Guard the allocation/deallocation of thread ids.
600  static Mutex* allocated_thread_ids_lock_ ACQUIRED_AFTER(allocated_monitor_ids_lock_);
601
602  // Guards modification of the LDT on x86.
603  static Mutex* modify_ldt_lock_ ACQUIRED_AFTER(allocated_thread_ids_lock_);
604
605  // Guards intern table.
606  static Mutex* intern_table_lock_ ACQUIRED_AFTER(modify_ldt_lock_);
607
608  // Guards reference processor.
609  static Mutex* reference_processor_lock_ ACQUIRED_AFTER(intern_table_lock_);
610
611  // Guards cleared references queue.
612  static Mutex* reference_queue_cleared_references_lock_ ACQUIRED_AFTER(reference_processor_lock_);
613
614  // Guards weak references queue.
615  static Mutex* reference_queue_weak_references_lock_ ACQUIRED_AFTER(reference_queue_cleared_references_lock_);
616
617  // Guards finalizer references queue.
618  static Mutex* reference_queue_finalizer_references_lock_ ACQUIRED_AFTER(reference_queue_weak_references_lock_);
619
620  // Guards phantom references queue.
621  static Mutex* reference_queue_phantom_references_lock_ ACQUIRED_AFTER(reference_queue_finalizer_references_lock_);
622
623  // Guards soft references queue.
624  static Mutex* reference_queue_soft_references_lock_ ACQUIRED_AFTER(reference_queue_phantom_references_lock_);
625
626  // Have an exclusive aborting thread.
627  static Mutex* abort_lock_ ACQUIRED_AFTER(reference_queue_soft_references_lock_);
628
629  // Allow mutual exclusion when manipulating Thread::suspend_count_.
630  // TODO: Does the trade-off of a per-thread lock make sense?
631  static Mutex* thread_suspend_count_lock_ ACQUIRED_AFTER(abort_lock_);
632
633  // One unexpected signal at a time lock.
634  static Mutex* unexpected_signal_lock_ ACQUIRED_AFTER(thread_suspend_count_lock_);
635
636  // Guards the maps in mem_map.
637  static Mutex* mem_maps_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
638
639  // Have an exclusive logging thread.
640  static Mutex* logging_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
641};
642
643}  // namespace art
644
645#endif  // ART_RUNTIME_BASE_MUTEX_H_
646