mutex.h revision 2cd334ae2d4287216523882f0d298cf3901b7ab1
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_BASE_MUTEX_H_
18#define ART_RUNTIME_BASE_MUTEX_H_
19
20#include <pthread.h>
21#include <stdint.h>
22
23#include <iosfwd>
24#include <string>
25
26#include "atomic.h"
27#include "base/logging.h"
28#include "base/macros.h"
29#include "globals.h"
30
31#if defined(__APPLE__)
32#define ART_USE_FUTEXES 0
33#else
34#define ART_USE_FUTEXES 1
35#endif
36
37// Currently Darwin doesn't support locks with timeouts.
38#if !defined(__APPLE__)
39#define HAVE_TIMED_RWLOCK 1
40#else
41#define HAVE_TIMED_RWLOCK 0
42#endif
43
44namespace art {
45
46class LOCKABLE ReaderWriterMutex;
47class ScopedContentionRecorder;
48class Thread;
49
50// LockLevel is used to impose a lock hierarchy [1] where acquisition of a Mutex at a higher or
51// equal level to a lock a thread holds is invalid. The lock hierarchy achieves a cycle free
52// partial ordering and thereby cause deadlock situations to fail checks.
53//
54// [1] http://www.drdobbs.com/parallel/use-lock-hierarchies-to-avoid-deadlock/204801163
55enum LockLevel {
56  kLoggingLock = 0,
57  kMemMapsLock,
58  kSwapMutexesLock,
59  kUnexpectedSignalLock,
60  kThreadSuspendCountLock,
61  kAbortLock,
62  kJdwpSocketLock,
63  kRegionSpaceRegionLock,
64  kReferenceQueueSoftReferencesLock,
65  kReferenceQueuePhantomReferencesLock,
66  kReferenceQueueFinalizerReferencesLock,
67  kReferenceQueueWeakReferencesLock,
68  kReferenceQueueClearedReferencesLock,
69  kReferenceProcessorLock,
70  kRosAllocGlobalLock,
71  kRosAllocBracketLock,
72  kRosAllocBulkFreeLock,
73  kAllocSpaceLock,
74  kBumpPointerSpaceBlockLock,
75  kDexFileMethodInlinerLock,
76  kDexFileToMethodInlinerMapLock,
77  kMarkSweepMarkStackLock,
78  kTransactionLogLock,
79  kInternTableLock,
80  kOatFileSecondaryLookupLock,
81  kDefaultMutexLevel,
82  kMarkSweepLargeObjectLock,
83  kPinTableLock,
84  kJdwpObjectRegistryLock,
85  kModifyLdtLock,
86  kAllocatedThreadIdsLock,
87  kMonitorPoolLock,
88  kClassLinkerClassesLock,
89  kBreakpointLock,
90  kMonitorLock,
91  kMonitorListLock,
92  kJniLoadLibraryLock,
93  kThreadListLock,
94  kBreakpointInvokeLock,
95  kAllocTrackerLock,
96  kDeoptimizationLock,
97  kProfilerLock,
98  kJdwpEventListLock,
99  kJdwpAttachLock,
100  kJdwpStartLock,
101  kRuntimeShutdownLock,
102  kTraceLock,
103  kHeapBitmapLock,
104  kMutatorLock,
105  kInstrumentEntrypointsLock,
106  kZygoteCreationLock,
107
108  kLockLevelCount  // Must come last.
109};
110std::ostream& operator<<(std::ostream& os, const LockLevel& rhs);
111
112const bool kDebugLocking = kIsDebugBuild;
113
114// Record Log contention information, dumpable via SIGQUIT.
115#ifdef ART_USE_FUTEXES
116// To enable lock contention logging, set this to true.
117const bool kLogLockContentions = false;
118#else
119// Keep this false as lock contention logging is supported only with
120// futex.
121const bool kLogLockContentions = false;
122#endif
123const size_t kContentionLogSize = 4;
124const size_t kContentionLogDataSize = kLogLockContentions ? 1 : 0;
125const size_t kAllMutexDataSize = kLogLockContentions ? 1 : 0;
126
127// Base class for all Mutex implementations
128class BaseMutex {
129 public:
130  const char* GetName() const {
131    return name_;
132  }
133
134  virtual bool IsMutex() const { return false; }
135  virtual bool IsReaderWriterMutex() const { return false; }
136
137  virtual void Dump(std::ostream& os) const = 0;
138
139  static void DumpAll(std::ostream& os);
140
141 protected:
142  friend class ConditionVariable;
143
144  BaseMutex(const char* name, LockLevel level);
145  virtual ~BaseMutex();
146  void RegisterAsLocked(Thread* self);
147  void RegisterAsUnlocked(Thread* self);
148  void CheckSafeToWait(Thread* self);
149
150  friend class ScopedContentionRecorder;
151
152  void RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked);
153  void DumpContention(std::ostream& os) const;
154
155  const LockLevel level_;  // Support for lock hierarchy.
156  const char* const name_;
157
158  // A log entry that records contention but makes no guarantee that either tid will be held live.
159  struct ContentionLogEntry {
160    ContentionLogEntry() : blocked_tid(0), owner_tid(0) {}
161    uint64_t blocked_tid;
162    uint64_t owner_tid;
163    AtomicInteger count;
164  };
165  struct ContentionLogData {
166    ContentionLogEntry contention_log[kContentionLogSize];
167    // The next entry in the contention log to be updated. Value ranges from 0 to
168    // kContentionLogSize - 1.
169    AtomicInteger cur_content_log_entry;
170    // Number of times the Mutex has been contended.
171    AtomicInteger contention_count;
172    // Sum of time waited by all contenders in ns.
173    Atomic<uint64_t> wait_time;
174    void AddToWaitTime(uint64_t value);
175    ContentionLogData() : wait_time(0) {}
176  };
177  ContentionLogData contention_log_data_[kContentionLogDataSize];
178
179 public:
180  bool HasEverContended() const {
181    if (kLogLockContentions) {
182      return contention_log_data_->contention_count.LoadSequentiallyConsistent() > 0;
183    }
184    return false;
185  }
186};
187
188// A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain
189// exclusive access to what it guards. A Mutex can be in one of two states:
190// - Free - not owned by any thread,
191// - Exclusive - owned by a single thread.
192//
193// The effect of locking and unlocking operations on the state is:
194// State     | ExclusiveLock | ExclusiveUnlock
195// -------------------------------------------
196// Free      | Exclusive     | error
197// Exclusive | Block*        | Free
198// * Mutex is not reentrant and so an attempt to ExclusiveLock on the same thread will result in
199//   an error. Being non-reentrant simplifies Waiting on ConditionVariables.
200std::ostream& operator<<(std::ostream& os, const Mutex& mu);
201class LOCKABLE Mutex : public BaseMutex {
202 public:
203  explicit Mutex(const char* name, LockLevel level = kDefaultMutexLevel, bool recursive = false);
204  ~Mutex();
205
206  virtual bool IsMutex() const { return true; }
207
208  // Block until mutex is free then acquire exclusive access.
209  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
210  void Lock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
211
212  // Returns true if acquires exclusive access, false otherwise.
213  bool ExclusiveTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
214  bool TryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true) { return ExclusiveTryLock(self); }
215
216  // Release exclusive access.
217  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
218  void Unlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
219
220  // Is the current thread the exclusive holder of the Mutex.
221  bool IsExclusiveHeld(const Thread* self) const;
222
223  // Assert that the Mutex is exclusively held by the current thread.
224  void AssertExclusiveHeld(const Thread* self) {
225    if (kDebugLocking && (gAborting == 0)) {
226      CHECK(IsExclusiveHeld(self)) << *this;
227    }
228  }
229  void AssertHeld(const Thread* self) { AssertExclusiveHeld(self); }
230
231  // Assert that the Mutex is not held by the current thread.
232  void AssertNotHeldExclusive(const Thread* self) {
233    if (kDebugLocking && (gAborting == 0)) {
234      CHECK(!IsExclusiveHeld(self)) << *this;
235    }
236  }
237  void AssertNotHeld(const Thread* self) { AssertNotHeldExclusive(self); }
238
239  // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
240  // than the owner.
241  uint64_t GetExclusiveOwnerTid() const;
242
243  // Returns how many times this Mutex has been locked, it is better to use AssertHeld/NotHeld.
244  unsigned int GetDepth() const {
245    return recursion_count_;
246  }
247
248  virtual void Dump(std::ostream& os) const;
249
250 private:
251#if ART_USE_FUTEXES
252  // 0 is unheld, 1 is held.
253  AtomicInteger state_;
254  // Exclusive owner.
255  volatile uint64_t exclusive_owner_;
256  // Number of waiting contenders.
257  AtomicInteger num_contenders_;
258#else
259  pthread_mutex_t mutex_;
260  volatile uint64_t exclusive_owner_;  // Guarded by mutex_.
261#endif
262  const bool recursive_;  // Can the lock be recursively held?
263  unsigned int recursion_count_;
264  friend class ConditionVariable;
265  DISALLOW_COPY_AND_ASSIGN(Mutex);
266};
267
268// A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex.
269// Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader)
270// access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a
271// condition variable. A ReaderWriterMutex can be in one of three states:
272// - Free - not owned by any thread,
273// - Exclusive - owned by a single thread,
274// - Shared(n) - shared amongst n threads.
275//
276// The effect of locking and unlocking operations on the state is:
277//
278// State     | ExclusiveLock | ExclusiveUnlock | SharedLock       | SharedUnlock
279// ----------------------------------------------------------------------------
280// Free      | Exclusive     | error           | SharedLock(1)    | error
281// Exclusive | Block         | Free            | Block            | error
282// Shared(n) | Block         | error           | SharedLock(n+1)* | Shared(n-1) or Free
283// * for large values of n the SharedLock may block.
284std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu);
285class LOCKABLE ReaderWriterMutex : public BaseMutex {
286 public:
287  explicit ReaderWriterMutex(const char* name, LockLevel level = kDefaultMutexLevel);
288  ~ReaderWriterMutex();
289
290  virtual bool IsReaderWriterMutex() const { return true; }
291
292  // Block until ReaderWriterMutex is free then acquire exclusive access.
293  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
294  void WriterLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
295
296  // Release exclusive access.
297  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
298  void WriterUnlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
299
300  // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success
301  // or false if timeout is reached.
302#if HAVE_TIMED_RWLOCK
303  bool ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns)
304      EXCLUSIVE_TRYLOCK_FUNCTION(true);
305#endif
306
307  // Block until ReaderWriterMutex is shared or free then acquire a share on the access.
308  void SharedLock(Thread* self) SHARED_LOCK_FUNCTION() ALWAYS_INLINE;
309  void ReaderLock(Thread* self) SHARED_LOCK_FUNCTION() { SharedLock(self); }
310
311  // Try to acquire share of ReaderWriterMutex.
312  bool SharedTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
313
314  // Release a share of the access.
315  void SharedUnlock(Thread* self) UNLOCK_FUNCTION() ALWAYS_INLINE;
316  void ReaderUnlock(Thread* self) UNLOCK_FUNCTION() { SharedUnlock(self); }
317
318  // Is the current thread the exclusive holder of the ReaderWriterMutex.
319  bool IsExclusiveHeld(const Thread* self) const;
320
321  // Assert the current thread has exclusive access to the ReaderWriterMutex.
322  void AssertExclusiveHeld(const Thread* self) {
323    if (kDebugLocking && (gAborting == 0)) {
324      CHECK(IsExclusiveHeld(self)) << *this;
325    }
326  }
327  void AssertWriterHeld(const Thread* self) { AssertExclusiveHeld(self); }
328
329  // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex.
330  void AssertNotExclusiveHeld(const Thread* self) {
331    if (kDebugLocking && (gAborting == 0)) {
332      CHECK(!IsExclusiveHeld(self)) << *this;
333    }
334  }
335  void AssertNotWriterHeld(const Thread* self) { AssertNotExclusiveHeld(self); }
336
337  // Is the current thread a shared holder of the ReaderWriterMutex.
338  bool IsSharedHeld(const Thread* self) const;
339
340  // Assert the current thread has shared access to the ReaderWriterMutex.
341  void AssertSharedHeld(const Thread* self) {
342    if (kDebugLocking && (gAborting == 0)) {
343      // TODO: we can only assert this well when self != NULL.
344      CHECK(IsSharedHeld(self) || self == NULL) << *this;
345    }
346  }
347  void AssertReaderHeld(const Thread* self) { AssertSharedHeld(self); }
348
349  // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive
350  // mode.
351  void AssertNotHeld(const Thread* self) {
352    if (kDebugLocking && (gAborting == 0)) {
353      CHECK(!IsSharedHeld(self)) << *this;
354    }
355  }
356
357  // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
358  // than the owner.
359  uint64_t GetExclusiveOwnerTid() const;
360
361  virtual void Dump(std::ostream& os) const;
362
363 private:
364#if ART_USE_FUTEXES
365  // Out-of-inline path for handling contention for a SharedLock.
366  void HandleSharedLockContention(Thread* self, int32_t cur_state);
367
368  // -1 implies held exclusive, +ve shared held by state_ many owners.
369  AtomicInteger state_;
370  // Exclusive owner. Modification guarded by this mutex.
371  volatile uint64_t exclusive_owner_;
372  // Number of contenders waiting for a reader share.
373  AtomicInteger num_pending_readers_;
374  // Number of contenders waiting to be the writer.
375  AtomicInteger num_pending_writers_;
376#else
377  pthread_rwlock_t rwlock_;
378  volatile uint64_t exclusive_owner_;  // Guarded by rwlock_.
379#endif
380  DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex);
381};
382
383// ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually
384// (Signal) or all at once (Broadcast).
385class ConditionVariable {
386 public:
387  explicit ConditionVariable(const char* name, Mutex& mutex);
388  ~ConditionVariable();
389
390  void Broadcast(Thread* self);
391  void Signal(Thread* self);
392  // TODO: No thread safety analysis on Wait and TimedWait as they call mutex operations via their
393  //       pointer copy, thereby defeating annotalysis.
394  void Wait(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
395  bool TimedWait(Thread* self, int64_t ms, int32_t ns) NO_THREAD_SAFETY_ANALYSIS;
396  // Variant of Wait that should be used with caution. Doesn't validate that no mutexes are held
397  // when waiting.
398  // TODO: remove this.
399  void WaitHoldingLocks(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
400
401 private:
402  const char* const name_;
403  // The Mutex being used by waiters. It is an error to mix condition variables between different
404  // Mutexes.
405  Mutex& guard_;
406#if ART_USE_FUTEXES
407  // A counter that is modified by signals and broadcasts. This ensures that when a waiter gives up
408  // their Mutex and another thread takes it and signals, the waiting thread observes that sequence_
409  // changed and doesn't enter the wait. Modified while holding guard_, but is read by futex wait
410  // without guard_ held.
411  AtomicInteger sequence_;
412  // Number of threads that have come into to wait, not the length of the waiters on the futex as
413  // waiters may have been requeued onto guard_. Guarded by guard_.
414  volatile int32_t num_waiters_;
415#else
416  pthread_cond_t cond_;
417#endif
418  DISALLOW_COPY_AND_ASSIGN(ConditionVariable);
419};
420
421// Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it
422// upon destruction.
423class SCOPED_LOCKABLE MutexLock {
424 public:
425  explicit MutexLock(Thread* self, Mutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : self_(self), mu_(mu) {
426    mu_.ExclusiveLock(self_);
427  }
428
429  ~MutexLock() UNLOCK_FUNCTION() {
430    mu_.ExclusiveUnlock(self_);
431  }
432
433 private:
434  Thread* const self_;
435  Mutex& mu_;
436  DISALLOW_COPY_AND_ASSIGN(MutexLock);
437};
438// Catch bug where variable name is omitted. "MutexLock (lock);" instead of "MutexLock mu(lock)".
439#define MutexLock(x) static_assert(0, "MutexLock declaration missing variable name")
440
441// Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon
442// construction and releases it upon destruction.
443class SCOPED_LOCKABLE ReaderMutexLock {
444 public:
445  explicit ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
446      self_(self), mu_(mu) {
447    mu_.SharedLock(self_);
448  }
449
450  ~ReaderMutexLock() UNLOCK_FUNCTION() {
451    mu_.SharedUnlock(self_);
452  }
453
454 private:
455  Thread* const self_;
456  ReaderWriterMutex& mu_;
457  DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock);
458};
459// Catch bug where variable name is omitted. "ReaderMutexLock (lock);" instead of
460// "ReaderMutexLock mu(lock)".
461#define ReaderMutexLock(x) static_assert(0, "ReaderMutexLock declaration missing variable name")
462
463// Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon
464// construction and releases it upon destruction.
465class SCOPED_LOCKABLE WriterMutexLock {
466 public:
467  explicit WriterMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
468      self_(self), mu_(mu) {
469    mu_.ExclusiveLock(self_);
470  }
471
472  ~WriterMutexLock() UNLOCK_FUNCTION() {
473    mu_.ExclusiveUnlock(self_);
474  }
475
476 private:
477  Thread* const self_;
478  ReaderWriterMutex& mu_;
479  DISALLOW_COPY_AND_ASSIGN(WriterMutexLock);
480};
481// Catch bug where variable name is omitted. "WriterMutexLock (lock);" instead of
482// "WriterMutexLock mu(lock)".
483#define WriterMutexLock(x) static_assert(0, "WriterMutexLock declaration missing variable name")
484
485// Global mutexes corresponding to the levels above.
486class Locks {
487 public:
488  static void Init();
489
490  // Guards allocation entrypoint instrumenting.
491  static Mutex* instrument_entrypoints_lock_;
492
493  // The mutator_lock_ is used to allow mutators to execute in a shared (reader) mode or to block
494  // mutators by having an exclusive (writer) owner. In normal execution each mutator thread holds
495  // a share on the mutator_lock_. The garbage collector may also execute with shared access but
496  // at times requires exclusive access to the heap (not to be confused with the heap meta-data
497  // guarded by the heap_lock_ below). When the garbage collector requires exclusive access it asks
498  // the mutators to suspend themselves which also involves usage of the thread_suspend_count_lock_
499  // to cover weaknesses in using ReaderWriterMutexes with ConditionVariables. We use a condition
500  // variable to wait upon in the suspension logic as releasing and then re-acquiring a share on
501  // the mutator lock doesn't necessarily allow the exclusive user (e.g the garbage collector)
502  // chance to acquire the lock.
503  //
504  // Thread suspension:
505  // Shared users                                  | Exclusive user
506  // (holding mutator lock and in kRunnable state) |   .. running ..
507  //   .. running ..                               | Request thread suspension by:
508  //   .. running ..                               |   - acquiring thread_suspend_count_lock_
509  //   .. running ..                               |   - incrementing Thread::suspend_count_ on
510  //   .. running ..                               |     all mutator threads
511  //   .. running ..                               |   - releasing thread_suspend_count_lock_
512  //   .. running ..                               | Block trying to acquire exclusive mutator lock
513  // Poll Thread::suspend_count_ and enter full    |   .. blocked ..
514  // suspend code.                                 |   .. blocked ..
515  // Change state to kSuspended                    |   .. blocked ..
516  // x: Release share on mutator_lock_             | Carry out exclusive access
517  // Acquire thread_suspend_count_lock_            |   .. exclusive ..
518  // while Thread::suspend_count_ > 0              |   .. exclusive ..
519  //   - wait on Thread::resume_cond_              |   .. exclusive ..
520  //     (releases thread_suspend_count_lock_)     |   .. exclusive ..
521  //   .. waiting ..                               | Release mutator_lock_
522  //   .. waiting ..                               | Request thread resumption by:
523  //   .. waiting ..                               |   - acquiring thread_suspend_count_lock_
524  //   .. waiting ..                               |   - decrementing Thread::suspend_count_ on
525  //   .. waiting ..                               |     all mutator threads
526  //   .. waiting ..                               |   - notifying on Thread::resume_cond_
527  //    - re-acquire thread_suspend_count_lock_    |   - releasing thread_suspend_count_lock_
528  // Release thread_suspend_count_lock_            |  .. running ..
529  // Acquire share on mutator_lock_                |  .. running ..
530  //  - This could block but the thread still      |  .. running ..
531  //    has a state of kSuspended and so this      |  .. running ..
532  //    isn't an issue.                            |  .. running ..
533  // Acquire thread_suspend_count_lock_            |  .. running ..
534  //  - we poll here as we're transitioning into   |  .. running ..
535  //    kRunnable and an individual thread suspend |  .. running ..
536  //    request (e.g for debugging) won't try      |  .. running ..
537  //    to acquire the mutator lock (which would   |  .. running ..
538  //    block as we hold the mutator lock). This   |  .. running ..
539  //    poll ensures that if the suspender thought |  .. running ..
540  //    we were suspended by incrementing our      |  .. running ..
541  //    Thread::suspend_count_ and then reading    |  .. running ..
542  //    our state we go back to waiting on         |  .. running ..
543  //    Thread::resume_cond_.                      |  .. running ..
544  // can_go_runnable = Thread::suspend_count_ == 0 |  .. running ..
545  // Release thread_suspend_count_lock_            |  .. running ..
546  // if can_go_runnable                            |  .. running ..
547  //   Change state to kRunnable                   |  .. running ..
548  // else                                          |  .. running ..
549  //   Goto x                                      |  .. running ..
550  //  .. running ..                                |  .. running ..
551  static ReaderWriterMutex* mutator_lock_ ACQUIRED_AFTER(instrument_entrypoints_lock_);
552
553  // Allow reader-writer mutual exclusion on the mark and live bitmaps of the heap.
554  static ReaderWriterMutex* heap_bitmap_lock_ ACQUIRED_AFTER(mutator_lock_);
555
556  // Guards shutdown of the runtime.
557  static Mutex* runtime_shutdown_lock_ ACQUIRED_AFTER(heap_bitmap_lock_);
558
559  // Guards background profiler global state.
560  static Mutex* profiler_lock_ ACQUIRED_AFTER(runtime_shutdown_lock_);
561
562  // Guards trace (ie traceview) requests.
563  static Mutex* trace_lock_ ACQUIRED_AFTER(profiler_lock_);
564
565  // Guards debugger recent allocation records.
566  static Mutex* alloc_tracker_lock_ ACQUIRED_AFTER(trace_lock_);
567
568  // Guards updates to instrumentation to ensure mutual exclusion of
569  // events like deoptimization requests.
570  // TODO: improve name, perhaps instrumentation_update_lock_.
571  static Mutex* deoptimization_lock_ ACQUIRED_AFTER(alloc_tracker_lock_);
572
573  // The thread_list_lock_ guards ThreadList::list_. It is also commonly held to stop threads
574  // attaching and detaching.
575  static Mutex* thread_list_lock_ ACQUIRED_AFTER(deoptimization_lock_);
576
577  // Guards maintaining loading library data structures.
578  static Mutex* jni_libraries_lock_ ACQUIRED_AFTER(thread_list_lock_);
579
580  // Guards breakpoints.
581  static ReaderWriterMutex* breakpoint_lock_ ACQUIRED_AFTER(jni_libraries_lock_);
582
583  // Guards lists of classes within the class linker.
584  static ReaderWriterMutex* classlinker_classes_lock_ ACQUIRED_AFTER(breakpoint_lock_);
585
586  // When declaring any Mutex add DEFAULT_MUTEX_ACQUIRED_AFTER to use annotalysis to check the code
587  // doesn't try to hold a higher level Mutex.
588  #define DEFAULT_MUTEX_ACQUIRED_AFTER ACQUIRED_AFTER(Locks::classlinker_classes_lock_)
589
590  static Mutex* allocated_monitor_ids_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
591
592  // Guard the allocation/deallocation of thread ids.
593  static Mutex* allocated_thread_ids_lock_ ACQUIRED_AFTER(allocated_monitor_ids_lock_);
594
595  // Guards modification of the LDT on x86.
596  static Mutex* modify_ldt_lock_ ACQUIRED_AFTER(allocated_thread_ids_lock_);
597
598  // Guards intern table.
599  static Mutex* intern_table_lock_ ACQUIRED_AFTER(modify_ldt_lock_);
600
601  // Guards reference processor.
602  static Mutex* reference_processor_lock_ ACQUIRED_AFTER(intern_table_lock_);
603
604  // Guards cleared references queue.
605  static Mutex* reference_queue_cleared_references_lock_ ACQUIRED_AFTER(reference_processor_lock_);
606
607  // Guards weak references queue.
608  static Mutex* reference_queue_weak_references_lock_ ACQUIRED_AFTER(reference_queue_cleared_references_lock_);
609
610  // Guards finalizer references queue.
611  static Mutex* reference_queue_finalizer_references_lock_ ACQUIRED_AFTER(reference_queue_weak_references_lock_);
612
613  // Guards phantom references queue.
614  static Mutex* reference_queue_phantom_references_lock_ ACQUIRED_AFTER(reference_queue_finalizer_references_lock_);
615
616  // Guards soft references queue.
617  static Mutex* reference_queue_soft_references_lock_ ACQUIRED_AFTER(reference_queue_phantom_references_lock_);
618
619  // Have an exclusive aborting thread.
620  static Mutex* abort_lock_ ACQUIRED_AFTER(reference_queue_soft_references_lock_);
621
622  // Allow mutual exclusion when manipulating Thread::suspend_count_.
623  // TODO: Does the trade-off of a per-thread lock make sense?
624  static Mutex* thread_suspend_count_lock_ ACQUIRED_AFTER(abort_lock_);
625
626  // One unexpected signal at a time lock.
627  static Mutex* unexpected_signal_lock_ ACQUIRED_AFTER(thread_suspend_count_lock_);
628
629  // Guards the maps in mem_map.
630  static Mutex* mem_maps_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
631
632  // Have an exclusive logging thread.
633  static Mutex* logging_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
634};
635
636}  // namespace art
637
638#endif  // ART_RUNTIME_BASE_MUTEX_H_
639