mutex.h revision 3e5cf305db800b2989ad57b7cde8fb3cc9fa1b9e
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_BASE_MUTEX_H_
18#define ART_RUNTIME_BASE_MUTEX_H_
19
20#include <pthread.h>
21#include <stdint.h>
22
23#include <iosfwd>
24#include <string>
25
26#include "atomic.h"
27#include "base/logging.h"
28#include "base/macros.h"
29#include "globals.h"
30
31#if defined(__APPLE__)
32#define ART_USE_FUTEXES 0
33#else
34#define ART_USE_FUTEXES 1
35#endif
36
37// Currently Darwin doesn't support locks with timeouts.
38#if !defined(__APPLE__)
39#define HAVE_TIMED_RWLOCK 1
40#else
41#define HAVE_TIMED_RWLOCK 0
42#endif
43
44namespace art {
45
46class LOCKABLE ReaderWriterMutex;
47class ScopedContentionRecorder;
48class Thread;
49
50// LockLevel is used to impose a lock hierarchy [1] where acquisition of a Mutex at a higher or
51// equal level to a lock a thread holds is invalid. The lock hierarchy achieves a cycle free
52// partial ordering and thereby cause deadlock situations to fail checks.
53//
54// [1] http://www.drdobbs.com/parallel/use-lock-hierarchies-to-avoid-deadlock/204801163
55enum LockLevel {
56  kLoggingLock = 0,
57  kUnexpectedSignalLock,
58  kThreadSuspendCountLock,
59  kAbortLock,
60  kJdwpSocketLock,
61  kRosAllocGlobalLock,
62  kRosAllocBracketLock,
63  kRosAllocBulkFreeLock,
64  kAllocSpaceLock,
65  kReferenceProcessorLock,
66  kDexFileMethodInlinerLock,
67  kDexFileToMethodInlinerMapLock,
68  kMarkSweepMarkStackLock,
69  kTransactionLogLock,
70  kInternTableLock,
71  kMonitorPoolLock,
72  kDefaultMutexLevel,
73  kMarkSweepLargeObjectLock,
74  kPinTableLock,
75  kLoadLibraryLock,
76  kJdwpObjectRegistryLock,
77  kClassLinkerClassesLock,
78  kBreakpointLock,
79  kMonitorLock,
80  kMonitorListLock,
81  kThreadListLock,
82  kBreakpointInvokeLock,
83  kDeoptimizationLock,
84  kTraceLock,
85  kProfilerLock,
86  kJdwpEventListLock,
87  kJdwpAttachLock,
88  kJdwpStartLock,
89  kRuntimeShutdownLock,
90  kHeapBitmapLock,
91  kMutatorLock,
92  kZygoteCreationLock,
93
94  kLockLevelCount  // Must come last.
95};
96std::ostream& operator<<(std::ostream& os, const LockLevel& rhs);
97
98const bool kDebugLocking = kIsDebugBuild;
99
100// Record Log contention information, dumpable via SIGQUIT.
101#ifdef ART_USE_FUTEXES
102// To enable lock contention logging, set this to true.
103const bool kLogLockContentions = false;
104#else
105// Keep this false as lock contention logging is supported only with
106// futex.
107const bool kLogLockContentions = false;
108#endif
109const size_t kContentionLogSize = 4;
110const size_t kContentionLogDataSize = kLogLockContentions ? 1 : 0;
111const size_t kAllMutexDataSize = kLogLockContentions ? 1 : 0;
112
113// Base class for all Mutex implementations
114class BaseMutex {
115 public:
116  const char* GetName() const {
117    return name_;
118  }
119
120  virtual bool IsMutex() const { return false; }
121  virtual bool IsReaderWriterMutex() const { return false; }
122
123  virtual void Dump(std::ostream& os) const = 0;
124
125  static void DumpAll(std::ostream& os);
126
127 protected:
128  friend class ConditionVariable;
129
130  BaseMutex(const char* name, LockLevel level);
131  virtual ~BaseMutex();
132  void RegisterAsLocked(Thread* self);
133  void RegisterAsUnlocked(Thread* self);
134  void CheckSafeToWait(Thread* self);
135
136  friend class ScopedContentionRecorder;
137
138  void RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked);
139  void DumpContention(std::ostream& os) const;
140
141  const LockLevel level_;  // Support for lock hierarchy.
142  const char* const name_;
143
144  // A log entry that records contention but makes no guarantee that either tid will be held live.
145  struct ContentionLogEntry {
146    ContentionLogEntry() : blocked_tid(0), owner_tid(0) {}
147    uint64_t blocked_tid;
148    uint64_t owner_tid;
149    AtomicInteger count;
150  };
151  struct ContentionLogData {
152    ContentionLogEntry contention_log[kContentionLogSize];
153    // The next entry in the contention log to be updated. Value ranges from 0 to
154    // kContentionLogSize - 1.
155    AtomicInteger cur_content_log_entry;
156    // Number of times the Mutex has been contended.
157    AtomicInteger contention_count;
158    // Sum of time waited by all contenders in ns.
159    volatile uint64_t wait_time;
160    void AddToWaitTime(uint64_t value);
161    ContentionLogData() : wait_time(0) {}
162  };
163  ContentionLogData contention_log_data_[kContentionLogDataSize];
164
165 public:
166  bool HasEverContended() const {
167    if (kLogLockContentions) {
168      return contention_log_data_->contention_count.LoadSequentiallyConsistent() > 0;
169    }
170    return false;
171  }
172};
173
174// A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain
175// exclusive access to what it guards. A Mutex can be in one of two states:
176// - Free - not owned by any thread,
177// - Exclusive - owned by a single thread.
178//
179// The effect of locking and unlocking operations on the state is:
180// State     | ExclusiveLock | ExclusiveUnlock
181// -------------------------------------------
182// Free      | Exclusive     | error
183// Exclusive | Block*        | Free
184// * Mutex is not reentrant and so an attempt to ExclusiveLock on the same thread will result in
185//   an error. Being non-reentrant simplifies Waiting on ConditionVariables.
186std::ostream& operator<<(std::ostream& os, const Mutex& mu);
187class LOCKABLE Mutex : public BaseMutex {
188 public:
189  explicit Mutex(const char* name, LockLevel level = kDefaultMutexLevel, bool recursive = false);
190  ~Mutex();
191
192  virtual bool IsMutex() const { return true; }
193
194  // Block until mutex is free then acquire exclusive access.
195  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
196  void Lock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
197
198  // Returns true if acquires exclusive access, false otherwise.
199  bool ExclusiveTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
200  bool TryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true) { return ExclusiveTryLock(self); }
201
202  // Release exclusive access.
203  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
204  void Unlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
205
206  // Is the current thread the exclusive holder of the Mutex.
207  bool IsExclusiveHeld(const Thread* self) const;
208
209  // Assert that the Mutex is exclusively held by the current thread.
210  void AssertExclusiveHeld(const Thread* self) {
211    if (kDebugLocking && (gAborting == 0)) {
212      CHECK(IsExclusiveHeld(self)) << *this;
213    }
214  }
215  void AssertHeld(const Thread* self) { AssertExclusiveHeld(self); }
216
217  // Assert that the Mutex is not held by the current thread.
218  void AssertNotHeldExclusive(const Thread* self) {
219    if (kDebugLocking && (gAborting == 0)) {
220      CHECK(!IsExclusiveHeld(self)) << *this;
221    }
222  }
223  void AssertNotHeld(const Thread* self) { AssertNotHeldExclusive(self); }
224
225  // Id associated with exclusive owner.
226  uint64_t GetExclusiveOwnerTid() const;
227
228  // Returns how many times this Mutex has been locked, it is better to use AssertHeld/NotHeld.
229  unsigned int GetDepth() const {
230    return recursion_count_;
231  }
232
233  virtual void Dump(std::ostream& os) const;
234
235 private:
236#if ART_USE_FUTEXES
237  // 0 is unheld, 1 is held.
238  volatile int32_t state_;
239  // Exclusive owner.
240  volatile uint64_t exclusive_owner_;
241  // Number of waiting contenders.
242  AtomicInteger num_contenders_;
243#else
244  pthread_mutex_t mutex_;
245#endif
246  const bool recursive_;  // Can the lock be recursively held?
247  unsigned int recursion_count_;
248  friend class ConditionVariable;
249  DISALLOW_COPY_AND_ASSIGN(Mutex);
250};
251
252// A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex.
253// Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader)
254// access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a
255// condition variable. A ReaderWriterMutex can be in one of three states:
256// - Free - not owned by any thread,
257// - Exclusive - owned by a single thread,
258// - Shared(n) - shared amongst n threads.
259//
260// The effect of locking and unlocking operations on the state is:
261//
262// State     | ExclusiveLock | ExclusiveUnlock | SharedLock       | SharedUnlock
263// ----------------------------------------------------------------------------
264// Free      | Exclusive     | error           | SharedLock(1)    | error
265// Exclusive | Block         | Free            | Block            | error
266// Shared(n) | Block         | error           | SharedLock(n+1)* | Shared(n-1) or Free
267// * for large values of n the SharedLock may block.
268std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu);
269class LOCKABLE ReaderWriterMutex : public BaseMutex {
270 public:
271  explicit ReaderWriterMutex(const char* name, LockLevel level = kDefaultMutexLevel);
272  ~ReaderWriterMutex();
273
274  virtual bool IsReaderWriterMutex() const { return true; }
275
276  // Block until ReaderWriterMutex is free then acquire exclusive access.
277  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
278  void WriterLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
279
280  // Release exclusive access.
281  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
282  void WriterUnlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
283
284  // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success
285  // or false if timeout is reached.
286#if HAVE_TIMED_RWLOCK
287  bool ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns)
288      EXCLUSIVE_TRYLOCK_FUNCTION(true);
289#endif
290
291  // Block until ReaderWriterMutex is shared or free then acquire a share on the access.
292  void SharedLock(Thread* self) SHARED_LOCK_FUNCTION() ALWAYS_INLINE;
293  void ReaderLock(Thread* self) SHARED_LOCK_FUNCTION() { SharedLock(self); }
294
295  // Try to acquire share of ReaderWriterMutex.
296  bool SharedTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
297
298  // Release a share of the access.
299  void SharedUnlock(Thread* self) UNLOCK_FUNCTION() ALWAYS_INLINE;
300  void ReaderUnlock(Thread* self) UNLOCK_FUNCTION() { SharedUnlock(self); }
301
302  // Is the current thread the exclusive holder of the ReaderWriterMutex.
303  bool IsExclusiveHeld(const Thread* self) const;
304
305  // Assert the current thread has exclusive access to the ReaderWriterMutex.
306  void AssertExclusiveHeld(const Thread* self) {
307    if (kDebugLocking && (gAborting == 0)) {
308      CHECK(IsExclusiveHeld(self)) << *this;
309    }
310  }
311  void AssertWriterHeld(const Thread* self) { AssertExclusiveHeld(self); }
312
313  // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex.
314  void AssertNotExclusiveHeld(const Thread* self) {
315    if (kDebugLocking && (gAborting == 0)) {
316      CHECK(!IsExclusiveHeld(self)) << *this;
317    }
318  }
319  void AssertNotWriterHeld(const Thread* self) { AssertNotExclusiveHeld(self); }
320
321  // Is the current thread a shared holder of the ReaderWriterMutex.
322  bool IsSharedHeld(const Thread* self) const;
323
324  // Assert the current thread has shared access to the ReaderWriterMutex.
325  void AssertSharedHeld(const Thread* self) {
326    if (kDebugLocking && (gAborting == 0)) {
327      // TODO: we can only assert this well when self != NULL.
328      CHECK(IsSharedHeld(self) || self == NULL) << *this;
329    }
330  }
331  void AssertReaderHeld(const Thread* self) { AssertSharedHeld(self); }
332
333  // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive
334  // mode.
335  void AssertNotHeld(const Thread* self) {
336    if (kDebugLocking && (gAborting == 0)) {
337      CHECK(!IsSharedHeld(self)) << *this;
338    }
339  }
340
341  // Id associated with exclusive owner.
342  uint64_t GetExclusiveOwnerTid() const;
343
344  virtual void Dump(std::ostream& os) const;
345
346 private:
347#if ART_USE_FUTEXES
348  // -1 implies held exclusive, +ve shared held by state_ many owners.
349  volatile int32_t state_;
350  // Exclusive owner.
351  volatile uint64_t exclusive_owner_;
352  // Pending readers.
353  volatile int32_t num_pending_readers_;
354  // Pending writers.
355  AtomicInteger num_pending_writers_;
356#else
357  pthread_rwlock_t rwlock_;
358#endif
359  DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex);
360};
361
362// ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually
363// (Signal) or all at once (Broadcast).
364class ConditionVariable {
365 public:
366  explicit ConditionVariable(const char* name, Mutex& mutex);
367  ~ConditionVariable();
368
369  void Broadcast(Thread* self);
370  void Signal(Thread* self);
371  // TODO: No thread safety analysis on Wait and TimedWait as they call mutex operations via their
372  //       pointer copy, thereby defeating annotalysis.
373  void Wait(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
374  void TimedWait(Thread* self, int64_t ms, int32_t ns) NO_THREAD_SAFETY_ANALYSIS;
375  // Variant of Wait that should be used with caution. Doesn't validate that no mutexes are held
376  // when waiting.
377  // TODO: remove this.
378  void WaitHoldingLocks(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
379
380 private:
381  const char* const name_;
382  // The Mutex being used by waiters. It is an error to mix condition variables between different
383  // Mutexes.
384  Mutex& guard_;
385#if ART_USE_FUTEXES
386  // A counter that is modified by signals and broadcasts. This ensures that when a waiter gives up
387  // their Mutex and another thread takes it and signals, the waiting thread observes that sequence_
388  // changed and doesn't enter the wait. Modified while holding guard_, but is read by futex wait
389  // without guard_ held.
390  AtomicInteger sequence_;
391  // Number of threads that have come into to wait, not the length of the waiters on the futex as
392  // waiters may have been requeued onto guard_. Guarded by guard_.
393  volatile int32_t num_waiters_;
394#else
395  pthread_cond_t cond_;
396#endif
397  DISALLOW_COPY_AND_ASSIGN(ConditionVariable);
398};
399
400// Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it
401// upon destruction.
402class SCOPED_LOCKABLE MutexLock {
403 public:
404  explicit MutexLock(Thread* self, Mutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : self_(self), mu_(mu) {
405    mu_.ExclusiveLock(self_);
406  }
407
408  ~MutexLock() UNLOCK_FUNCTION() {
409    mu_.ExclusiveUnlock(self_);
410  }
411
412 private:
413  Thread* const self_;
414  Mutex& mu_;
415  DISALLOW_COPY_AND_ASSIGN(MutexLock);
416};
417// Catch bug where variable name is omitted. "MutexLock (lock);" instead of "MutexLock mu(lock)".
418#define MutexLock(x) COMPILE_ASSERT(0, mutex_lock_declaration_missing_variable_name)
419
420// Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon
421// construction and releases it upon destruction.
422class SCOPED_LOCKABLE ReaderMutexLock {
423 public:
424  explicit ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
425      self_(self), mu_(mu) {
426    mu_.SharedLock(self_);
427  }
428
429  ~ReaderMutexLock() UNLOCK_FUNCTION() {
430    mu_.SharedUnlock(self_);
431  }
432
433 private:
434  Thread* const self_;
435  ReaderWriterMutex& mu_;
436  DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock);
437};
438// Catch bug where variable name is omitted. "ReaderMutexLock (lock);" instead of
439// "ReaderMutexLock mu(lock)".
440#define ReaderMutexLock(x) COMPILE_ASSERT(0, reader_mutex_lock_declaration_missing_variable_name)
441
442// Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon
443// construction and releases it upon destruction.
444class SCOPED_LOCKABLE WriterMutexLock {
445 public:
446  explicit WriterMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
447      self_(self), mu_(mu) {
448    mu_.ExclusiveLock(self_);
449  }
450
451  ~WriterMutexLock() UNLOCK_FUNCTION() {
452    mu_.ExclusiveUnlock(self_);
453  }
454
455 private:
456  Thread* const self_;
457  ReaderWriterMutex& mu_;
458  DISALLOW_COPY_AND_ASSIGN(WriterMutexLock);
459};
460// Catch bug where variable name is omitted. "WriterMutexLock (lock);" instead of
461// "WriterMutexLock mu(lock)".
462#define WriterMutexLock(x) COMPILE_ASSERT(0, writer_mutex_lock_declaration_missing_variable_name)
463
464// Global mutexes corresponding to the levels above.
465class Locks {
466 public:
467  static void Init();
468
469  // The mutator_lock_ is used to allow mutators to execute in a shared (reader) mode or to block
470  // mutators by having an exclusive (writer) owner. In normal execution each mutator thread holds
471  // a share on the mutator_lock_. The garbage collector may also execute with shared access but
472  // at times requires exclusive access to the heap (not to be confused with the heap meta-data
473  // guarded by the heap_lock_ below). When the garbage collector requires exclusive access it asks
474  // the mutators to suspend themselves which also involves usage of the thread_suspend_count_lock_
475  // to cover weaknesses in using ReaderWriterMutexes with ConditionVariables. We use a condition
476  // variable to wait upon in the suspension logic as releasing and then re-acquiring a share on
477  // the mutator lock doesn't necessarily allow the exclusive user (e.g the garbage collector)
478  // chance to acquire the lock.
479  //
480  // Thread suspension:
481  // Shared users                                  | Exclusive user
482  // (holding mutator lock and in kRunnable state) |   .. running ..
483  //   .. running ..                               | Request thread suspension by:
484  //   .. running ..                               |   - acquiring thread_suspend_count_lock_
485  //   .. running ..                               |   - incrementing Thread::suspend_count_ on
486  //   .. running ..                               |     all mutator threads
487  //   .. running ..                               |   - releasing thread_suspend_count_lock_
488  //   .. running ..                               | Block trying to acquire exclusive mutator lock
489  // Poll Thread::suspend_count_ and enter full    |   .. blocked ..
490  // suspend code.                                 |   .. blocked ..
491  // Change state to kSuspended                    |   .. blocked ..
492  // x: Release share on mutator_lock_             | Carry out exclusive access
493  // Acquire thread_suspend_count_lock_            |   .. exclusive ..
494  // while Thread::suspend_count_ > 0              |   .. exclusive ..
495  //   - wait on Thread::resume_cond_              |   .. exclusive ..
496  //     (releases thread_suspend_count_lock_)     |   .. exclusive ..
497  //   .. waiting ..                               | Release mutator_lock_
498  //   .. waiting ..                               | Request thread resumption by:
499  //   .. waiting ..                               |   - acquiring thread_suspend_count_lock_
500  //   .. waiting ..                               |   - decrementing Thread::suspend_count_ on
501  //   .. waiting ..                               |     all mutator threads
502  //   .. waiting ..                               |   - notifying on Thread::resume_cond_
503  //    - re-acquire thread_suspend_count_lock_    |   - releasing thread_suspend_count_lock_
504  // Release thread_suspend_count_lock_            |  .. running ..
505  // Acquire share on mutator_lock_                |  .. running ..
506  //  - This could block but the thread still      |  .. running ..
507  //    has a state of kSuspended and so this      |  .. running ..
508  //    isn't an issue.                            |  .. running ..
509  // Acquire thread_suspend_count_lock_            |  .. running ..
510  //  - we poll here as we're transitioning into   |  .. running ..
511  //    kRunnable and an individual thread suspend |  .. running ..
512  //    request (e.g for debugging) won't try      |  .. running ..
513  //    to acquire the mutator lock (which would   |  .. running ..
514  //    block as we hold the mutator lock). This   |  .. running ..
515  //    poll ensures that if the suspender thought |  .. running ..
516  //    we were suspended by incrementing our      |  .. running ..
517  //    Thread::suspend_count_ and then reading    |  .. running ..
518  //    our state we go back to waiting on         |  .. running ..
519  //    Thread::resume_cond_.                      |  .. running ..
520  // can_go_runnable = Thread::suspend_count_ == 0 |  .. running ..
521  // Release thread_suspend_count_lock_            |  .. running ..
522  // if can_go_runnable                            |  .. running ..
523  //   Change state to kRunnable                   |  .. running ..
524  // else                                          |  .. running ..
525  //   Goto x                                      |  .. running ..
526  //  .. running ..                                |  .. running ..
527  static ReaderWriterMutex* mutator_lock_;
528
529  // Allow reader-writer mutual exclusion on the mark and live bitmaps of the heap.
530  static ReaderWriterMutex* heap_bitmap_lock_ ACQUIRED_AFTER(mutator_lock_);
531
532  // Guards shutdown of the runtime.
533  static Mutex* runtime_shutdown_lock_ ACQUIRED_AFTER(heap_bitmap_lock_);
534
535  // The thread_list_lock_ guards ThreadList::list_. It is also commonly held to stop threads
536  // attaching and detaching.
537  static Mutex* thread_list_lock_ ACQUIRED_AFTER(runtime_shutdown_lock_);
538
539  // Guards breakpoints.
540  static Mutex* breakpoint_lock_ ACQUIRED_AFTER(thread_list_lock_);
541
542  // Guards trace requests.
543  static Mutex* trace_lock_ ACQUIRED_AFTER(breakpoint_lock_);
544
545  // Guards profile objects.
546  static Mutex* profiler_lock_ ACQUIRED_AFTER(trace_lock_);
547
548  // Guards lists of classes within the class linker.
549  static ReaderWriterMutex* classlinker_classes_lock_ ACQUIRED_AFTER(profiler_lock_);
550
551  // When declaring any Mutex add DEFAULT_MUTEX_ACQUIRED_AFTER to use annotalysis to check the code
552  // doesn't try to hold a higher level Mutex.
553  #define DEFAULT_MUTEX_ACQUIRED_AFTER ACQUIRED_AFTER(Locks::classlinker_classes_lock_)
554
555  // Guards intern table.
556  static Mutex* intern_table_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
557
558  // Have an exclusive aborting thread.
559  static Mutex* abort_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
560
561  // Allow mutual exclusion when manipulating Thread::suspend_count_.
562  // TODO: Does the trade-off of a per-thread lock make sense?
563  static Mutex* thread_suspend_count_lock_ ACQUIRED_AFTER(abort_lock_);
564
565  // One unexpected signal at a time lock.
566  static Mutex* unexpected_signal_lock_ ACQUIRED_AFTER(thread_suspend_count_lock_);
567
568  // Have an exclusive logging thread.
569  static Mutex* logging_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
570};
571
572}  // namespace art
573
574#endif  // ART_RUNTIME_BASE_MUTEX_H_
575