mutex.h revision c5f17732d8144491c642776b6b48c85dfadf4b52
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_BASE_MUTEX_H_
18#define ART_RUNTIME_BASE_MUTEX_H_
19
20#include <pthread.h>
21#include <stdint.h>
22
23#include <iosfwd>
24#include <string>
25
26#include "atomic.h"
27#include "base/logging.h"
28#include "base/macros.h"
29#include "globals.h"
30
31#if defined(__APPLE__)
32#define ART_USE_FUTEXES 0
33#else
34#define ART_USE_FUTEXES 1
35#endif
36
37// Currently Darwin doesn't support locks with timeouts.
38#if !defined(__APPLE__)
39#define HAVE_TIMED_RWLOCK 1
40#else
41#define HAVE_TIMED_RWLOCK 0
42#endif
43
44namespace art {
45
46class LOCKABLE ReaderWriterMutex;
47class ScopedContentionRecorder;
48class Thread;
49
50// LockLevel is used to impose a lock hierarchy [1] where acquisition of a Mutex at a higher or
51// equal level to a lock a thread holds is invalid. The lock hierarchy achieves a cycle free
52// partial ordering and thereby cause deadlock situations to fail checks.
53//
54// [1] http://www.drdobbs.com/parallel/use-lock-hierarchies-to-avoid-deadlock/204801163
55enum LockLevel {
56  kLoggingLock = 0,
57  kMemMapsLock,
58  kUnexpectedSignalLock,
59  kThreadSuspendCountLock,
60  kAbortLock,
61  kJdwpSocketLock,
62  kRosAllocGlobalLock,
63  kRosAllocBracketLock,
64  kRosAllocBulkFreeLock,
65  kAllocSpaceLock,
66  kReferenceProcessorLock,
67  kDexFileMethodInlinerLock,
68  kDexFileToMethodInlinerMapLock,
69  kMarkSweepMarkStackLock,
70  kTransactionLogLock,
71  kInternTableLock,
72  kMonitorPoolLock,
73  kDefaultMutexLevel,
74  kMarkSweepLargeObjectLock,
75  kPinTableLock,
76  kLoadLibraryLock,
77  kJdwpObjectRegistryLock,
78  kModifyLdtLock,
79  kAllocatedThreadIdsLock,
80  kClassLinkerClassesLock,
81  kBreakpointLock,
82  kMonitorLock,
83  kMonitorListLock,
84  kThreadListLock,
85  kBreakpointInvokeLock,
86  kDeoptimizationLock,
87  kTraceLock,
88  kProfilerLock,
89  kJdwpEventListLock,
90  kJdwpAttachLock,
91  kJdwpStartLock,
92  kRuntimeShutdownLock,
93  kHeapBitmapLock,
94  kMutatorLock,
95  kZygoteCreationLock,
96
97  kLockLevelCount  // Must come last.
98};
99std::ostream& operator<<(std::ostream& os, const LockLevel& rhs);
100
101const bool kDebugLocking = kIsDebugBuild;
102
103// Record Log contention information, dumpable via SIGQUIT.
104#ifdef ART_USE_FUTEXES
105// To enable lock contention logging, set this to true.
106const bool kLogLockContentions = false;
107#else
108// Keep this false as lock contention logging is supported only with
109// futex.
110const bool kLogLockContentions = false;
111#endif
112const size_t kContentionLogSize = 4;
113const size_t kContentionLogDataSize = kLogLockContentions ? 1 : 0;
114const size_t kAllMutexDataSize = kLogLockContentions ? 1 : 0;
115
116// Base class for all Mutex implementations
117class BaseMutex {
118 public:
119  const char* GetName() const {
120    return name_;
121  }
122
123  virtual bool IsMutex() const { return false; }
124  virtual bool IsReaderWriterMutex() const { return false; }
125
126  virtual void Dump(std::ostream& os) const = 0;
127
128  static void DumpAll(std::ostream& os);
129
130 protected:
131  friend class ConditionVariable;
132
133  BaseMutex(const char* name, LockLevel level);
134  virtual ~BaseMutex();
135  void RegisterAsLocked(Thread* self);
136  void RegisterAsUnlocked(Thread* self);
137  void CheckSafeToWait(Thread* self);
138
139  friend class ScopedContentionRecorder;
140
141  void RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked);
142  void DumpContention(std::ostream& os) const;
143
144  const LockLevel level_;  // Support for lock hierarchy.
145  const char* const name_;
146
147  // A log entry that records contention but makes no guarantee that either tid will be held live.
148  struct ContentionLogEntry {
149    ContentionLogEntry() : blocked_tid(0), owner_tid(0) {}
150    uint64_t blocked_tid;
151    uint64_t owner_tid;
152    AtomicInteger count;
153  };
154  struct ContentionLogData {
155    ContentionLogEntry contention_log[kContentionLogSize];
156    // The next entry in the contention log to be updated. Value ranges from 0 to
157    // kContentionLogSize - 1.
158    AtomicInteger cur_content_log_entry;
159    // Number of times the Mutex has been contended.
160    AtomicInteger contention_count;
161    // Sum of time waited by all contenders in ns.
162    volatile uint64_t wait_time;
163    void AddToWaitTime(uint64_t value);
164    ContentionLogData() : wait_time(0) {}
165  };
166  ContentionLogData contention_log_data_[kContentionLogDataSize];
167
168 public:
169  bool HasEverContended() const {
170    if (kLogLockContentions) {
171      return contention_log_data_->contention_count.LoadSequentiallyConsistent() > 0;
172    }
173    return false;
174  }
175};
176
177// A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain
178// exclusive access to what it guards. A Mutex can be in one of two states:
179// - Free - not owned by any thread,
180// - Exclusive - owned by a single thread.
181//
182// The effect of locking and unlocking operations on the state is:
183// State     | ExclusiveLock | ExclusiveUnlock
184// -------------------------------------------
185// Free      | Exclusive     | error
186// Exclusive | Block*        | Free
187// * Mutex is not reentrant and so an attempt to ExclusiveLock on the same thread will result in
188//   an error. Being non-reentrant simplifies Waiting on ConditionVariables.
189std::ostream& operator<<(std::ostream& os, const Mutex& mu);
190class LOCKABLE Mutex : public BaseMutex {
191 public:
192  explicit Mutex(const char* name, LockLevel level = kDefaultMutexLevel, bool recursive = false);
193  ~Mutex();
194
195  virtual bool IsMutex() const { return true; }
196
197  // Block until mutex is free then acquire exclusive access.
198  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
199  void Lock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
200
201  // Returns true if acquires exclusive access, false otherwise.
202  bool ExclusiveTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
203  bool TryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true) { return ExclusiveTryLock(self); }
204
205  // Release exclusive access.
206  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
207  void Unlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
208
209  // Is the current thread the exclusive holder of the Mutex.
210  bool IsExclusiveHeld(const Thread* self) const;
211
212  // Assert that the Mutex is exclusively held by the current thread.
213  void AssertExclusiveHeld(const Thread* self) {
214    if (kDebugLocking && (gAborting == 0)) {
215      CHECK(IsExclusiveHeld(self)) << *this;
216    }
217  }
218  void AssertHeld(const Thread* self) { AssertExclusiveHeld(self); }
219
220  // Assert that the Mutex is not held by the current thread.
221  void AssertNotHeldExclusive(const Thread* self) {
222    if (kDebugLocking && (gAborting == 0)) {
223      CHECK(!IsExclusiveHeld(self)) << *this;
224    }
225  }
226  void AssertNotHeld(const Thread* self) { AssertNotHeldExclusive(self); }
227
228  // Id associated with exclusive owner.
229  uint64_t GetExclusiveOwnerTid() const;
230
231  // Returns how many times this Mutex has been locked, it is better to use AssertHeld/NotHeld.
232  unsigned int GetDepth() const {
233    return recursion_count_;
234  }
235
236  virtual void Dump(std::ostream& os) const;
237
238 private:
239#if ART_USE_FUTEXES
240  // 0 is unheld, 1 is held.
241  volatile int32_t state_;
242  // Exclusive owner.
243  volatile uint64_t exclusive_owner_;
244  // Number of waiting contenders.
245  AtomicInteger num_contenders_;
246#else
247  pthread_mutex_t mutex_;
248  volatile uint64_t exclusive_owner_;  // Guarded by mutex_.
249#endif
250  const bool recursive_;  // Can the lock be recursively held?
251  unsigned int recursion_count_;
252  friend class ConditionVariable;
253  DISALLOW_COPY_AND_ASSIGN(Mutex);
254};
255
256// A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex.
257// Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader)
258// access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a
259// condition variable. A ReaderWriterMutex can be in one of three states:
260// - Free - not owned by any thread,
261// - Exclusive - owned by a single thread,
262// - Shared(n) - shared amongst n threads.
263//
264// The effect of locking and unlocking operations on the state is:
265//
266// State     | ExclusiveLock | ExclusiveUnlock | SharedLock       | SharedUnlock
267// ----------------------------------------------------------------------------
268// Free      | Exclusive     | error           | SharedLock(1)    | error
269// Exclusive | Block         | Free            | Block            | error
270// Shared(n) | Block         | error           | SharedLock(n+1)* | Shared(n-1) or Free
271// * for large values of n the SharedLock may block.
272std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu);
273class LOCKABLE ReaderWriterMutex : public BaseMutex {
274 public:
275  explicit ReaderWriterMutex(const char* name, LockLevel level = kDefaultMutexLevel);
276  ~ReaderWriterMutex();
277
278  virtual bool IsReaderWriterMutex() const { return true; }
279
280  // Block until ReaderWriterMutex is free then acquire exclusive access.
281  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
282  void WriterLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
283
284  // Release exclusive access.
285  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
286  void WriterUnlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
287
288  // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success
289  // or false if timeout is reached.
290#if HAVE_TIMED_RWLOCK
291  bool ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns)
292      EXCLUSIVE_TRYLOCK_FUNCTION(true);
293#endif
294
295  // Block until ReaderWriterMutex is shared or free then acquire a share on the access.
296  void SharedLock(Thread* self) SHARED_LOCK_FUNCTION() ALWAYS_INLINE;
297  void ReaderLock(Thread* self) SHARED_LOCK_FUNCTION() { SharedLock(self); }
298
299  // Try to acquire share of ReaderWriterMutex.
300  bool SharedTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
301
302  // Release a share of the access.
303  void SharedUnlock(Thread* self) UNLOCK_FUNCTION() ALWAYS_INLINE;
304  void ReaderUnlock(Thread* self) UNLOCK_FUNCTION() { SharedUnlock(self); }
305
306  // Is the current thread the exclusive holder of the ReaderWriterMutex.
307  bool IsExclusiveHeld(const Thread* self) const;
308
309  // Assert the current thread has exclusive access to the ReaderWriterMutex.
310  void AssertExclusiveHeld(const Thread* self) {
311    if (kDebugLocking && (gAborting == 0)) {
312      CHECK(IsExclusiveHeld(self)) << *this;
313    }
314  }
315  void AssertWriterHeld(const Thread* self) { AssertExclusiveHeld(self); }
316
317  // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex.
318  void AssertNotExclusiveHeld(const Thread* self) {
319    if (kDebugLocking && (gAborting == 0)) {
320      CHECK(!IsExclusiveHeld(self)) << *this;
321    }
322  }
323  void AssertNotWriterHeld(const Thread* self) { AssertNotExclusiveHeld(self); }
324
325  // Is the current thread a shared holder of the ReaderWriterMutex.
326  bool IsSharedHeld(const Thread* self) const;
327
328  // Assert the current thread has shared access to the ReaderWriterMutex.
329  void AssertSharedHeld(const Thread* self) {
330    if (kDebugLocking && (gAborting == 0)) {
331      // TODO: we can only assert this well when self != NULL.
332      CHECK(IsSharedHeld(self) || self == NULL) << *this;
333    }
334  }
335  void AssertReaderHeld(const Thread* self) { AssertSharedHeld(self); }
336
337  // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive
338  // mode.
339  void AssertNotHeld(const Thread* self) {
340    if (kDebugLocking && (gAborting == 0)) {
341      CHECK(!IsSharedHeld(self)) << *this;
342    }
343  }
344
345  // Id associated with exclusive owner.
346  uint64_t GetExclusiveOwnerTid() const;
347
348  virtual void Dump(std::ostream& os) const;
349
350 private:
351#if ART_USE_FUTEXES
352  // -1 implies held exclusive, +ve shared held by state_ many owners.
353  volatile int32_t state_;
354  // Exclusive owner.
355  volatile uint64_t exclusive_owner_;
356  // Pending readers.
357  volatile int32_t num_pending_readers_;
358  // Pending writers.
359  AtomicInteger num_pending_writers_;
360#else
361  pthread_rwlock_t rwlock_;
362  volatile uint64_t exclusive_owner_;  // Guarded by rwlock_.
363#endif
364  DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex);
365};
366
367// ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually
368// (Signal) or all at once (Broadcast).
369class ConditionVariable {
370 public:
371  explicit ConditionVariable(const char* name, Mutex& mutex);
372  ~ConditionVariable();
373
374  void Broadcast(Thread* self);
375  void Signal(Thread* self);
376  // TODO: No thread safety analysis on Wait and TimedWait as they call mutex operations via their
377  //       pointer copy, thereby defeating annotalysis.
378  void Wait(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
379  void TimedWait(Thread* self, int64_t ms, int32_t ns) NO_THREAD_SAFETY_ANALYSIS;
380  // Variant of Wait that should be used with caution. Doesn't validate that no mutexes are held
381  // when waiting.
382  // TODO: remove this.
383  void WaitHoldingLocks(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
384
385 private:
386  const char* const name_;
387  // The Mutex being used by waiters. It is an error to mix condition variables between different
388  // Mutexes.
389  Mutex& guard_;
390#if ART_USE_FUTEXES
391  // A counter that is modified by signals and broadcasts. This ensures that when a waiter gives up
392  // their Mutex and another thread takes it and signals, the waiting thread observes that sequence_
393  // changed and doesn't enter the wait. Modified while holding guard_, but is read by futex wait
394  // without guard_ held.
395  AtomicInteger sequence_;
396  // Number of threads that have come into to wait, not the length of the waiters on the futex as
397  // waiters may have been requeued onto guard_. Guarded by guard_.
398  volatile int32_t num_waiters_;
399#else
400  pthread_cond_t cond_;
401#endif
402  DISALLOW_COPY_AND_ASSIGN(ConditionVariable);
403};
404
405// Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it
406// upon destruction.
407class SCOPED_LOCKABLE MutexLock {
408 public:
409  explicit MutexLock(Thread* self, Mutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : self_(self), mu_(mu) {
410    mu_.ExclusiveLock(self_);
411  }
412
413  ~MutexLock() UNLOCK_FUNCTION() {
414    mu_.ExclusiveUnlock(self_);
415  }
416
417 private:
418  Thread* const self_;
419  Mutex& mu_;
420  DISALLOW_COPY_AND_ASSIGN(MutexLock);
421};
422// Catch bug where variable name is omitted. "MutexLock (lock);" instead of "MutexLock mu(lock)".
423#define MutexLock(x) COMPILE_ASSERT(0, mutex_lock_declaration_missing_variable_name)
424
425// Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon
426// construction and releases it upon destruction.
427class SCOPED_LOCKABLE ReaderMutexLock {
428 public:
429  explicit ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
430      self_(self), mu_(mu) {
431    mu_.SharedLock(self_);
432  }
433
434  ~ReaderMutexLock() UNLOCK_FUNCTION() {
435    mu_.SharedUnlock(self_);
436  }
437
438 private:
439  Thread* const self_;
440  ReaderWriterMutex& mu_;
441  DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock);
442};
443// Catch bug where variable name is omitted. "ReaderMutexLock (lock);" instead of
444// "ReaderMutexLock mu(lock)".
445#define ReaderMutexLock(x) COMPILE_ASSERT(0, reader_mutex_lock_declaration_missing_variable_name)
446
447// Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon
448// construction and releases it upon destruction.
449class SCOPED_LOCKABLE WriterMutexLock {
450 public:
451  explicit WriterMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
452      self_(self), mu_(mu) {
453    mu_.ExclusiveLock(self_);
454  }
455
456  ~WriterMutexLock() UNLOCK_FUNCTION() {
457    mu_.ExclusiveUnlock(self_);
458  }
459
460 private:
461  Thread* const self_;
462  ReaderWriterMutex& mu_;
463  DISALLOW_COPY_AND_ASSIGN(WriterMutexLock);
464};
465// Catch bug where variable name is omitted. "WriterMutexLock (lock);" instead of
466// "WriterMutexLock mu(lock)".
467#define WriterMutexLock(x) COMPILE_ASSERT(0, writer_mutex_lock_declaration_missing_variable_name)
468
469// Global mutexes corresponding to the levels above.
470class Locks {
471 public:
472  static void Init();
473
474  // The mutator_lock_ is used to allow mutators to execute in a shared (reader) mode or to block
475  // mutators by having an exclusive (writer) owner. In normal execution each mutator thread holds
476  // a share on the mutator_lock_. The garbage collector may also execute with shared access but
477  // at times requires exclusive access to the heap (not to be confused with the heap meta-data
478  // guarded by the heap_lock_ below). When the garbage collector requires exclusive access it asks
479  // the mutators to suspend themselves which also involves usage of the thread_suspend_count_lock_
480  // to cover weaknesses in using ReaderWriterMutexes with ConditionVariables. We use a condition
481  // variable to wait upon in the suspension logic as releasing and then re-acquiring a share on
482  // the mutator lock doesn't necessarily allow the exclusive user (e.g the garbage collector)
483  // chance to acquire the lock.
484  //
485  // Thread suspension:
486  // Shared users                                  | Exclusive user
487  // (holding mutator lock and in kRunnable state) |   .. running ..
488  //   .. running ..                               | Request thread suspension by:
489  //   .. running ..                               |   - acquiring thread_suspend_count_lock_
490  //   .. running ..                               |   - incrementing Thread::suspend_count_ on
491  //   .. running ..                               |     all mutator threads
492  //   .. running ..                               |   - releasing thread_suspend_count_lock_
493  //   .. running ..                               | Block trying to acquire exclusive mutator lock
494  // Poll Thread::suspend_count_ and enter full    |   .. blocked ..
495  // suspend code.                                 |   .. blocked ..
496  // Change state to kSuspended                    |   .. blocked ..
497  // x: Release share on mutator_lock_             | Carry out exclusive access
498  // Acquire thread_suspend_count_lock_            |   .. exclusive ..
499  // while Thread::suspend_count_ > 0              |   .. exclusive ..
500  //   - wait on Thread::resume_cond_              |   .. exclusive ..
501  //     (releases thread_suspend_count_lock_)     |   .. exclusive ..
502  //   .. waiting ..                               | Release mutator_lock_
503  //   .. waiting ..                               | Request thread resumption by:
504  //   .. waiting ..                               |   - acquiring thread_suspend_count_lock_
505  //   .. waiting ..                               |   - decrementing Thread::suspend_count_ on
506  //   .. waiting ..                               |     all mutator threads
507  //   .. waiting ..                               |   - notifying on Thread::resume_cond_
508  //    - re-acquire thread_suspend_count_lock_    |   - releasing thread_suspend_count_lock_
509  // Release thread_suspend_count_lock_            |  .. running ..
510  // Acquire share on mutator_lock_                |  .. running ..
511  //  - This could block but the thread still      |  .. running ..
512  //    has a state of kSuspended and so this      |  .. running ..
513  //    isn't an issue.                            |  .. running ..
514  // Acquire thread_suspend_count_lock_            |  .. running ..
515  //  - we poll here as we're transitioning into   |  .. running ..
516  //    kRunnable and an individual thread suspend |  .. running ..
517  //    request (e.g for debugging) won't try      |  .. running ..
518  //    to acquire the mutator lock (which would   |  .. running ..
519  //    block as we hold the mutator lock). This   |  .. running ..
520  //    poll ensures that if the suspender thought |  .. running ..
521  //    we were suspended by incrementing our      |  .. running ..
522  //    Thread::suspend_count_ and then reading    |  .. running ..
523  //    our state we go back to waiting on         |  .. running ..
524  //    Thread::resume_cond_.                      |  .. running ..
525  // can_go_runnable = Thread::suspend_count_ == 0 |  .. running ..
526  // Release thread_suspend_count_lock_            |  .. running ..
527  // if can_go_runnable                            |  .. running ..
528  //   Change state to kRunnable                   |  .. running ..
529  // else                                          |  .. running ..
530  //   Goto x                                      |  .. running ..
531  //  .. running ..                                |  .. running ..
532  static ReaderWriterMutex* mutator_lock_;
533
534  // Allow reader-writer mutual exclusion on the mark and live bitmaps of the heap.
535  static ReaderWriterMutex* heap_bitmap_lock_ ACQUIRED_AFTER(mutator_lock_);
536
537  // Guards shutdown of the runtime.
538  static Mutex* runtime_shutdown_lock_ ACQUIRED_AFTER(heap_bitmap_lock_);
539
540  // Guards background profiler global state.
541  static Mutex* profiler_lock_ ACQUIRED_AFTER(runtime_shutdown_lock_);
542
543  // Guards trace (ie traceview) requests.
544  static Mutex* trace_lock_ ACQUIRED_AFTER(profiler_lock_);
545
546  // The thread_list_lock_ guards ThreadList::list_. It is also commonly held to stop threads
547  // attaching and detaching.
548  static Mutex* thread_list_lock_ ACQUIRED_AFTER(trace_lock_);
549
550  // Guards breakpoints.
551  static Mutex* breakpoint_lock_ ACQUIRED_AFTER(thread_list_lock_);
552
553  // Guards lists of classes within the class linker.
554  static ReaderWriterMutex* classlinker_classes_lock_ ACQUIRED_AFTER(breakpoint_lock_);
555
556  // When declaring any Mutex add DEFAULT_MUTEX_ACQUIRED_AFTER to use annotalysis to check the code
557  // doesn't try to hold a higher level Mutex.
558  #define DEFAULT_MUTEX_ACQUIRED_AFTER ACQUIRED_AFTER(Locks::classlinker_classes_lock_)
559
560  // Guard the allocation/deallocation of thread ids.
561  static Mutex* allocated_thread_ids_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
562
563  // Guards modification of the LDT on x86.
564  static Mutex* modify_ldt_lock_ ACQUIRED_AFTER(allocated_thread_ids_lock_);
565
566  // Guards intern table.
567  static Mutex* intern_table_lock_ ACQUIRED_AFTER(modify_ldt_lock_);
568
569  // Have an exclusive aborting thread.
570  static Mutex* abort_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
571
572  // Allow mutual exclusion when manipulating Thread::suspend_count_.
573  // TODO: Does the trade-off of a per-thread lock make sense?
574  static Mutex* thread_suspend_count_lock_ ACQUIRED_AFTER(abort_lock_);
575
576  // One unexpected signal at a time lock.
577  static Mutex* unexpected_signal_lock_ ACQUIRED_AFTER(thread_suspend_count_lock_);
578
579  // Guards the maps in mem_map.
580  static Mutex* mem_maps_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
581
582  // Have an exclusive logging thread.
583  static Mutex* logging_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
584};
585
586}  // namespace art
587
588#endif  // ART_RUNTIME_BASE_MUTEX_H_
589