mutex.h revision ffddfdf6fec0b9d98a692e27242eecb15af5ead2
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_BASE_MUTEX_H_
18#define ART_RUNTIME_BASE_MUTEX_H_
19
20#include <pthread.h>
21#include <stdint.h>
22
23#include <iosfwd>
24#include <string>
25
26#include "atomic.h"
27#include "base/logging.h"
28#include "base/macros.h"
29#include "globals.h"
30
31#if defined(__APPLE__)
32#define ART_USE_FUTEXES 0
33#else
34#define ART_USE_FUTEXES 1
35#endif
36
37// Currently Darwin doesn't support locks with timeouts.
38#if !defined(__APPLE__)
39#define HAVE_TIMED_RWLOCK 1
40#else
41#define HAVE_TIMED_RWLOCK 0
42#endif
43
44namespace art {
45
46class LOCKABLE ReaderWriterMutex;
47class ScopedContentionRecorder;
48class Thread;
49
50// LockLevel is used to impose a lock hierarchy [1] where acquisition of a Mutex at a higher or
51// equal level to a lock a thread holds is invalid. The lock hierarchy achieves a cycle free
52// partial ordering and thereby cause deadlock situations to fail checks.
53//
54// [1] http://www.drdobbs.com/parallel/use-lock-hierarchies-to-avoid-deadlock/204801163
55enum LockLevel {
56  kLoggingLock = 0,
57  kUnexpectedSignalLock,
58  kThreadSuspendCountLock,
59  kAbortLock,
60  kJdwpSocketLock,
61  kRosAllocGlobalLock,
62  kRosAllocBracketLock,
63  kRosAllocBulkFreeLock,
64  kAllocSpaceLock,
65  kReferenceProcessorLock,
66  kDexFileMethodInlinerLock,
67  kDexFileToMethodInlinerMapLock,
68  kMarkSweepMarkStackLock,
69  kTransactionLogLock,
70  kInternTableLock,
71  kMonitorPoolLock,
72  kDefaultMutexLevel,
73  kMarkSweepLargeObjectLock,
74  kPinTableLock,
75  kLoadLibraryLock,
76  kJdwpObjectRegistryLock,
77  kModifyLdtLock,
78  kAllocatedThreadIdsLock,
79  kClassLinkerClassesLock,
80  kBreakpointLock,
81  kMonitorLock,
82  kMonitorListLock,
83  kThreadListLock,
84  kBreakpointInvokeLock,
85  kDeoptimizationLock,
86  kTraceLock,
87  kProfilerLock,
88  kJdwpEventListLock,
89  kJdwpAttachLock,
90  kJdwpStartLock,
91  kRuntimeShutdownLock,
92  kHeapBitmapLock,
93  kMutatorLock,
94  kZygoteCreationLock,
95
96  kLockLevelCount  // Must come last.
97};
98std::ostream& operator<<(std::ostream& os, const LockLevel& rhs);
99
100const bool kDebugLocking = kIsDebugBuild;
101
102// Record Log contention information, dumpable via SIGQUIT.
103#ifdef ART_USE_FUTEXES
104// To enable lock contention logging, set this to true.
105const bool kLogLockContentions = false;
106#else
107// Keep this false as lock contention logging is supported only with
108// futex.
109const bool kLogLockContentions = false;
110#endif
111const size_t kContentionLogSize = 4;
112const size_t kContentionLogDataSize = kLogLockContentions ? 1 : 0;
113const size_t kAllMutexDataSize = kLogLockContentions ? 1 : 0;
114
115// Base class for all Mutex implementations
116class BaseMutex {
117 public:
118  const char* GetName() const {
119    return name_;
120  }
121
122  virtual bool IsMutex() const { return false; }
123  virtual bool IsReaderWriterMutex() const { return false; }
124
125  virtual void Dump(std::ostream& os) const = 0;
126
127  static void DumpAll(std::ostream& os);
128
129 protected:
130  friend class ConditionVariable;
131
132  BaseMutex(const char* name, LockLevel level);
133  virtual ~BaseMutex();
134  void RegisterAsLocked(Thread* self);
135  void RegisterAsUnlocked(Thread* self);
136  void CheckSafeToWait(Thread* self);
137
138  friend class ScopedContentionRecorder;
139
140  void RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked);
141  void DumpContention(std::ostream& os) const;
142
143  const LockLevel level_;  // Support for lock hierarchy.
144  const char* const name_;
145
146  // A log entry that records contention but makes no guarantee that either tid will be held live.
147  struct ContentionLogEntry {
148    ContentionLogEntry() : blocked_tid(0), owner_tid(0) {}
149    uint64_t blocked_tid;
150    uint64_t owner_tid;
151    AtomicInteger count;
152  };
153  struct ContentionLogData {
154    ContentionLogEntry contention_log[kContentionLogSize];
155    // The next entry in the contention log to be updated. Value ranges from 0 to
156    // kContentionLogSize - 1.
157    AtomicInteger cur_content_log_entry;
158    // Number of times the Mutex has been contended.
159    AtomicInteger contention_count;
160    // Sum of time waited by all contenders in ns.
161    volatile uint64_t wait_time;
162    void AddToWaitTime(uint64_t value);
163    ContentionLogData() : wait_time(0) {}
164  };
165  ContentionLogData contention_log_data_[kContentionLogDataSize];
166
167 public:
168  bool HasEverContended() const {
169    if (kLogLockContentions) {
170      return contention_log_data_->contention_count.LoadSequentiallyConsistent() > 0;
171    }
172    return false;
173  }
174};
175
176// A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain
177// exclusive access to what it guards. A Mutex can be in one of two states:
178// - Free - not owned by any thread,
179// - Exclusive - owned by a single thread.
180//
181// The effect of locking and unlocking operations on the state is:
182// State     | ExclusiveLock | ExclusiveUnlock
183// -------------------------------------------
184// Free      | Exclusive     | error
185// Exclusive | Block*        | Free
186// * Mutex is not reentrant and so an attempt to ExclusiveLock on the same thread will result in
187//   an error. Being non-reentrant simplifies Waiting on ConditionVariables.
188std::ostream& operator<<(std::ostream& os, const Mutex& mu);
189class LOCKABLE Mutex : public BaseMutex {
190 public:
191  explicit Mutex(const char* name, LockLevel level = kDefaultMutexLevel, bool recursive = false);
192  ~Mutex();
193
194  virtual bool IsMutex() const { return true; }
195
196  // Block until mutex is free then acquire exclusive access.
197  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
198  void Lock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
199
200  // Returns true if acquires exclusive access, false otherwise.
201  bool ExclusiveTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
202  bool TryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true) { return ExclusiveTryLock(self); }
203
204  // Release exclusive access.
205  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
206  void Unlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
207
208  // Is the current thread the exclusive holder of the Mutex.
209  bool IsExclusiveHeld(const Thread* self) const;
210
211  // Assert that the Mutex is exclusively held by the current thread.
212  void AssertExclusiveHeld(const Thread* self) {
213    if (kDebugLocking && (gAborting == 0)) {
214      CHECK(IsExclusiveHeld(self)) << *this;
215    }
216  }
217  void AssertHeld(const Thread* self) { AssertExclusiveHeld(self); }
218
219  // Assert that the Mutex is not held by the current thread.
220  void AssertNotHeldExclusive(const Thread* self) {
221    if (kDebugLocking && (gAborting == 0)) {
222      CHECK(!IsExclusiveHeld(self)) << *this;
223    }
224  }
225  void AssertNotHeld(const Thread* self) { AssertNotHeldExclusive(self); }
226
227  // Id associated with exclusive owner.
228  uint64_t GetExclusiveOwnerTid() const;
229
230  // Returns how many times this Mutex has been locked, it is better to use AssertHeld/NotHeld.
231  unsigned int GetDepth() const {
232    return recursion_count_;
233  }
234
235  virtual void Dump(std::ostream& os) const;
236
237 private:
238#if ART_USE_FUTEXES
239  // 0 is unheld, 1 is held.
240  volatile int32_t state_;
241  // Exclusive owner.
242  volatile uint64_t exclusive_owner_;
243  // Number of waiting contenders.
244  AtomicInteger num_contenders_;
245#else
246  pthread_mutex_t mutex_;
247#endif
248  const bool recursive_;  // Can the lock be recursively held?
249  unsigned int recursion_count_;
250  friend class ConditionVariable;
251  DISALLOW_COPY_AND_ASSIGN(Mutex);
252};
253
254// A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex.
255// Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader)
256// access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a
257// condition variable. A ReaderWriterMutex can be in one of three states:
258// - Free - not owned by any thread,
259// - Exclusive - owned by a single thread,
260// - Shared(n) - shared amongst n threads.
261//
262// The effect of locking and unlocking operations on the state is:
263//
264// State     | ExclusiveLock | ExclusiveUnlock | SharedLock       | SharedUnlock
265// ----------------------------------------------------------------------------
266// Free      | Exclusive     | error           | SharedLock(1)    | error
267// Exclusive | Block         | Free            | Block            | error
268// Shared(n) | Block         | error           | SharedLock(n+1)* | Shared(n-1) or Free
269// * for large values of n the SharedLock may block.
270std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu);
271class LOCKABLE ReaderWriterMutex : public BaseMutex {
272 public:
273  explicit ReaderWriterMutex(const char* name, LockLevel level = kDefaultMutexLevel);
274  ~ReaderWriterMutex();
275
276  virtual bool IsReaderWriterMutex() const { return true; }
277
278  // Block until ReaderWriterMutex is free then acquire exclusive access.
279  void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
280  void WriterLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
281
282  // Release exclusive access.
283  void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
284  void WriterUnlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
285
286  // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success
287  // or false if timeout is reached.
288#if HAVE_TIMED_RWLOCK
289  bool ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns)
290      EXCLUSIVE_TRYLOCK_FUNCTION(true);
291#endif
292
293  // Block until ReaderWriterMutex is shared or free then acquire a share on the access.
294  void SharedLock(Thread* self) SHARED_LOCK_FUNCTION() ALWAYS_INLINE;
295  void ReaderLock(Thread* self) SHARED_LOCK_FUNCTION() { SharedLock(self); }
296
297  // Try to acquire share of ReaderWriterMutex.
298  bool SharedTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
299
300  // Release a share of the access.
301  void SharedUnlock(Thread* self) UNLOCK_FUNCTION() ALWAYS_INLINE;
302  void ReaderUnlock(Thread* self) UNLOCK_FUNCTION() { SharedUnlock(self); }
303
304  // Is the current thread the exclusive holder of the ReaderWriterMutex.
305  bool IsExclusiveHeld(const Thread* self) const;
306
307  // Assert the current thread has exclusive access to the ReaderWriterMutex.
308  void AssertExclusiveHeld(const Thread* self) {
309    if (kDebugLocking && (gAborting == 0)) {
310      CHECK(IsExclusiveHeld(self)) << *this;
311    }
312  }
313  void AssertWriterHeld(const Thread* self) { AssertExclusiveHeld(self); }
314
315  // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex.
316  void AssertNotExclusiveHeld(const Thread* self) {
317    if (kDebugLocking && (gAborting == 0)) {
318      CHECK(!IsExclusiveHeld(self)) << *this;
319    }
320  }
321  void AssertNotWriterHeld(const Thread* self) { AssertNotExclusiveHeld(self); }
322
323  // Is the current thread a shared holder of the ReaderWriterMutex.
324  bool IsSharedHeld(const Thread* self) const;
325
326  // Assert the current thread has shared access to the ReaderWriterMutex.
327  void AssertSharedHeld(const Thread* self) {
328    if (kDebugLocking && (gAborting == 0)) {
329      // TODO: we can only assert this well when self != NULL.
330      CHECK(IsSharedHeld(self) || self == NULL) << *this;
331    }
332  }
333  void AssertReaderHeld(const Thread* self) { AssertSharedHeld(self); }
334
335  // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive
336  // mode.
337  void AssertNotHeld(const Thread* self) {
338    if (kDebugLocking && (gAborting == 0)) {
339      CHECK(!IsSharedHeld(self)) << *this;
340    }
341  }
342
343  // Id associated with exclusive owner.
344  uint64_t GetExclusiveOwnerTid() const;
345
346  virtual void Dump(std::ostream& os) const;
347
348 private:
349#if ART_USE_FUTEXES
350  // -1 implies held exclusive, +ve shared held by state_ many owners.
351  volatile int32_t state_;
352  // Exclusive owner.
353  volatile uint64_t exclusive_owner_;
354  // Pending readers.
355  volatile int32_t num_pending_readers_;
356  // Pending writers.
357  AtomicInteger num_pending_writers_;
358#else
359  pthread_rwlock_t rwlock_;
360#endif
361  DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex);
362};
363
364// ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually
365// (Signal) or all at once (Broadcast).
366class ConditionVariable {
367 public:
368  explicit ConditionVariable(const char* name, Mutex& mutex);
369  ~ConditionVariable();
370
371  void Broadcast(Thread* self);
372  void Signal(Thread* self);
373  // TODO: No thread safety analysis on Wait and TimedWait as they call mutex operations via their
374  //       pointer copy, thereby defeating annotalysis.
375  void Wait(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
376  void TimedWait(Thread* self, int64_t ms, int32_t ns) NO_THREAD_SAFETY_ANALYSIS;
377  // Variant of Wait that should be used with caution. Doesn't validate that no mutexes are held
378  // when waiting.
379  // TODO: remove this.
380  void WaitHoldingLocks(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
381
382 private:
383  const char* const name_;
384  // The Mutex being used by waiters. It is an error to mix condition variables between different
385  // Mutexes.
386  Mutex& guard_;
387#if ART_USE_FUTEXES
388  // A counter that is modified by signals and broadcasts. This ensures that when a waiter gives up
389  // their Mutex and another thread takes it and signals, the waiting thread observes that sequence_
390  // changed and doesn't enter the wait. Modified while holding guard_, but is read by futex wait
391  // without guard_ held.
392  AtomicInteger sequence_;
393  // Number of threads that have come into to wait, not the length of the waiters on the futex as
394  // waiters may have been requeued onto guard_. Guarded by guard_.
395  volatile int32_t num_waiters_;
396#else
397  pthread_cond_t cond_;
398#endif
399  DISALLOW_COPY_AND_ASSIGN(ConditionVariable);
400};
401
402// Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it
403// upon destruction.
404class SCOPED_LOCKABLE MutexLock {
405 public:
406  explicit MutexLock(Thread* self, Mutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : self_(self), mu_(mu) {
407    mu_.ExclusiveLock(self_);
408  }
409
410  ~MutexLock() UNLOCK_FUNCTION() {
411    mu_.ExclusiveUnlock(self_);
412  }
413
414 private:
415  Thread* const self_;
416  Mutex& mu_;
417  DISALLOW_COPY_AND_ASSIGN(MutexLock);
418};
419// Catch bug where variable name is omitted. "MutexLock (lock);" instead of "MutexLock mu(lock)".
420#define MutexLock(x) COMPILE_ASSERT(0, mutex_lock_declaration_missing_variable_name)
421
422// Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon
423// construction and releases it upon destruction.
424class SCOPED_LOCKABLE ReaderMutexLock {
425 public:
426  explicit ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
427      self_(self), mu_(mu) {
428    mu_.SharedLock(self_);
429  }
430
431  ~ReaderMutexLock() UNLOCK_FUNCTION() {
432    mu_.SharedUnlock(self_);
433  }
434
435 private:
436  Thread* const self_;
437  ReaderWriterMutex& mu_;
438  DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock);
439};
440// Catch bug where variable name is omitted. "ReaderMutexLock (lock);" instead of
441// "ReaderMutexLock mu(lock)".
442#define ReaderMutexLock(x) COMPILE_ASSERT(0, reader_mutex_lock_declaration_missing_variable_name)
443
444// Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon
445// construction and releases it upon destruction.
446class SCOPED_LOCKABLE WriterMutexLock {
447 public:
448  explicit WriterMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
449      self_(self), mu_(mu) {
450    mu_.ExclusiveLock(self_);
451  }
452
453  ~WriterMutexLock() UNLOCK_FUNCTION() {
454    mu_.ExclusiveUnlock(self_);
455  }
456
457 private:
458  Thread* const self_;
459  ReaderWriterMutex& mu_;
460  DISALLOW_COPY_AND_ASSIGN(WriterMutexLock);
461};
462// Catch bug where variable name is omitted. "WriterMutexLock (lock);" instead of
463// "WriterMutexLock mu(lock)".
464#define WriterMutexLock(x) COMPILE_ASSERT(0, writer_mutex_lock_declaration_missing_variable_name)
465
466// Global mutexes corresponding to the levels above.
467class Locks {
468 public:
469  static void Init();
470
471  // The mutator_lock_ is used to allow mutators to execute in a shared (reader) mode or to block
472  // mutators by having an exclusive (writer) owner. In normal execution each mutator thread holds
473  // a share on the mutator_lock_. The garbage collector may also execute with shared access but
474  // at times requires exclusive access to the heap (not to be confused with the heap meta-data
475  // guarded by the heap_lock_ below). When the garbage collector requires exclusive access it asks
476  // the mutators to suspend themselves which also involves usage of the thread_suspend_count_lock_
477  // to cover weaknesses in using ReaderWriterMutexes with ConditionVariables. We use a condition
478  // variable to wait upon in the suspension logic as releasing and then re-acquiring a share on
479  // the mutator lock doesn't necessarily allow the exclusive user (e.g the garbage collector)
480  // chance to acquire the lock.
481  //
482  // Thread suspension:
483  // Shared users                                  | Exclusive user
484  // (holding mutator lock and in kRunnable state) |   .. running ..
485  //   .. running ..                               | Request thread suspension by:
486  //   .. running ..                               |   - acquiring thread_suspend_count_lock_
487  //   .. running ..                               |   - incrementing Thread::suspend_count_ on
488  //   .. running ..                               |     all mutator threads
489  //   .. running ..                               |   - releasing thread_suspend_count_lock_
490  //   .. running ..                               | Block trying to acquire exclusive mutator lock
491  // Poll Thread::suspend_count_ and enter full    |   .. blocked ..
492  // suspend code.                                 |   .. blocked ..
493  // Change state to kSuspended                    |   .. blocked ..
494  // x: Release share on mutator_lock_             | Carry out exclusive access
495  // Acquire thread_suspend_count_lock_            |   .. exclusive ..
496  // while Thread::suspend_count_ > 0              |   .. exclusive ..
497  //   - wait on Thread::resume_cond_              |   .. exclusive ..
498  //     (releases thread_suspend_count_lock_)     |   .. exclusive ..
499  //   .. waiting ..                               | Release mutator_lock_
500  //   .. waiting ..                               | Request thread resumption by:
501  //   .. waiting ..                               |   - acquiring thread_suspend_count_lock_
502  //   .. waiting ..                               |   - decrementing Thread::suspend_count_ on
503  //   .. waiting ..                               |     all mutator threads
504  //   .. waiting ..                               |   - notifying on Thread::resume_cond_
505  //    - re-acquire thread_suspend_count_lock_    |   - releasing thread_suspend_count_lock_
506  // Release thread_suspend_count_lock_            |  .. running ..
507  // Acquire share on mutator_lock_                |  .. running ..
508  //  - This could block but the thread still      |  .. running ..
509  //    has a state of kSuspended and so this      |  .. running ..
510  //    isn't an issue.                            |  .. running ..
511  // Acquire thread_suspend_count_lock_            |  .. running ..
512  //  - we poll here as we're transitioning into   |  .. running ..
513  //    kRunnable and an individual thread suspend |  .. running ..
514  //    request (e.g for debugging) won't try      |  .. running ..
515  //    to acquire the mutator lock (which would   |  .. running ..
516  //    block as we hold the mutator lock). This   |  .. running ..
517  //    poll ensures that if the suspender thought |  .. running ..
518  //    we were suspended by incrementing our      |  .. running ..
519  //    Thread::suspend_count_ and then reading    |  .. running ..
520  //    our state we go back to waiting on         |  .. running ..
521  //    Thread::resume_cond_.                      |  .. running ..
522  // can_go_runnable = Thread::suspend_count_ == 0 |  .. running ..
523  // Release thread_suspend_count_lock_            |  .. running ..
524  // if can_go_runnable                            |  .. running ..
525  //   Change state to kRunnable                   |  .. running ..
526  // else                                          |  .. running ..
527  //   Goto x                                      |  .. running ..
528  //  .. running ..                                |  .. running ..
529  static ReaderWriterMutex* mutator_lock_;
530
531  // Allow reader-writer mutual exclusion on the mark and live bitmaps of the heap.
532  static ReaderWriterMutex* heap_bitmap_lock_ ACQUIRED_AFTER(mutator_lock_);
533
534  // Guards shutdown of the runtime.
535  static Mutex* runtime_shutdown_lock_ ACQUIRED_AFTER(heap_bitmap_lock_);
536
537  // Guards background profiler global state.
538  static Mutex* profiler_lock_ ACQUIRED_AFTER(runtime_shutdown_lock_);
539
540  // Guards trace (ie traceview) requests.
541  static Mutex* trace_lock_ ACQUIRED_AFTER(profiler_lock_);
542
543  // The thread_list_lock_ guards ThreadList::list_. It is also commonly held to stop threads
544  // attaching and detaching.
545  static Mutex* thread_list_lock_ ACQUIRED_AFTER(trace_lock_);
546
547  // Guards breakpoints.
548  static Mutex* breakpoint_lock_ ACQUIRED_AFTER(thread_list_lock_);
549
550  // Guards lists of classes within the class linker.
551  static ReaderWriterMutex* classlinker_classes_lock_ ACQUIRED_AFTER(breakpoint_lock_);
552
553  // When declaring any Mutex add DEFAULT_MUTEX_ACQUIRED_AFTER to use annotalysis to check the code
554  // doesn't try to hold a higher level Mutex.
555  #define DEFAULT_MUTEX_ACQUIRED_AFTER ACQUIRED_AFTER(Locks::classlinker_classes_lock_)
556
557  // Guard the allocation/deallocation of thread ids.
558  static Mutex* allocated_thread_ids_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
559
560  // Guards modification of the LDT on x86.
561  static Mutex* modify_ldt_lock_ ACQUIRED_AFTER(allocated_thread_ids_lock_);
562
563  // Guards intern table.
564  static Mutex* intern_table_lock_ ACQUIRED_AFTER(modify_ldt_lock_);
565
566  // Have an exclusive aborting thread.
567  static Mutex* abort_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
568
569  // Allow mutual exclusion when manipulating Thread::suspend_count_.
570  // TODO: Does the trade-off of a per-thread lock make sense?
571  static Mutex* thread_suspend_count_lock_ ACQUIRED_AFTER(abort_lock_);
572
573  // One unexpected signal at a time lock.
574  static Mutex* unexpected_signal_lock_ ACQUIRED_AFTER(thread_suspend_count_lock_);
575
576  // Have an exclusive logging thread.
577  static Mutex* logging_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
578};
579
580}  // namespace art
581
582#endif  // ART_RUNTIME_BASE_MUTEX_H_
583