concurrent_copying.cc revision 14d90579f013b374638b599361970557ed4b3f09
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "concurrent_copying.h"
18
19#include "art_field-inl.h"
20#include "base/stl_util.h"
21#include "gc/accounting/heap_bitmap-inl.h"
22#include "gc/accounting/space_bitmap-inl.h"
23#include "gc/reference_processor.h"
24#include "gc/space/image_space.h"
25#include "gc/space/space.h"
26#include "intern_table.h"
27#include "mirror/class-inl.h"
28#include "mirror/object-inl.h"
29#include "scoped_thread_state_change.h"
30#include "thread-inl.h"
31#include "thread_list.h"
32#include "well_known_classes.h"
33
34namespace art {
35namespace gc {
36namespace collector {
37
38ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix)
39    : GarbageCollector(heap,
40                       name_prefix + (name_prefix.empty() ? "" : " ") +
41                       "concurrent copying + mark sweep"),
42      region_space_(nullptr), gc_barrier_(new Barrier(0)),
43      gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
44                                                     2 * MB, 2 * MB)),
45      mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
46      thread_running_gc_(nullptr),
47      is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false),
48      heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0), mark_stack_mode_(kMarkStackModeOff),
49      weak_ref_access_enabled_(true),
50      skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
51      rb_table_(heap_->GetReadBarrierTable()),
52      force_evacuate_all_(false) {
53  static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
54                "The region space size and the read barrier table region size must match");
55  cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap));
56  Thread* self = Thread::Current();
57  {
58    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
59    // Cache this so that we won't have to lock heap_bitmap_lock_ in
60    // Mark() which could cause a nested lock on heap_bitmap_lock_
61    // when GC causes a RB while doing GC or a lock order violation
62    // (class_linker_lock_ and heap_bitmap_lock_).
63    heap_mark_bitmap_ = heap->GetMarkBitmap();
64  }
65  {
66    MutexLock mu(self, mark_stack_lock_);
67    for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
68      accounting::AtomicStack<mirror::Object>* mark_stack =
69          accounting::AtomicStack<mirror::Object>::Create(
70              "thread local mark stack", kMarkStackSize, kMarkStackSize);
71      pooled_mark_stacks_.push_back(mark_stack);
72    }
73  }
74}
75
76void ConcurrentCopying::MarkHeapReference(
77    mirror::HeapReference<mirror::Object>* from_ref ATTRIBUTE_UNUSED) {
78  // Unused, usually called from mod union tables.
79  UNIMPLEMENTED(FATAL);
80}
81
82ConcurrentCopying::~ConcurrentCopying() {
83  STLDeleteElements(&pooled_mark_stacks_);
84}
85
86void ConcurrentCopying::RunPhases() {
87  CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
88  CHECK(!is_active_);
89  is_active_ = true;
90  Thread* self = Thread::Current();
91  thread_running_gc_ = self;
92  Locks::mutator_lock_->AssertNotHeld(self);
93  {
94    ReaderMutexLock mu(self, *Locks::mutator_lock_);
95    InitializePhase();
96  }
97  FlipThreadRoots();
98  {
99    ReaderMutexLock mu(self, *Locks::mutator_lock_);
100    MarkingPhase();
101  }
102  // Verify no from space refs. This causes a pause.
103  if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) {
104    TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
105    ScopedPause pause(this);
106    CheckEmptyMarkStack();
107    if (kVerboseMode) {
108      LOG(INFO) << "Verifying no from-space refs";
109    }
110    VerifyNoFromSpaceReferences();
111    if (kVerboseMode) {
112      LOG(INFO) << "Done verifying no from-space refs";
113    }
114    CheckEmptyMarkStack();
115  }
116  {
117    ReaderMutexLock mu(self, *Locks::mutator_lock_);
118    ReclaimPhase();
119  }
120  FinishPhase();
121  CHECK(is_active_);
122  is_active_ = false;
123  thread_running_gc_ = nullptr;
124}
125
126void ConcurrentCopying::BindBitmaps() {
127  Thread* self = Thread::Current();
128  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
129  // Mark all of the spaces we never collect as immune.
130  for (const auto& space : heap_->GetContinuousSpaces()) {
131    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
132        || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
133      CHECK(space->IsZygoteSpace() || space->IsImageSpace());
134      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
135      const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" :
136          "cc zygote space bitmap";
137      // TODO: try avoiding using bitmaps for image/zygote to save space.
138      accounting::ContinuousSpaceBitmap* bitmap =
139          accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity());
140      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
141      cc_bitmaps_.push_back(bitmap);
142    } else if (space == region_space_) {
143      accounting::ContinuousSpaceBitmap* bitmap =
144          accounting::ContinuousSpaceBitmap::Create("cc region space bitmap",
145                                                    space->Begin(), space->Capacity());
146      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
147      cc_bitmaps_.push_back(bitmap);
148      region_space_bitmap_ = bitmap;
149    }
150  }
151}
152
153void ConcurrentCopying::InitializePhase() {
154  TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
155  if (kVerboseMode) {
156    LOG(INFO) << "GC InitializePhase";
157    LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
158              << reinterpret_cast<void*>(region_space_->Limit());
159  }
160  CheckEmptyMarkStack();
161  immune_region_.Reset();
162  bytes_moved_.StoreRelaxed(0);
163  objects_moved_.StoreRelaxed(0);
164  if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
165      GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
166      GetCurrentIteration()->GetClearSoftReferences()) {
167    force_evacuate_all_ = true;
168  } else {
169    force_evacuate_all_ = false;
170  }
171  BindBitmaps();
172  if (kVerboseMode) {
173    LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
174    LOG(INFO) << "Immune region: " << immune_region_.Begin() << "-" << immune_region_.End();
175    LOG(INFO) << "GC end of InitializePhase";
176  }
177}
178
179// Used to switch the thread roots of a thread from from-space refs to to-space refs.
180class ThreadFlipVisitor : public Closure {
181 public:
182  explicit ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
183      : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
184  }
185
186  virtual void Run(Thread* thread) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
187    // Note: self is not necessarily equal to thread since thread may be suspended.
188    Thread* self = Thread::Current();
189    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
190        << thread->GetState() << " thread " << thread << " self " << self;
191    if (use_tlab_ && thread->HasTlab()) {
192      if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
193        // This must come before the revoke.
194        size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
195        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
196        reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
197            FetchAndAddSequentiallyConsistent(thread_local_objects);
198      } else {
199        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
200      }
201    }
202    if (kUseThreadLocalAllocationStack) {
203      thread->RevokeThreadLocalAllocationStack();
204    }
205    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
206    thread->VisitRoots(concurrent_copying_);
207    concurrent_copying_->GetBarrier().Pass(self);
208  }
209
210 private:
211  ConcurrentCopying* const concurrent_copying_;
212  const bool use_tlab_;
213};
214
215// Called back from Runtime::FlipThreadRoots() during a pause.
216class FlipCallback : public Closure {
217 public:
218  explicit FlipCallback(ConcurrentCopying* concurrent_copying)
219      : concurrent_copying_(concurrent_copying) {
220  }
221
222  virtual void Run(Thread* thread) OVERRIDE EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) {
223    ConcurrentCopying* cc = concurrent_copying_;
224    TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
225    // Note: self is not necessarily equal to thread since thread may be suspended.
226    Thread* self = Thread::Current();
227    CHECK(thread == self);
228    Locks::mutator_lock_->AssertExclusiveHeld(self);
229    cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
230    cc->SwapStacks(self);
231    if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
232      cc->RecordLiveStackFreezeSize(self);
233      cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
234      cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
235    }
236    cc->is_marking_ = true;
237    cc->mark_stack_mode_.StoreRelaxed(ConcurrentCopying::kMarkStackModeThreadLocal);
238    if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
239      CHECK(Runtime::Current()->IsAotCompiler());
240      TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
241      Runtime::Current()->VisitTransactionRoots(cc);
242    }
243  }
244
245 private:
246  ConcurrentCopying* const concurrent_copying_;
247};
248
249// Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
250void ConcurrentCopying::FlipThreadRoots() {
251  TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
252  if (kVerboseMode) {
253    LOG(INFO) << "time=" << region_space_->Time();
254    region_space_->DumpNonFreeRegions(LOG(INFO));
255  }
256  Thread* self = Thread::Current();
257  Locks::mutator_lock_->AssertNotHeld(self);
258  gc_barrier_->Init(self, 0);
259  ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
260  FlipCallback flip_callback(this);
261  size_t barrier_count = Runtime::Current()->FlipThreadRoots(
262      &thread_flip_visitor, &flip_callback, this);
263  {
264    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
265    gc_barrier_->Increment(self, barrier_count);
266  }
267  is_asserting_to_space_invariant_ = true;
268  QuasiAtomic::ThreadFenceForConstructor();
269  if (kVerboseMode) {
270    LOG(INFO) << "time=" << region_space_->Time();
271    region_space_->DumpNonFreeRegions(LOG(INFO));
272    LOG(INFO) << "GC end of FlipThreadRoots";
273  }
274}
275
276void ConcurrentCopying::SwapStacks(Thread* self) {
277  heap_->SwapStacks(self);
278}
279
280void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
281  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
282  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
283}
284
285// Used to visit objects in the immune spaces.
286class ConcurrentCopyingImmuneSpaceObjVisitor {
287 public:
288  explicit ConcurrentCopyingImmuneSpaceObjVisitor(ConcurrentCopying* cc)
289      : collector_(cc) {}
290
291  void operator()(mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
292      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
293    DCHECK(obj != nullptr);
294    DCHECK(collector_->immune_region_.ContainsObject(obj));
295    accounting::ContinuousSpaceBitmap* cc_bitmap =
296        collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
297    DCHECK(cc_bitmap != nullptr)
298        << "An immune space object must have a bitmap";
299    if (kIsDebugBuild) {
300      DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj))
301          << "Immune space object must be already marked";
302    }
303    // This may or may not succeed, which is ok.
304    if (kUseBakerReadBarrier) {
305      obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
306    }
307    if (cc_bitmap->AtomicTestAndSet(obj)) {
308      // Already marked. Do nothing.
309    } else {
310      // Newly marked. Set the gray bit and push it onto the mark stack.
311      CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
312      collector_->PushOntoMarkStack(obj);
313    }
314  }
315
316 private:
317  ConcurrentCopying* const collector_;
318};
319
320class EmptyCheckpoint : public Closure {
321 public:
322  explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying)
323      : concurrent_copying_(concurrent_copying) {
324  }
325
326  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
327    // Note: self is not necessarily equal to thread since thread may be suspended.
328    Thread* self = Thread::Current();
329    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
330        << thread->GetState() << " thread " << thread << " self " << self;
331    // If thread is a running mutator, then act on behalf of the garbage collector.
332    // See the code in ThreadList::RunCheckpoint.
333    if (thread->GetState() == kRunnable) {
334      concurrent_copying_->GetBarrier().Pass(self);
335    }
336  }
337
338 private:
339  ConcurrentCopying* const concurrent_copying_;
340};
341
342// Concurrently mark roots that are guarded by read barriers and process the mark stack.
343void ConcurrentCopying::MarkingPhase() {
344  TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
345  if (kVerboseMode) {
346    LOG(INFO) << "GC MarkingPhase";
347  }
348  CHECK(weak_ref_access_enabled_);
349  {
350    // Mark the image root. The WB-based collectors do not need to
351    // scan the image objects from roots by relying on the card table,
352    // but it's necessary for the RB to-space invariant to hold.
353    TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings());
354    gc::space::ImageSpace* image = heap_->GetImageSpace();
355    if (image != nullptr) {
356      mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots();
357      mirror::Object* marked_image_root = Mark(image_root);
358      CHECK_EQ(image_root, marked_image_root) << "An image object does not move";
359      if (ReadBarrier::kEnableToSpaceInvariantChecks) {
360        AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root);
361      }
362    }
363  }
364  // TODO: Other garbage collectors uses Runtime::VisitConcurrentRoots(), refactor this part
365  // to also use the same function.
366  {
367    TimingLogger::ScopedTiming split2("VisitConstantRoots", GetTimings());
368    Runtime::Current()->VisitConstantRoots(this);
369  }
370  {
371    TimingLogger::ScopedTiming split3("VisitInternTableRoots", GetTimings());
372    Runtime::Current()->GetInternTable()->VisitRoots(this, kVisitRootFlagAllRoots);
373  }
374  {
375    TimingLogger::ScopedTiming split4("VisitClassLinkerRoots", GetTimings());
376    Runtime::Current()->GetClassLinker()->VisitRoots(this, kVisitRootFlagAllRoots);
377  }
378  {
379    // TODO: don't visit the transaction roots if it's not active.
380    TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
381    Runtime::Current()->VisitNonThreadRoots(this);
382  }
383  Runtime::Current()->GetHeap()->VisitAllocationRecords(this);
384
385  // Immune spaces.
386  for (auto& space : heap_->GetContinuousSpaces()) {
387    if (immune_region_.ContainsSpace(space)) {
388      DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
389      accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
390      ConcurrentCopyingImmuneSpaceObjVisitor visitor(this);
391      live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
392                                    reinterpret_cast<uintptr_t>(space->Limit()),
393                                    visitor);
394    }
395  }
396
397  Thread* self = Thread::Current();
398  {
399    TimingLogger::ScopedTiming split6("ProcessMarkStack", GetTimings());
400    // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
401    // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
402    // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
403    // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
404    // reach the point where we process weak references, we can avoid using a lock when accessing
405    // the GC mark stack, which makes mark stack processing more efficient.
406
407    // Process the mark stack once in the thread local stack mode. This marks most of the live
408    // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
409    // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
410    // objects and push refs on the mark stack.
411    ProcessMarkStack();
412    // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
413    // for the last time before transitioning to the shared mark stack mode, which would process new
414    // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
415    // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
416    // important to do these together in a single checkpoint so that we can ensure that mutators
417    // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and
418    // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
419    // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
420    // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
421    SwitchToSharedMarkStackMode();
422    CHECK(!self->GetWeakRefAccessEnabled());
423    // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
424    // (which may be non-empty if there were refs found on thread-local mark stacks during the above
425    // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
426    // (via read barriers) have no way to produce any more refs to process. Marking converges once
427    // before we process weak refs below.
428    ProcessMarkStack();
429    CheckEmptyMarkStack();
430    // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
431    // lock from this point on.
432    SwitchToGcExclusiveMarkStackMode();
433    CheckEmptyMarkStack();
434    if (kVerboseMode) {
435      LOG(INFO) << "ProcessReferences";
436    }
437    // Process weak references. This may produce new refs to process and have them processed via
438    // ProcessMarkStack (in the GC exclusive mark stack mode).
439    ProcessReferences(self);
440    CheckEmptyMarkStack();
441    if (kVerboseMode) {
442      LOG(INFO) << "SweepSystemWeaks";
443    }
444    SweepSystemWeaks(self);
445    if (kVerboseMode) {
446      LOG(INFO) << "SweepSystemWeaks done";
447    }
448    // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
449    // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
450    // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
451    ProcessMarkStack();
452    CheckEmptyMarkStack();
453    // Re-enable weak ref accesses.
454    ReenableWeakRefAccess(self);
455    // Issue an empty checkpoint to ensure no threads are still in the middle of a read barrier
456    // which may have a from-space ref cached in a local variable.
457    IssueEmptyCheckpoint();
458    // Marking is done. Disable marking.
459    if (kUseTableLookupReadBarrier) {
460      heap_->rb_table_->ClearAll();
461      DCHECK(heap_->rb_table_->IsAllCleared());
462    }
463    is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(1);
464    is_marking_ = false;  // This disables the read barrier/marking of weak roots.
465    mark_stack_mode_.StoreSequentiallyConsistent(kMarkStackModeOff);
466    CheckEmptyMarkStack();
467  }
468
469  CHECK(weak_ref_access_enabled_);
470  if (kVerboseMode) {
471    LOG(INFO) << "GC end of MarkingPhase";
472  }
473}
474
475void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
476  if (kVerboseMode) {
477    LOG(INFO) << "ReenableWeakRefAccess";
478  }
479  weak_ref_access_enabled_.StoreRelaxed(true);  // This is for new threads.
480  QuasiAtomic::ThreadFenceForConstructor();
481  // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
482  {
483    MutexLock mu(self, *Locks::thread_list_lock_);
484    std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
485    for (Thread* thread : thread_list) {
486      thread->SetWeakRefAccessEnabled(true);
487    }
488  }
489  // Unblock blocking threads.
490  GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
491  Runtime::Current()->BroadcastForNewSystemWeaks();
492}
493
494void ConcurrentCopying::IssueEmptyCheckpoint() {
495  Thread* self = Thread::Current();
496  EmptyCheckpoint check_point(this);
497  ThreadList* thread_list = Runtime::Current()->GetThreadList();
498  gc_barrier_->Init(self, 0);
499  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
500  // If there are no threads to wait which implys that all the checkpoint functions are finished,
501  // then no need to release the mutator lock.
502  if (barrier_count == 0) {
503    return;
504  }
505  // Release locks then wait for all mutator threads to pass the barrier.
506  Locks::mutator_lock_->SharedUnlock(self);
507  {
508    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
509    gc_barrier_->Increment(self, barrier_count);
510  }
511  Locks::mutator_lock_->SharedLock(self);
512}
513
514void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
515  CHECK_EQ(is_mark_stack_push_disallowed_.LoadRelaxed(), 0)
516      << " " << to_ref << " " << PrettyTypeOf(to_ref);
517  Thread* self = Thread::Current();  // TODO: pass self as an argument from call sites?
518  CHECK(thread_running_gc_ != nullptr);
519  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
520  if (mark_stack_mode == kMarkStackModeThreadLocal) {
521    if (self == thread_running_gc_) {
522      // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
523      CHECK(self->GetThreadLocalMarkStack() == nullptr);
524      CHECK(!gc_mark_stack_->IsFull());
525      gc_mark_stack_->PushBack(to_ref);
526    } else {
527      // Otherwise, use a thread-local mark stack.
528      accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
529      if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
530        MutexLock mu(self, mark_stack_lock_);
531        // Get a new thread local mark stack.
532        accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
533        if (!pooled_mark_stacks_.empty()) {
534          // Use a pooled mark stack.
535          new_tl_mark_stack = pooled_mark_stacks_.back();
536          pooled_mark_stacks_.pop_back();
537        } else {
538          // None pooled. Create a new one.
539          new_tl_mark_stack =
540              accounting::AtomicStack<mirror::Object>::Create(
541                  "thread local mark stack", 4 * KB, 4 * KB);
542        }
543        DCHECK(new_tl_mark_stack != nullptr);
544        DCHECK(new_tl_mark_stack->IsEmpty());
545        new_tl_mark_stack->PushBack(to_ref);
546        self->SetThreadLocalMarkStack(new_tl_mark_stack);
547        if (tl_mark_stack != nullptr) {
548          // Store the old full stack into a vector.
549          revoked_mark_stacks_.push_back(tl_mark_stack);
550        }
551      } else {
552        tl_mark_stack->PushBack(to_ref);
553      }
554    }
555  } else if (mark_stack_mode == kMarkStackModeShared) {
556    // Access the shared GC mark stack with a lock.
557    MutexLock mu(self, mark_stack_lock_);
558    CHECK(!gc_mark_stack_->IsFull());
559    gc_mark_stack_->PushBack(to_ref);
560  } else {
561    CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
562             static_cast<uint32_t>(kMarkStackModeGcExclusive));
563    CHECK(self == thread_running_gc_)
564        << "Only GC-running thread should access the mark stack "
565        << "in the GC exclusive mark stack mode";
566    // Access the GC mark stack without a lock.
567    CHECK(!gc_mark_stack_->IsFull());
568    gc_mark_stack_->PushBack(to_ref);
569  }
570}
571
572accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
573  return heap_->allocation_stack_.get();
574}
575
576accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
577  return heap_->live_stack_.get();
578}
579
580inline mirror::Object* ConcurrentCopying::GetFwdPtr(mirror::Object* from_ref) {
581  DCHECK(region_space_->IsInFromSpace(from_ref));
582  LockWord lw = from_ref->GetLockWord(false);
583  if (lw.GetState() == LockWord::kForwardingAddress) {
584    mirror::Object* fwd_ptr = reinterpret_cast<mirror::Object*>(lw.ForwardingAddress());
585    CHECK(fwd_ptr != nullptr);
586    return fwd_ptr;
587  } else {
588    return nullptr;
589  }
590}
591
592// The following visitors are that used to verify that there's no
593// references to the from-space left after marking.
594class ConcurrentCopyingVerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
595 public:
596  explicit ConcurrentCopyingVerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
597      : collector_(collector) {}
598
599  void operator()(mirror::Object* ref) const
600      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
601    if (ref == nullptr) {
602      // OK.
603      return;
604    }
605    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
606    if (kUseBakerReadBarrier) {
607      if (collector_->RegionSpace()->IsInToSpace(ref)) {
608        CHECK(ref->GetReadBarrierPointer() == nullptr)
609            << "To-space ref " << ref << " " << PrettyTypeOf(ref)
610            << " has non-white rb_ptr " << ref->GetReadBarrierPointer();
611      } else {
612        CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
613              (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
614               collector_->IsOnAllocStack(ref)))
615            << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref)
616            << " has non-black rb_ptr " << ref->GetReadBarrierPointer()
617            << " but isn't on the alloc stack (and has white rb_ptr)."
618            << " Is it in the non-moving space="
619            << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref));
620      }
621    }
622  }
623
624  void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
625      OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
626    DCHECK(root != nullptr);
627    operator()(root);
628  }
629
630 private:
631  ConcurrentCopying* const collector_;
632};
633
634class ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor {
635 public:
636  explicit ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
637      : collector_(collector) {}
638
639  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
640      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
641    mirror::Object* ref =
642        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
643    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
644    visitor(ref);
645  }
646  void operator()(mirror::Class* klass, mirror::Reference* ref) const
647      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
648    CHECK(klass->IsTypeOfReferenceClass());
649    this->operator()(ref, mirror::Reference::ReferentOffset(), false);
650  }
651
652 private:
653  ConcurrentCopying* const collector_;
654};
655
656class ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor {
657 public:
658  explicit ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
659      : collector_(collector) {}
660  void operator()(mirror::Object* obj) const
661      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
662    ObjectCallback(obj, collector_);
663  }
664  static void ObjectCallback(mirror::Object* obj, void *arg)
665      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
666    CHECK(obj != nullptr);
667    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
668    space::RegionSpace* region_space = collector->RegionSpace();
669    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
670    ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor visitor(collector);
671    obj->VisitReferences<true>(visitor, visitor);
672    if (kUseBakerReadBarrier) {
673      if (collector->RegionSpace()->IsInToSpace(obj)) {
674        CHECK(obj->GetReadBarrierPointer() == nullptr)
675            << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer();
676      } else {
677        CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
678              (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
679               collector->IsOnAllocStack(obj)))
680            << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj)
681            << " has non-black rb_ptr " << obj->GetReadBarrierPointer()
682            << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space="
683            << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj));
684      }
685    }
686  }
687
688 private:
689  ConcurrentCopying* const collector_;
690};
691
692// Verify there's no from-space references left after the marking phase.
693void ConcurrentCopying::VerifyNoFromSpaceReferences() {
694  Thread* self = Thread::Current();
695  DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
696  ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor visitor(this);
697  // Roots.
698  {
699    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
700    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
701    Runtime::Current()->VisitRoots(&ref_visitor);
702  }
703  // The to-space.
704  region_space_->WalkToSpace(ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor::ObjectCallback,
705                             this);
706  // Non-moving spaces.
707  {
708    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
709    heap_->GetMarkBitmap()->Visit(visitor);
710  }
711  // The alloc stack.
712  {
713    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
714    for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
715        it < end; ++it) {
716      mirror::Object* const obj = it->AsMirrorPtr();
717      if (obj != nullptr && obj->GetClass() != nullptr) {
718        // TODO: need to call this only if obj is alive?
719        ref_visitor(obj);
720        visitor(obj);
721      }
722    }
723  }
724  // TODO: LOS. But only refs in LOS are classes.
725}
726
727// The following visitors are used to assert the to-space invariant.
728class ConcurrentCopyingAssertToSpaceInvariantRefsVisitor {
729 public:
730  explicit ConcurrentCopyingAssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
731      : collector_(collector) {}
732
733  void operator()(mirror::Object* ref) const
734      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
735    if (ref == nullptr) {
736      // OK.
737      return;
738    }
739    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
740  }
741
742 private:
743  ConcurrentCopying* const collector_;
744};
745
746class ConcurrentCopyingAssertToSpaceInvariantFieldVisitor {
747 public:
748  explicit ConcurrentCopyingAssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
749      : collector_(collector) {}
750
751  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
752      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
753    mirror::Object* ref =
754        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
755    ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
756    visitor(ref);
757  }
758  void operator()(mirror::Class* klass, mirror::Reference* /* ref */) const
759      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
760    CHECK(klass->IsTypeOfReferenceClass());
761  }
762
763 private:
764  ConcurrentCopying* const collector_;
765};
766
767class ConcurrentCopyingAssertToSpaceInvariantObjectVisitor {
768 public:
769  explicit ConcurrentCopyingAssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
770      : collector_(collector) {}
771  void operator()(mirror::Object* obj) const
772      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
773    ObjectCallback(obj, collector_);
774  }
775  static void ObjectCallback(mirror::Object* obj, void *arg)
776      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
777    CHECK(obj != nullptr);
778    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
779    space::RegionSpace* region_space = collector->RegionSpace();
780    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
781    collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
782    ConcurrentCopyingAssertToSpaceInvariantFieldVisitor visitor(collector);
783    obj->VisitReferences<true>(visitor, visitor);
784  }
785
786 private:
787  ConcurrentCopying* const collector_;
788};
789
790class RevokeThreadLocalMarkStackCheckpoint : public Closure {
791 public:
792  explicit RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
793                                                bool disable_weak_ref_access)
794      : concurrent_copying_(concurrent_copying),
795        disable_weak_ref_access_(disable_weak_ref_access) {
796  }
797
798  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
799    // Note: self is not necessarily equal to thread since thread may be suspended.
800    Thread* self = Thread::Current();
801    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
802        << thread->GetState() << " thread " << thread << " self " << self;
803    // Revoke thread local mark stacks.
804    accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
805    if (tl_mark_stack != nullptr) {
806      MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
807      concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
808      thread->SetThreadLocalMarkStack(nullptr);
809    }
810    // Disable weak ref access.
811    if (disable_weak_ref_access_) {
812      thread->SetWeakRefAccessEnabled(false);
813    }
814    // If thread is a running mutator, then act on behalf of the garbage collector.
815    // See the code in ThreadList::RunCheckpoint.
816    if (thread->GetState() == kRunnable) {
817      concurrent_copying_->GetBarrier().Pass(self);
818    }
819  }
820
821 private:
822  ConcurrentCopying* const concurrent_copying_;
823  const bool disable_weak_ref_access_;
824};
825
826void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access) {
827  Thread* self = Thread::Current();
828  RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
829  ThreadList* thread_list = Runtime::Current()->GetThreadList();
830  gc_barrier_->Init(self, 0);
831  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
832  // If there are no threads to wait which implys that all the checkpoint functions are finished,
833  // then no need to release the mutator lock.
834  if (barrier_count == 0) {
835    return;
836  }
837  Locks::mutator_lock_->SharedUnlock(self);
838  {
839    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
840    gc_barrier_->Increment(self, barrier_count);
841  }
842  Locks::mutator_lock_->SharedLock(self);
843}
844
845void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
846  Thread* self = Thread::Current();
847  CHECK_EQ(self, thread);
848  accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
849  if (tl_mark_stack != nullptr) {
850    CHECK(is_marking_);
851    MutexLock mu(self, mark_stack_lock_);
852    revoked_mark_stacks_.push_back(tl_mark_stack);
853    thread->SetThreadLocalMarkStack(nullptr);
854  }
855}
856
857void ConcurrentCopying::ProcessMarkStack() {
858  if (kVerboseMode) {
859    LOG(INFO) << "ProcessMarkStack. ";
860  }
861  bool empty_prev = false;
862  while (true) {
863    bool empty = ProcessMarkStackOnce();
864    if (empty_prev && empty) {
865      // Saw empty mark stack for a second time, done.
866      break;
867    }
868    empty_prev = empty;
869  }
870}
871
872bool ConcurrentCopying::ProcessMarkStackOnce() {
873  Thread* self = Thread::Current();
874  CHECK(thread_running_gc_ != nullptr);
875  CHECK(self == thread_running_gc_);
876  CHECK(self->GetThreadLocalMarkStack() == nullptr);
877  size_t count = 0;
878  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
879  if (mark_stack_mode == kMarkStackModeThreadLocal) {
880    // Process the thread-local mark stacks and the GC mark stack.
881    count += ProcessThreadLocalMarkStacks(false);
882    while (!gc_mark_stack_->IsEmpty()) {
883      mirror::Object* to_ref = gc_mark_stack_->PopBack();
884      ProcessMarkStackRef(to_ref);
885      ++count;
886    }
887    gc_mark_stack_->Reset();
888  } else if (mark_stack_mode == kMarkStackModeShared) {
889    // Process the shared GC mark stack with a lock.
890    {
891      MutexLock mu(self, mark_stack_lock_);
892      CHECK(revoked_mark_stacks_.empty());
893    }
894    while (true) {
895      std::vector<mirror::Object*> refs;
896      {
897        // Copy refs with lock. Note the number of refs should be small.
898        MutexLock mu(self, mark_stack_lock_);
899        if (gc_mark_stack_->IsEmpty()) {
900          break;
901        }
902        for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
903             p != gc_mark_stack_->End(); ++p) {
904          refs.push_back(p->AsMirrorPtr());
905        }
906        gc_mark_stack_->Reset();
907      }
908      for (mirror::Object* ref : refs) {
909        ProcessMarkStackRef(ref);
910        ++count;
911      }
912    }
913  } else {
914    CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
915             static_cast<uint32_t>(kMarkStackModeGcExclusive));
916    {
917      MutexLock mu(self, mark_stack_lock_);
918      CHECK(revoked_mark_stacks_.empty());
919    }
920    // Process the GC mark stack in the exclusive mode. No need to take the lock.
921    while (!gc_mark_stack_->IsEmpty()) {
922      mirror::Object* to_ref = gc_mark_stack_->PopBack();
923      ProcessMarkStackRef(to_ref);
924      ++count;
925    }
926    gc_mark_stack_->Reset();
927  }
928
929  // Return true if the stack was empty.
930  return count == 0;
931}
932
933size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access) {
934  // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
935  RevokeThreadLocalMarkStacks(disable_weak_ref_access);
936  size_t count = 0;
937  std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
938  {
939    MutexLock mu(Thread::Current(), mark_stack_lock_);
940    // Make a copy of the mark stack vector.
941    mark_stacks = revoked_mark_stacks_;
942    revoked_mark_stacks_.clear();
943  }
944  for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
945    for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
946      mirror::Object* to_ref = p->AsMirrorPtr();
947      ProcessMarkStackRef(to_ref);
948      ++count;
949    }
950    {
951      MutexLock mu(Thread::Current(), mark_stack_lock_);
952      if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
953        // The pool has enough. Delete it.
954        delete mark_stack;
955      } else {
956        // Otherwise, put it into the pool for later reuse.
957        mark_stack->Reset();
958        pooled_mark_stacks_.push_back(mark_stack);
959      }
960    }
961  }
962  return count;
963}
964
965void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
966  DCHECK(!region_space_->IsInFromSpace(to_ref));
967  if (kUseBakerReadBarrier) {
968    DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
969        << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
970        << " is_marked=" << IsMarked(to_ref);
971  }
972  // Scan ref fields.
973  Scan(to_ref);
974  // Mark the gray ref as white or black.
975  if (kUseBakerReadBarrier) {
976    DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
977        << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
978        << " is_marked=" << IsMarked(to_ref);
979  }
980  if (to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
981      to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr &&
982      !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())) {
983    // Leave References gray so that GetReferent() will trigger RB.
984    CHECK(to_ref->AsReference()->IsEnqueued()) << "Left unenqueued ref gray " << to_ref;
985  } else {
986#ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
987    if (kUseBakerReadBarrier) {
988      if (region_space_->IsInToSpace(to_ref)) {
989        // If to-space, change from gray to white.
990        bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
991                                                           ReadBarrier::WhitePtr());
992        CHECK(success) << "Must succeed as we won the race.";
993        CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
994      } else {
995        // If non-moving space/unevac from space, change from gray
996        // to black. We can't change gray to white because it's not
997        // safe to use CAS if two threads change values in opposite
998        // directions (A->B and B->A). So, we change it to black to
999        // indicate non-moving objects that have been marked
1000        // through. Note we'd need to change from black to white
1001        // later (concurrently).
1002        bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
1003                                                           ReadBarrier::BlackPtr());
1004        CHECK(success) << "Must succeed as we won the race.";
1005        CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1006      }
1007    }
1008#else
1009    DCHECK(!kUseBakerReadBarrier);
1010#endif
1011  }
1012  if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) {
1013    ConcurrentCopyingAssertToSpaceInvariantObjectVisitor visitor(this);
1014    visitor(to_ref);
1015  }
1016}
1017
1018void ConcurrentCopying::SwitchToSharedMarkStackMode() {
1019  Thread* self = Thread::Current();
1020  CHECK(thread_running_gc_ != nullptr);
1021  CHECK_EQ(self, thread_running_gc_);
1022  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1023  MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1024  CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1025           static_cast<uint32_t>(kMarkStackModeThreadLocal));
1026  mark_stack_mode_.StoreRelaxed(kMarkStackModeShared);
1027  CHECK(weak_ref_access_enabled_.LoadRelaxed());
1028  weak_ref_access_enabled_.StoreRelaxed(false);
1029  QuasiAtomic::ThreadFenceForConstructor();
1030  // Process the thread local mark stacks one last time after switching to the shared mark stack
1031  // mode and disable weak ref accesses.
1032  ProcessThreadLocalMarkStacks(true);
1033  if (kVerboseMode) {
1034    LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
1035  }
1036}
1037
1038void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
1039  Thread* self = Thread::Current();
1040  CHECK(thread_running_gc_ != nullptr);
1041  CHECK_EQ(self, thread_running_gc_);
1042  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1043  MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1044  CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1045           static_cast<uint32_t>(kMarkStackModeShared));
1046  mark_stack_mode_.StoreRelaxed(kMarkStackModeGcExclusive);
1047  QuasiAtomic::ThreadFenceForConstructor();
1048  if (kVerboseMode) {
1049    LOG(INFO) << "Switched to GC exclusive mark stack mode";
1050  }
1051}
1052
1053void ConcurrentCopying::CheckEmptyMarkStack() {
1054  Thread* self = Thread::Current();
1055  CHECK(thread_running_gc_ != nullptr);
1056  CHECK_EQ(self, thread_running_gc_);
1057  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1058  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1059  if (mark_stack_mode == kMarkStackModeThreadLocal) {
1060    // Thread-local mark stack mode.
1061    RevokeThreadLocalMarkStacks(false);
1062    MutexLock mu(Thread::Current(), mark_stack_lock_);
1063    if (!revoked_mark_stacks_.empty()) {
1064      for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
1065        while (!mark_stack->IsEmpty()) {
1066          mirror::Object* obj = mark_stack->PopBack();
1067          if (kUseBakerReadBarrier) {
1068            mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
1069            LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr
1070                      << " is_marked=" << IsMarked(obj);
1071          } else {
1072            LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj)
1073                      << " is_marked=" << IsMarked(obj);
1074          }
1075        }
1076      }
1077      LOG(FATAL) << "mark stack is not empty";
1078    }
1079  } else {
1080    // Shared, GC-exclusive, or off.
1081    MutexLock mu(Thread::Current(), mark_stack_lock_);
1082    CHECK(gc_mark_stack_->IsEmpty());
1083    CHECK(revoked_mark_stacks_.empty());
1084  }
1085}
1086
1087void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
1088  TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
1089  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1090  Runtime::Current()->SweepSystemWeaks(this);
1091}
1092
1093void ConcurrentCopying::Sweep(bool swap_bitmaps) {
1094  {
1095    TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
1096    accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1097    if (kEnableFromSpaceAccountingCheck) {
1098      CHECK_GE(live_stack_freeze_size_, live_stack->Size());
1099    }
1100    heap_->MarkAllocStackAsLive(live_stack);
1101    live_stack->Reset();
1102  }
1103  CheckEmptyMarkStack();
1104  TimingLogger::ScopedTiming split("Sweep", GetTimings());
1105  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1106    if (space->IsContinuousMemMapAllocSpace()) {
1107      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1108      if (space == region_space_ || immune_region_.ContainsSpace(space)) {
1109        continue;
1110      }
1111      TimingLogger::ScopedTiming split2(
1112          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
1113      RecordFree(alloc_space->Sweep(swap_bitmaps));
1114    }
1115  }
1116  SweepLargeObjects(swap_bitmaps);
1117}
1118
1119void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
1120  TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
1121  RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
1122}
1123
1124class ConcurrentCopyingClearBlackPtrsVisitor {
1125 public:
1126  explicit ConcurrentCopyingClearBlackPtrsVisitor(ConcurrentCopying* cc)
1127      : collector_(cc) {}
1128#ifndef USE_BAKER_OR_BROOKS_READ_BARRIER
1129  NO_RETURN
1130#endif
1131  void operator()(mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1132      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1133    DCHECK(obj != nullptr);
1134    DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj;
1135    DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj;
1136    obj->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1137    DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1138  }
1139
1140 private:
1141  ConcurrentCopying* const collector_;
1142};
1143
1144// Clear the black ptrs in non-moving objects back to white.
1145void ConcurrentCopying::ClearBlackPtrs() {
1146  CHECK(kUseBakerReadBarrier);
1147  TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings());
1148  ConcurrentCopyingClearBlackPtrsVisitor visitor(this);
1149  for (auto& space : heap_->GetContinuousSpaces()) {
1150    if (space == region_space_) {
1151      continue;
1152    }
1153    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1154    if (kVerboseMode) {
1155      LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap;
1156    }
1157    mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
1158                                  reinterpret_cast<uintptr_t>(space->Limit()),
1159                                  visitor);
1160  }
1161  space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
1162  large_object_space->GetMarkBitmap()->VisitMarkedRange(
1163      reinterpret_cast<uintptr_t>(large_object_space->Begin()),
1164      reinterpret_cast<uintptr_t>(large_object_space->End()),
1165      visitor);
1166  // Objects on the allocation stack?
1167  if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) {
1168    size_t count = GetAllocationStack()->Size();
1169    auto* it = GetAllocationStack()->Begin();
1170    auto* end = GetAllocationStack()->End();
1171    for (size_t i = 0; i < count; ++i, ++it) {
1172      CHECK_LT(it, end);
1173      mirror::Object* obj = it->AsMirrorPtr();
1174      if (obj != nullptr) {
1175        // Must have been cleared above.
1176        CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1177      }
1178    }
1179  }
1180}
1181
1182void ConcurrentCopying::ReclaimPhase() {
1183  TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
1184  if (kVerboseMode) {
1185    LOG(INFO) << "GC ReclaimPhase";
1186  }
1187  Thread* self = Thread::Current();
1188
1189  {
1190    // Double-check that the mark stack is empty.
1191    // Note: need to set this after VerifyNoFromSpaceRef().
1192    is_asserting_to_space_invariant_ = false;
1193    QuasiAtomic::ThreadFenceForConstructor();
1194    if (kVerboseMode) {
1195      LOG(INFO) << "Issue an empty check point. ";
1196    }
1197    IssueEmptyCheckpoint();
1198    // Disable the check.
1199    is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(0);
1200    CheckEmptyMarkStack();
1201  }
1202
1203  {
1204    // Record freed objects.
1205    TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
1206    // Don't include thread-locals that are in the to-space.
1207    uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
1208    uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
1209    uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
1210    uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
1211    uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
1212    uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
1213    if (kEnableFromSpaceAccountingCheck) {
1214      CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
1215      CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
1216    }
1217    CHECK_LE(to_objects, from_objects);
1218    CHECK_LE(to_bytes, from_bytes);
1219    int64_t freed_bytes = from_bytes - to_bytes;
1220    int64_t freed_objects = from_objects - to_objects;
1221    if (kVerboseMode) {
1222      LOG(INFO) << "RecordFree:"
1223                << " from_bytes=" << from_bytes << " from_objects=" << from_objects
1224                << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
1225                << " to_bytes=" << to_bytes << " to_objects=" << to_objects
1226                << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
1227                << " from_space size=" << region_space_->FromSpaceSize()
1228                << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
1229                << " to_space size=" << region_space_->ToSpaceSize();
1230      LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1231    }
1232    RecordFree(ObjectBytePair(freed_objects, freed_bytes));
1233    if (kVerboseMode) {
1234      LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1235    }
1236  }
1237
1238  {
1239    TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings());
1240    ComputeUnevacFromSpaceLiveRatio();
1241  }
1242
1243  {
1244    TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
1245    region_space_->ClearFromSpace();
1246  }
1247
1248  {
1249    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1250    if (kUseBakerReadBarrier) {
1251      ClearBlackPtrs();
1252    }
1253    Sweep(false);
1254    SwapBitmaps();
1255    heap_->UnBindBitmaps();
1256
1257    // Remove bitmaps for the immune spaces.
1258    while (!cc_bitmaps_.empty()) {
1259      accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back();
1260      cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap);
1261      delete cc_bitmap;
1262      cc_bitmaps_.pop_back();
1263    }
1264    region_space_bitmap_ = nullptr;
1265  }
1266
1267  CheckEmptyMarkStack();
1268
1269  if (kVerboseMode) {
1270    LOG(INFO) << "GC end of ReclaimPhase";
1271  }
1272}
1273
1274class ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor {
1275 public:
1276  explicit ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc)
1277      : collector_(cc) {}
1278  void operator()(mirror::Object* ref) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1279      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1280    DCHECK(ref != nullptr);
1281    DCHECK(collector_->region_space_bitmap_->Test(ref)) << ref;
1282    DCHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref;
1283    if (kUseBakerReadBarrier) {
1284      DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << ref;
1285      // Clear the black ptr.
1286      ref->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1287      DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << ref;
1288    }
1289    size_t obj_size = ref->SizeOf();
1290    size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1291    collector_->region_space_->AddLiveBytes(ref, alloc_size);
1292  }
1293
1294 private:
1295  ConcurrentCopying* const collector_;
1296};
1297
1298// Compute how much live objects are left in regions.
1299void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() {
1300  region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1301  ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor visitor(this);
1302  region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()),
1303                                         reinterpret_cast<uintptr_t>(region_space_->Limit()),
1304                                         visitor);
1305}
1306
1307// Assert the to-space invariant.
1308void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
1309                                               mirror::Object* ref) {
1310  CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1311  if (is_asserting_to_space_invariant_) {
1312    if (region_space_->IsInToSpace(ref)) {
1313      // OK.
1314      return;
1315    } else if (region_space_->IsInUnevacFromSpace(ref)) {
1316      CHECK(region_space_bitmap_->Test(ref)) << ref;
1317    } else if (region_space_->IsInFromSpace(ref)) {
1318      // Not OK. Do extra logging.
1319      if (obj != nullptr) {
1320        LogFromSpaceRefHolder(obj, offset);
1321      }
1322      ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1323      CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1324    } else {
1325      AssertToSpaceInvariantInNonMovingSpace(obj, ref);
1326    }
1327  }
1328}
1329
1330class RootPrinter {
1331 public:
1332  RootPrinter() { }
1333
1334  template <class MirrorType>
1335  ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
1336      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1337    if (!root->IsNull()) {
1338      VisitRoot(root);
1339    }
1340  }
1341
1342  template <class MirrorType>
1343  void VisitRoot(mirror::Object** root)
1344      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1345    LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << *root;
1346  }
1347
1348  template <class MirrorType>
1349  void VisitRoot(mirror::CompressedReference<MirrorType>* root)
1350      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1351    LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << root->AsMirrorPtr();
1352  }
1353};
1354
1355void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
1356                                               mirror::Object* ref) {
1357  CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1358  if (is_asserting_to_space_invariant_) {
1359    if (region_space_->IsInToSpace(ref)) {
1360      // OK.
1361      return;
1362    } else if (region_space_->IsInUnevacFromSpace(ref)) {
1363      CHECK(region_space_bitmap_->Test(ref)) << ref;
1364    } else if (region_space_->IsInFromSpace(ref)) {
1365      // Not OK. Do extra logging.
1366      if (gc_root_source == nullptr) {
1367        // No info.
1368      } else if (gc_root_source->HasArtField()) {
1369        ArtField* field = gc_root_source->GetArtField();
1370        LOG(INTERNAL_FATAL) << "gc root in field " << field << " " << PrettyField(field);
1371        RootPrinter root_printer;
1372        field->VisitRoots(root_printer);
1373      } else if (gc_root_source->HasArtMethod()) {
1374        ArtMethod* method = gc_root_source->GetArtMethod();
1375        LOG(INTERNAL_FATAL) << "gc root in method " << method << " " << PrettyMethod(method);
1376        RootPrinter root_printer;
1377        method->VisitRoots(root_printer);
1378      }
1379      ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1380      region_space_->DumpNonFreeRegions(LOG(INTERNAL_FATAL));
1381      PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
1382      MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
1383      CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1384    } else {
1385      AssertToSpaceInvariantInNonMovingSpace(nullptr, ref);
1386    }
1387  }
1388}
1389
1390void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
1391  if (kUseBakerReadBarrier) {
1392    LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj)
1393              << " holder rb_ptr=" << obj->GetReadBarrierPointer();
1394  } else {
1395    LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj);
1396  }
1397  if (region_space_->IsInFromSpace(obj)) {
1398    LOG(INFO) << "holder is in the from-space.";
1399  } else if (region_space_->IsInToSpace(obj)) {
1400    LOG(INFO) << "holder is in the to-space.";
1401  } else if (region_space_->IsInUnevacFromSpace(obj)) {
1402    LOG(INFO) << "holder is in the unevac from-space.";
1403    if (region_space_bitmap_->Test(obj)) {
1404      LOG(INFO) << "holder is marked in the region space bitmap.";
1405    } else {
1406      LOG(INFO) << "holder is not marked in the region space bitmap.";
1407    }
1408  } else {
1409    // In a non-moving space.
1410    if (immune_region_.ContainsObject(obj)) {
1411      LOG(INFO) << "holder is in the image or the zygote space.";
1412      accounting::ContinuousSpaceBitmap* cc_bitmap =
1413          cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
1414      CHECK(cc_bitmap != nullptr)
1415          << "An immune space object must have a bitmap.";
1416      if (cc_bitmap->Test(obj)) {
1417        LOG(INFO) << "holder is marked in the bit map.";
1418      } else {
1419        LOG(INFO) << "holder is NOT marked in the bit map.";
1420      }
1421    } else {
1422      LOG(INFO) << "holder is in a non-moving (or main) space.";
1423      accounting::ContinuousSpaceBitmap* mark_bitmap =
1424          heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1425      accounting::LargeObjectBitmap* los_bitmap =
1426          heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1427      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1428      bool is_los = mark_bitmap == nullptr;
1429      if (!is_los && mark_bitmap->Test(obj)) {
1430        LOG(INFO) << "holder is marked in the mark bit map.";
1431      } else if (is_los && los_bitmap->Test(obj)) {
1432        LOG(INFO) << "holder is marked in the los bit map.";
1433      } else {
1434        // If ref is on the allocation stack, then it is considered
1435        // mark/alive (but not necessarily on the live stack.)
1436        if (IsOnAllocStack(obj)) {
1437          LOG(INFO) << "holder is on the alloc stack.";
1438        } else {
1439          LOG(INFO) << "holder is not marked or on the alloc stack.";
1440        }
1441      }
1442    }
1443  }
1444  LOG(INFO) << "offset=" << offset.SizeValue();
1445}
1446
1447void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
1448                                                               mirror::Object* ref) {
1449  // In a non-moving spaces. Check that the ref is marked.
1450  if (immune_region_.ContainsObject(ref)) {
1451    accounting::ContinuousSpaceBitmap* cc_bitmap =
1452        cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1453    CHECK(cc_bitmap != nullptr)
1454        << "An immune space ref must have a bitmap. " << ref;
1455    if (kUseBakerReadBarrier) {
1456      CHECK(cc_bitmap->Test(ref))
1457          << "Unmarked immune space ref. obj=" << obj << " rb_ptr="
1458          << obj->GetReadBarrierPointer() << " ref=" << ref;
1459    } else {
1460      CHECK(cc_bitmap->Test(ref))
1461          << "Unmarked immune space ref. obj=" << obj << " ref=" << ref;
1462    }
1463  } else {
1464    accounting::ContinuousSpaceBitmap* mark_bitmap =
1465        heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1466    accounting::LargeObjectBitmap* los_bitmap =
1467        heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1468    CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1469    bool is_los = mark_bitmap == nullptr;
1470    if ((!is_los && mark_bitmap->Test(ref)) ||
1471        (is_los && los_bitmap->Test(ref))) {
1472      // OK.
1473    } else {
1474      // If ref is on the allocation stack, then it may not be
1475      // marked live, but considered marked/alive (but not
1476      // necessarily on the live stack).
1477      CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1478                                 << "obj=" << obj << " ref=" << ref;
1479    }
1480  }
1481}
1482
1483// Used to scan ref fields of an object.
1484class ConcurrentCopyingRefFieldsVisitor {
1485 public:
1486  explicit ConcurrentCopyingRefFieldsVisitor(ConcurrentCopying* collector)
1487      : collector_(collector) {}
1488
1489  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1490      const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1491      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1492    collector_->Process(obj, offset);
1493  }
1494
1495  void operator()(mirror::Class* klass, mirror::Reference* ref) const
1496      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
1497    CHECK(klass->IsTypeOfReferenceClass());
1498    collector_->DelayReferenceReferent(klass, ref);
1499  }
1500
1501 private:
1502  ConcurrentCopying* const collector_;
1503};
1504
1505// Scan ref fields of an object.
1506void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1507  DCHECK(!region_space_->IsInFromSpace(to_ref));
1508  ConcurrentCopyingRefFieldsVisitor visitor(this);
1509  to_ref->VisitReferences<true>(visitor, visitor);
1510}
1511
1512// Process a field.
1513inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1514  mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1515  if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1516    return;
1517  }
1518  mirror::Object* to_ref = Mark(ref);
1519  if (to_ref == ref) {
1520    return;
1521  }
1522  // This may fail if the mutator writes to the field at the same time. But it's ok.
1523  mirror::Object* expected_ref = ref;
1524  mirror::Object* new_ref = to_ref;
1525  do {
1526    if (expected_ref !=
1527        obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1528      // It was updated by the mutator.
1529      break;
1530    }
1531  } while (!obj->CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier<false, false, kVerifyNone>(
1532      offset, expected_ref, new_ref));
1533}
1534
1535// Process some roots.
1536void ConcurrentCopying::VisitRoots(
1537    mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
1538  for (size_t i = 0; i < count; ++i) {
1539    mirror::Object** root = roots[i];
1540    mirror::Object* ref = *root;
1541    if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1542      continue;
1543    }
1544    mirror::Object* to_ref = Mark(ref);
1545    if (to_ref == ref) {
1546      continue;
1547    }
1548    Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1549    mirror::Object* expected_ref = ref;
1550    mirror::Object* new_ref = to_ref;
1551    do {
1552      if (expected_ref != addr->LoadRelaxed()) {
1553        // It was updated by the mutator.
1554        break;
1555      }
1556    } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1557  }
1558}
1559
1560void ConcurrentCopying::VisitRoots(
1561    mirror::CompressedReference<mirror::Object>** roots, size_t count,
1562    const RootInfo& info ATTRIBUTE_UNUSED) {
1563  for (size_t i = 0; i < count; ++i) {
1564    mirror::CompressedReference<mirror::Object>* root = roots[i];
1565    mirror::Object* ref = root->AsMirrorPtr();
1566    if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1567      continue;
1568    }
1569    mirror::Object* to_ref = Mark(ref);
1570    if (to_ref == ref) {
1571      continue;
1572    }
1573    auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
1574    auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
1575    auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
1576    do {
1577      if (ref != addr->LoadRelaxed().AsMirrorPtr()) {
1578        // It was updated by the mutator.
1579        break;
1580      }
1581    } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1582  }
1583}
1584
1585// Fill the given memory block with a dummy object. Used to fill in a
1586// copy of objects that was lost in race.
1587void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
1588  CHECK_ALIGNED(byte_size, kObjectAlignment);
1589  memset(dummy_obj, 0, byte_size);
1590  mirror::Class* int_array_class = mirror::IntArray::GetArrayClass();
1591  CHECK(int_array_class != nullptr);
1592  AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
1593  size_t component_size = int_array_class->GetComponentSize();
1594  CHECK_EQ(component_size, sizeof(int32_t));
1595  size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
1596  if (data_offset > byte_size) {
1597    // An int array is too big. Use java.lang.Object.
1598    mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object);
1599    AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object);
1600    CHECK_EQ(byte_size, java_lang_Object->GetObjectSize());
1601    dummy_obj->SetClass(java_lang_Object);
1602    CHECK_EQ(byte_size, dummy_obj->SizeOf());
1603  } else {
1604    // Use an int array.
1605    dummy_obj->SetClass(int_array_class);
1606    CHECK(dummy_obj->IsArrayInstance());
1607    int32_t length = (byte_size - data_offset) / component_size;
1608    dummy_obj->AsArray()->SetLength(length);
1609    CHECK_EQ(dummy_obj->AsArray()->GetLength(), length)
1610        << "byte_size=" << byte_size << " length=" << length
1611        << " component_size=" << component_size << " data_offset=" << data_offset;
1612    CHECK_EQ(byte_size, dummy_obj->SizeOf())
1613        << "byte_size=" << byte_size << " length=" << length
1614        << " component_size=" << component_size << " data_offset=" << data_offset;
1615  }
1616}
1617
1618// Reuse the memory blocks that were copy of objects that were lost in race.
1619mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
1620  // Try to reuse the blocks that were unused due to CAS failures.
1621  CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
1622  Thread* self = Thread::Current();
1623  size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
1624  MutexLock mu(self, skipped_blocks_lock_);
1625  auto it = skipped_blocks_map_.lower_bound(alloc_size);
1626  if (it == skipped_blocks_map_.end()) {
1627    // Not found.
1628    return nullptr;
1629  }
1630  {
1631    size_t byte_size = it->first;
1632    CHECK_GE(byte_size, alloc_size);
1633    if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
1634      // If remainder would be too small for a dummy object, retry with a larger request size.
1635      it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
1636      if (it == skipped_blocks_map_.end()) {
1637        // Not found.
1638        return nullptr;
1639      }
1640      CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
1641      CHECK_GE(it->first - alloc_size, min_object_size)
1642          << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
1643    }
1644  }
1645  // Found a block.
1646  CHECK(it != skipped_blocks_map_.end());
1647  size_t byte_size = it->first;
1648  uint8_t* addr = it->second;
1649  CHECK_GE(byte_size, alloc_size);
1650  CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
1651  CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
1652  if (kVerboseMode) {
1653    LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
1654  }
1655  skipped_blocks_map_.erase(it);
1656  memset(addr, 0, byte_size);
1657  if (byte_size > alloc_size) {
1658    // Return the remainder to the map.
1659    CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
1660    CHECK_GE(byte_size - alloc_size, min_object_size);
1661    FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
1662                        byte_size - alloc_size);
1663    CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
1664    skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
1665  }
1666  return reinterpret_cast<mirror::Object*>(addr);
1667}
1668
1669mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) {
1670  DCHECK(region_space_->IsInFromSpace(from_ref));
1671  // No read barrier to avoid nested RB that might violate the to-space
1672  // invariant. Note that from_ref is a from space ref so the SizeOf()
1673  // call will access the from-space meta objects, but it's ok and necessary.
1674  size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>();
1675  size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1676  size_t region_space_bytes_allocated = 0U;
1677  size_t non_moving_space_bytes_allocated = 0U;
1678  size_t bytes_allocated = 0U;
1679  size_t dummy;
1680  mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
1681      region_space_alloc_size, &region_space_bytes_allocated, nullptr, &dummy);
1682  bytes_allocated = region_space_bytes_allocated;
1683  if (to_ref != nullptr) {
1684    DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
1685  }
1686  bool fall_back_to_non_moving = false;
1687  if (UNLIKELY(to_ref == nullptr)) {
1688    // Failed to allocate in the region space. Try the skipped blocks.
1689    to_ref = AllocateInSkippedBlock(region_space_alloc_size);
1690    if (to_ref != nullptr) {
1691      // Succeeded to allocate in a skipped block.
1692      if (heap_->use_tlab_) {
1693        // This is necessary for the tlab case as it's not accounted in the space.
1694        region_space_->RecordAlloc(to_ref);
1695      }
1696      bytes_allocated = region_space_alloc_size;
1697    } else {
1698      // Fall back to the non-moving space.
1699      fall_back_to_non_moving = true;
1700      if (kVerboseMode) {
1701        LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
1702                  << to_space_bytes_skipped_.LoadSequentiallyConsistent()
1703                  << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
1704      }
1705      fall_back_to_non_moving = true;
1706      to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
1707                                               &non_moving_space_bytes_allocated, nullptr, &dummy);
1708      CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed";
1709      bytes_allocated = non_moving_space_bytes_allocated;
1710      // Mark it in the mark bitmap.
1711      accounting::ContinuousSpaceBitmap* mark_bitmap =
1712          heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1713      CHECK(mark_bitmap != nullptr);
1714      CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
1715    }
1716  }
1717  DCHECK(to_ref != nullptr);
1718
1719  // Attempt to install the forward pointer. This is in a loop as the
1720  // lock word atomic write can fail.
1721  while (true) {
1722    // Copy the object. TODO: copy only the lockword in the second iteration and on?
1723    memcpy(to_ref, from_ref, obj_size);
1724
1725    LockWord old_lock_word = to_ref->GetLockWord(false);
1726
1727    if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
1728      // Lost the race. Another thread (either GC or mutator) stored
1729      // the forwarding pointer first. Make the lost copy (to_ref)
1730      // look like a valid but dead (dummy) object and keep it for
1731      // future reuse.
1732      FillWithDummyObject(to_ref, bytes_allocated);
1733      if (!fall_back_to_non_moving) {
1734        DCHECK(region_space_->IsInToSpace(to_ref));
1735        if (bytes_allocated > space::RegionSpace::kRegionSize) {
1736          // Free the large alloc.
1737          region_space_->FreeLarge(to_ref, bytes_allocated);
1738        } else {
1739          // Record the lost copy for later reuse.
1740          heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1741          to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1742          to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
1743          MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1744          skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
1745                                                    reinterpret_cast<uint8_t*>(to_ref)));
1746        }
1747      } else {
1748        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1749        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1750        // Free the non-moving-space chunk.
1751        accounting::ContinuousSpaceBitmap* mark_bitmap =
1752            heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1753        CHECK(mark_bitmap != nullptr);
1754        CHECK(mark_bitmap->Clear(to_ref));
1755        heap_->non_moving_space_->Free(Thread::Current(), to_ref);
1756      }
1757
1758      // Get the winner's forward ptr.
1759      mirror::Object* lost_fwd_ptr = to_ref;
1760      to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
1761      CHECK(to_ref != nullptr);
1762      CHECK_NE(to_ref, lost_fwd_ptr);
1763      CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref));
1764      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1765      return to_ref;
1766    }
1767
1768    // Set the gray ptr.
1769    if (kUseBakerReadBarrier) {
1770      to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr());
1771    }
1772
1773    LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
1774
1775    // Try to atomically write the fwd ptr.
1776    bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word);
1777    if (LIKELY(success)) {
1778      // The CAS succeeded.
1779      objects_moved_.FetchAndAddSequentiallyConsistent(1);
1780      bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size);
1781      if (LIKELY(!fall_back_to_non_moving)) {
1782        DCHECK(region_space_->IsInToSpace(to_ref));
1783      } else {
1784        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1785        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1786      }
1787      if (kUseBakerReadBarrier) {
1788        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1789      }
1790      DCHECK(GetFwdPtr(from_ref) == to_ref);
1791      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1792      PushOntoMarkStack(to_ref);
1793      return to_ref;
1794    } else {
1795      // The CAS failed. It may have lost the race or may have failed
1796      // due to monitor/hashcode ops. Either way, retry.
1797    }
1798  }
1799}
1800
1801mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
1802  DCHECK(from_ref != nullptr);
1803  space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1804  if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
1805    // It's already marked.
1806    return from_ref;
1807  }
1808  mirror::Object* to_ref;
1809  if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
1810    to_ref = GetFwdPtr(from_ref);
1811    DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
1812           heap_->non_moving_space_->HasAddress(to_ref))
1813        << "from_ref=" << from_ref << " to_ref=" << to_ref;
1814  } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
1815    if (region_space_bitmap_->Test(from_ref)) {
1816      to_ref = from_ref;
1817    } else {
1818      to_ref = nullptr;
1819    }
1820  } else {
1821    // from_ref is in a non-moving space.
1822    if (immune_region_.ContainsObject(from_ref)) {
1823      accounting::ContinuousSpaceBitmap* cc_bitmap =
1824          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1825      DCHECK(cc_bitmap != nullptr)
1826          << "An immune space object must have a bitmap";
1827      if (kIsDebugBuild) {
1828        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1829            << "Immune space object must be already marked";
1830      }
1831      if (cc_bitmap->Test(from_ref)) {
1832        // Already marked.
1833        to_ref = from_ref;
1834      } else {
1835        // Newly marked.
1836        to_ref = nullptr;
1837      }
1838    } else {
1839      // Non-immune non-moving space. Use the mark bitmap.
1840      accounting::ContinuousSpaceBitmap* mark_bitmap =
1841          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1842      accounting::LargeObjectBitmap* los_bitmap =
1843          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1844      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1845      bool is_los = mark_bitmap == nullptr;
1846      if (!is_los && mark_bitmap->Test(from_ref)) {
1847        // Already marked.
1848        to_ref = from_ref;
1849      } else if (is_los && los_bitmap->Test(from_ref)) {
1850        // Already marked in LOS.
1851        to_ref = from_ref;
1852      } else {
1853        // Not marked.
1854        if (IsOnAllocStack(from_ref)) {
1855          // If on the allocation stack, it's considered marked.
1856          to_ref = from_ref;
1857        } else {
1858          // Not marked.
1859          to_ref = nullptr;
1860        }
1861      }
1862    }
1863  }
1864  return to_ref;
1865}
1866
1867bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
1868  QuasiAtomic::ThreadFenceAcquire();
1869  accounting::ObjectStack* alloc_stack = GetAllocationStack();
1870  return alloc_stack->Contains(ref);
1871}
1872
1873mirror::Object* ConcurrentCopying::Mark(mirror::Object* from_ref) {
1874  if (from_ref == nullptr) {
1875    return nullptr;
1876  }
1877  DCHECK(from_ref != nullptr);
1878  DCHECK(heap_->collector_type_ == kCollectorTypeCC);
1879  if (kUseBakerReadBarrier && !is_active_) {
1880    // In the lock word forward address state, the read barrier bits
1881    // in the lock word are part of the stored forwarding address and
1882    // invalid. This is usually OK as the from-space copy of objects
1883    // aren't accessed by mutators due to the to-space
1884    // invariant. However, during the dex2oat image writing relocation
1885    // and the zygote compaction, objects can be in the forward
1886    // address state (to store the forward/relocation addresses) and
1887    // they can still be accessed and the invalid read barrier bits
1888    // are consulted. If they look like gray but aren't really, the
1889    // read barriers slow path can trigger when it shouldn't. To guard
1890    // against this, return here if the CC collector isn't running.
1891    return from_ref;
1892  }
1893  DCHECK(region_space_ != nullptr) << "Read barrier slow path taken when CC isn't running?";
1894  space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1895  if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
1896    // It's already marked.
1897    return from_ref;
1898  }
1899  mirror::Object* to_ref;
1900  if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
1901    to_ref = GetFwdPtr(from_ref);
1902    if (kUseBakerReadBarrier) {
1903      DCHECK(to_ref != ReadBarrier::GrayPtr()) << "from_ref=" << from_ref << " to_ref=" << to_ref;
1904    }
1905    if (to_ref == nullptr) {
1906      // It isn't marked yet. Mark it by copying it to the to-space.
1907      to_ref = Copy(from_ref);
1908    }
1909    DCHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
1910        << "from_ref=" << from_ref << " to_ref=" << to_ref;
1911  } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
1912    // This may or may not succeed, which is ok.
1913    if (kUseBakerReadBarrier) {
1914      from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1915    }
1916    if (region_space_bitmap_->AtomicTestAndSet(from_ref)) {
1917      // Already marked.
1918      to_ref = from_ref;
1919    } else {
1920      // Newly marked.
1921      to_ref = from_ref;
1922      if (kUseBakerReadBarrier) {
1923        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1924      }
1925      PushOntoMarkStack(to_ref);
1926    }
1927  } else {
1928    // from_ref is in a non-moving space.
1929    DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
1930    if (immune_region_.ContainsObject(from_ref)) {
1931      accounting::ContinuousSpaceBitmap* cc_bitmap =
1932          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1933      DCHECK(cc_bitmap != nullptr)
1934          << "An immune space object must have a bitmap";
1935      if (kIsDebugBuild) {
1936        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1937            << "Immune space object must be already marked";
1938      }
1939      // This may or may not succeed, which is ok.
1940      if (kUseBakerReadBarrier) {
1941        from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1942      }
1943      if (cc_bitmap->AtomicTestAndSet(from_ref)) {
1944        // Already marked.
1945        to_ref = from_ref;
1946      } else {
1947        // Newly marked.
1948        to_ref = from_ref;
1949        if (kUseBakerReadBarrier) {
1950          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1951        }
1952        PushOntoMarkStack(to_ref);
1953      }
1954    } else {
1955      // Use the mark bitmap.
1956      accounting::ContinuousSpaceBitmap* mark_bitmap =
1957          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1958      accounting::LargeObjectBitmap* los_bitmap =
1959          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1960      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1961      bool is_los = mark_bitmap == nullptr;
1962      if (!is_los && mark_bitmap->Test(from_ref)) {
1963        // Already marked.
1964        to_ref = from_ref;
1965        if (kUseBakerReadBarrier) {
1966          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
1967                 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1968        }
1969      } else if (is_los && los_bitmap->Test(from_ref)) {
1970        // Already marked in LOS.
1971        to_ref = from_ref;
1972        if (kUseBakerReadBarrier) {
1973          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
1974                 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1975        }
1976      } else {
1977        // Not marked.
1978        if (IsOnAllocStack(from_ref)) {
1979          // If it's on the allocation stack, it's considered marked. Keep it white.
1980          to_ref = from_ref;
1981          // Objects on the allocation stack need not be marked.
1982          if (!is_los) {
1983            DCHECK(!mark_bitmap->Test(to_ref));
1984          } else {
1985            DCHECK(!los_bitmap->Test(to_ref));
1986          }
1987          if (kUseBakerReadBarrier) {
1988            DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
1989          }
1990        } else {
1991          // Not marked or on the allocation stack. Try to mark it.
1992          // This may or may not succeed, which is ok.
1993          if (kUseBakerReadBarrier) {
1994            from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1995          }
1996          if (!is_los && mark_bitmap->AtomicTestAndSet(from_ref)) {
1997            // Already marked.
1998            to_ref = from_ref;
1999          } else if (is_los && los_bitmap->AtomicTestAndSet(from_ref)) {
2000            // Already marked in LOS.
2001            to_ref = from_ref;
2002          } else {
2003            // Newly marked.
2004            to_ref = from_ref;
2005            if (kUseBakerReadBarrier) {
2006              DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
2007            }
2008            PushOntoMarkStack(to_ref);
2009          }
2010        }
2011      }
2012    }
2013  }
2014  return to_ref;
2015}
2016
2017void ConcurrentCopying::FinishPhase() {
2018  {
2019    MutexLock mu(Thread::Current(), mark_stack_lock_);
2020    CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2021  }
2022  region_space_ = nullptr;
2023  {
2024    MutexLock mu(Thread::Current(), skipped_blocks_lock_);
2025    skipped_blocks_map_.clear();
2026  }
2027  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2028  heap_->ClearMarkedObjects();
2029}
2030
2031bool ConcurrentCopying::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* field) {
2032  mirror::Object* from_ref = field->AsMirrorPtr();
2033  mirror::Object* to_ref = IsMarked(from_ref);
2034  if (to_ref == nullptr) {
2035    return false;
2036  }
2037  if (from_ref != to_ref) {
2038    QuasiAtomic::ThreadFenceRelease();
2039    field->Assign(to_ref);
2040    QuasiAtomic::ThreadFenceSequentiallyConsistent();
2041  }
2042  return true;
2043}
2044
2045mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
2046  return Mark(from_ref);
2047}
2048
2049void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
2050  heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
2051}
2052
2053void ConcurrentCopying::ProcessReferences(Thread* self) {
2054  TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
2055  // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
2056  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2057  GetHeap()->GetReferenceProcessor()->ProcessReferences(
2058      true /*concurrent*/, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
2059}
2060
2061void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
2062  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
2063  region_space_->RevokeAllThreadLocalBuffers();
2064}
2065
2066}  // namespace collector
2067}  // namespace gc
2068}  // namespace art
2069