concurrent_copying.cc revision 2cd334ae2d4287216523882f0d298cf3901b7ab1
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "concurrent_copying.h"
18
19#include "gc/accounting/heap_bitmap-inl.h"
20#include "gc/accounting/space_bitmap-inl.h"
21#include "gc/space/image_space.h"
22#include "gc/space/space.h"
23#include "intern_table.h"
24#include "mirror/art_field-inl.h"
25#include "mirror/object-inl.h"
26#include "scoped_thread_state_change.h"
27#include "thread-inl.h"
28#include "thread_list.h"
29#include "well_known_classes.h"
30
31namespace art {
32namespace gc {
33namespace collector {
34
35ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix)
36    : GarbageCollector(heap,
37                       name_prefix + (name_prefix.empty() ? "" : " ") +
38                       "concurrent copying + mark sweep"),
39      region_space_(nullptr), gc_barrier_(new Barrier(0)), mark_queue_(2 * MB),
40      is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false),
41      heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0),
42      skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
43      rb_table_(heap_->GetReadBarrierTable()),
44      force_evacuate_all_(false) {
45  static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
46                "The region space size and the read barrier table region size must match");
47  cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap));
48  {
49    Thread* self = Thread::Current();
50    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
51    // Cache this so that we won't have to lock heap_bitmap_lock_ in
52    // Mark() which could cause a nested lock on heap_bitmap_lock_
53    // when GC causes a RB while doing GC or a lock order violation
54    // (class_linker_lock_ and heap_bitmap_lock_).
55    heap_mark_bitmap_ = heap->GetMarkBitmap();
56  }
57}
58
59ConcurrentCopying::~ConcurrentCopying() {
60}
61
62void ConcurrentCopying::RunPhases() {
63  CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
64  CHECK(!is_active_);
65  is_active_ = true;
66  Thread* self = Thread::Current();
67  Locks::mutator_lock_->AssertNotHeld(self);
68  {
69    ReaderMutexLock mu(self, *Locks::mutator_lock_);
70    InitializePhase();
71  }
72  FlipThreadRoots();
73  {
74    ReaderMutexLock mu(self, *Locks::mutator_lock_);
75    MarkingPhase();
76  }
77  // Verify no from space refs. This causes a pause.
78  if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) {
79    TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
80    ScopedPause pause(this);
81    CheckEmptyMarkQueue();
82    if (kVerboseMode) {
83      LOG(INFO) << "Verifying no from-space refs";
84    }
85    VerifyNoFromSpaceReferences();
86    CheckEmptyMarkQueue();
87  }
88  {
89    ReaderMutexLock mu(self, *Locks::mutator_lock_);
90    ReclaimPhase();
91  }
92  FinishPhase();
93  CHECK(is_active_);
94  is_active_ = false;
95}
96
97void ConcurrentCopying::BindBitmaps() {
98  Thread* self = Thread::Current();
99  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
100  // Mark all of the spaces we never collect as immune.
101  for (const auto& space : heap_->GetContinuousSpaces()) {
102    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
103        || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
104      CHECK(space->IsZygoteSpace() || space->IsImageSpace());
105      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
106      const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" :
107          "cc zygote space bitmap";
108      // TODO: try avoiding using bitmaps for image/zygote to save space.
109      accounting::ContinuousSpaceBitmap* bitmap =
110          accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity());
111      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
112      cc_bitmaps_.push_back(bitmap);
113    } else if (space == region_space_) {
114      accounting::ContinuousSpaceBitmap* bitmap =
115          accounting::ContinuousSpaceBitmap::Create("cc region space bitmap",
116                                                    space->Begin(), space->Capacity());
117      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
118      cc_bitmaps_.push_back(bitmap);
119      region_space_bitmap_ = bitmap;
120    }
121  }
122}
123
124void ConcurrentCopying::InitializePhase() {
125  TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
126  if (kVerboseMode) {
127    LOG(INFO) << "GC InitializePhase";
128    LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
129              << reinterpret_cast<void*>(region_space_->Limit());
130  }
131  CHECK(mark_queue_.IsEmpty());
132  immune_region_.Reset();
133  bytes_moved_.StoreRelaxed(0);
134  objects_moved_.StoreRelaxed(0);
135  if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
136      GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
137      GetCurrentIteration()->GetClearSoftReferences()) {
138    force_evacuate_all_ = true;
139  } else {
140    force_evacuate_all_ = false;
141  }
142  BindBitmaps();
143  if (kVerboseMode) {
144    LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
145    LOG(INFO) << "Immune region: " << immune_region_.Begin() << "-" << immune_region_.End();
146    LOG(INFO) << "GC end of InitializePhase";
147  }
148}
149
150// Used to switch the thread roots of a thread from from-space refs to to-space refs.
151class ThreadFlipVisitor : public Closure {
152 public:
153  explicit ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
154      : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
155  }
156
157  virtual void Run(Thread* thread) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
158    // Note: self is not necessarily equal to thread since thread may be suspended.
159    Thread* self = Thread::Current();
160    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
161        << thread->GetState() << " thread " << thread << " self " << self;
162    if (use_tlab_ && thread->HasTlab()) {
163      if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
164        // This must come before the revoke.
165        size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
166        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
167        reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
168            FetchAndAddSequentiallyConsistent(thread_local_objects);
169      } else {
170        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
171      }
172    }
173    if (kUseThreadLocalAllocationStack) {
174      thread->RevokeThreadLocalAllocationStack();
175    }
176    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
177    thread->VisitRoots(ConcurrentCopying::ProcessRootCallback, concurrent_copying_);
178    concurrent_copying_->GetBarrier().Pass(self);
179  }
180
181 private:
182  ConcurrentCopying* const concurrent_copying_;
183  const bool use_tlab_;
184};
185
186// Called back from Runtime::FlipThreadRoots() during a pause.
187class FlipCallback : public Closure {
188 public:
189  explicit FlipCallback(ConcurrentCopying* concurrent_copying)
190      : concurrent_copying_(concurrent_copying) {
191  }
192
193  virtual void Run(Thread* thread) OVERRIDE EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) {
194    ConcurrentCopying* cc = concurrent_copying_;
195    TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
196    // Note: self is not necessarily equal to thread since thread may be suspended.
197    Thread* self = Thread::Current();
198    CHECK(thread == self);
199    Locks::mutator_lock_->AssertExclusiveHeld(self);
200    cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
201    cc->SwapStacks(self);
202    if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
203      cc->RecordLiveStackFreezeSize(self);
204      cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
205      cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
206    }
207    cc->is_marking_ = true;
208    if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
209      CHECK(Runtime::Current()->IsCompiler());
210      TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
211      Runtime::Current()->VisitTransactionRoots(ConcurrentCopying::ProcessRootCallback, cc);
212    }
213  }
214
215 private:
216  ConcurrentCopying* const concurrent_copying_;
217};
218
219// Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
220void ConcurrentCopying::FlipThreadRoots() {
221  TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
222  if (kVerboseMode) {
223    LOG(INFO) << "time=" << region_space_->Time();
224    region_space_->DumpNonFreeRegions(LOG(INFO));
225  }
226  Thread* self = Thread::Current();
227  Locks::mutator_lock_->AssertNotHeld(self);
228  gc_barrier_->Init(self, 0);
229  ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
230  FlipCallback flip_callback(this);
231  size_t barrier_count = Runtime::Current()->FlipThreadRoots(
232      &thread_flip_visitor, &flip_callback, this);
233  {
234    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
235    gc_barrier_->Increment(self, barrier_count);
236  }
237  is_asserting_to_space_invariant_ = true;
238  QuasiAtomic::ThreadFenceForConstructor();
239  if (kVerboseMode) {
240    LOG(INFO) << "time=" << region_space_->Time();
241    region_space_->DumpNonFreeRegions(LOG(INFO));
242    LOG(INFO) << "GC end of FlipThreadRoots";
243  }
244}
245
246void ConcurrentCopying::SwapStacks(Thread* self) {
247  heap_->SwapStacks(self);
248}
249
250void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
251  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
252  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
253}
254
255// Used to visit objects in the immune spaces.
256class ConcurrentCopyingImmuneSpaceObjVisitor {
257 public:
258  explicit ConcurrentCopyingImmuneSpaceObjVisitor(ConcurrentCopying* cc)
259      : collector_(cc) {}
260
261  void operator()(mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
262      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
263    DCHECK(obj != nullptr);
264    DCHECK(collector_->immune_region_.ContainsObject(obj));
265    accounting::ContinuousSpaceBitmap* cc_bitmap =
266        collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
267    DCHECK(cc_bitmap != nullptr)
268        << "An immune space object must have a bitmap";
269    if (kIsDebugBuild) {
270      DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj))
271          << "Immune space object must be already marked";
272    }
273    // This may or may not succeed, which is ok.
274    if (kUseBakerReadBarrier) {
275      obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
276    }
277    if (cc_bitmap->AtomicTestAndSet(obj)) {
278      // Already marked. Do nothing.
279    } else {
280      // Newly marked. Set the gray bit and push it onto the mark stack.
281      CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
282      collector_->PushOntoMarkStack<true>(obj);
283    }
284  }
285
286 private:
287  ConcurrentCopying* collector_;
288};
289
290class EmptyCheckpoint : public Closure {
291 public:
292  explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying)
293      : concurrent_copying_(concurrent_copying) {
294  }
295
296  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
297    // Note: self is not necessarily equal to thread since thread may be suspended.
298    Thread* self = Thread::Current();
299    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
300        << thread->GetState() << " thread " << thread << " self " << self;
301    concurrent_copying_->GetBarrier().Pass(self);
302  }
303
304 private:
305  ConcurrentCopying* const concurrent_copying_;
306};
307
308// Concurrently mark roots that are guarded by read barriers and process the mark stack.
309void ConcurrentCopying::MarkingPhase() {
310  TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
311  if (kVerboseMode) {
312    LOG(INFO) << "GC MarkingPhase";
313  }
314  {
315    // Mark the image root. The WB-based collectors do not need to
316    // scan the image objects from roots by relying on the card table,
317    // but it's necessary for the RB to-space invariant to hold.
318    TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings());
319    gc::space::ImageSpace* image = heap_->GetImageSpace();
320    if (image != nullptr) {
321      mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots();
322      mirror::Object* marked_image_root = Mark(image_root);
323      CHECK_EQ(image_root, marked_image_root) << "An image object does not move";
324      if (ReadBarrier::kEnableToSpaceInvariantChecks) {
325        AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root);
326      }
327    }
328  }
329  {
330    TimingLogger::ScopedTiming split2("VisitConstantRoots", GetTimings());
331    Runtime::Current()->VisitConstantRoots(ProcessRootCallback, this);
332  }
333  {
334    TimingLogger::ScopedTiming split3("VisitInternTableRoots", GetTimings());
335    Runtime::Current()->GetInternTable()->VisitRoots(ProcessRootCallback,
336                                                     this, kVisitRootFlagAllRoots);
337  }
338  {
339    TimingLogger::ScopedTiming split4("VisitClassLinkerRoots", GetTimings());
340    Runtime::Current()->GetClassLinker()->VisitRoots(ProcessRootCallback,
341                                                     this, kVisitRootFlagAllRoots);
342  }
343  {
344    // TODO: don't visit the transaction roots if it's not active.
345    TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
346    Runtime::Current()->VisitNonThreadRoots(ProcessRootCallback, this);
347  }
348
349  // Immune spaces.
350  for (auto& space : heap_->GetContinuousSpaces()) {
351    if (immune_region_.ContainsSpace(space)) {
352      DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
353      accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
354      ConcurrentCopyingImmuneSpaceObjVisitor visitor(this);
355      live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
356                                    reinterpret_cast<uintptr_t>(space->Limit()),
357                                    visitor);
358    }
359  }
360
361  Thread* self = Thread::Current();
362  {
363    TimingLogger::ScopedTiming split6("ProcessMarkStack", GetTimings());
364    // Process the mark stack and issue an empty check point. If the
365    // mark stack is still empty after the check point, we're
366    // done. Otherwise, repeat.
367    ProcessMarkStack();
368    size_t count = 0;
369    while (!ProcessMarkStack()) {
370      ++count;
371      if (kVerboseMode) {
372        LOG(INFO) << "Issue an empty check point. " << count;
373      }
374      IssueEmptyCheckpoint();
375    }
376    // Need to ensure the mark stack is empty before reference
377    // processing to get rid of non-reference gray objects.
378    CheckEmptyMarkQueue();
379    // Enable the GetReference slow path and disallow access to the system weaks.
380    GetHeap()->GetReferenceProcessor()->EnableSlowPath();
381    Runtime::Current()->DisallowNewSystemWeaks();
382    QuasiAtomic::ThreadFenceForConstructor();
383    // Lock-unlock the system weak locks so that there's no thread in
384    // the middle of accessing system weaks.
385    Runtime::Current()->EnsureNewSystemWeaksDisallowed();
386    // Note: Do not issue a checkpoint from here to the
387    // SweepSystemWeaks call or else a deadlock due to
388    // WaitHoldingLocks() would occur.
389    if (kVerboseMode) {
390      LOG(INFO) << "Enabled the ref proc slow path & disabled access to system weaks.";
391      LOG(INFO) << "ProcessReferences";
392    }
393    ProcessReferences(self, true);
394    CheckEmptyMarkQueue();
395    if (kVerboseMode) {
396      LOG(INFO) << "SweepSystemWeaks";
397    }
398    SweepSystemWeaks(self);
399    if (kVerboseMode) {
400      LOG(INFO) << "SweepSystemWeaks done";
401    }
402    // Because hash_set::Erase() can call the hash function for
403    // arbitrary elements in the weak intern table in
404    // InternTable::Table::SweepWeaks(), the above SweepSystemWeaks()
405    // call may have marked some objects (strings) alive. So process
406    // the mark stack here once again.
407    ProcessMarkStack();
408    CheckEmptyMarkQueue();
409    // Disable marking.
410    if (kUseTableLookupReadBarrier) {
411      heap_->rb_table_->ClearAll();
412      DCHECK(heap_->rb_table_->IsAllCleared());
413    }
414    is_mark_queue_push_disallowed_.StoreSequentiallyConsistent(1);
415    is_marking_ = false;
416    if (kVerboseMode) {
417      LOG(INFO) << "AllowNewSystemWeaks";
418    }
419    Runtime::Current()->AllowNewSystemWeaks();
420    CheckEmptyMarkQueue();
421  }
422
423  if (kVerboseMode) {
424    LOG(INFO) << "GC end of MarkingPhase";
425  }
426}
427
428void ConcurrentCopying::IssueEmptyCheckpoint() {
429  Thread* self = Thread::Current();
430  EmptyCheckpoint check_point(this);
431  ThreadList* thread_list = Runtime::Current()->GetThreadList();
432  gc_barrier_->Init(self, 0);
433  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
434  // Release locks then wait for all mutator threads to pass the barrier.
435  Locks::mutator_lock_->SharedUnlock(self);
436  {
437    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
438    gc_barrier_->Increment(self, barrier_count);
439  }
440  Locks::mutator_lock_->SharedLock(self);
441}
442
443mirror::Object* ConcurrentCopying::PopOffMarkStack() {
444  return mark_queue_.Dequeue();
445}
446
447template<bool kThreadSafe>
448void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
449  CHECK_EQ(is_mark_queue_push_disallowed_.LoadRelaxed(), 0)
450      << " " << to_ref << " " << PrettyTypeOf(to_ref);
451  if (kThreadSafe) {
452    CHECK(mark_queue_.Enqueue(to_ref)) << "Mark queue overflow";
453  } else {
454    CHECK(mark_queue_.EnqueueThreadUnsafe(to_ref)) << "Mark queue overflow";
455  }
456}
457
458accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
459  return heap_->allocation_stack_.get();
460}
461
462accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
463  return heap_->live_stack_.get();
464}
465
466inline mirror::Object* ConcurrentCopying::GetFwdPtr(mirror::Object* from_ref) {
467  DCHECK(region_space_->IsInFromSpace(from_ref));
468  LockWord lw = from_ref->GetLockWord(false);
469  if (lw.GetState() == LockWord::kForwardingAddress) {
470    mirror::Object* fwd_ptr = reinterpret_cast<mirror::Object*>(lw.ForwardingAddress());
471    CHECK(fwd_ptr != nullptr);
472    return fwd_ptr;
473  } else {
474    return nullptr;
475  }
476}
477
478inline void ConcurrentCopying::SetFwdPtr(mirror::Object* from_ref, mirror::Object* to_ref) {
479  DCHECK(region_space_->IsInFromSpace(from_ref));
480  DCHECK(region_space_->IsInToSpace(to_ref) || heap_->GetNonMovingSpace()->HasAddress(to_ref));
481  LockWord lw = from_ref->GetLockWord(false);
482  DCHECK_NE(lw.GetState(), LockWord::kForwardingAddress);
483  from_ref->SetLockWord(LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref)), false);
484}
485
486// The following visitors are that used to verify that there's no
487// references to the from-space left after marking.
488class ConcurrentCopyingVerifyNoFromSpaceRefsVisitor {
489 public:
490  explicit ConcurrentCopyingVerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
491      : collector_(collector) {}
492
493  void operator()(mirror::Object* ref) const
494      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
495    if (ref == nullptr) {
496      // OK.
497      return;
498    }
499    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
500    if (kUseBakerReadBarrier) {
501      if (collector_->RegionSpace()->IsInToSpace(ref)) {
502        CHECK(ref->GetReadBarrierPointer() == nullptr)
503            << "To-space ref " << ref << " " << PrettyTypeOf(ref)
504            << " has non-white rb_ptr " << ref->GetReadBarrierPointer();
505      } else {
506        CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
507              (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
508               collector_->IsOnAllocStack(ref)))
509            << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref)
510            << " has non-black rb_ptr " << ref->GetReadBarrierPointer()
511            << " but isn't on the alloc stack (and has white rb_ptr)."
512            << " Is it in the non-moving space="
513            << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref));
514      }
515    }
516  }
517
518  static void RootCallback(mirror::Object** root, void *arg, const RootInfo& /*root_info*/)
519      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
520    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
521    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector);
522    DCHECK(root != nullptr);
523    visitor(*root);
524  }
525
526 private:
527  ConcurrentCopying* collector_;
528};
529
530class ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor {
531 public:
532  explicit ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
533      : collector_(collector) {}
534
535  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
536      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
537    mirror::Object* ref =
538        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
539    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
540    visitor(ref);
541  }
542  void operator()(mirror::Class* klass, mirror::Reference* ref) const
543      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
544    CHECK(klass->IsTypeOfReferenceClass());
545    this->operator()(ref, mirror::Reference::ReferentOffset(), false);
546  }
547
548 private:
549  ConcurrentCopying* collector_;
550};
551
552class ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor {
553 public:
554  explicit ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
555      : collector_(collector) {}
556  void operator()(mirror::Object* obj) const
557      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
558    ObjectCallback(obj, collector_);
559  }
560  static void ObjectCallback(mirror::Object* obj, void *arg)
561      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
562    CHECK(obj != nullptr);
563    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
564    space::RegionSpace* region_space = collector->RegionSpace();
565    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
566    ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor visitor(collector);
567    obj->VisitReferences<true>(visitor, visitor);
568    if (kUseBakerReadBarrier) {
569      if (collector->RegionSpace()->IsInToSpace(obj)) {
570        CHECK(obj->GetReadBarrierPointer() == nullptr)
571            << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer();
572      } else {
573        CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
574              (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
575               collector->IsOnAllocStack(obj)))
576            << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj)
577            << " has non-black rb_ptr " << obj->GetReadBarrierPointer()
578            << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space="
579            << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj));
580      }
581    }
582  }
583
584 private:
585  ConcurrentCopying* const collector_;
586};
587
588// Verify there's no from-space references left after the marking phase.
589void ConcurrentCopying::VerifyNoFromSpaceReferences() {
590  Thread* self = Thread::Current();
591  DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
592  ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor visitor(this);
593  // Roots.
594  {
595    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
596    Runtime::Current()->VisitRoots(
597        ConcurrentCopyingVerifyNoFromSpaceRefsVisitor::RootCallback, this);
598  }
599  // The to-space.
600  region_space_->WalkToSpace(ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor::ObjectCallback,
601                             this);
602  // Non-moving spaces.
603  {
604    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
605    heap_->GetMarkBitmap()->Visit(visitor);
606  }
607  // The alloc stack.
608  {
609    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
610    for (mirror::Object** it = heap_->allocation_stack_->Begin(),
611             **end = heap_->allocation_stack_->End(); it < end; ++it) {
612      mirror::Object* obj = *it;
613      if (obj != nullptr && obj->GetClass() != nullptr) {
614        // TODO: need to call this only if obj is alive?
615        ref_visitor(obj);
616        visitor(obj);
617      }
618    }
619  }
620  // TODO: LOS. But only refs in LOS are classes.
621}
622
623// The following visitors are used to assert the to-space invariant.
624class ConcurrentCopyingAssertToSpaceInvariantRefsVisitor {
625 public:
626  explicit ConcurrentCopyingAssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
627      : collector_(collector) {}
628
629  void operator()(mirror::Object* ref) const
630      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
631    if (ref == nullptr) {
632      // OK.
633      return;
634    }
635    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
636  }
637  static void RootCallback(mirror::Object** root, void *arg, const RootInfo& /*root_info*/)
638      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
639    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
640    ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector);
641    DCHECK(root != nullptr);
642    visitor(*root);
643  }
644
645 private:
646  ConcurrentCopying* collector_;
647};
648
649class ConcurrentCopyingAssertToSpaceInvariantFieldVisitor {
650 public:
651  explicit ConcurrentCopyingAssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
652      : collector_(collector) {}
653
654  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
655      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
656    mirror::Object* ref =
657        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
658    ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
659    visitor(ref);
660  }
661  void operator()(mirror::Class* klass, mirror::Reference* /* ref */) const
662      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
663    CHECK(klass->IsTypeOfReferenceClass());
664  }
665
666 private:
667  ConcurrentCopying* collector_;
668};
669
670class ConcurrentCopyingAssertToSpaceInvariantObjectVisitor {
671 public:
672  explicit ConcurrentCopyingAssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
673      : collector_(collector) {}
674  void operator()(mirror::Object* obj) const
675      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
676    ObjectCallback(obj, collector_);
677  }
678  static void ObjectCallback(mirror::Object* obj, void *arg)
679      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
680    CHECK(obj != nullptr);
681    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
682    space::RegionSpace* region_space = collector->RegionSpace();
683    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
684    collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
685    ConcurrentCopyingAssertToSpaceInvariantFieldVisitor visitor(collector);
686    obj->VisitReferences<true>(visitor, visitor);
687  }
688
689 private:
690  ConcurrentCopying* collector_;
691};
692
693bool ConcurrentCopying::ProcessMarkStack() {
694  if (kVerboseMode) {
695    LOG(INFO) << "ProcessMarkStack. ";
696  }
697  size_t count = 0;
698  mirror::Object* to_ref;
699  while ((to_ref = PopOffMarkStack()) != nullptr) {
700    ++count;
701    DCHECK(!region_space_->IsInFromSpace(to_ref));
702    if (kUseBakerReadBarrier) {
703      DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
704          << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
705          << " is_marked=" << IsMarked(to_ref);
706    }
707    // Scan ref fields.
708    Scan(to_ref);
709    // Mark the gray ref as white or black.
710    if (kUseBakerReadBarrier) {
711      DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
712          << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
713          << " is_marked=" << IsMarked(to_ref);
714    }
715    if (to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
716        to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr &&
717        !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())) {
718      // Leave References gray so that GetReferent() will trigger RB.
719      CHECK(to_ref->AsReference()->IsEnqueued()) << "Left unenqueued ref gray " << to_ref;
720    } else {
721      if (kUseBakerReadBarrier) {
722        if (region_space_->IsInToSpace(to_ref)) {
723          // If to-space, change from gray to white.
724          bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
725                                                             ReadBarrier::WhitePtr());
726          CHECK(success) << "Must succeed as we won the race.";
727          CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
728        } else {
729          // If non-moving space/unevac from space, change from gray
730          // to black. We can't change gray to white because it's not
731          // safe to use CAS if two threads change values in opposite
732          // directions (A->B and B->A). So, we change it to black to
733          // indicate non-moving objects that have been marked
734          // through. Note we'd need to change from black to white
735          // later (concurrently).
736          bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
737                                                             ReadBarrier::BlackPtr());
738          CHECK(success) << "Must succeed as we won the race.";
739          CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
740        }
741      }
742    }
743    if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) {
744      ConcurrentCopyingAssertToSpaceInvariantObjectVisitor visitor(this);
745      visitor(to_ref);
746    }
747  }
748  // Return true if the stack was empty.
749  return count == 0;
750}
751
752void ConcurrentCopying::CheckEmptyMarkQueue() {
753  if (!mark_queue_.IsEmpty()) {
754    while (!mark_queue_.IsEmpty()) {
755      mirror::Object* obj = mark_queue_.Dequeue();
756      if (kUseBakerReadBarrier) {
757        mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
758        LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr
759                  << " is_marked=" << IsMarked(obj);
760      } else {
761        LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj)
762                  << " is_marked=" << IsMarked(obj);
763      }
764    }
765    LOG(FATAL) << "mark queue is not empty";
766  }
767}
768
769void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
770  TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
771  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
772  Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
773}
774
775void ConcurrentCopying::Sweep(bool swap_bitmaps) {
776  {
777    TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
778    accounting::ObjectStack* live_stack = heap_->GetLiveStack();
779    if (kEnableFromSpaceAccountingCheck) {
780      CHECK_GE(live_stack_freeze_size_, live_stack->Size());
781    }
782    heap_->MarkAllocStackAsLive(live_stack);
783    live_stack->Reset();
784  }
785  CHECK(mark_queue_.IsEmpty());
786  TimingLogger::ScopedTiming split("Sweep", GetTimings());
787  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
788    if (space->IsContinuousMemMapAllocSpace()) {
789      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
790      if (space == region_space_ || immune_region_.ContainsSpace(space)) {
791        continue;
792      }
793      TimingLogger::ScopedTiming split2(
794          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
795      RecordFree(alloc_space->Sweep(swap_bitmaps));
796    }
797  }
798  SweepLargeObjects(swap_bitmaps);
799}
800
801void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
802  TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
803  RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
804}
805
806class ConcurrentCopyingClearBlackPtrsVisitor {
807 public:
808  explicit ConcurrentCopyingClearBlackPtrsVisitor(ConcurrentCopying* cc)
809      : collector_(cc) {}
810  void operator()(mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
811      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
812    DCHECK(obj != nullptr);
813    CHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj;
814    CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj;
815    obj->SetReadBarrierPointer(ReadBarrier::WhitePtr());
816    CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
817  }
818
819 private:
820  ConcurrentCopying* const collector_;
821};
822
823// Clear the black ptrs in non-moving objects back to white.
824void ConcurrentCopying::ClearBlackPtrs() {
825  CHECK(kUseBakerReadBarrier);
826  TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings());
827  ConcurrentCopyingClearBlackPtrsVisitor visitor(this);
828  for (auto& space : heap_->GetContinuousSpaces()) {
829    if (space == region_space_) {
830      continue;
831    }
832    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
833    if (kVerboseMode) {
834      LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap;
835    }
836    mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
837                                  reinterpret_cast<uintptr_t>(space->Limit()),
838                                  visitor);
839  }
840  space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
841  large_object_space->GetMarkBitmap()->VisitMarkedRange(
842      reinterpret_cast<uintptr_t>(large_object_space->Begin()),
843      reinterpret_cast<uintptr_t>(large_object_space->End()),
844      visitor);
845  // Objects on the allocation stack?
846  if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) {
847    size_t count = GetAllocationStack()->Size();
848    mirror::Object** it = GetAllocationStack()->Begin();
849    mirror::Object** end = GetAllocationStack()->End();
850    for (size_t i = 0; i < count; ++i, ++it) {
851      CHECK(it < end);
852      mirror::Object* obj = *it;
853      if (obj != nullptr) {
854        // Must have been cleared above.
855        CHECK(obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr()) << obj;
856      }
857    }
858  }
859}
860
861void ConcurrentCopying::ReclaimPhase() {
862  TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
863  if (kVerboseMode) {
864    LOG(INFO) << "GC ReclaimPhase";
865  }
866  Thread* self = Thread::Current();
867
868  {
869    // Double-check that the mark stack is empty.
870    // Note: need to set this after VerifyNoFromSpaceRef().
871    is_asserting_to_space_invariant_ = false;
872    QuasiAtomic::ThreadFenceForConstructor();
873    if (kVerboseMode) {
874      LOG(INFO) << "Issue an empty check point. ";
875    }
876    IssueEmptyCheckpoint();
877    // Disable the check.
878    is_mark_queue_push_disallowed_.StoreSequentiallyConsistent(0);
879    CheckEmptyMarkQueue();
880  }
881
882  {
883    // Record freed objects.
884    TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
885    // Don't include thread-locals that are in the to-space.
886    uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
887    uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
888    uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
889    uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
890    uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
891    uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
892    if (kEnableFromSpaceAccountingCheck) {
893      CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
894      CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
895    }
896    CHECK_LE(to_objects, from_objects);
897    CHECK_LE(to_bytes, from_bytes);
898    int64_t freed_bytes = from_bytes - to_bytes;
899    int64_t freed_objects = from_objects - to_objects;
900    if (kVerboseMode) {
901      LOG(INFO) << "RecordFree:"
902                << " from_bytes=" << from_bytes << " from_objects=" << from_objects
903                << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
904                << " to_bytes=" << to_bytes << " to_objects=" << to_objects
905                << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
906                << " from_space size=" << region_space_->FromSpaceSize()
907                << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
908                << " to_space size=" << region_space_->ToSpaceSize();
909      LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
910    }
911    RecordFree(ObjectBytePair(freed_objects, freed_bytes));
912    if (kVerboseMode) {
913      LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
914    }
915  }
916
917  {
918    TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings());
919    ComputeUnevacFromSpaceLiveRatio();
920  }
921
922  {
923    TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
924    region_space_->ClearFromSpace();
925  }
926
927  {
928    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
929    if (kUseBakerReadBarrier) {
930      ClearBlackPtrs();
931    }
932    Sweep(false);
933    SwapBitmaps();
934    heap_->UnBindBitmaps();
935
936    // Remove bitmaps for the immune spaces.
937    while (!cc_bitmaps_.empty()) {
938      accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back();
939      cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap);
940      delete cc_bitmap;
941      cc_bitmaps_.pop_back();
942    }
943    region_space_bitmap_ = nullptr;
944  }
945
946  if (kVerboseMode) {
947    LOG(INFO) << "GC end of ReclaimPhase";
948  }
949}
950
951class ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor {
952 public:
953  explicit ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc)
954      : collector_(cc) {}
955  void operator()(mirror::Object* ref) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
956      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
957    DCHECK(ref != nullptr);
958    CHECK(collector_->region_space_bitmap_->Test(ref)) << ref;
959    CHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref;
960    if (kUseBakerReadBarrier) {
961      CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr()) << ref;
962      // Clear the black ptr.
963      ref->SetReadBarrierPointer(ReadBarrier::WhitePtr());
964    }
965    size_t obj_size = ref->SizeOf();
966    size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
967    collector_->region_space_->AddLiveBytes(ref, alloc_size);
968  }
969
970 private:
971  ConcurrentCopying* collector_;
972};
973
974// Compute how much live objects are left in regions.
975void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() {
976  region_space_->AssertAllRegionLiveBytesZeroOrCleared();
977  ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor visitor(this);
978  region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()),
979                                         reinterpret_cast<uintptr_t>(region_space_->Limit()),
980                                         visitor);
981}
982
983// Assert the to-space invariant.
984void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
985                                               mirror::Object* ref) {
986  CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
987  if (is_asserting_to_space_invariant_) {
988    if (region_space_->IsInToSpace(ref)) {
989      // OK.
990      return;
991    } else if (region_space_->IsInUnevacFromSpace(ref)) {
992      CHECK(region_space_bitmap_->Test(ref)) << ref;
993    } else if (region_space_->IsInFromSpace(ref)) {
994      // Not OK. Do extra logging.
995      if (obj != nullptr) {
996        if (kUseBakerReadBarrier) {
997          LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj)
998                    << " holder rb_ptr=" << obj->GetReadBarrierPointer();
999        } else {
1000          LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj);
1001        }
1002        if (region_space_->IsInFromSpace(obj)) {
1003          LOG(INFO) << "holder is in the from-space.";
1004        } else if (region_space_->IsInToSpace(obj)) {
1005          LOG(INFO) << "holder is in the to-space.";
1006        } else if (region_space_->IsInUnevacFromSpace(obj)) {
1007          LOG(INFO) << "holder is in the unevac from-space.";
1008          if (region_space_bitmap_->Test(obj)) {
1009            LOG(INFO) << "holder is marked in the region space bitmap.";
1010          } else {
1011            LOG(INFO) << "holder is not marked in the region space bitmap.";
1012          }
1013        } else {
1014          // In a non-moving space.
1015          if (immune_region_.ContainsObject(obj)) {
1016            LOG(INFO) << "holder is in the image or the zygote space.";
1017            accounting::ContinuousSpaceBitmap* cc_bitmap =
1018                cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
1019            CHECK(cc_bitmap != nullptr)
1020                << "An immune space object must have a bitmap.";
1021            if (cc_bitmap->Test(obj)) {
1022              LOG(INFO) << "holder is marked in the bit map.";
1023            } else {
1024              LOG(INFO) << "holder is NOT marked in the bit map.";
1025            }
1026          } else {
1027            LOG(INFO) << "holder is in a non-moving (or main) space.";
1028            accounting::ContinuousSpaceBitmap* mark_bitmap =
1029                heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1030            accounting::LargeObjectBitmap* los_bitmap =
1031                heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1032            CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1033            bool is_los = mark_bitmap == nullptr;
1034            if (!is_los && mark_bitmap->Test(obj)) {
1035              LOG(INFO) << "holder is marked in the mark bit map.";
1036            } else if (is_los && los_bitmap->Test(obj)) {
1037              LOG(INFO) << "holder is marked in the los bit map.";
1038            } else {
1039              // If ref is on the allocation stack, then it is considered
1040              // mark/alive (but not necessarily on the live stack.)
1041              if (IsOnAllocStack(obj)) {
1042                LOG(INFO) << "holder is on the alloc stack.";
1043              } else {
1044                LOG(INFO) << "holder is not marked or on the alloc stack.";
1045              }
1046            }
1047          }
1048        }
1049        LOG(INFO) << "offset=" << offset.SizeValue();
1050      }
1051      CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1052    } else {
1053      // In a non-moving spaces. Check that the ref is marked.
1054      if (immune_region_.ContainsObject(ref)) {
1055        accounting::ContinuousSpaceBitmap* cc_bitmap =
1056            cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1057        CHECK(cc_bitmap != nullptr)
1058            << "An immune space ref must have a bitmap. " << ref;
1059        if (kUseBakerReadBarrier) {
1060          CHECK(cc_bitmap->Test(ref))
1061              << "Unmarked immune space ref. obj=" << obj << " rb_ptr="
1062              << obj->GetReadBarrierPointer() << " ref=" << ref;
1063        } else {
1064          CHECK(cc_bitmap->Test(ref))
1065              << "Unmarked immune space ref. obj=" << obj << " ref=" << ref;
1066        }
1067      } else {
1068        accounting::ContinuousSpaceBitmap* mark_bitmap =
1069            heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1070        accounting::LargeObjectBitmap* los_bitmap =
1071            heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1072        CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1073        bool is_los = mark_bitmap == nullptr;
1074        if ((!is_los && mark_bitmap->Test(ref)) ||
1075            (is_los && los_bitmap->Test(ref))) {
1076          // OK.
1077        } else {
1078          // If ref is on the allocation stack, then it may not be
1079          // marked live, but considered marked/alive (but not
1080          // necessarily on the live stack).
1081          CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1082                                     << "obj=" << obj << " ref=" << ref;
1083        }
1084      }
1085    }
1086  }
1087}
1088
1089void ConcurrentCopying::ProcessRootCallback(mirror::Object** root, void* arg,
1090                                            const RootInfo& /*root_info*/) {
1091  reinterpret_cast<ConcurrentCopying*>(arg)->Process(root);
1092}
1093
1094// Used to scan ref fields of an object.
1095class ConcurrentCopyingRefFieldsVisitor {
1096 public:
1097  explicit ConcurrentCopyingRefFieldsVisitor(ConcurrentCopying* collector)
1098      : collector_(collector) {}
1099
1100  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1101      const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1102      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1103    collector_->Process(obj, offset);
1104  }
1105
1106  void operator()(mirror::Class* klass, mirror::Reference* ref) const
1107      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
1108    CHECK(klass->IsTypeOfReferenceClass());
1109    collector_->DelayReferenceReferent(klass, ref);
1110  }
1111
1112 private:
1113  ConcurrentCopying* const collector_;
1114};
1115
1116// Scan ref fields of an object.
1117void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1118  DCHECK(!region_space_->IsInFromSpace(to_ref));
1119  ConcurrentCopyingRefFieldsVisitor visitor(this);
1120  to_ref->VisitReferences<true>(visitor, visitor);
1121}
1122
1123// Process a field.
1124inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1125  mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1126  if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1127    return;
1128  }
1129  mirror::Object* to_ref = Mark(ref);
1130  if (to_ref == ref) {
1131    return;
1132  }
1133  // This may fail if the mutator writes to the field at the same time. But it's ok.
1134  mirror::Object* expected_ref = ref;
1135  mirror::Object* new_ref = to_ref;
1136  do {
1137    if (expected_ref !=
1138        obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1139      // It was updated by the mutator.
1140      break;
1141    }
1142  } while (!obj->CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier<false, false, kVerifyNone>(
1143      offset, expected_ref, new_ref));
1144}
1145
1146// Process a root.
1147void ConcurrentCopying::Process(mirror::Object** root) {
1148  mirror::Object* ref = *root;
1149  if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1150    return;
1151  }
1152  mirror::Object* to_ref = Mark(ref);
1153  if (to_ref == ref) {
1154    return;
1155  }
1156  Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1157  mirror::Object* expected_ref = ref;
1158  mirror::Object* new_ref = to_ref;
1159  do {
1160    if (expected_ref != addr->LoadRelaxed()) {
1161      // It was updated by the mutator.
1162      break;
1163    }
1164  } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1165}
1166
1167// Fill the given memory block with a dummy object. Used to fill in a
1168// copy of objects that was lost in race.
1169void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
1170  CHECK(IsAligned<kObjectAlignment>(byte_size));
1171  memset(dummy_obj, 0, byte_size);
1172  mirror::Class* int_array_class = mirror::IntArray::GetArrayClass();
1173  CHECK(int_array_class != nullptr);
1174  AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
1175  size_t component_size = int_array_class->GetComponentSize();
1176  CHECK_EQ(component_size, sizeof(int32_t));
1177  size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
1178  if (data_offset > byte_size) {
1179    // An int array is too big. Use java.lang.Object.
1180    mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object);
1181    AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object);
1182    CHECK_EQ(byte_size, java_lang_Object->GetObjectSize());
1183    dummy_obj->SetClass(java_lang_Object);
1184    CHECK_EQ(byte_size, dummy_obj->SizeOf());
1185  } else {
1186    // Use an int array.
1187    dummy_obj->SetClass(int_array_class);
1188    CHECK(dummy_obj->IsArrayInstance());
1189    int32_t length = (byte_size - data_offset) / component_size;
1190    dummy_obj->AsArray()->SetLength(length);
1191    CHECK_EQ(dummy_obj->AsArray()->GetLength(), length)
1192        << "byte_size=" << byte_size << " length=" << length
1193        << " component_size=" << component_size << " data_offset=" << data_offset;
1194    CHECK_EQ(byte_size, dummy_obj->SizeOf())
1195        << "byte_size=" << byte_size << " length=" << length
1196        << " component_size=" << component_size << " data_offset=" << data_offset;
1197  }
1198}
1199
1200// Reuse the memory blocks that were copy of objects that were lost in race.
1201mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
1202  // Try to reuse the blocks that were unused due to CAS failures.
1203  CHECK(IsAligned<space::RegionSpace::kAlignment>(alloc_size));
1204  Thread* self = Thread::Current();
1205  size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
1206  MutexLock mu(self, skipped_blocks_lock_);
1207  auto it = skipped_blocks_map_.lower_bound(alloc_size);
1208  if (it == skipped_blocks_map_.end()) {
1209    // Not found.
1210    return nullptr;
1211  }
1212  {
1213    size_t byte_size = it->first;
1214    CHECK_GE(byte_size, alloc_size);
1215    if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
1216      // If remainder would be too small for a dummy object, retry with a larger request size.
1217      it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
1218      if (it == skipped_blocks_map_.end()) {
1219        // Not found.
1220        return nullptr;
1221      }
1222      CHECK(IsAligned<space::RegionSpace::kAlignment>(it->first - alloc_size));
1223      CHECK_GE(it->first - alloc_size, min_object_size)
1224          << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
1225    }
1226  }
1227  // Found a block.
1228  CHECK(it != skipped_blocks_map_.end());
1229  size_t byte_size = it->first;
1230  uint8_t* addr = it->second;
1231  CHECK_GE(byte_size, alloc_size);
1232  CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
1233  CHECK(IsAligned<space::RegionSpace::kAlignment>(byte_size));
1234  if (kVerboseMode) {
1235    LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
1236  }
1237  skipped_blocks_map_.erase(it);
1238  memset(addr, 0, byte_size);
1239  if (byte_size > alloc_size) {
1240    // Return the remainder to the map.
1241    CHECK(IsAligned<space::RegionSpace::kAlignment>(byte_size - alloc_size));
1242    CHECK_GE(byte_size - alloc_size, min_object_size);
1243    FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
1244                        byte_size - alloc_size);
1245    CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
1246    skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
1247  }
1248  return reinterpret_cast<mirror::Object*>(addr);
1249}
1250
1251mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) {
1252  DCHECK(region_space_->IsInFromSpace(from_ref));
1253  // No read barrier to avoid nested RB that might violate the to-space
1254  // invariant. Note that from_ref is a from space ref so the SizeOf()
1255  // call will access the from-space meta objects, but it's ok and necessary.
1256  size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>();
1257  size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1258  size_t region_space_bytes_allocated = 0U;
1259  size_t non_moving_space_bytes_allocated = 0U;
1260  size_t bytes_allocated = 0U;
1261  mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
1262      region_space_alloc_size, &region_space_bytes_allocated, nullptr);
1263  bytes_allocated = region_space_bytes_allocated;
1264  if (to_ref != nullptr) {
1265    DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
1266  }
1267  bool fall_back_to_non_moving = false;
1268  if (UNLIKELY(to_ref == nullptr)) {
1269    // Failed to allocate in the region space. Try the skipped blocks.
1270    to_ref = AllocateInSkippedBlock(region_space_alloc_size);
1271    if (to_ref != nullptr) {
1272      // Succeeded to allocate in a skipped block.
1273      if (heap_->use_tlab_) {
1274        // This is necessary for the tlab case as it's not accounted in the space.
1275        region_space_->RecordAlloc(to_ref);
1276      }
1277      bytes_allocated = region_space_alloc_size;
1278    } else {
1279      // Fall back to the non-moving space.
1280      fall_back_to_non_moving = true;
1281      if (kVerboseMode) {
1282        LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
1283                  << to_space_bytes_skipped_.LoadSequentiallyConsistent()
1284                  << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
1285      }
1286      fall_back_to_non_moving = true;
1287      to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
1288                                               &non_moving_space_bytes_allocated, nullptr);
1289      CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed";
1290      bytes_allocated = non_moving_space_bytes_allocated;
1291      // Mark it in the mark bitmap.
1292      accounting::ContinuousSpaceBitmap* mark_bitmap =
1293          heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1294      CHECK(mark_bitmap != nullptr);
1295      CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
1296    }
1297  }
1298  DCHECK(to_ref != nullptr);
1299
1300  // Attempt to install the forward pointer. This is in a loop as the
1301  // lock word atomic write can fail.
1302  while (true) {
1303    // Copy the object. TODO: copy only the lockword in the second iteration and on?
1304    memcpy(to_ref, from_ref, obj_size);
1305    // Set the gray ptr.
1306    if (kUseBakerReadBarrier) {
1307      to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr());
1308    }
1309
1310    LockWord old_lock_word = to_ref->GetLockWord(false);
1311
1312    if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
1313      // Lost the race. Another thread (either GC or mutator) stored
1314      // the forwarding pointer first. Make the lost copy (to_ref)
1315      // look like a valid but dead (dummy) object and keep it for
1316      // future reuse.
1317      FillWithDummyObject(to_ref, bytes_allocated);
1318      if (!fall_back_to_non_moving) {
1319        DCHECK(region_space_->IsInToSpace(to_ref));
1320        if (bytes_allocated > space::RegionSpace::kRegionSize) {
1321          // Free the large alloc.
1322          region_space_->FreeLarge(to_ref, bytes_allocated);
1323        } else {
1324          // Record the lost copy for later reuse.
1325          heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1326          to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1327          to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
1328          MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1329          skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
1330                                                    reinterpret_cast<uint8_t*>(to_ref)));
1331        }
1332      } else {
1333        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1334        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1335        // Free the non-moving-space chunk.
1336        accounting::ContinuousSpaceBitmap* mark_bitmap =
1337            heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1338        CHECK(mark_bitmap != nullptr);
1339        CHECK(mark_bitmap->Clear(to_ref));
1340        heap_->non_moving_space_->Free(Thread::Current(), to_ref);
1341      }
1342
1343      // Get the winner's forward ptr.
1344      mirror::Object* lost_fwd_ptr = to_ref;
1345      to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
1346      CHECK(to_ref != nullptr);
1347      CHECK_NE(to_ref, lost_fwd_ptr);
1348      CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref));
1349      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1350      return to_ref;
1351    }
1352
1353    LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
1354
1355    // Try to atomically write the fwd ptr.
1356    bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word);
1357    if (LIKELY(success)) {
1358      // The CAS succeeded.
1359      objects_moved_.FetchAndAddSequentiallyConsistent(1);
1360      bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size);
1361      if (LIKELY(!fall_back_to_non_moving)) {
1362        DCHECK(region_space_->IsInToSpace(to_ref));
1363      } else {
1364        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1365        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1366      }
1367      if (kUseBakerReadBarrier) {
1368        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1369      }
1370      DCHECK(GetFwdPtr(from_ref) == to_ref);
1371      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1372      PushOntoMarkStack<true>(to_ref);
1373      return to_ref;
1374    } else {
1375      // The CAS failed. It may have lost the race or may have failed
1376      // due to monitor/hashcode ops. Either way, retry.
1377    }
1378  }
1379}
1380
1381mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
1382  DCHECK(from_ref != nullptr);
1383  if (region_space_->IsInToSpace(from_ref)) {
1384    // It's already marked.
1385    return from_ref;
1386  }
1387  mirror::Object* to_ref;
1388  if (region_space_->IsInFromSpace(from_ref)) {
1389    to_ref = GetFwdPtr(from_ref);
1390    DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
1391           heap_->non_moving_space_->HasAddress(to_ref))
1392        << "from_ref=" << from_ref << " to_ref=" << to_ref;
1393  } else if (region_space_->IsInUnevacFromSpace(from_ref)) {
1394    if (region_space_bitmap_->Test(from_ref)) {
1395      to_ref = from_ref;
1396    } else {
1397      to_ref = nullptr;
1398    }
1399  } else {
1400    // from_ref is in a non-moving space.
1401    if (immune_region_.ContainsObject(from_ref)) {
1402      accounting::ContinuousSpaceBitmap* cc_bitmap =
1403          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1404      DCHECK(cc_bitmap != nullptr)
1405          << "An immune space object must have a bitmap";
1406      if (kIsDebugBuild) {
1407        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1408            << "Immune space object must be already marked";
1409      }
1410      if (cc_bitmap->Test(from_ref)) {
1411        // Already marked.
1412        to_ref = from_ref;
1413      } else {
1414        // Newly marked.
1415        to_ref = nullptr;
1416      }
1417    } else {
1418      // Non-immune non-moving space. Use the mark bitmap.
1419      accounting::ContinuousSpaceBitmap* mark_bitmap =
1420          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1421      accounting::LargeObjectBitmap* los_bitmap =
1422          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1423      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1424      bool is_los = mark_bitmap == nullptr;
1425      if (!is_los && mark_bitmap->Test(from_ref)) {
1426        // Already marked.
1427        to_ref = from_ref;
1428      } else if (is_los && los_bitmap->Test(from_ref)) {
1429        // Already marked in LOS.
1430        to_ref = from_ref;
1431      } else {
1432        // Not marked.
1433        if (IsOnAllocStack(from_ref)) {
1434          // If on the allocation stack, it's considered marked.
1435          to_ref = from_ref;
1436        } else {
1437          // Not marked.
1438          to_ref = nullptr;
1439        }
1440      }
1441    }
1442  }
1443  return to_ref;
1444}
1445
1446bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
1447  QuasiAtomic::ThreadFenceAcquire();
1448  accounting::ObjectStack* alloc_stack = GetAllocationStack();
1449  mirror::Object** begin = alloc_stack->Begin();
1450  // Important to read end once as it could be concurrently updated and screw up std::find().
1451  mirror::Object** end = alloc_stack->End();
1452  return std::find(begin, end, ref) != end;
1453}
1454
1455mirror::Object* ConcurrentCopying::Mark(mirror::Object* from_ref) {
1456  if (from_ref == nullptr) {
1457    return nullptr;
1458  }
1459  DCHECK(from_ref != nullptr);
1460  DCHECK(heap_->collector_type_ == kCollectorTypeCC);
1461  if (region_space_->IsInToSpace(from_ref)) {
1462    // It's already marked.
1463    return from_ref;
1464  }
1465  mirror::Object* to_ref;
1466  if (region_space_->IsInFromSpace(from_ref)) {
1467    to_ref = GetFwdPtr(from_ref);
1468    if (kUseBakerReadBarrier) {
1469      DCHECK(to_ref != ReadBarrier::GrayPtr()) << "from_ref=" << from_ref << " to_ref=" << to_ref;
1470    }
1471    if (to_ref == nullptr) {
1472      // It isn't marked yet. Mark it by copying it to the to-space.
1473      to_ref = Copy(from_ref);
1474    }
1475    DCHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
1476        << "from_ref=" << from_ref << " to_ref=" << to_ref;
1477  } else if (region_space_->IsInUnevacFromSpace(from_ref)) {
1478    // This may or may not succeed, which is ok.
1479    if (kUseBakerReadBarrier) {
1480      from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1481    }
1482    if (region_space_bitmap_->AtomicTestAndSet(from_ref)) {
1483      // Already marked.
1484      to_ref = from_ref;
1485    } else {
1486      // Newly marked.
1487      to_ref = from_ref;
1488      if (kUseBakerReadBarrier) {
1489        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1490      }
1491      PushOntoMarkStack<true>(to_ref);
1492    }
1493  } else {
1494    // from_ref is in a non-moving space.
1495    DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
1496    if (immune_region_.ContainsObject(from_ref)) {
1497      accounting::ContinuousSpaceBitmap* cc_bitmap =
1498          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1499      DCHECK(cc_bitmap != nullptr)
1500          << "An immune space object must have a bitmap";
1501      if (kIsDebugBuild) {
1502        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1503            << "Immune space object must be already marked";
1504      }
1505      // This may or may not succeed, which is ok.
1506      if (kUseBakerReadBarrier) {
1507        from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1508      }
1509      if (cc_bitmap->AtomicTestAndSet(from_ref)) {
1510        // Already marked.
1511        to_ref = from_ref;
1512      } else {
1513        // Newly marked.
1514        to_ref = from_ref;
1515        if (kUseBakerReadBarrier) {
1516          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1517        }
1518        PushOntoMarkStack<true>(to_ref);
1519      }
1520    } else {
1521      // Use the mark bitmap.
1522      accounting::ContinuousSpaceBitmap* mark_bitmap =
1523          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1524      accounting::LargeObjectBitmap* los_bitmap =
1525          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1526      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1527      bool is_los = mark_bitmap == nullptr;
1528      if (!is_los && mark_bitmap->Test(from_ref)) {
1529        // Already marked.
1530        to_ref = from_ref;
1531        if (kUseBakerReadBarrier) {
1532          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
1533                 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1534        }
1535      } else if (is_los && los_bitmap->Test(from_ref)) {
1536        // Already marked in LOS.
1537        to_ref = from_ref;
1538        if (kUseBakerReadBarrier) {
1539          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
1540                 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1541        }
1542      } else {
1543        // Not marked.
1544        if (IsOnAllocStack(from_ref)) {
1545          // If it's on the allocation stack, it's considered marked. Keep it white.
1546          to_ref = from_ref;
1547          // Objects on the allocation stack need not be marked.
1548          if (!is_los) {
1549            DCHECK(!mark_bitmap->Test(to_ref));
1550          } else {
1551            DCHECK(!los_bitmap->Test(to_ref));
1552          }
1553          if (kUseBakerReadBarrier) {
1554            DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
1555          }
1556        } else {
1557          // Not marked or on the allocation stack. Try to mark it.
1558          // This may or may not succeed, which is ok.
1559          if (kUseBakerReadBarrier) {
1560            from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1561          }
1562          if (!is_los && mark_bitmap->AtomicTestAndSet(from_ref)) {
1563            // Already marked.
1564            to_ref = from_ref;
1565          } else if (is_los && los_bitmap->AtomicTestAndSet(from_ref)) {
1566            // Already marked in LOS.
1567            to_ref = from_ref;
1568          } else {
1569            // Newly marked.
1570            to_ref = from_ref;
1571            if (kUseBakerReadBarrier) {
1572              DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1573            }
1574            PushOntoMarkStack<true>(to_ref);
1575          }
1576        }
1577      }
1578    }
1579  }
1580  return to_ref;
1581}
1582
1583void ConcurrentCopying::FinishPhase() {
1584  region_space_ = nullptr;
1585  CHECK(mark_queue_.IsEmpty());
1586  mark_queue_.Clear();
1587  {
1588    MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1589    skipped_blocks_map_.clear();
1590  }
1591  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1592  heap_->ClearMarkedObjects();
1593}
1594
1595mirror::Object* ConcurrentCopying::IsMarkedCallback(mirror::Object* from_ref, void* arg) {
1596  return reinterpret_cast<ConcurrentCopying*>(arg)->IsMarked(from_ref);
1597}
1598
1599bool ConcurrentCopying::IsHeapReferenceMarkedCallback(
1600    mirror::HeapReference<mirror::Object>* field, void* arg) {
1601  mirror::Object* from_ref = field->AsMirrorPtr();
1602  mirror::Object* to_ref = reinterpret_cast<ConcurrentCopying*>(arg)->IsMarked(from_ref);
1603  if (to_ref == nullptr) {
1604    return false;
1605  }
1606  if (from_ref != to_ref) {
1607    QuasiAtomic::ThreadFenceRelease();
1608    field->Assign(to_ref);
1609    QuasiAtomic::ThreadFenceSequentiallyConsistent();
1610  }
1611  return true;
1612}
1613
1614mirror::Object* ConcurrentCopying::MarkCallback(mirror::Object* from_ref, void* arg) {
1615  return reinterpret_cast<ConcurrentCopying*>(arg)->Mark(from_ref);
1616}
1617
1618void ConcurrentCopying::ProcessMarkStackCallback(void* arg) {
1619  reinterpret_cast<ConcurrentCopying*>(arg)->ProcessMarkStack();
1620}
1621
1622void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
1623  heap_->GetReferenceProcessor()->DelayReferenceReferent(
1624      klass, reference, &IsHeapReferenceMarkedCallback, this);
1625}
1626
1627void ConcurrentCopying::ProcessReferences(Thread* self, bool concurrent) {
1628  TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
1629  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1630  GetHeap()->GetReferenceProcessor()->ProcessReferences(
1631      concurrent, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
1632      &IsHeapReferenceMarkedCallback, &MarkCallback, &ProcessMarkStackCallback, this);
1633}
1634
1635void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
1636  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1637  region_space_->RevokeAllThreadLocalBuffers();
1638}
1639
1640}  // namespace collector
1641}  // namespace gc
1642}  // namespace art
1643