concurrent_copying.cc revision 3cf225386e8129dcbe32b289279ecb87ec255318
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "concurrent_copying.h"
18
19#include "art_field-inl.h"
20#include "gc/accounting/heap_bitmap-inl.h"
21#include "gc/accounting/space_bitmap-inl.h"
22#include "gc/reference_processor.h"
23#include "gc/space/image_space.h"
24#include "gc/space/space.h"
25#include "intern_table.h"
26#include "mirror/class-inl.h"
27#include "mirror/object-inl.h"
28#include "scoped_thread_state_change.h"
29#include "thread-inl.h"
30#include "thread_list.h"
31#include "well_known_classes.h"
32
33namespace art {
34namespace gc {
35namespace collector {
36
37ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix)
38    : GarbageCollector(heap,
39                       name_prefix + (name_prefix.empty() ? "" : " ") +
40                       "concurrent copying + mark sweep"),
41      region_space_(nullptr), gc_barrier_(new Barrier(0)), mark_queue_(2 * MB),
42      is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false),
43      heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0),
44      skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
45      rb_table_(heap_->GetReadBarrierTable()),
46      force_evacuate_all_(false) {
47  static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
48                "The region space size and the read barrier table region size must match");
49  cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap));
50  {
51    Thread* self = Thread::Current();
52    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
53    // Cache this so that we won't have to lock heap_bitmap_lock_ in
54    // Mark() which could cause a nested lock on heap_bitmap_lock_
55    // when GC causes a RB while doing GC or a lock order violation
56    // (class_linker_lock_ and heap_bitmap_lock_).
57    heap_mark_bitmap_ = heap->GetMarkBitmap();
58  }
59}
60
61ConcurrentCopying::~ConcurrentCopying() {
62}
63
64void ConcurrentCopying::RunPhases() {
65  CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
66  CHECK(!is_active_);
67  is_active_ = true;
68  Thread* self = Thread::Current();
69  Locks::mutator_lock_->AssertNotHeld(self);
70  {
71    ReaderMutexLock mu(self, *Locks::mutator_lock_);
72    InitializePhase();
73  }
74  FlipThreadRoots();
75  {
76    ReaderMutexLock mu(self, *Locks::mutator_lock_);
77    MarkingPhase();
78  }
79  // Verify no from space refs. This causes a pause.
80  if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) {
81    TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
82    ScopedPause pause(this);
83    CheckEmptyMarkQueue();
84    if (kVerboseMode) {
85      LOG(INFO) << "Verifying no from-space refs";
86    }
87    VerifyNoFromSpaceReferences();
88    if (kVerboseMode) {
89      LOG(INFO) << "Done verifying no from-space refs";
90    }
91    CheckEmptyMarkQueue();
92  }
93  {
94    ReaderMutexLock mu(self, *Locks::mutator_lock_);
95    ReclaimPhase();
96  }
97  FinishPhase();
98  CHECK(is_active_);
99  is_active_ = false;
100}
101
102void ConcurrentCopying::BindBitmaps() {
103  Thread* self = Thread::Current();
104  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
105  // Mark all of the spaces we never collect as immune.
106  for (const auto& space : heap_->GetContinuousSpaces()) {
107    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
108        || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
109      CHECK(space->IsZygoteSpace() || space->IsImageSpace());
110      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
111      const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" :
112          "cc zygote space bitmap";
113      // TODO: try avoiding using bitmaps for image/zygote to save space.
114      accounting::ContinuousSpaceBitmap* bitmap =
115          accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity());
116      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
117      cc_bitmaps_.push_back(bitmap);
118    } else if (space == region_space_) {
119      accounting::ContinuousSpaceBitmap* bitmap =
120          accounting::ContinuousSpaceBitmap::Create("cc region space bitmap",
121                                                    space->Begin(), space->Capacity());
122      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
123      cc_bitmaps_.push_back(bitmap);
124      region_space_bitmap_ = bitmap;
125    }
126  }
127}
128
129void ConcurrentCopying::InitializePhase() {
130  TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
131  if (kVerboseMode) {
132    LOG(INFO) << "GC InitializePhase";
133    LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
134              << reinterpret_cast<void*>(region_space_->Limit());
135  }
136  CHECK(mark_queue_.IsEmpty());
137  immune_region_.Reset();
138  bytes_moved_.StoreRelaxed(0);
139  objects_moved_.StoreRelaxed(0);
140  if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
141      GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
142      GetCurrentIteration()->GetClearSoftReferences()) {
143    force_evacuate_all_ = true;
144  } else {
145    force_evacuate_all_ = false;
146  }
147  BindBitmaps();
148  if (kVerboseMode) {
149    LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
150    LOG(INFO) << "Immune region: " << immune_region_.Begin() << "-" << immune_region_.End();
151    LOG(INFO) << "GC end of InitializePhase";
152  }
153}
154
155// Used to switch the thread roots of a thread from from-space refs to to-space refs.
156class ThreadFlipVisitor : public Closure {
157 public:
158  explicit ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
159      : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
160  }
161
162  virtual void Run(Thread* thread) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
163    // Note: self is not necessarily equal to thread since thread may be suspended.
164    Thread* self = Thread::Current();
165    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
166        << thread->GetState() << " thread " << thread << " self " << self;
167    if (use_tlab_ && thread->HasTlab()) {
168      if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
169        // This must come before the revoke.
170        size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
171        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
172        reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
173            FetchAndAddSequentiallyConsistent(thread_local_objects);
174      } else {
175        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
176      }
177    }
178    if (kUseThreadLocalAllocationStack) {
179      thread->RevokeThreadLocalAllocationStack();
180    }
181    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
182    thread->VisitRoots(concurrent_copying_);
183    concurrent_copying_->GetBarrier().Pass(self);
184  }
185
186 private:
187  ConcurrentCopying* const concurrent_copying_;
188  const bool use_tlab_;
189};
190
191// Called back from Runtime::FlipThreadRoots() during a pause.
192class FlipCallback : public Closure {
193 public:
194  explicit FlipCallback(ConcurrentCopying* concurrent_copying)
195      : concurrent_copying_(concurrent_copying) {
196  }
197
198  virtual void Run(Thread* thread) OVERRIDE EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) {
199    ConcurrentCopying* cc = concurrent_copying_;
200    TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
201    // Note: self is not necessarily equal to thread since thread may be suspended.
202    Thread* self = Thread::Current();
203    CHECK(thread == self);
204    Locks::mutator_lock_->AssertExclusiveHeld(self);
205    cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
206    cc->SwapStacks(self);
207    if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
208      cc->RecordLiveStackFreezeSize(self);
209      cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
210      cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
211    }
212    cc->is_marking_ = true;
213    if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
214      CHECK(Runtime::Current()->IsAotCompiler());
215      TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
216      Runtime::Current()->VisitTransactionRoots(cc);
217    }
218  }
219
220 private:
221  ConcurrentCopying* const concurrent_copying_;
222};
223
224// Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
225void ConcurrentCopying::FlipThreadRoots() {
226  TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
227  if (kVerboseMode) {
228    LOG(INFO) << "time=" << region_space_->Time();
229    region_space_->DumpNonFreeRegions(LOG(INFO));
230  }
231  Thread* self = Thread::Current();
232  Locks::mutator_lock_->AssertNotHeld(self);
233  gc_barrier_->Init(self, 0);
234  ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
235  FlipCallback flip_callback(this);
236  size_t barrier_count = Runtime::Current()->FlipThreadRoots(
237      &thread_flip_visitor, &flip_callback, this);
238  {
239    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
240    gc_barrier_->Increment(self, barrier_count);
241  }
242  is_asserting_to_space_invariant_ = true;
243  QuasiAtomic::ThreadFenceForConstructor();
244  if (kVerboseMode) {
245    LOG(INFO) << "time=" << region_space_->Time();
246    region_space_->DumpNonFreeRegions(LOG(INFO));
247    LOG(INFO) << "GC end of FlipThreadRoots";
248  }
249}
250
251void ConcurrentCopying::SwapStacks(Thread* self) {
252  heap_->SwapStacks(self);
253}
254
255void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
256  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
257  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
258}
259
260// Used to visit objects in the immune spaces.
261class ConcurrentCopyingImmuneSpaceObjVisitor {
262 public:
263  explicit ConcurrentCopyingImmuneSpaceObjVisitor(ConcurrentCopying* cc)
264      : collector_(cc) {}
265
266  void operator()(mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
267      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
268    DCHECK(obj != nullptr);
269    DCHECK(collector_->immune_region_.ContainsObject(obj));
270    accounting::ContinuousSpaceBitmap* cc_bitmap =
271        collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
272    DCHECK(cc_bitmap != nullptr)
273        << "An immune space object must have a bitmap";
274    if (kIsDebugBuild) {
275      DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj))
276          << "Immune space object must be already marked";
277    }
278    // This may or may not succeed, which is ok.
279    if (kUseBakerReadBarrier) {
280      obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
281    }
282    if (cc_bitmap->AtomicTestAndSet(obj)) {
283      // Already marked. Do nothing.
284    } else {
285      // Newly marked. Set the gray bit and push it onto the mark stack.
286      CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
287      collector_->PushOntoMarkStack<true>(obj);
288    }
289  }
290
291 private:
292  ConcurrentCopying* collector_;
293};
294
295class EmptyCheckpoint : public Closure {
296 public:
297  explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying)
298      : concurrent_copying_(concurrent_copying) {
299  }
300
301  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
302    // Note: self is not necessarily equal to thread since thread may be suspended.
303    Thread* self = Thread::Current();
304    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
305        << thread->GetState() << " thread " << thread << " self " << self;
306    // If thread is a running mutator, then act on behalf of the garbage collector.
307    // See the code in ThreadList::RunCheckpoint.
308    if (thread->GetState() == kRunnable) {
309      concurrent_copying_->GetBarrier().Pass(self);
310    }
311  }
312
313 private:
314  ConcurrentCopying* const concurrent_copying_;
315};
316
317// Concurrently mark roots that are guarded by read barriers and process the mark stack.
318void ConcurrentCopying::MarkingPhase() {
319  TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
320  if (kVerboseMode) {
321    LOG(INFO) << "GC MarkingPhase";
322  }
323  {
324    // Mark the image root. The WB-based collectors do not need to
325    // scan the image objects from roots by relying on the card table,
326    // but it's necessary for the RB to-space invariant to hold.
327    TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings());
328    gc::space::ImageSpace* image = heap_->GetImageSpace();
329    if (image != nullptr) {
330      mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots();
331      mirror::Object* marked_image_root = Mark(image_root);
332      CHECK_EQ(image_root, marked_image_root) << "An image object does not move";
333      if (ReadBarrier::kEnableToSpaceInvariantChecks) {
334        AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root);
335      }
336    }
337  }
338  // TODO: Other garbage collectors uses Runtime::VisitConcurrentRoots(), refactor this part
339  // to also use the same function.
340  {
341    TimingLogger::ScopedTiming split2("VisitConstantRoots", GetTimings());
342    Runtime::Current()->VisitConstantRoots(this);
343  }
344  {
345    TimingLogger::ScopedTiming split3("VisitInternTableRoots", GetTimings());
346    Runtime::Current()->GetInternTable()->VisitRoots(this, kVisitRootFlagAllRoots);
347  }
348  {
349    TimingLogger::ScopedTiming split4("VisitClassLinkerRoots", GetTimings());
350    Runtime::Current()->GetClassLinker()->VisitRoots(this, kVisitRootFlagAllRoots);
351  }
352  {
353    // TODO: don't visit the transaction roots if it's not active.
354    TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
355    Runtime::Current()->VisitNonThreadRoots(this);
356  }
357  Runtime::Current()->GetHeap()->VisitAllocationRecords(this);
358
359  // Immune spaces.
360  for (auto& space : heap_->GetContinuousSpaces()) {
361    if (immune_region_.ContainsSpace(space)) {
362      DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
363      accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
364      ConcurrentCopyingImmuneSpaceObjVisitor visitor(this);
365      live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
366                                    reinterpret_cast<uintptr_t>(space->Limit()),
367                                    visitor);
368    }
369  }
370
371  Thread* self = Thread::Current();
372  {
373    TimingLogger::ScopedTiming split6("ProcessMarkStack", GetTimings());
374    // Process the mark stack and issue an empty check point. If the
375    // mark stack is still empty after the check point, we're
376    // done. Otherwise, repeat.
377    ProcessMarkStack();
378    size_t count = 0;
379    while (!ProcessMarkStack()) {
380      ++count;
381      if (kVerboseMode) {
382        LOG(INFO) << "Issue an empty check point. " << count;
383      }
384      IssueEmptyCheckpoint();
385    }
386    // Need to ensure the mark stack is empty before reference
387    // processing to get rid of non-reference gray objects.
388    CheckEmptyMarkQueue();
389    // Enable the GetReference slow path and disallow access to the system weaks.
390    GetHeap()->GetReferenceProcessor()->EnableSlowPath();
391    Runtime::Current()->DisallowNewSystemWeaks();
392    QuasiAtomic::ThreadFenceForConstructor();
393    // Lock-unlock the system weak locks so that there's no thread in
394    // the middle of accessing system weaks.
395    Runtime::Current()->EnsureNewSystemWeaksDisallowed();
396    // Note: Do not issue a checkpoint from here to the
397    // SweepSystemWeaks call or else a deadlock due to
398    // WaitHoldingLocks() would occur.
399    if (kVerboseMode) {
400      LOG(INFO) << "Enabled the ref proc slow path & disabled access to system weaks.";
401      LOG(INFO) << "ProcessReferences";
402    }
403    ProcessReferences(self, true);
404    CheckEmptyMarkQueue();
405    if (kVerboseMode) {
406      LOG(INFO) << "SweepSystemWeaks";
407    }
408    SweepSystemWeaks(self);
409    if (kVerboseMode) {
410      LOG(INFO) << "SweepSystemWeaks done";
411    }
412    // Because hash_set::Erase() can call the hash function for
413    // arbitrary elements in the weak intern table in
414    // InternTable::Table::SweepWeaks(), the above SweepSystemWeaks()
415    // call may have marked some objects (strings) alive. So process
416    // the mark stack here once again.
417    ProcessMarkStack();
418    CheckEmptyMarkQueue();
419    if (kVerboseMode) {
420      LOG(INFO) << "AllowNewSystemWeaks";
421    }
422    Runtime::Current()->AllowNewSystemWeaks();
423    IssueEmptyCheckpoint();
424    // Disable marking.
425    if (kUseTableLookupReadBarrier) {
426      heap_->rb_table_->ClearAll();
427      DCHECK(heap_->rb_table_->IsAllCleared());
428    }
429    is_mark_queue_push_disallowed_.StoreSequentiallyConsistent(1);
430    is_marking_ = false;
431    CheckEmptyMarkQueue();
432  }
433
434  if (kVerboseMode) {
435    LOG(INFO) << "GC end of MarkingPhase";
436  }
437}
438
439void ConcurrentCopying::IssueEmptyCheckpoint() {
440  Thread* self = Thread::Current();
441  EmptyCheckpoint check_point(this);
442  ThreadList* thread_list = Runtime::Current()->GetThreadList();
443  gc_barrier_->Init(self, 0);
444  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
445  // If there are no threads to wait which implys that all the checkpoint functions are finished,
446  // then no need to release the mutator lock.
447  if (barrier_count == 0) {
448    return;
449  }
450  // Release locks then wait for all mutator threads to pass the barrier.
451  Locks::mutator_lock_->SharedUnlock(self);
452  {
453    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
454    gc_barrier_->Increment(self, barrier_count);
455  }
456  Locks::mutator_lock_->SharedLock(self);
457}
458
459mirror::Object* ConcurrentCopying::PopOffMarkStack() {
460  return mark_queue_.Dequeue();
461}
462
463template<bool kThreadSafe>
464void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
465  CHECK_EQ(is_mark_queue_push_disallowed_.LoadRelaxed(), 0)
466      << " " << to_ref << " " << PrettyTypeOf(to_ref);
467  if (kThreadSafe) {
468    CHECK(mark_queue_.Enqueue(to_ref)) << "Mark queue overflow";
469  } else {
470    CHECK(mark_queue_.EnqueueThreadUnsafe(to_ref)) << "Mark queue overflow";
471  }
472}
473
474accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
475  return heap_->allocation_stack_.get();
476}
477
478accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
479  return heap_->live_stack_.get();
480}
481
482inline mirror::Object* ConcurrentCopying::GetFwdPtr(mirror::Object* from_ref) {
483  DCHECK(region_space_->IsInFromSpace(from_ref));
484  LockWord lw = from_ref->GetLockWord(false);
485  if (lw.GetState() == LockWord::kForwardingAddress) {
486    mirror::Object* fwd_ptr = reinterpret_cast<mirror::Object*>(lw.ForwardingAddress());
487    CHECK(fwd_ptr != nullptr);
488    return fwd_ptr;
489  } else {
490    return nullptr;
491  }
492}
493
494// The following visitors are that used to verify that there's no
495// references to the from-space left after marking.
496class ConcurrentCopyingVerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
497 public:
498  explicit ConcurrentCopyingVerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
499      : collector_(collector) {}
500
501  void operator()(mirror::Object* ref) const
502      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
503    if (ref == nullptr) {
504      // OK.
505      return;
506    }
507    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
508    if (kUseBakerReadBarrier) {
509      if (collector_->RegionSpace()->IsInToSpace(ref)) {
510        CHECK(ref->GetReadBarrierPointer() == nullptr)
511            << "To-space ref " << ref << " " << PrettyTypeOf(ref)
512            << " has non-white rb_ptr " << ref->GetReadBarrierPointer();
513      } else {
514        CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
515              (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
516               collector_->IsOnAllocStack(ref)))
517            << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref)
518            << " has non-black rb_ptr " << ref->GetReadBarrierPointer()
519            << " but isn't on the alloc stack (and has white rb_ptr)."
520            << " Is it in the non-moving space="
521            << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref));
522      }
523    }
524  }
525
526  void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
527      OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
528    DCHECK(root != nullptr);
529    operator()(root);
530  }
531
532 private:
533  ConcurrentCopying* const collector_;
534};
535
536class ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor {
537 public:
538  explicit ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
539      : collector_(collector) {}
540
541  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
542      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
543    mirror::Object* ref =
544        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
545    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
546    visitor(ref);
547  }
548  void operator()(mirror::Class* klass, mirror::Reference* ref) const
549      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
550    CHECK(klass->IsTypeOfReferenceClass());
551    this->operator()(ref, mirror::Reference::ReferentOffset(), false);
552  }
553
554 private:
555  ConcurrentCopying* collector_;
556};
557
558class ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor {
559 public:
560  explicit ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
561      : collector_(collector) {}
562  void operator()(mirror::Object* obj) const
563      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
564    ObjectCallback(obj, collector_);
565  }
566  static void ObjectCallback(mirror::Object* obj, void *arg)
567      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
568    CHECK(obj != nullptr);
569    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
570    space::RegionSpace* region_space = collector->RegionSpace();
571    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
572    ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor visitor(collector);
573    obj->VisitReferences<true>(visitor, visitor);
574    if (kUseBakerReadBarrier) {
575      if (collector->RegionSpace()->IsInToSpace(obj)) {
576        CHECK(obj->GetReadBarrierPointer() == nullptr)
577            << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer();
578      } else {
579        CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
580              (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
581               collector->IsOnAllocStack(obj)))
582            << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj)
583            << " has non-black rb_ptr " << obj->GetReadBarrierPointer()
584            << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space="
585            << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj));
586      }
587    }
588  }
589
590 private:
591  ConcurrentCopying* const collector_;
592};
593
594// Verify there's no from-space references left after the marking phase.
595void ConcurrentCopying::VerifyNoFromSpaceReferences() {
596  Thread* self = Thread::Current();
597  DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
598  ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor visitor(this);
599  // Roots.
600  {
601    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
602    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
603    Runtime::Current()->VisitRoots(&ref_visitor);
604  }
605  // The to-space.
606  region_space_->WalkToSpace(ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor::ObjectCallback,
607                             this);
608  // Non-moving spaces.
609  {
610    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
611    heap_->GetMarkBitmap()->Visit(visitor);
612  }
613  // The alloc stack.
614  {
615    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
616    for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
617        it < end; ++it) {
618      mirror::Object* const obj = it->AsMirrorPtr();
619      if (obj != nullptr && obj->GetClass() != nullptr) {
620        // TODO: need to call this only if obj is alive?
621        ref_visitor(obj);
622        visitor(obj);
623      }
624    }
625  }
626  // TODO: LOS. But only refs in LOS are classes.
627}
628
629// The following visitors are used to assert the to-space invariant.
630class ConcurrentCopyingAssertToSpaceInvariantRefsVisitor {
631 public:
632  explicit ConcurrentCopyingAssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
633      : collector_(collector) {}
634
635  void operator()(mirror::Object* ref) const
636      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
637    if (ref == nullptr) {
638      // OK.
639      return;
640    }
641    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
642  }
643  static void RootCallback(mirror::Object** root, void *arg, const RootInfo& /*root_info*/)
644      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
645    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
646    ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector);
647    DCHECK(root != nullptr);
648    visitor(*root);
649  }
650
651 private:
652  ConcurrentCopying* collector_;
653};
654
655class ConcurrentCopyingAssertToSpaceInvariantFieldVisitor {
656 public:
657  explicit ConcurrentCopyingAssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
658      : collector_(collector) {}
659
660  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
661      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
662    mirror::Object* ref =
663        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
664    ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
665    visitor(ref);
666  }
667  void operator()(mirror::Class* klass, mirror::Reference* /* ref */) const
668      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
669    CHECK(klass->IsTypeOfReferenceClass());
670  }
671
672 private:
673  ConcurrentCopying* collector_;
674};
675
676class ConcurrentCopyingAssertToSpaceInvariantObjectVisitor {
677 public:
678  explicit ConcurrentCopyingAssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
679      : collector_(collector) {}
680  void operator()(mirror::Object* obj) const
681      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
682    ObjectCallback(obj, collector_);
683  }
684  static void ObjectCallback(mirror::Object* obj, void *arg)
685      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
686    CHECK(obj != nullptr);
687    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
688    space::RegionSpace* region_space = collector->RegionSpace();
689    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
690    collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
691    ConcurrentCopyingAssertToSpaceInvariantFieldVisitor visitor(collector);
692    obj->VisitReferences<true>(visitor, visitor);
693  }
694
695 private:
696  ConcurrentCopying* collector_;
697};
698
699bool ConcurrentCopying::ProcessMarkStack() {
700  if (kVerboseMode) {
701    LOG(INFO) << "ProcessMarkStack. ";
702  }
703  size_t count = 0;
704  mirror::Object* to_ref;
705  while ((to_ref = PopOffMarkStack()) != nullptr) {
706    ++count;
707    DCHECK(!region_space_->IsInFromSpace(to_ref));
708    if (kUseBakerReadBarrier) {
709      DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
710          << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
711          << " is_marked=" << IsMarked(to_ref);
712    }
713    // Scan ref fields.
714    Scan(to_ref);
715    // Mark the gray ref as white or black.
716    if (kUseBakerReadBarrier) {
717      DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
718          << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
719          << " is_marked=" << IsMarked(to_ref);
720    }
721    if (to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
722        to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr &&
723        !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())) {
724      // Leave References gray so that GetReferent() will trigger RB.
725      CHECK(to_ref->AsReference()->IsEnqueued()) << "Left unenqueued ref gray " << to_ref;
726    } else {
727#ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
728      if (kUseBakerReadBarrier) {
729        if (region_space_->IsInToSpace(to_ref)) {
730          // If to-space, change from gray to white.
731          bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
732                                                             ReadBarrier::WhitePtr());
733          CHECK(success) << "Must succeed as we won the race.";
734          CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
735        } else {
736          // If non-moving space/unevac from space, change from gray
737          // to black. We can't change gray to white because it's not
738          // safe to use CAS if two threads change values in opposite
739          // directions (A->B and B->A). So, we change it to black to
740          // indicate non-moving objects that have been marked
741          // through. Note we'd need to change from black to white
742          // later (concurrently).
743          bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
744                                                             ReadBarrier::BlackPtr());
745          CHECK(success) << "Must succeed as we won the race.";
746          CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
747        }
748      }
749#else
750      DCHECK(!kUseBakerReadBarrier);
751#endif
752    }
753    if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) {
754      ConcurrentCopyingAssertToSpaceInvariantObjectVisitor visitor(this);
755      visitor(to_ref);
756    }
757  }
758  // Return true if the stack was empty.
759  return count == 0;
760}
761
762void ConcurrentCopying::CheckEmptyMarkQueue() {
763  if (!mark_queue_.IsEmpty()) {
764    while (!mark_queue_.IsEmpty()) {
765      mirror::Object* obj = mark_queue_.Dequeue();
766      if (kUseBakerReadBarrier) {
767        mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
768        LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr
769                  << " is_marked=" << IsMarked(obj);
770      } else {
771        LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj)
772                  << " is_marked=" << IsMarked(obj);
773      }
774    }
775    LOG(FATAL) << "mark queue is not empty";
776  }
777}
778
779void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
780  TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
781  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
782  Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
783}
784
785void ConcurrentCopying::Sweep(bool swap_bitmaps) {
786  {
787    TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
788    accounting::ObjectStack* live_stack = heap_->GetLiveStack();
789    if (kEnableFromSpaceAccountingCheck) {
790      CHECK_GE(live_stack_freeze_size_, live_stack->Size());
791    }
792    heap_->MarkAllocStackAsLive(live_stack);
793    live_stack->Reset();
794  }
795  CHECK(mark_queue_.IsEmpty());
796  TimingLogger::ScopedTiming split("Sweep", GetTimings());
797  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
798    if (space->IsContinuousMemMapAllocSpace()) {
799      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
800      if (space == region_space_ || immune_region_.ContainsSpace(space)) {
801        continue;
802      }
803      TimingLogger::ScopedTiming split2(
804          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
805      RecordFree(alloc_space->Sweep(swap_bitmaps));
806    }
807  }
808  SweepLargeObjects(swap_bitmaps);
809}
810
811void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
812  TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
813  RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
814}
815
816class ConcurrentCopyingClearBlackPtrsVisitor {
817 public:
818  explicit ConcurrentCopyingClearBlackPtrsVisitor(ConcurrentCopying* cc)
819      : collector_(cc) {}
820#ifndef USE_BAKER_OR_BROOKS_READ_BARRIER
821  NO_RETURN
822#endif
823  void operator()(mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
824      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
825    DCHECK(obj != nullptr);
826    DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj;
827    DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj;
828    obj->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
829    DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
830  }
831
832 private:
833  ConcurrentCopying* const collector_;
834};
835
836// Clear the black ptrs in non-moving objects back to white.
837void ConcurrentCopying::ClearBlackPtrs() {
838  CHECK(kUseBakerReadBarrier);
839  TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings());
840  ConcurrentCopyingClearBlackPtrsVisitor visitor(this);
841  for (auto& space : heap_->GetContinuousSpaces()) {
842    if (space == region_space_) {
843      continue;
844    }
845    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
846    if (kVerboseMode) {
847      LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap;
848    }
849    mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
850                                  reinterpret_cast<uintptr_t>(space->Limit()),
851                                  visitor);
852  }
853  space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
854  large_object_space->GetMarkBitmap()->VisitMarkedRange(
855      reinterpret_cast<uintptr_t>(large_object_space->Begin()),
856      reinterpret_cast<uintptr_t>(large_object_space->End()),
857      visitor);
858  // Objects on the allocation stack?
859  if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) {
860    size_t count = GetAllocationStack()->Size();
861    auto* it = GetAllocationStack()->Begin();
862    auto* end = GetAllocationStack()->End();
863    for (size_t i = 0; i < count; ++i, ++it) {
864      CHECK_LT(it, end);
865      mirror::Object* obj = it->AsMirrorPtr();
866      if (obj != nullptr) {
867        // Must have been cleared above.
868        CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
869      }
870    }
871  }
872}
873
874void ConcurrentCopying::ReclaimPhase() {
875  TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
876  if (kVerboseMode) {
877    LOG(INFO) << "GC ReclaimPhase";
878  }
879  Thread* self = Thread::Current();
880
881  {
882    // Double-check that the mark stack is empty.
883    // Note: need to set this after VerifyNoFromSpaceRef().
884    is_asserting_to_space_invariant_ = false;
885    QuasiAtomic::ThreadFenceForConstructor();
886    if (kVerboseMode) {
887      LOG(INFO) << "Issue an empty check point. ";
888    }
889    IssueEmptyCheckpoint();
890    // Disable the check.
891    is_mark_queue_push_disallowed_.StoreSequentiallyConsistent(0);
892    CheckEmptyMarkQueue();
893  }
894
895  {
896    // Record freed objects.
897    TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
898    // Don't include thread-locals that are in the to-space.
899    uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
900    uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
901    uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
902    uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
903    uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
904    uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
905    if (kEnableFromSpaceAccountingCheck) {
906      CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
907      CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
908    }
909    CHECK_LE(to_objects, from_objects);
910    CHECK_LE(to_bytes, from_bytes);
911    int64_t freed_bytes = from_bytes - to_bytes;
912    int64_t freed_objects = from_objects - to_objects;
913    if (kVerboseMode) {
914      LOG(INFO) << "RecordFree:"
915                << " from_bytes=" << from_bytes << " from_objects=" << from_objects
916                << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
917                << " to_bytes=" << to_bytes << " to_objects=" << to_objects
918                << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
919                << " from_space size=" << region_space_->FromSpaceSize()
920                << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
921                << " to_space size=" << region_space_->ToSpaceSize();
922      LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
923    }
924    RecordFree(ObjectBytePair(freed_objects, freed_bytes));
925    if (kVerboseMode) {
926      LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
927    }
928  }
929
930  {
931    TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings());
932    ComputeUnevacFromSpaceLiveRatio();
933  }
934
935  {
936    TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
937    region_space_->ClearFromSpace();
938  }
939
940  {
941    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
942    if (kUseBakerReadBarrier) {
943      ClearBlackPtrs();
944    }
945    Sweep(false);
946    SwapBitmaps();
947    heap_->UnBindBitmaps();
948
949    // Remove bitmaps for the immune spaces.
950    while (!cc_bitmaps_.empty()) {
951      accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back();
952      cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap);
953      delete cc_bitmap;
954      cc_bitmaps_.pop_back();
955    }
956    region_space_bitmap_ = nullptr;
957  }
958
959  if (kVerboseMode) {
960    LOG(INFO) << "GC end of ReclaimPhase";
961  }
962}
963
964class ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor {
965 public:
966  explicit ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc)
967      : collector_(cc) {}
968  void operator()(mirror::Object* ref) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
969      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
970    DCHECK(ref != nullptr);
971    DCHECK(collector_->region_space_bitmap_->Test(ref)) << ref;
972    DCHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref;
973    if (kUseBakerReadBarrier) {
974      DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << ref;
975      // Clear the black ptr.
976      ref->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
977      DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << ref;
978    }
979    size_t obj_size = ref->SizeOf();
980    size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
981    collector_->region_space_->AddLiveBytes(ref, alloc_size);
982  }
983
984 private:
985  ConcurrentCopying* collector_;
986};
987
988// Compute how much live objects are left in regions.
989void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() {
990  region_space_->AssertAllRegionLiveBytesZeroOrCleared();
991  ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor visitor(this);
992  region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()),
993                                         reinterpret_cast<uintptr_t>(region_space_->Limit()),
994                                         visitor);
995}
996
997// Assert the to-space invariant.
998void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
999                                               mirror::Object* ref) {
1000  CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1001  if (is_asserting_to_space_invariant_) {
1002    if (region_space_->IsInToSpace(ref)) {
1003      // OK.
1004      return;
1005    } else if (region_space_->IsInUnevacFromSpace(ref)) {
1006      CHECK(region_space_bitmap_->Test(ref)) << ref;
1007    } else if (region_space_->IsInFromSpace(ref)) {
1008      // Not OK. Do extra logging.
1009      if (obj != nullptr) {
1010        LogFromSpaceRefHolder(obj, offset);
1011      }
1012      ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1013      CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1014    } else {
1015      AssertToSpaceInvariantInNonMovingSpace(obj, ref);
1016    }
1017  }
1018}
1019
1020class RootPrinter {
1021 public:
1022  RootPrinter() { }
1023
1024  template <class MirrorType>
1025  ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
1026      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1027    if (!root->IsNull()) {
1028      VisitRoot(root);
1029    }
1030  }
1031
1032  template <class MirrorType>
1033  void VisitRoot(mirror::Object** root)
1034      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1035    LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << *root;
1036  }
1037
1038  template <class MirrorType>
1039  void VisitRoot(mirror::CompressedReference<MirrorType>* root)
1040      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1041    LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << root->AsMirrorPtr();
1042  }
1043};
1044
1045void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
1046                                               mirror::Object* ref) {
1047  CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1048  if (is_asserting_to_space_invariant_) {
1049    if (region_space_->IsInToSpace(ref)) {
1050      // OK.
1051      return;
1052    } else if (region_space_->IsInUnevacFromSpace(ref)) {
1053      CHECK(region_space_bitmap_->Test(ref)) << ref;
1054    } else if (region_space_->IsInFromSpace(ref)) {
1055      // Not OK. Do extra logging.
1056      if (gc_root_source == nullptr) {
1057        // No info.
1058      } else if (gc_root_source->HasArtField()) {
1059        ArtField* field = gc_root_source->GetArtField();
1060        LOG(INTERNAL_FATAL) << "gc root in field " << field << " " << PrettyField(field);
1061        RootPrinter root_printer;
1062        field->VisitRoots(root_printer);
1063      } else if (gc_root_source->HasArtMethod()) {
1064        ArtMethod* method = gc_root_source->GetArtMethod();
1065        LOG(INTERNAL_FATAL) << "gc root in method " << method << " " << PrettyMethod(method);
1066        RootPrinter root_printer;
1067        method->VisitRoots(root_printer);
1068      }
1069      ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1070      region_space_->DumpNonFreeRegions(LOG(INTERNAL_FATAL));
1071      PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
1072      MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
1073      CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1074    } else {
1075      AssertToSpaceInvariantInNonMovingSpace(nullptr, ref);
1076    }
1077  }
1078}
1079
1080void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
1081  if (kUseBakerReadBarrier) {
1082    LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj)
1083              << " holder rb_ptr=" << obj->GetReadBarrierPointer();
1084  } else {
1085    LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj);
1086  }
1087  if (region_space_->IsInFromSpace(obj)) {
1088    LOG(INFO) << "holder is in the from-space.";
1089  } else if (region_space_->IsInToSpace(obj)) {
1090    LOG(INFO) << "holder is in the to-space.";
1091  } else if (region_space_->IsInUnevacFromSpace(obj)) {
1092    LOG(INFO) << "holder is in the unevac from-space.";
1093    if (region_space_bitmap_->Test(obj)) {
1094      LOG(INFO) << "holder is marked in the region space bitmap.";
1095    } else {
1096      LOG(INFO) << "holder is not marked in the region space bitmap.";
1097    }
1098  } else {
1099    // In a non-moving space.
1100    if (immune_region_.ContainsObject(obj)) {
1101      LOG(INFO) << "holder is in the image or the zygote space.";
1102      accounting::ContinuousSpaceBitmap* cc_bitmap =
1103          cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
1104      CHECK(cc_bitmap != nullptr)
1105          << "An immune space object must have a bitmap.";
1106      if (cc_bitmap->Test(obj)) {
1107        LOG(INFO) << "holder is marked in the bit map.";
1108      } else {
1109        LOG(INFO) << "holder is NOT marked in the bit map.";
1110      }
1111    } else {
1112      LOG(INFO) << "holder is in a non-moving (or main) space.";
1113      accounting::ContinuousSpaceBitmap* mark_bitmap =
1114          heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1115      accounting::LargeObjectBitmap* los_bitmap =
1116          heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1117      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1118      bool is_los = mark_bitmap == nullptr;
1119      if (!is_los && mark_bitmap->Test(obj)) {
1120        LOG(INFO) << "holder is marked in the mark bit map.";
1121      } else if (is_los && los_bitmap->Test(obj)) {
1122        LOG(INFO) << "holder is marked in the los bit map.";
1123      } else {
1124        // If ref is on the allocation stack, then it is considered
1125        // mark/alive (but not necessarily on the live stack.)
1126        if (IsOnAllocStack(obj)) {
1127          LOG(INFO) << "holder is on the alloc stack.";
1128        } else {
1129          LOG(INFO) << "holder is not marked or on the alloc stack.";
1130        }
1131      }
1132    }
1133  }
1134  LOG(INFO) << "offset=" << offset.SizeValue();
1135}
1136
1137void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
1138                                                               mirror::Object* ref) {
1139  // In a non-moving spaces. Check that the ref is marked.
1140  if (immune_region_.ContainsObject(ref)) {
1141    accounting::ContinuousSpaceBitmap* cc_bitmap =
1142        cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1143    CHECK(cc_bitmap != nullptr)
1144        << "An immune space ref must have a bitmap. " << ref;
1145    if (kUseBakerReadBarrier) {
1146      CHECK(cc_bitmap->Test(ref))
1147          << "Unmarked immune space ref. obj=" << obj << " rb_ptr="
1148          << obj->GetReadBarrierPointer() << " ref=" << ref;
1149    } else {
1150      CHECK(cc_bitmap->Test(ref))
1151          << "Unmarked immune space ref. obj=" << obj << " ref=" << ref;
1152    }
1153  } else {
1154    accounting::ContinuousSpaceBitmap* mark_bitmap =
1155        heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1156    accounting::LargeObjectBitmap* los_bitmap =
1157        heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1158    CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1159    bool is_los = mark_bitmap == nullptr;
1160    if ((!is_los && mark_bitmap->Test(ref)) ||
1161        (is_los && los_bitmap->Test(ref))) {
1162      // OK.
1163    } else {
1164      // If ref is on the allocation stack, then it may not be
1165      // marked live, but considered marked/alive (but not
1166      // necessarily on the live stack).
1167      CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1168                                 << "obj=" << obj << " ref=" << ref;
1169    }
1170  }
1171}
1172
1173// Used to scan ref fields of an object.
1174class ConcurrentCopyingRefFieldsVisitor {
1175 public:
1176  explicit ConcurrentCopyingRefFieldsVisitor(ConcurrentCopying* collector)
1177      : collector_(collector) {}
1178
1179  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1180      const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1181      SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1182    collector_->Process(obj, offset);
1183  }
1184
1185  void operator()(mirror::Class* klass, mirror::Reference* ref) const
1186      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
1187    CHECK(klass->IsTypeOfReferenceClass());
1188    collector_->DelayReferenceReferent(klass, ref);
1189  }
1190
1191 private:
1192  ConcurrentCopying* const collector_;
1193};
1194
1195// Scan ref fields of an object.
1196void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1197  DCHECK(!region_space_->IsInFromSpace(to_ref));
1198  ConcurrentCopyingRefFieldsVisitor visitor(this);
1199  to_ref->VisitReferences<true>(visitor, visitor);
1200}
1201
1202// Process a field.
1203inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1204  mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1205  if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1206    return;
1207  }
1208  mirror::Object* to_ref = Mark(ref);
1209  if (to_ref == ref) {
1210    return;
1211  }
1212  // This may fail if the mutator writes to the field at the same time. But it's ok.
1213  mirror::Object* expected_ref = ref;
1214  mirror::Object* new_ref = to_ref;
1215  do {
1216    if (expected_ref !=
1217        obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1218      // It was updated by the mutator.
1219      break;
1220    }
1221  } while (!obj->CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier<false, false, kVerifyNone>(
1222      offset, expected_ref, new_ref));
1223}
1224
1225// Process some roots.
1226void ConcurrentCopying::VisitRoots(
1227    mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
1228  for (size_t i = 0; i < count; ++i) {
1229    mirror::Object** root = roots[i];
1230    mirror::Object* ref = *root;
1231    if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1232      continue;
1233    }
1234    mirror::Object* to_ref = Mark(ref);
1235    if (to_ref == ref) {
1236      continue;
1237    }
1238    Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1239    mirror::Object* expected_ref = ref;
1240    mirror::Object* new_ref = to_ref;
1241    do {
1242      if (expected_ref != addr->LoadRelaxed()) {
1243        // It was updated by the mutator.
1244        break;
1245      }
1246    } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1247  }
1248}
1249
1250void ConcurrentCopying::VisitRoots(
1251    mirror::CompressedReference<mirror::Object>** roots, size_t count,
1252    const RootInfo& info ATTRIBUTE_UNUSED) {
1253  for (size_t i = 0; i < count; ++i) {
1254    mirror::CompressedReference<mirror::Object>* root = roots[i];
1255    mirror::Object* ref = root->AsMirrorPtr();
1256    if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1257      continue;
1258    }
1259    mirror::Object* to_ref = Mark(ref);
1260    if (to_ref == ref) {
1261      continue;
1262    }
1263    auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
1264    auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
1265    auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
1266    do {
1267      if (ref != addr->LoadRelaxed().AsMirrorPtr()) {
1268        // It was updated by the mutator.
1269        break;
1270      }
1271    } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1272  }
1273}
1274
1275// Fill the given memory block with a dummy object. Used to fill in a
1276// copy of objects that was lost in race.
1277void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
1278  CHECK(IsAligned<kObjectAlignment>(byte_size));
1279  memset(dummy_obj, 0, byte_size);
1280  mirror::Class* int_array_class = mirror::IntArray::GetArrayClass();
1281  CHECK(int_array_class != nullptr);
1282  AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
1283  size_t component_size = int_array_class->GetComponentSize();
1284  CHECK_EQ(component_size, sizeof(int32_t));
1285  size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
1286  if (data_offset > byte_size) {
1287    // An int array is too big. Use java.lang.Object.
1288    mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object);
1289    AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object);
1290    CHECK_EQ(byte_size, java_lang_Object->GetObjectSize());
1291    dummy_obj->SetClass(java_lang_Object);
1292    CHECK_EQ(byte_size, dummy_obj->SizeOf());
1293  } else {
1294    // Use an int array.
1295    dummy_obj->SetClass(int_array_class);
1296    CHECK(dummy_obj->IsArrayInstance());
1297    int32_t length = (byte_size - data_offset) / component_size;
1298    dummy_obj->AsArray()->SetLength(length);
1299    CHECK_EQ(dummy_obj->AsArray()->GetLength(), length)
1300        << "byte_size=" << byte_size << " length=" << length
1301        << " component_size=" << component_size << " data_offset=" << data_offset;
1302    CHECK_EQ(byte_size, dummy_obj->SizeOf())
1303        << "byte_size=" << byte_size << " length=" << length
1304        << " component_size=" << component_size << " data_offset=" << data_offset;
1305  }
1306}
1307
1308// Reuse the memory blocks that were copy of objects that were lost in race.
1309mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
1310  // Try to reuse the blocks that were unused due to CAS failures.
1311  CHECK(IsAligned<space::RegionSpace::kAlignment>(alloc_size));
1312  Thread* self = Thread::Current();
1313  size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
1314  MutexLock mu(self, skipped_blocks_lock_);
1315  auto it = skipped_blocks_map_.lower_bound(alloc_size);
1316  if (it == skipped_blocks_map_.end()) {
1317    // Not found.
1318    return nullptr;
1319  }
1320  {
1321    size_t byte_size = it->first;
1322    CHECK_GE(byte_size, alloc_size);
1323    if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
1324      // If remainder would be too small for a dummy object, retry with a larger request size.
1325      it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
1326      if (it == skipped_blocks_map_.end()) {
1327        // Not found.
1328        return nullptr;
1329      }
1330      CHECK(IsAligned<space::RegionSpace::kAlignment>(it->first - alloc_size));
1331      CHECK_GE(it->first - alloc_size, min_object_size)
1332          << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
1333    }
1334  }
1335  // Found a block.
1336  CHECK(it != skipped_blocks_map_.end());
1337  size_t byte_size = it->first;
1338  uint8_t* addr = it->second;
1339  CHECK_GE(byte_size, alloc_size);
1340  CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
1341  CHECK(IsAligned<space::RegionSpace::kAlignment>(byte_size));
1342  if (kVerboseMode) {
1343    LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
1344  }
1345  skipped_blocks_map_.erase(it);
1346  memset(addr, 0, byte_size);
1347  if (byte_size > alloc_size) {
1348    // Return the remainder to the map.
1349    CHECK(IsAligned<space::RegionSpace::kAlignment>(byte_size - alloc_size));
1350    CHECK_GE(byte_size - alloc_size, min_object_size);
1351    FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
1352                        byte_size - alloc_size);
1353    CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
1354    skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
1355  }
1356  return reinterpret_cast<mirror::Object*>(addr);
1357}
1358
1359mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) {
1360  DCHECK(region_space_->IsInFromSpace(from_ref));
1361  // No read barrier to avoid nested RB that might violate the to-space
1362  // invariant. Note that from_ref is a from space ref so the SizeOf()
1363  // call will access the from-space meta objects, but it's ok and necessary.
1364  size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>();
1365  size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1366  size_t region_space_bytes_allocated = 0U;
1367  size_t non_moving_space_bytes_allocated = 0U;
1368  size_t bytes_allocated = 0U;
1369  size_t dummy;
1370  mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
1371      region_space_alloc_size, &region_space_bytes_allocated, nullptr, &dummy);
1372  bytes_allocated = region_space_bytes_allocated;
1373  if (to_ref != nullptr) {
1374    DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
1375  }
1376  bool fall_back_to_non_moving = false;
1377  if (UNLIKELY(to_ref == nullptr)) {
1378    // Failed to allocate in the region space. Try the skipped blocks.
1379    to_ref = AllocateInSkippedBlock(region_space_alloc_size);
1380    if (to_ref != nullptr) {
1381      // Succeeded to allocate in a skipped block.
1382      if (heap_->use_tlab_) {
1383        // This is necessary for the tlab case as it's not accounted in the space.
1384        region_space_->RecordAlloc(to_ref);
1385      }
1386      bytes_allocated = region_space_alloc_size;
1387    } else {
1388      // Fall back to the non-moving space.
1389      fall_back_to_non_moving = true;
1390      if (kVerboseMode) {
1391        LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
1392                  << to_space_bytes_skipped_.LoadSequentiallyConsistent()
1393                  << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
1394      }
1395      fall_back_to_non_moving = true;
1396      to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
1397                                               &non_moving_space_bytes_allocated, nullptr, &dummy);
1398      CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed";
1399      bytes_allocated = non_moving_space_bytes_allocated;
1400      // Mark it in the mark bitmap.
1401      accounting::ContinuousSpaceBitmap* mark_bitmap =
1402          heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1403      CHECK(mark_bitmap != nullptr);
1404      CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
1405    }
1406  }
1407  DCHECK(to_ref != nullptr);
1408
1409  // Attempt to install the forward pointer. This is in a loop as the
1410  // lock word atomic write can fail.
1411  while (true) {
1412    // Copy the object. TODO: copy only the lockword in the second iteration and on?
1413    memcpy(to_ref, from_ref, obj_size);
1414
1415    LockWord old_lock_word = to_ref->GetLockWord(false);
1416
1417    if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
1418      // Lost the race. Another thread (either GC or mutator) stored
1419      // the forwarding pointer first. Make the lost copy (to_ref)
1420      // look like a valid but dead (dummy) object and keep it for
1421      // future reuse.
1422      FillWithDummyObject(to_ref, bytes_allocated);
1423      if (!fall_back_to_non_moving) {
1424        DCHECK(region_space_->IsInToSpace(to_ref));
1425        if (bytes_allocated > space::RegionSpace::kRegionSize) {
1426          // Free the large alloc.
1427          region_space_->FreeLarge(to_ref, bytes_allocated);
1428        } else {
1429          // Record the lost copy for later reuse.
1430          heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1431          to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1432          to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
1433          MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1434          skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
1435                                                    reinterpret_cast<uint8_t*>(to_ref)));
1436        }
1437      } else {
1438        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1439        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1440        // Free the non-moving-space chunk.
1441        accounting::ContinuousSpaceBitmap* mark_bitmap =
1442            heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1443        CHECK(mark_bitmap != nullptr);
1444        CHECK(mark_bitmap->Clear(to_ref));
1445        heap_->non_moving_space_->Free(Thread::Current(), to_ref);
1446      }
1447
1448      // Get the winner's forward ptr.
1449      mirror::Object* lost_fwd_ptr = to_ref;
1450      to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
1451      CHECK(to_ref != nullptr);
1452      CHECK_NE(to_ref, lost_fwd_ptr);
1453      CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref));
1454      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1455      return to_ref;
1456    }
1457
1458    // Set the gray ptr.
1459    if (kUseBakerReadBarrier) {
1460      to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr());
1461    }
1462
1463    LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
1464
1465    // Try to atomically write the fwd ptr.
1466    bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word);
1467    if (LIKELY(success)) {
1468      // The CAS succeeded.
1469      objects_moved_.FetchAndAddSequentiallyConsistent(1);
1470      bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size);
1471      if (LIKELY(!fall_back_to_non_moving)) {
1472        DCHECK(region_space_->IsInToSpace(to_ref));
1473      } else {
1474        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1475        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1476      }
1477      if (kUseBakerReadBarrier) {
1478        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1479      }
1480      DCHECK(GetFwdPtr(from_ref) == to_ref);
1481      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1482      PushOntoMarkStack<true>(to_ref);
1483      return to_ref;
1484    } else {
1485      // The CAS failed. It may have lost the race or may have failed
1486      // due to monitor/hashcode ops. Either way, retry.
1487    }
1488  }
1489}
1490
1491mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
1492  DCHECK(from_ref != nullptr);
1493  space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1494  if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
1495    // It's already marked.
1496    return from_ref;
1497  }
1498  mirror::Object* to_ref;
1499  if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
1500    to_ref = GetFwdPtr(from_ref);
1501    DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
1502           heap_->non_moving_space_->HasAddress(to_ref))
1503        << "from_ref=" << from_ref << " to_ref=" << to_ref;
1504  } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
1505    if (region_space_bitmap_->Test(from_ref)) {
1506      to_ref = from_ref;
1507    } else {
1508      to_ref = nullptr;
1509    }
1510  } else {
1511    // from_ref is in a non-moving space.
1512    if (immune_region_.ContainsObject(from_ref)) {
1513      accounting::ContinuousSpaceBitmap* cc_bitmap =
1514          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1515      DCHECK(cc_bitmap != nullptr)
1516          << "An immune space object must have a bitmap";
1517      if (kIsDebugBuild) {
1518        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1519            << "Immune space object must be already marked";
1520      }
1521      if (cc_bitmap->Test(from_ref)) {
1522        // Already marked.
1523        to_ref = from_ref;
1524      } else {
1525        // Newly marked.
1526        to_ref = nullptr;
1527      }
1528    } else {
1529      // Non-immune non-moving space. Use the mark bitmap.
1530      accounting::ContinuousSpaceBitmap* mark_bitmap =
1531          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1532      accounting::LargeObjectBitmap* los_bitmap =
1533          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1534      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1535      bool is_los = mark_bitmap == nullptr;
1536      if (!is_los && mark_bitmap->Test(from_ref)) {
1537        // Already marked.
1538        to_ref = from_ref;
1539      } else if (is_los && los_bitmap->Test(from_ref)) {
1540        // Already marked in LOS.
1541        to_ref = from_ref;
1542      } else {
1543        // Not marked.
1544        if (IsOnAllocStack(from_ref)) {
1545          // If on the allocation stack, it's considered marked.
1546          to_ref = from_ref;
1547        } else {
1548          // Not marked.
1549          to_ref = nullptr;
1550        }
1551      }
1552    }
1553  }
1554  return to_ref;
1555}
1556
1557bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
1558  QuasiAtomic::ThreadFenceAcquire();
1559  accounting::ObjectStack* alloc_stack = GetAllocationStack();
1560  return alloc_stack->Contains(ref);
1561}
1562
1563mirror::Object* ConcurrentCopying::Mark(mirror::Object* from_ref) {
1564  if (from_ref == nullptr) {
1565    return nullptr;
1566  }
1567  DCHECK(from_ref != nullptr);
1568  DCHECK(heap_->collector_type_ == kCollectorTypeCC);
1569  if (kUseBakerReadBarrier && !is_active_) {
1570    // In the lock word forward address state, the read barrier bits
1571    // in the lock word are part of the stored forwarding address and
1572    // invalid. This is usually OK as the from-space copy of objects
1573    // aren't accessed by mutators due to the to-space
1574    // invariant. However, during the dex2oat image writing relocation
1575    // and the zygote compaction, objects can be in the forward
1576    // address state (to store the forward/relocation addresses) and
1577    // they can still be accessed and the invalid read barrier bits
1578    // are consulted. If they look like gray but aren't really, the
1579    // read barriers slow path can trigger when it shouldn't. To guard
1580    // against this, return here if the CC collector isn't running.
1581    return from_ref;
1582  }
1583  DCHECK(region_space_ != nullptr) << "Read barrier slow path taken when CC isn't running?";
1584  space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1585  if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
1586    // It's already marked.
1587    return from_ref;
1588  }
1589  mirror::Object* to_ref;
1590  if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
1591    to_ref = GetFwdPtr(from_ref);
1592    if (kUseBakerReadBarrier) {
1593      DCHECK(to_ref != ReadBarrier::GrayPtr()) << "from_ref=" << from_ref << " to_ref=" << to_ref;
1594    }
1595    if (to_ref == nullptr) {
1596      // It isn't marked yet. Mark it by copying it to the to-space.
1597      to_ref = Copy(from_ref);
1598    }
1599    DCHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
1600        << "from_ref=" << from_ref << " to_ref=" << to_ref;
1601  } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
1602    // This may or may not succeed, which is ok.
1603    if (kUseBakerReadBarrier) {
1604      from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1605    }
1606    if (region_space_bitmap_->AtomicTestAndSet(from_ref)) {
1607      // Already marked.
1608      to_ref = from_ref;
1609    } else {
1610      // Newly marked.
1611      to_ref = from_ref;
1612      if (kUseBakerReadBarrier) {
1613        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1614      }
1615      PushOntoMarkStack<true>(to_ref);
1616    }
1617  } else {
1618    // from_ref is in a non-moving space.
1619    DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
1620    if (immune_region_.ContainsObject(from_ref)) {
1621      accounting::ContinuousSpaceBitmap* cc_bitmap =
1622          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1623      DCHECK(cc_bitmap != nullptr)
1624          << "An immune space object must have a bitmap";
1625      if (kIsDebugBuild) {
1626        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1627            << "Immune space object must be already marked";
1628      }
1629      // This may or may not succeed, which is ok.
1630      if (kUseBakerReadBarrier) {
1631        from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1632      }
1633      if (cc_bitmap->AtomicTestAndSet(from_ref)) {
1634        // Already marked.
1635        to_ref = from_ref;
1636      } else {
1637        // Newly marked.
1638        to_ref = from_ref;
1639        if (kUseBakerReadBarrier) {
1640          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1641        }
1642        PushOntoMarkStack<true>(to_ref);
1643      }
1644    } else {
1645      // Use the mark bitmap.
1646      accounting::ContinuousSpaceBitmap* mark_bitmap =
1647          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1648      accounting::LargeObjectBitmap* los_bitmap =
1649          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1650      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1651      bool is_los = mark_bitmap == nullptr;
1652      if (!is_los && mark_bitmap->Test(from_ref)) {
1653        // Already marked.
1654        to_ref = from_ref;
1655        if (kUseBakerReadBarrier) {
1656          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
1657                 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1658        }
1659      } else if (is_los && los_bitmap->Test(from_ref)) {
1660        // Already marked in LOS.
1661        to_ref = from_ref;
1662        if (kUseBakerReadBarrier) {
1663          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
1664                 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1665        }
1666      } else {
1667        // Not marked.
1668        if (IsOnAllocStack(from_ref)) {
1669          // If it's on the allocation stack, it's considered marked. Keep it white.
1670          to_ref = from_ref;
1671          // Objects on the allocation stack need not be marked.
1672          if (!is_los) {
1673            DCHECK(!mark_bitmap->Test(to_ref));
1674          } else {
1675            DCHECK(!los_bitmap->Test(to_ref));
1676          }
1677          if (kUseBakerReadBarrier) {
1678            DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
1679          }
1680        } else {
1681          // Not marked or on the allocation stack. Try to mark it.
1682          // This may or may not succeed, which is ok.
1683          if (kUseBakerReadBarrier) {
1684            from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1685          }
1686          if (!is_los && mark_bitmap->AtomicTestAndSet(from_ref)) {
1687            // Already marked.
1688            to_ref = from_ref;
1689          } else if (is_los && los_bitmap->AtomicTestAndSet(from_ref)) {
1690            // Already marked in LOS.
1691            to_ref = from_ref;
1692          } else {
1693            // Newly marked.
1694            to_ref = from_ref;
1695            if (kUseBakerReadBarrier) {
1696              DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1697            }
1698            PushOntoMarkStack<true>(to_ref);
1699          }
1700        }
1701      }
1702    }
1703  }
1704  return to_ref;
1705}
1706
1707void ConcurrentCopying::FinishPhase() {
1708  region_space_ = nullptr;
1709  CHECK(mark_queue_.IsEmpty());
1710  mark_queue_.Clear();
1711  {
1712    MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1713    skipped_blocks_map_.clear();
1714  }
1715  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1716  heap_->ClearMarkedObjects();
1717}
1718
1719mirror::Object* ConcurrentCopying::IsMarkedCallback(mirror::Object* from_ref, void* arg) {
1720  return reinterpret_cast<ConcurrentCopying*>(arg)->IsMarked(from_ref);
1721}
1722
1723bool ConcurrentCopying::IsHeapReferenceMarkedCallback(
1724    mirror::HeapReference<mirror::Object>* field, void* arg) {
1725  mirror::Object* from_ref = field->AsMirrorPtr();
1726  mirror::Object* to_ref = reinterpret_cast<ConcurrentCopying*>(arg)->IsMarked(from_ref);
1727  if (to_ref == nullptr) {
1728    return false;
1729  }
1730  if (from_ref != to_ref) {
1731    QuasiAtomic::ThreadFenceRelease();
1732    field->Assign(to_ref);
1733    QuasiAtomic::ThreadFenceSequentiallyConsistent();
1734  }
1735  return true;
1736}
1737
1738mirror::Object* ConcurrentCopying::MarkCallback(mirror::Object* from_ref, void* arg) {
1739  return reinterpret_cast<ConcurrentCopying*>(arg)->Mark(from_ref);
1740}
1741
1742void ConcurrentCopying::ProcessMarkStackCallback(void* arg) {
1743  reinterpret_cast<ConcurrentCopying*>(arg)->ProcessMarkStack();
1744}
1745
1746void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
1747  heap_->GetReferenceProcessor()->DelayReferenceReferent(
1748      klass, reference, &IsHeapReferenceMarkedCallback, this);
1749}
1750
1751void ConcurrentCopying::ProcessReferences(Thread* self, bool concurrent) {
1752  TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
1753  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1754  GetHeap()->GetReferenceProcessor()->ProcessReferences(
1755      concurrent, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
1756      &IsHeapReferenceMarkedCallback, &MarkCallback, &ProcessMarkStackCallback, this);
1757}
1758
1759void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
1760  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1761  region_space_->RevokeAllThreadLocalBuffers();
1762}
1763
1764}  // namespace collector
1765}  // namespace gc
1766}  // namespace art
1767