concurrent_copying.cc revision 70c08d3c913ce2150cd620ea87b919f8eb5bd953
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "concurrent_copying.h"
18
19#include "art_field-inl.h"
20#include "base/stl_util.h"
21#include "gc/accounting/heap_bitmap-inl.h"
22#include "gc/accounting/space_bitmap-inl.h"
23#include "gc/reference_processor.h"
24#include "gc/space/image_space.h"
25#include "gc/space/space.h"
26#include "intern_table.h"
27#include "mirror/class-inl.h"
28#include "mirror/object-inl.h"
29#include "scoped_thread_state_change.h"
30#include "thread-inl.h"
31#include "thread_list.h"
32#include "well_known_classes.h"
33
34namespace art {
35namespace gc {
36namespace collector {
37
38ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix)
39    : GarbageCollector(heap,
40                       name_prefix + (name_prefix.empty() ? "" : " ") +
41                       "concurrent copying + mark sweep"),
42      region_space_(nullptr), gc_barrier_(new Barrier(0)),
43      gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
44                                                     2 * MB, 2 * MB)),
45      mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
46      thread_running_gc_(nullptr),
47      is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false),
48      heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0), mark_stack_mode_(kMarkStackModeOff),
49      weak_ref_access_enabled_(true),
50      skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
51      rb_table_(heap_->GetReadBarrierTable()),
52      force_evacuate_all_(false) {
53  static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
54                "The region space size and the read barrier table region size must match");
55  cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap));
56  Thread* self = Thread::Current();
57  {
58    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
59    // Cache this so that we won't have to lock heap_bitmap_lock_ in
60    // Mark() which could cause a nested lock on heap_bitmap_lock_
61    // when GC causes a RB while doing GC or a lock order violation
62    // (class_linker_lock_ and heap_bitmap_lock_).
63    heap_mark_bitmap_ = heap->GetMarkBitmap();
64  }
65  {
66    MutexLock mu(self, mark_stack_lock_);
67    for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
68      accounting::AtomicStack<mirror::Object>* mark_stack =
69          accounting::AtomicStack<mirror::Object>::Create(
70              "thread local mark stack", kMarkStackSize, kMarkStackSize);
71      pooled_mark_stacks_.push_back(mark_stack);
72    }
73  }
74}
75
76void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* from_ref) {
77  // Used for preserving soft references, should be OK to not have a CAS here since there should be
78  // no other threads which can trigger read barriers on the same referent during reference
79  // processing.
80  from_ref->Assign(Mark(from_ref->AsMirrorPtr()));
81  DCHECK(!from_ref->IsNull());
82}
83
84ConcurrentCopying::~ConcurrentCopying() {
85  STLDeleteElements(&pooled_mark_stacks_);
86}
87
88void ConcurrentCopying::RunPhases() {
89  CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
90  CHECK(!is_active_);
91  is_active_ = true;
92  Thread* self = Thread::Current();
93  thread_running_gc_ = self;
94  Locks::mutator_lock_->AssertNotHeld(self);
95  {
96    ReaderMutexLock mu(self, *Locks::mutator_lock_);
97    InitializePhase();
98  }
99  FlipThreadRoots();
100  {
101    ReaderMutexLock mu(self, *Locks::mutator_lock_);
102    MarkingPhase();
103  }
104  // Verify no from space refs. This causes a pause.
105  if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) {
106    TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
107    ScopedPause pause(this);
108    CheckEmptyMarkStack();
109    if (kVerboseMode) {
110      LOG(INFO) << "Verifying no from-space refs";
111    }
112    VerifyNoFromSpaceReferences();
113    if (kVerboseMode) {
114      LOG(INFO) << "Done verifying no from-space refs";
115    }
116    CheckEmptyMarkStack();
117  }
118  {
119    ReaderMutexLock mu(self, *Locks::mutator_lock_);
120    ReclaimPhase();
121  }
122  FinishPhase();
123  CHECK(is_active_);
124  is_active_ = false;
125  thread_running_gc_ = nullptr;
126}
127
128void ConcurrentCopying::BindBitmaps() {
129  Thread* self = Thread::Current();
130  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
131  // Mark all of the spaces we never collect as immune.
132  for (const auto& space : heap_->GetContinuousSpaces()) {
133    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
134        || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
135      CHECK(space->IsZygoteSpace() || space->IsImageSpace());
136      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
137      const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" :
138          "cc zygote space bitmap";
139      // TODO: try avoiding using bitmaps for image/zygote to save space.
140      accounting::ContinuousSpaceBitmap* bitmap =
141          accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity());
142      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
143      cc_bitmaps_.push_back(bitmap);
144    } else if (space == region_space_) {
145      accounting::ContinuousSpaceBitmap* bitmap =
146          accounting::ContinuousSpaceBitmap::Create("cc region space bitmap",
147                                                    space->Begin(), space->Capacity());
148      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
149      cc_bitmaps_.push_back(bitmap);
150      region_space_bitmap_ = bitmap;
151    }
152  }
153}
154
155void ConcurrentCopying::InitializePhase() {
156  TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
157  if (kVerboseMode) {
158    LOG(INFO) << "GC InitializePhase";
159    LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
160              << reinterpret_cast<void*>(region_space_->Limit());
161  }
162  CheckEmptyMarkStack();
163  immune_region_.Reset();
164  bytes_moved_.StoreRelaxed(0);
165  objects_moved_.StoreRelaxed(0);
166  if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
167      GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
168      GetCurrentIteration()->GetClearSoftReferences()) {
169    force_evacuate_all_ = true;
170  } else {
171    force_evacuate_all_ = false;
172  }
173  BindBitmaps();
174  if (kVerboseMode) {
175    LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
176    LOG(INFO) << "Immune region: " << immune_region_.Begin() << "-" << immune_region_.End();
177    LOG(INFO) << "GC end of InitializePhase";
178  }
179}
180
181// Used to switch the thread roots of a thread from from-space refs to to-space refs.
182class ThreadFlipVisitor : public Closure {
183 public:
184  ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
185      : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
186  }
187
188  virtual void Run(Thread* thread) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
189    // Note: self is not necessarily equal to thread since thread may be suspended.
190    Thread* self = Thread::Current();
191    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
192        << thread->GetState() << " thread " << thread << " self " << self;
193    thread->SetIsGcMarking(true);
194    if (use_tlab_ && thread->HasTlab()) {
195      if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
196        // This must come before the revoke.
197        size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
198        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
199        reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
200            FetchAndAddSequentiallyConsistent(thread_local_objects);
201      } else {
202        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
203      }
204    }
205    if (kUseThreadLocalAllocationStack) {
206      thread->RevokeThreadLocalAllocationStack();
207    }
208    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
209    thread->VisitRoots(concurrent_copying_);
210    concurrent_copying_->GetBarrier().Pass(self);
211  }
212
213 private:
214  ConcurrentCopying* const concurrent_copying_;
215  const bool use_tlab_;
216};
217
218// Called back from Runtime::FlipThreadRoots() during a pause.
219class FlipCallback : public Closure {
220 public:
221  explicit FlipCallback(ConcurrentCopying* concurrent_copying)
222      : concurrent_copying_(concurrent_copying) {
223  }
224
225  virtual void Run(Thread* thread) OVERRIDE REQUIRES(Locks::mutator_lock_) {
226    ConcurrentCopying* cc = concurrent_copying_;
227    TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
228    // Note: self is not necessarily equal to thread since thread may be suspended.
229    Thread* self = Thread::Current();
230    CHECK(thread == self);
231    Locks::mutator_lock_->AssertExclusiveHeld(self);
232    cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
233    cc->SwapStacks();
234    if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
235      cc->RecordLiveStackFreezeSize(self);
236      cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
237      cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
238    }
239    cc->is_marking_ = true;
240    cc->mark_stack_mode_.StoreRelaxed(ConcurrentCopying::kMarkStackModeThreadLocal);
241    if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
242      CHECK(Runtime::Current()->IsAotCompiler());
243      TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
244      Runtime::Current()->VisitTransactionRoots(cc);
245    }
246  }
247
248 private:
249  ConcurrentCopying* const concurrent_copying_;
250};
251
252// Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
253void ConcurrentCopying::FlipThreadRoots() {
254  TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
255  if (kVerboseMode) {
256    LOG(INFO) << "time=" << region_space_->Time();
257    region_space_->DumpNonFreeRegions(LOG(INFO));
258  }
259  Thread* self = Thread::Current();
260  Locks::mutator_lock_->AssertNotHeld(self);
261  gc_barrier_->Init(self, 0);
262  ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
263  FlipCallback flip_callback(this);
264  heap_->ThreadFlipBegin(self);  // Sync with JNI critical calls.
265  size_t barrier_count = Runtime::Current()->FlipThreadRoots(
266      &thread_flip_visitor, &flip_callback, this);
267  heap_->ThreadFlipEnd(self);
268  {
269    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
270    gc_barrier_->Increment(self, barrier_count);
271  }
272  is_asserting_to_space_invariant_ = true;
273  QuasiAtomic::ThreadFenceForConstructor();
274  if (kVerboseMode) {
275    LOG(INFO) << "time=" << region_space_->Time();
276    region_space_->DumpNonFreeRegions(LOG(INFO));
277    LOG(INFO) << "GC end of FlipThreadRoots";
278  }
279}
280
281void ConcurrentCopying::SwapStacks() {
282  heap_->SwapStacks();
283}
284
285void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
286  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
287  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
288}
289
290// Used to visit objects in the immune spaces.
291class ConcurrentCopyingImmuneSpaceObjVisitor {
292 public:
293  explicit ConcurrentCopyingImmuneSpaceObjVisitor(ConcurrentCopying* cc)
294      : collector_(cc) {}
295
296  void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
297      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
298    DCHECK(obj != nullptr);
299    DCHECK(collector_->immune_region_.ContainsObject(obj));
300    accounting::ContinuousSpaceBitmap* cc_bitmap =
301        collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
302    DCHECK(cc_bitmap != nullptr)
303        << "An immune space object must have a bitmap";
304    if (kIsDebugBuild) {
305      DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj))
306          << "Immune space object must be already marked";
307    }
308    // This may or may not succeed, which is ok.
309    if (kUseBakerReadBarrier) {
310      obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
311    }
312    if (cc_bitmap->AtomicTestAndSet(obj)) {
313      // Already marked. Do nothing.
314    } else {
315      // Newly marked. Set the gray bit and push it onto the mark stack.
316      CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
317      collector_->PushOntoMarkStack(obj);
318    }
319  }
320
321 private:
322  ConcurrentCopying* const collector_;
323};
324
325class EmptyCheckpoint : public Closure {
326 public:
327  explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying)
328      : concurrent_copying_(concurrent_copying) {
329  }
330
331  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
332    // Note: self is not necessarily equal to thread since thread may be suspended.
333    Thread* self = Thread::Current();
334    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
335        << thread->GetState() << " thread " << thread << " self " << self;
336    // If thread is a running mutator, then act on behalf of the garbage collector.
337    // See the code in ThreadList::RunCheckpoint.
338    if (thread->GetState() == kRunnable) {
339      concurrent_copying_->GetBarrier().Pass(self);
340    }
341  }
342
343 private:
344  ConcurrentCopying* const concurrent_copying_;
345};
346
347// Concurrently mark roots that are guarded by read barriers and process the mark stack.
348void ConcurrentCopying::MarkingPhase() {
349  TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
350  if (kVerboseMode) {
351    LOG(INFO) << "GC MarkingPhase";
352  }
353  CHECK(weak_ref_access_enabled_);
354  {
355    // Mark the image root. The WB-based collectors do not need to
356    // scan the image objects from roots by relying on the card table,
357    // but it's necessary for the RB to-space invariant to hold.
358    TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings());
359    gc::space::ImageSpace* image = heap_->GetImageSpace();
360    if (image != nullptr) {
361      mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots();
362      mirror::Object* marked_image_root = Mark(image_root);
363      CHECK_EQ(image_root, marked_image_root) << "An image object does not move";
364      if (ReadBarrier::kEnableToSpaceInvariantChecks) {
365        AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root);
366      }
367    }
368  }
369  // TODO: Other garbage collectors uses Runtime::VisitConcurrentRoots(), refactor this part
370  // to also use the same function.
371  {
372    TimingLogger::ScopedTiming split2("VisitConstantRoots", GetTimings());
373    Runtime::Current()->VisitConstantRoots(this);
374  }
375  {
376    TimingLogger::ScopedTiming split3("VisitInternTableRoots", GetTimings());
377    Runtime::Current()->GetInternTable()->VisitRoots(this, kVisitRootFlagAllRoots);
378  }
379  {
380    TimingLogger::ScopedTiming split4("VisitClassLinkerRoots", GetTimings());
381    Runtime::Current()->GetClassLinker()->VisitRoots(this, kVisitRootFlagAllRoots);
382  }
383  {
384    // TODO: don't visit the transaction roots if it's not active.
385    TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
386    Runtime::Current()->VisitNonThreadRoots(this);
387  }
388  Runtime::Current()->GetHeap()->VisitAllocationRecords(this);
389
390  // Immune spaces.
391  for (auto& space : heap_->GetContinuousSpaces()) {
392    if (immune_region_.ContainsSpace(space)) {
393      DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
394      accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
395      ConcurrentCopyingImmuneSpaceObjVisitor visitor(this);
396      live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
397                                    reinterpret_cast<uintptr_t>(space->Limit()),
398                                    visitor);
399    }
400  }
401
402  Thread* self = Thread::Current();
403  {
404    TimingLogger::ScopedTiming split6("ProcessMarkStack", GetTimings());
405    // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
406    // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
407    // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
408    // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
409    // reach the point where we process weak references, we can avoid using a lock when accessing
410    // the GC mark stack, which makes mark stack processing more efficient.
411
412    // Process the mark stack once in the thread local stack mode. This marks most of the live
413    // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
414    // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
415    // objects and push refs on the mark stack.
416    ProcessMarkStack();
417    // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
418    // for the last time before transitioning to the shared mark stack mode, which would process new
419    // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
420    // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
421    // important to do these together in a single checkpoint so that we can ensure that mutators
422    // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and
423    // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
424    // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
425    // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
426    SwitchToSharedMarkStackMode();
427    CHECK(!self->GetWeakRefAccessEnabled());
428    // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
429    // (which may be non-empty if there were refs found on thread-local mark stacks during the above
430    // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
431    // (via read barriers) have no way to produce any more refs to process. Marking converges once
432    // before we process weak refs below.
433    ProcessMarkStack();
434    CheckEmptyMarkStack();
435    // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
436    // lock from this point on.
437    SwitchToGcExclusiveMarkStackMode();
438    CheckEmptyMarkStack();
439    if (kVerboseMode) {
440      LOG(INFO) << "ProcessReferences";
441    }
442    // Process weak references. This may produce new refs to process and have them processed via
443    // ProcessMarkStack (in the GC exclusive mark stack mode).
444    ProcessReferences(self);
445    CheckEmptyMarkStack();
446    if (kVerboseMode) {
447      LOG(INFO) << "SweepSystemWeaks";
448    }
449    SweepSystemWeaks(self);
450    if (kVerboseMode) {
451      LOG(INFO) << "SweepSystemWeaks done";
452    }
453    // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
454    // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
455    // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
456    ProcessMarkStack();
457    CheckEmptyMarkStack();
458    // Re-enable weak ref accesses.
459    ReenableWeakRefAccess(self);
460    // Marking is done. Disable marking.
461    DisableMarking();
462    CheckEmptyMarkStack();
463  }
464
465  CHECK(weak_ref_access_enabled_);
466  if (kVerboseMode) {
467    LOG(INFO) << "GC end of MarkingPhase";
468  }
469}
470
471void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
472  if (kVerboseMode) {
473    LOG(INFO) << "ReenableWeakRefAccess";
474  }
475  weak_ref_access_enabled_.StoreRelaxed(true);  // This is for new threads.
476  QuasiAtomic::ThreadFenceForConstructor();
477  // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
478  {
479    MutexLock mu(self, *Locks::thread_list_lock_);
480    std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
481    for (Thread* thread : thread_list) {
482      thread->SetWeakRefAccessEnabled(true);
483    }
484  }
485  // Unblock blocking threads.
486  GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
487  Runtime::Current()->BroadcastForNewSystemWeaks();
488}
489
490class DisableMarkingCheckpoint : public Closure {
491 public:
492  explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
493      : concurrent_copying_(concurrent_copying) {
494  }
495
496  void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
497    // Note: self is not necessarily equal to thread since thread may be suspended.
498    Thread* self = Thread::Current();
499    DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
500        << thread->GetState() << " thread " << thread << " self " << self;
501    // Disable the thread-local is_gc_marking flag.
502    // Note a thread that has just started right before this checkpoint may have already this flag
503    // set to false, which is ok.
504    thread->SetIsGcMarking(false);
505    // If thread is a running mutator, then act on behalf of the garbage collector.
506    // See the code in ThreadList::RunCheckpoint.
507    if (thread->GetState() == kRunnable) {
508      concurrent_copying_->GetBarrier().Pass(self);
509    }
510  }
511
512 private:
513  ConcurrentCopying* const concurrent_copying_;
514};
515
516void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
517  Thread* self = Thread::Current();
518  DisableMarkingCheckpoint check_point(this);
519  ThreadList* thread_list = Runtime::Current()->GetThreadList();
520  gc_barrier_->Init(self, 0);
521  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
522  // If there are no threads to wait which implies that all the checkpoint functions are finished,
523  // then no need to release the mutator lock.
524  if (barrier_count == 0) {
525    return;
526  }
527  // Release locks then wait for all mutator threads to pass the barrier.
528  Locks::mutator_lock_->SharedUnlock(self);
529  {
530    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
531    gc_barrier_->Increment(self, barrier_count);
532  }
533  Locks::mutator_lock_->SharedLock(self);
534}
535
536void ConcurrentCopying::DisableMarking() {
537  // Change the global is_marking flag to false. Do a fence before doing a checkpoint to update the
538  // thread-local flags so that a new thread starting up will get the correct is_marking flag.
539  is_marking_ = false;
540  QuasiAtomic::ThreadFenceForConstructor();
541  // Use a checkpoint to turn off the thread-local is_gc_marking flags and to ensure no threads are
542  // still in the middle of a read barrier which may have a from-space ref cached in a local
543  // variable.
544  IssueDisableMarkingCheckpoint();
545  if (kUseTableLookupReadBarrier) {
546    heap_->rb_table_->ClearAll();
547    DCHECK(heap_->rb_table_->IsAllCleared());
548  }
549  is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(1);
550  mark_stack_mode_.StoreSequentiallyConsistent(kMarkStackModeOff);
551}
552
553void ConcurrentCopying::IssueEmptyCheckpoint() {
554  Thread* self = Thread::Current();
555  EmptyCheckpoint check_point(this);
556  ThreadList* thread_list = Runtime::Current()->GetThreadList();
557  gc_barrier_->Init(self, 0);
558  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
559  // If there are no threads to wait which implys that all the checkpoint functions are finished,
560  // then no need to release the mutator lock.
561  if (barrier_count == 0) {
562    return;
563  }
564  // Release locks then wait for all mutator threads to pass the barrier.
565  Locks::mutator_lock_->SharedUnlock(self);
566  {
567    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
568    gc_barrier_->Increment(self, barrier_count);
569  }
570  Locks::mutator_lock_->SharedLock(self);
571}
572
573void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
574  CHECK_EQ(is_mark_stack_push_disallowed_.LoadRelaxed(), 0)
575      << " " << to_ref << " " << PrettyTypeOf(to_ref);
576  Thread* self = Thread::Current();  // TODO: pass self as an argument from call sites?
577  CHECK(thread_running_gc_ != nullptr);
578  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
579  if (mark_stack_mode == kMarkStackModeThreadLocal) {
580    if (self == thread_running_gc_) {
581      // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
582      CHECK(self->GetThreadLocalMarkStack() == nullptr);
583      CHECK(!gc_mark_stack_->IsFull());
584      gc_mark_stack_->PushBack(to_ref);
585    } else {
586      // Otherwise, use a thread-local mark stack.
587      accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
588      if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
589        MutexLock mu(self, mark_stack_lock_);
590        // Get a new thread local mark stack.
591        accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
592        if (!pooled_mark_stacks_.empty()) {
593          // Use a pooled mark stack.
594          new_tl_mark_stack = pooled_mark_stacks_.back();
595          pooled_mark_stacks_.pop_back();
596        } else {
597          // None pooled. Create a new one.
598          new_tl_mark_stack =
599              accounting::AtomicStack<mirror::Object>::Create(
600                  "thread local mark stack", 4 * KB, 4 * KB);
601        }
602        DCHECK(new_tl_mark_stack != nullptr);
603        DCHECK(new_tl_mark_stack->IsEmpty());
604        new_tl_mark_stack->PushBack(to_ref);
605        self->SetThreadLocalMarkStack(new_tl_mark_stack);
606        if (tl_mark_stack != nullptr) {
607          // Store the old full stack into a vector.
608          revoked_mark_stacks_.push_back(tl_mark_stack);
609        }
610      } else {
611        tl_mark_stack->PushBack(to_ref);
612      }
613    }
614  } else if (mark_stack_mode == kMarkStackModeShared) {
615    // Access the shared GC mark stack with a lock.
616    MutexLock mu(self, mark_stack_lock_);
617    CHECK(!gc_mark_stack_->IsFull());
618    gc_mark_stack_->PushBack(to_ref);
619  } else {
620    CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
621             static_cast<uint32_t>(kMarkStackModeGcExclusive));
622    CHECK(self == thread_running_gc_)
623        << "Only GC-running thread should access the mark stack "
624        << "in the GC exclusive mark stack mode";
625    // Access the GC mark stack without a lock.
626    CHECK(!gc_mark_stack_->IsFull());
627    gc_mark_stack_->PushBack(to_ref);
628  }
629}
630
631accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
632  return heap_->allocation_stack_.get();
633}
634
635accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
636  return heap_->live_stack_.get();
637}
638
639inline mirror::Object* ConcurrentCopying::GetFwdPtr(mirror::Object* from_ref) {
640  DCHECK(region_space_->IsInFromSpace(from_ref));
641  LockWord lw = from_ref->GetLockWord(false);
642  if (lw.GetState() == LockWord::kForwardingAddress) {
643    mirror::Object* fwd_ptr = reinterpret_cast<mirror::Object*>(lw.ForwardingAddress());
644    CHECK(fwd_ptr != nullptr);
645    return fwd_ptr;
646  } else {
647    return nullptr;
648  }
649}
650
651// The following visitors are that used to verify that there's no
652// references to the from-space left after marking.
653class ConcurrentCopyingVerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
654 public:
655  explicit ConcurrentCopyingVerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
656      : collector_(collector) {}
657
658  void operator()(mirror::Object* ref) const
659      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
660    if (ref == nullptr) {
661      // OK.
662      return;
663    }
664    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
665    if (kUseBakerReadBarrier) {
666      if (collector_->RegionSpace()->IsInToSpace(ref)) {
667        CHECK(ref->GetReadBarrierPointer() == nullptr)
668            << "To-space ref " << ref << " " << PrettyTypeOf(ref)
669            << " has non-white rb_ptr " << ref->GetReadBarrierPointer();
670      } else {
671        CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
672              (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
673               collector_->IsOnAllocStack(ref)))
674            << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref)
675            << " has non-black rb_ptr " << ref->GetReadBarrierPointer()
676            << " but isn't on the alloc stack (and has white rb_ptr)."
677            << " Is it in the non-moving space="
678            << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref));
679      }
680    }
681  }
682
683  void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
684      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
685    DCHECK(root != nullptr);
686    operator()(root);
687  }
688
689 private:
690  ConcurrentCopying* const collector_;
691};
692
693class ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor {
694 public:
695  explicit ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
696      : collector_(collector) {}
697
698  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
699      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
700    mirror::Object* ref =
701        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
702    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
703    visitor(ref);
704  }
705  void operator()(mirror::Class* klass, mirror::Reference* ref) const
706      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
707    CHECK(klass->IsTypeOfReferenceClass());
708    this->operator()(ref, mirror::Reference::ReferentOffset(), false);
709  }
710
711  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
712      SHARED_REQUIRES(Locks::mutator_lock_) {
713    if (!root->IsNull()) {
714      VisitRoot(root);
715    }
716  }
717
718  void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
719      SHARED_REQUIRES(Locks::mutator_lock_) {
720    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
721    visitor(root->AsMirrorPtr());
722  }
723
724 private:
725  ConcurrentCopying* const collector_;
726};
727
728class ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor {
729 public:
730  explicit ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
731      : collector_(collector) {}
732  void operator()(mirror::Object* obj) const
733      SHARED_REQUIRES(Locks::mutator_lock_) {
734    ObjectCallback(obj, collector_);
735  }
736  static void ObjectCallback(mirror::Object* obj, void *arg)
737      SHARED_REQUIRES(Locks::mutator_lock_) {
738    CHECK(obj != nullptr);
739    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
740    space::RegionSpace* region_space = collector->RegionSpace();
741    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
742    ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor visitor(collector);
743    obj->VisitReferences(visitor, visitor);
744    if (kUseBakerReadBarrier) {
745      if (collector->RegionSpace()->IsInToSpace(obj)) {
746        CHECK(obj->GetReadBarrierPointer() == nullptr)
747            << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer();
748      } else {
749        CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
750              (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
751               collector->IsOnAllocStack(obj)))
752            << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj)
753            << " has non-black rb_ptr " << obj->GetReadBarrierPointer()
754            << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space="
755            << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj));
756      }
757    }
758  }
759
760 private:
761  ConcurrentCopying* const collector_;
762};
763
764// Verify there's no from-space references left after the marking phase.
765void ConcurrentCopying::VerifyNoFromSpaceReferences() {
766  Thread* self = Thread::Current();
767  DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
768  // Verify all threads have is_gc_marking to be false
769  {
770    MutexLock mu(self, *Locks::thread_list_lock_);
771    std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
772    for (Thread* thread : thread_list) {
773      CHECK(!thread->GetIsGcMarking());
774    }
775  }
776  ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor visitor(this);
777  // Roots.
778  {
779    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
780    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
781    Runtime::Current()->VisitRoots(&ref_visitor);
782  }
783  // The to-space.
784  region_space_->WalkToSpace(ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor::ObjectCallback,
785                             this);
786  // Non-moving spaces.
787  {
788    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
789    heap_->GetMarkBitmap()->Visit(visitor);
790  }
791  // The alloc stack.
792  {
793    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
794    for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
795        it < end; ++it) {
796      mirror::Object* const obj = it->AsMirrorPtr();
797      if (obj != nullptr && obj->GetClass() != nullptr) {
798        // TODO: need to call this only if obj is alive?
799        ref_visitor(obj);
800        visitor(obj);
801      }
802    }
803  }
804  // TODO: LOS. But only refs in LOS are classes.
805}
806
807// The following visitors are used to assert the to-space invariant.
808class ConcurrentCopyingAssertToSpaceInvariantRefsVisitor {
809 public:
810  explicit ConcurrentCopyingAssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
811      : collector_(collector) {}
812
813  void operator()(mirror::Object* ref) const
814      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
815    if (ref == nullptr) {
816      // OK.
817      return;
818    }
819    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
820  }
821
822 private:
823  ConcurrentCopying* const collector_;
824};
825
826class ConcurrentCopyingAssertToSpaceInvariantFieldVisitor {
827 public:
828  explicit ConcurrentCopyingAssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
829      : collector_(collector) {}
830
831  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
832      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
833    mirror::Object* ref =
834        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
835    ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
836    visitor(ref);
837  }
838  void operator()(mirror::Class* klass, mirror::Reference* ref ATTRIBUTE_UNUSED) const
839      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
840    CHECK(klass->IsTypeOfReferenceClass());
841  }
842
843  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
844      SHARED_REQUIRES(Locks::mutator_lock_) {
845    if (!root->IsNull()) {
846      VisitRoot(root);
847    }
848  }
849
850  void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
851      SHARED_REQUIRES(Locks::mutator_lock_) {
852    ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
853    visitor(root->AsMirrorPtr());
854  }
855
856 private:
857  ConcurrentCopying* const collector_;
858};
859
860class ConcurrentCopyingAssertToSpaceInvariantObjectVisitor {
861 public:
862  explicit ConcurrentCopyingAssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
863      : collector_(collector) {}
864  void operator()(mirror::Object* obj) const
865      SHARED_REQUIRES(Locks::mutator_lock_) {
866    ObjectCallback(obj, collector_);
867  }
868  static void ObjectCallback(mirror::Object* obj, void *arg)
869      SHARED_REQUIRES(Locks::mutator_lock_) {
870    CHECK(obj != nullptr);
871    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
872    space::RegionSpace* region_space = collector->RegionSpace();
873    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
874    collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
875    ConcurrentCopyingAssertToSpaceInvariantFieldVisitor visitor(collector);
876    obj->VisitReferences(visitor, visitor);
877  }
878
879 private:
880  ConcurrentCopying* const collector_;
881};
882
883class RevokeThreadLocalMarkStackCheckpoint : public Closure {
884 public:
885  RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
886                                       bool disable_weak_ref_access)
887      : concurrent_copying_(concurrent_copying),
888        disable_weak_ref_access_(disable_weak_ref_access) {
889  }
890
891  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
892    // Note: self is not necessarily equal to thread since thread may be suspended.
893    Thread* self = Thread::Current();
894    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
895        << thread->GetState() << " thread " << thread << " self " << self;
896    // Revoke thread local mark stacks.
897    accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
898    if (tl_mark_stack != nullptr) {
899      MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
900      concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
901      thread->SetThreadLocalMarkStack(nullptr);
902    }
903    // Disable weak ref access.
904    if (disable_weak_ref_access_) {
905      thread->SetWeakRefAccessEnabled(false);
906    }
907    // If thread is a running mutator, then act on behalf of the garbage collector.
908    // See the code in ThreadList::RunCheckpoint.
909    if (thread->GetState() == kRunnable) {
910      concurrent_copying_->GetBarrier().Pass(self);
911    }
912  }
913
914 private:
915  ConcurrentCopying* const concurrent_copying_;
916  const bool disable_weak_ref_access_;
917};
918
919void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access) {
920  Thread* self = Thread::Current();
921  RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
922  ThreadList* thread_list = Runtime::Current()->GetThreadList();
923  gc_barrier_->Init(self, 0);
924  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
925  // If there are no threads to wait which implys that all the checkpoint functions are finished,
926  // then no need to release the mutator lock.
927  if (barrier_count == 0) {
928    return;
929  }
930  Locks::mutator_lock_->SharedUnlock(self);
931  {
932    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
933    gc_barrier_->Increment(self, barrier_count);
934  }
935  Locks::mutator_lock_->SharedLock(self);
936}
937
938void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
939  Thread* self = Thread::Current();
940  CHECK_EQ(self, thread);
941  accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
942  if (tl_mark_stack != nullptr) {
943    CHECK(is_marking_);
944    MutexLock mu(self, mark_stack_lock_);
945    revoked_mark_stacks_.push_back(tl_mark_stack);
946    thread->SetThreadLocalMarkStack(nullptr);
947  }
948}
949
950void ConcurrentCopying::ProcessMarkStack() {
951  if (kVerboseMode) {
952    LOG(INFO) << "ProcessMarkStack. ";
953  }
954  bool empty_prev = false;
955  while (true) {
956    bool empty = ProcessMarkStackOnce();
957    if (empty_prev && empty) {
958      // Saw empty mark stack for a second time, done.
959      break;
960    }
961    empty_prev = empty;
962  }
963}
964
965bool ConcurrentCopying::ProcessMarkStackOnce() {
966  Thread* self = Thread::Current();
967  CHECK(thread_running_gc_ != nullptr);
968  CHECK(self == thread_running_gc_);
969  CHECK(self->GetThreadLocalMarkStack() == nullptr);
970  size_t count = 0;
971  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
972  if (mark_stack_mode == kMarkStackModeThreadLocal) {
973    // Process the thread-local mark stacks and the GC mark stack.
974    count += ProcessThreadLocalMarkStacks(false);
975    while (!gc_mark_stack_->IsEmpty()) {
976      mirror::Object* to_ref = gc_mark_stack_->PopBack();
977      ProcessMarkStackRef(to_ref);
978      ++count;
979    }
980    gc_mark_stack_->Reset();
981  } else if (mark_stack_mode == kMarkStackModeShared) {
982    // Process the shared GC mark stack with a lock.
983    {
984      MutexLock mu(self, mark_stack_lock_);
985      CHECK(revoked_mark_stacks_.empty());
986    }
987    while (true) {
988      std::vector<mirror::Object*> refs;
989      {
990        // Copy refs with lock. Note the number of refs should be small.
991        MutexLock mu(self, mark_stack_lock_);
992        if (gc_mark_stack_->IsEmpty()) {
993          break;
994        }
995        for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
996             p != gc_mark_stack_->End(); ++p) {
997          refs.push_back(p->AsMirrorPtr());
998        }
999        gc_mark_stack_->Reset();
1000      }
1001      for (mirror::Object* ref : refs) {
1002        ProcessMarkStackRef(ref);
1003        ++count;
1004      }
1005    }
1006  } else {
1007    CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1008             static_cast<uint32_t>(kMarkStackModeGcExclusive));
1009    {
1010      MutexLock mu(self, mark_stack_lock_);
1011      CHECK(revoked_mark_stacks_.empty());
1012    }
1013    // Process the GC mark stack in the exclusive mode. No need to take the lock.
1014    while (!gc_mark_stack_->IsEmpty()) {
1015      mirror::Object* to_ref = gc_mark_stack_->PopBack();
1016      ProcessMarkStackRef(to_ref);
1017      ++count;
1018    }
1019    gc_mark_stack_->Reset();
1020  }
1021
1022  // Return true if the stack was empty.
1023  return count == 0;
1024}
1025
1026size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access) {
1027  // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
1028  RevokeThreadLocalMarkStacks(disable_weak_ref_access);
1029  size_t count = 0;
1030  std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
1031  {
1032    MutexLock mu(Thread::Current(), mark_stack_lock_);
1033    // Make a copy of the mark stack vector.
1034    mark_stacks = revoked_mark_stacks_;
1035    revoked_mark_stacks_.clear();
1036  }
1037  for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
1038    for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
1039      mirror::Object* to_ref = p->AsMirrorPtr();
1040      ProcessMarkStackRef(to_ref);
1041      ++count;
1042    }
1043    {
1044      MutexLock mu(Thread::Current(), mark_stack_lock_);
1045      if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
1046        // The pool has enough. Delete it.
1047        delete mark_stack;
1048      } else {
1049        // Otherwise, put it into the pool for later reuse.
1050        mark_stack->Reset();
1051        pooled_mark_stacks_.push_back(mark_stack);
1052      }
1053    }
1054  }
1055  return count;
1056}
1057
1058void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
1059  DCHECK(!region_space_->IsInFromSpace(to_ref));
1060  if (kUseBakerReadBarrier) {
1061    DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
1062        << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
1063        << " is_marked=" << IsMarked(to_ref);
1064  }
1065  // Scan ref fields.
1066  Scan(to_ref);
1067  // Mark the gray ref as white or black.
1068  if (kUseBakerReadBarrier) {
1069    DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
1070        << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
1071        << " is_marked=" << IsMarked(to_ref);
1072  }
1073  if (to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
1074      to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr &&
1075      !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())) {
1076    // Leave this Reference gray in the queue so that GetReferent() will trigger a read barrier. We
1077    // will change it to black or white later in ReferenceQueue::DequeuePendingReference().
1078    CHECK(to_ref->AsReference()->IsEnqueued()) << "Left unenqueued ref gray " << to_ref;
1079  } else {
1080    // We may occasionally leave a Reference black or white in the queue if its referent happens to
1081    // be concurrently marked after the Scan() call above has enqueued the Reference, in which case
1082    // the above IsInToSpace() evaluates to true and we change the color from gray to black or white
1083    // here in this else block.
1084#ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
1085    if (kUseBakerReadBarrier) {
1086      if (region_space_->IsInToSpace(to_ref)) {
1087        // If to-space, change from gray to white.
1088        bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
1089                                                           ReadBarrier::WhitePtr());
1090        CHECK(success) << "Must succeed as we won the race.";
1091        CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
1092      } else {
1093        // If non-moving space/unevac from space, change from gray
1094        // to black. We can't change gray to white because it's not
1095        // safe to use CAS if two threads change values in opposite
1096        // directions (A->B and B->A). So, we change it to black to
1097        // indicate non-moving objects that have been marked
1098        // through. Note we'd need to change from black to white
1099        // later (concurrently).
1100        bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
1101                                                           ReadBarrier::BlackPtr());
1102        CHECK(success) << "Must succeed as we won the race.";
1103        CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1104      }
1105    }
1106#else
1107    DCHECK(!kUseBakerReadBarrier);
1108#endif
1109  }
1110  if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) {
1111    ConcurrentCopyingAssertToSpaceInvariantObjectVisitor visitor(this);
1112    visitor(to_ref);
1113  }
1114}
1115
1116void ConcurrentCopying::SwitchToSharedMarkStackMode() {
1117  Thread* self = Thread::Current();
1118  CHECK(thread_running_gc_ != nullptr);
1119  CHECK_EQ(self, thread_running_gc_);
1120  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1121  MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1122  CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1123           static_cast<uint32_t>(kMarkStackModeThreadLocal));
1124  mark_stack_mode_.StoreRelaxed(kMarkStackModeShared);
1125  CHECK(weak_ref_access_enabled_.LoadRelaxed());
1126  weak_ref_access_enabled_.StoreRelaxed(false);
1127  QuasiAtomic::ThreadFenceForConstructor();
1128  // Process the thread local mark stacks one last time after switching to the shared mark stack
1129  // mode and disable weak ref accesses.
1130  ProcessThreadLocalMarkStacks(true);
1131  if (kVerboseMode) {
1132    LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
1133  }
1134}
1135
1136void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
1137  Thread* self = Thread::Current();
1138  CHECK(thread_running_gc_ != nullptr);
1139  CHECK_EQ(self, thread_running_gc_);
1140  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1141  MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1142  CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1143           static_cast<uint32_t>(kMarkStackModeShared));
1144  mark_stack_mode_.StoreRelaxed(kMarkStackModeGcExclusive);
1145  QuasiAtomic::ThreadFenceForConstructor();
1146  if (kVerboseMode) {
1147    LOG(INFO) << "Switched to GC exclusive mark stack mode";
1148  }
1149}
1150
1151void ConcurrentCopying::CheckEmptyMarkStack() {
1152  Thread* self = Thread::Current();
1153  CHECK(thread_running_gc_ != nullptr);
1154  CHECK_EQ(self, thread_running_gc_);
1155  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1156  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1157  if (mark_stack_mode == kMarkStackModeThreadLocal) {
1158    // Thread-local mark stack mode.
1159    RevokeThreadLocalMarkStacks(false);
1160    MutexLock mu(Thread::Current(), mark_stack_lock_);
1161    if (!revoked_mark_stacks_.empty()) {
1162      for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
1163        while (!mark_stack->IsEmpty()) {
1164          mirror::Object* obj = mark_stack->PopBack();
1165          if (kUseBakerReadBarrier) {
1166            mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
1167            LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr
1168                      << " is_marked=" << IsMarked(obj);
1169          } else {
1170            LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj)
1171                      << " is_marked=" << IsMarked(obj);
1172          }
1173        }
1174      }
1175      LOG(FATAL) << "mark stack is not empty";
1176    }
1177  } else {
1178    // Shared, GC-exclusive, or off.
1179    MutexLock mu(Thread::Current(), mark_stack_lock_);
1180    CHECK(gc_mark_stack_->IsEmpty());
1181    CHECK(revoked_mark_stacks_.empty());
1182  }
1183}
1184
1185void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
1186  TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
1187  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1188  Runtime::Current()->SweepSystemWeaks(this);
1189}
1190
1191void ConcurrentCopying::Sweep(bool swap_bitmaps) {
1192  {
1193    TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
1194    accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1195    if (kEnableFromSpaceAccountingCheck) {
1196      CHECK_GE(live_stack_freeze_size_, live_stack->Size());
1197    }
1198    heap_->MarkAllocStackAsLive(live_stack);
1199    live_stack->Reset();
1200  }
1201  CheckEmptyMarkStack();
1202  TimingLogger::ScopedTiming split("Sweep", GetTimings());
1203  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1204    if (space->IsContinuousMemMapAllocSpace()) {
1205      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1206      if (space == region_space_ || immune_region_.ContainsSpace(space)) {
1207        continue;
1208      }
1209      TimingLogger::ScopedTiming split2(
1210          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
1211      RecordFree(alloc_space->Sweep(swap_bitmaps));
1212    }
1213  }
1214  SweepLargeObjects(swap_bitmaps);
1215}
1216
1217void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
1218  TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
1219  RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
1220}
1221
1222class ConcurrentCopyingClearBlackPtrsVisitor {
1223 public:
1224  explicit ConcurrentCopyingClearBlackPtrsVisitor(ConcurrentCopying* cc)
1225      : collector_(cc) {}
1226#ifndef USE_BAKER_OR_BROOKS_READ_BARRIER
1227  NO_RETURN
1228#endif
1229  void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
1230      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1231    DCHECK(obj != nullptr);
1232    DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj;
1233    DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj;
1234    obj->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1235    DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1236  }
1237
1238 private:
1239  ConcurrentCopying* const collector_;
1240};
1241
1242// Clear the black ptrs in non-moving objects back to white.
1243void ConcurrentCopying::ClearBlackPtrs() {
1244  CHECK(kUseBakerReadBarrier);
1245  TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings());
1246  ConcurrentCopyingClearBlackPtrsVisitor visitor(this);
1247  for (auto& space : heap_->GetContinuousSpaces()) {
1248    if (space == region_space_) {
1249      continue;
1250    }
1251    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1252    if (kVerboseMode) {
1253      LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap;
1254    }
1255    mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
1256                                  reinterpret_cast<uintptr_t>(space->Limit()),
1257                                  visitor);
1258  }
1259  space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
1260  large_object_space->GetMarkBitmap()->VisitMarkedRange(
1261      reinterpret_cast<uintptr_t>(large_object_space->Begin()),
1262      reinterpret_cast<uintptr_t>(large_object_space->End()),
1263      visitor);
1264  // Objects on the allocation stack?
1265  if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) {
1266    size_t count = GetAllocationStack()->Size();
1267    auto* it = GetAllocationStack()->Begin();
1268    auto* end = GetAllocationStack()->End();
1269    for (size_t i = 0; i < count; ++i, ++it) {
1270      CHECK_LT(it, end);
1271      mirror::Object* obj = it->AsMirrorPtr();
1272      if (obj != nullptr) {
1273        // Must have been cleared above.
1274        CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1275      }
1276    }
1277  }
1278}
1279
1280void ConcurrentCopying::ReclaimPhase() {
1281  TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
1282  if (kVerboseMode) {
1283    LOG(INFO) << "GC ReclaimPhase";
1284  }
1285  Thread* self = Thread::Current();
1286
1287  {
1288    // Double-check that the mark stack is empty.
1289    // Note: need to set this after VerifyNoFromSpaceRef().
1290    is_asserting_to_space_invariant_ = false;
1291    QuasiAtomic::ThreadFenceForConstructor();
1292    if (kVerboseMode) {
1293      LOG(INFO) << "Issue an empty check point. ";
1294    }
1295    IssueEmptyCheckpoint();
1296    // Disable the check.
1297    is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(0);
1298    CheckEmptyMarkStack();
1299  }
1300
1301  {
1302    // Record freed objects.
1303    TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
1304    // Don't include thread-locals that are in the to-space.
1305    uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
1306    uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
1307    uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
1308    uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
1309    uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
1310    uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
1311    if (kEnableFromSpaceAccountingCheck) {
1312      CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
1313      CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
1314    }
1315    CHECK_LE(to_objects, from_objects);
1316    CHECK_LE(to_bytes, from_bytes);
1317    int64_t freed_bytes = from_bytes - to_bytes;
1318    int64_t freed_objects = from_objects - to_objects;
1319    if (kVerboseMode) {
1320      LOG(INFO) << "RecordFree:"
1321                << " from_bytes=" << from_bytes << " from_objects=" << from_objects
1322                << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
1323                << " to_bytes=" << to_bytes << " to_objects=" << to_objects
1324                << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
1325                << " from_space size=" << region_space_->FromSpaceSize()
1326                << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
1327                << " to_space size=" << region_space_->ToSpaceSize();
1328      LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1329    }
1330    RecordFree(ObjectBytePair(freed_objects, freed_bytes));
1331    if (kVerboseMode) {
1332      LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1333    }
1334  }
1335
1336  {
1337    TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings());
1338    ComputeUnevacFromSpaceLiveRatio();
1339  }
1340
1341  {
1342    TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
1343    region_space_->ClearFromSpace();
1344  }
1345
1346  {
1347    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1348    if (kUseBakerReadBarrier) {
1349      ClearBlackPtrs();
1350    }
1351    Sweep(false);
1352    SwapBitmaps();
1353    heap_->UnBindBitmaps();
1354
1355    // Remove bitmaps for the immune spaces.
1356    while (!cc_bitmaps_.empty()) {
1357      accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back();
1358      cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap);
1359      delete cc_bitmap;
1360      cc_bitmaps_.pop_back();
1361    }
1362    region_space_bitmap_ = nullptr;
1363  }
1364
1365  CheckEmptyMarkStack();
1366
1367  if (kVerboseMode) {
1368    LOG(INFO) << "GC end of ReclaimPhase";
1369  }
1370}
1371
1372class ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor {
1373 public:
1374  explicit ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc)
1375      : collector_(cc) {}
1376  void operator()(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_)
1377      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1378    DCHECK(ref != nullptr);
1379    DCHECK(collector_->region_space_bitmap_->Test(ref)) << ref;
1380    DCHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref;
1381    if (kUseBakerReadBarrier) {
1382      DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << ref;
1383      // Clear the black ptr.
1384      ref->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1385      DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << ref;
1386    }
1387    size_t obj_size = ref->SizeOf();
1388    size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1389    collector_->region_space_->AddLiveBytes(ref, alloc_size);
1390  }
1391
1392 private:
1393  ConcurrentCopying* const collector_;
1394};
1395
1396// Compute how much live objects are left in regions.
1397void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() {
1398  region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1399  ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor visitor(this);
1400  region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()),
1401                                         reinterpret_cast<uintptr_t>(region_space_->Limit()),
1402                                         visitor);
1403}
1404
1405// Assert the to-space invariant.
1406void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
1407                                               mirror::Object* ref) {
1408  CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1409  if (is_asserting_to_space_invariant_) {
1410    if (region_space_->IsInToSpace(ref)) {
1411      // OK.
1412      return;
1413    } else if (region_space_->IsInUnevacFromSpace(ref)) {
1414      CHECK(region_space_bitmap_->Test(ref)) << ref;
1415    } else if (region_space_->IsInFromSpace(ref)) {
1416      // Not OK. Do extra logging.
1417      if (obj != nullptr) {
1418        LogFromSpaceRefHolder(obj, offset);
1419      }
1420      ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1421      CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1422    } else {
1423      AssertToSpaceInvariantInNonMovingSpace(obj, ref);
1424    }
1425  }
1426}
1427
1428class RootPrinter {
1429 public:
1430  RootPrinter() { }
1431
1432  template <class MirrorType>
1433  ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
1434      SHARED_REQUIRES(Locks::mutator_lock_) {
1435    if (!root->IsNull()) {
1436      VisitRoot(root);
1437    }
1438  }
1439
1440  template <class MirrorType>
1441  void VisitRoot(mirror::Object** root)
1442      SHARED_REQUIRES(Locks::mutator_lock_) {
1443    LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << *root;
1444  }
1445
1446  template <class MirrorType>
1447  void VisitRoot(mirror::CompressedReference<MirrorType>* root)
1448      SHARED_REQUIRES(Locks::mutator_lock_) {
1449    LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << root->AsMirrorPtr();
1450  }
1451};
1452
1453void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
1454                                               mirror::Object* ref) {
1455  CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1456  if (is_asserting_to_space_invariant_) {
1457    if (region_space_->IsInToSpace(ref)) {
1458      // OK.
1459      return;
1460    } else if (region_space_->IsInUnevacFromSpace(ref)) {
1461      CHECK(region_space_bitmap_->Test(ref)) << ref;
1462    } else if (region_space_->IsInFromSpace(ref)) {
1463      // Not OK. Do extra logging.
1464      if (gc_root_source == nullptr) {
1465        // No info.
1466      } else if (gc_root_source->HasArtField()) {
1467        ArtField* field = gc_root_source->GetArtField();
1468        LOG(INTERNAL_FATAL) << "gc root in field " << field << " " << PrettyField(field);
1469        RootPrinter root_printer;
1470        field->VisitRoots(root_printer);
1471      } else if (gc_root_source->HasArtMethod()) {
1472        ArtMethod* method = gc_root_source->GetArtMethod();
1473        LOG(INTERNAL_FATAL) << "gc root in method " << method << " " << PrettyMethod(method);
1474        RootPrinter root_printer;
1475        method->VisitRoots(root_printer);
1476      }
1477      ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1478      region_space_->DumpNonFreeRegions(LOG(INTERNAL_FATAL));
1479      PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
1480      MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
1481      CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1482    } else {
1483      AssertToSpaceInvariantInNonMovingSpace(nullptr, ref);
1484    }
1485  }
1486}
1487
1488void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
1489  if (kUseBakerReadBarrier) {
1490    LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj)
1491              << " holder rb_ptr=" << obj->GetReadBarrierPointer();
1492  } else {
1493    LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj);
1494  }
1495  if (region_space_->IsInFromSpace(obj)) {
1496    LOG(INFO) << "holder is in the from-space.";
1497  } else if (region_space_->IsInToSpace(obj)) {
1498    LOG(INFO) << "holder is in the to-space.";
1499  } else if (region_space_->IsInUnevacFromSpace(obj)) {
1500    LOG(INFO) << "holder is in the unevac from-space.";
1501    if (region_space_bitmap_->Test(obj)) {
1502      LOG(INFO) << "holder is marked in the region space bitmap.";
1503    } else {
1504      LOG(INFO) << "holder is not marked in the region space bitmap.";
1505    }
1506  } else {
1507    // In a non-moving space.
1508    if (immune_region_.ContainsObject(obj)) {
1509      LOG(INFO) << "holder is in the image or the zygote space.";
1510      accounting::ContinuousSpaceBitmap* cc_bitmap =
1511          cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
1512      CHECK(cc_bitmap != nullptr)
1513          << "An immune space object must have a bitmap.";
1514      if (cc_bitmap->Test(obj)) {
1515        LOG(INFO) << "holder is marked in the bit map.";
1516      } else {
1517        LOG(INFO) << "holder is NOT marked in the bit map.";
1518      }
1519    } else {
1520      LOG(INFO) << "holder is in a non-moving (or main) space.";
1521      accounting::ContinuousSpaceBitmap* mark_bitmap =
1522          heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1523      accounting::LargeObjectBitmap* los_bitmap =
1524          heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1525      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1526      bool is_los = mark_bitmap == nullptr;
1527      if (!is_los && mark_bitmap->Test(obj)) {
1528        LOG(INFO) << "holder is marked in the mark bit map.";
1529      } else if (is_los && los_bitmap->Test(obj)) {
1530        LOG(INFO) << "holder is marked in the los bit map.";
1531      } else {
1532        // If ref is on the allocation stack, then it is considered
1533        // mark/alive (but not necessarily on the live stack.)
1534        if (IsOnAllocStack(obj)) {
1535          LOG(INFO) << "holder is on the alloc stack.";
1536        } else {
1537          LOG(INFO) << "holder is not marked or on the alloc stack.";
1538        }
1539      }
1540    }
1541  }
1542  LOG(INFO) << "offset=" << offset.SizeValue();
1543}
1544
1545void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
1546                                                               mirror::Object* ref) {
1547  // In a non-moving spaces. Check that the ref is marked.
1548  if (immune_region_.ContainsObject(ref)) {
1549    accounting::ContinuousSpaceBitmap* cc_bitmap =
1550        cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1551    CHECK(cc_bitmap != nullptr)
1552        << "An immune space ref must have a bitmap. " << ref;
1553    if (kUseBakerReadBarrier) {
1554      CHECK(cc_bitmap->Test(ref))
1555          << "Unmarked immune space ref. obj=" << obj << " rb_ptr="
1556          << obj->GetReadBarrierPointer() << " ref=" << ref;
1557    } else {
1558      CHECK(cc_bitmap->Test(ref))
1559          << "Unmarked immune space ref. obj=" << obj << " ref=" << ref;
1560    }
1561  } else {
1562    accounting::ContinuousSpaceBitmap* mark_bitmap =
1563        heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1564    accounting::LargeObjectBitmap* los_bitmap =
1565        heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1566    CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1567    bool is_los = mark_bitmap == nullptr;
1568    if ((!is_los && mark_bitmap->Test(ref)) ||
1569        (is_los && los_bitmap->Test(ref))) {
1570      // OK.
1571    } else {
1572      // If ref is on the allocation stack, then it may not be
1573      // marked live, but considered marked/alive (but not
1574      // necessarily on the live stack).
1575      CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1576                                 << "obj=" << obj << " ref=" << ref;
1577    }
1578  }
1579}
1580
1581// Used to scan ref fields of an object.
1582class ConcurrentCopyingRefFieldsVisitor {
1583 public:
1584  explicit ConcurrentCopyingRefFieldsVisitor(ConcurrentCopying* collector)
1585      : collector_(collector) {}
1586
1587  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1588      const ALWAYS_INLINE SHARED_REQUIRES(Locks::mutator_lock_)
1589      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1590    collector_->Process(obj, offset);
1591  }
1592
1593  void operator()(mirror::Class* klass, mirror::Reference* ref) const
1594      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
1595    CHECK(klass->IsTypeOfReferenceClass());
1596    collector_->DelayReferenceReferent(klass, ref);
1597  }
1598
1599  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1600      SHARED_REQUIRES(Locks::mutator_lock_) {
1601    if (!root->IsNull()) {
1602      VisitRoot(root);
1603    }
1604  }
1605
1606  void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1607      SHARED_REQUIRES(Locks::mutator_lock_) {
1608    collector_->MarkRoot(root);
1609  }
1610
1611 private:
1612  ConcurrentCopying* const collector_;
1613};
1614
1615// Scan ref fields of an object.
1616void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1617  DCHECK(!region_space_->IsInFromSpace(to_ref));
1618  ConcurrentCopyingRefFieldsVisitor visitor(this);
1619  to_ref->VisitReferences(visitor, visitor);
1620}
1621
1622// Process a field.
1623inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1624  mirror::Object* ref = obj->GetFieldObject<
1625      mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1626  if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1627    return;
1628  }
1629  mirror::Object* to_ref = Mark(ref);
1630  if (to_ref == ref) {
1631    return;
1632  }
1633  // This may fail if the mutator writes to the field at the same time. But it's ok.
1634  mirror::Object* expected_ref = ref;
1635  mirror::Object* new_ref = to_ref;
1636  do {
1637    if (expected_ref !=
1638        obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1639      // It was updated by the mutator.
1640      break;
1641    }
1642  } while (!obj->CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier<
1643      false, false, kVerifyNone>(offset, expected_ref, new_ref));
1644}
1645
1646// Process some roots.
1647void ConcurrentCopying::VisitRoots(
1648    mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
1649  for (size_t i = 0; i < count; ++i) {
1650    mirror::Object** root = roots[i];
1651    mirror::Object* ref = *root;
1652    if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1653      continue;
1654    }
1655    mirror::Object* to_ref = Mark(ref);
1656    if (to_ref == ref) {
1657      continue;
1658    }
1659    Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1660    mirror::Object* expected_ref = ref;
1661    mirror::Object* new_ref = to_ref;
1662    do {
1663      if (expected_ref != addr->LoadRelaxed()) {
1664        // It was updated by the mutator.
1665        break;
1666      }
1667    } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1668  }
1669}
1670
1671void ConcurrentCopying::MarkRoot(mirror::CompressedReference<mirror::Object>* root) {
1672  DCHECK(!root->IsNull());
1673  mirror::Object* const ref = root->AsMirrorPtr();
1674  if (region_space_->IsInToSpace(ref)) {
1675    return;
1676  }
1677  mirror::Object* to_ref = Mark(ref);
1678  if (to_ref != ref) {
1679    auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
1680    auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
1681    auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
1682    // If the cas fails, then it was updated by the mutator.
1683    do {
1684      if (ref != addr->LoadRelaxed().AsMirrorPtr()) {
1685        // It was updated by the mutator.
1686        break;
1687      }
1688    } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1689  }
1690}
1691
1692void ConcurrentCopying::VisitRoots(
1693    mirror::CompressedReference<mirror::Object>** roots, size_t count,
1694    const RootInfo& info ATTRIBUTE_UNUSED) {
1695  for (size_t i = 0; i < count; ++i) {
1696    mirror::CompressedReference<mirror::Object>* const root = roots[i];
1697    if (!root->IsNull()) {
1698      MarkRoot(root);
1699    }
1700  }
1701}
1702
1703// Fill the given memory block with a dummy object. Used to fill in a
1704// copy of objects that was lost in race.
1705void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
1706  CHECK_ALIGNED(byte_size, kObjectAlignment);
1707  memset(dummy_obj, 0, byte_size);
1708  mirror::Class* int_array_class = mirror::IntArray::GetArrayClass();
1709  CHECK(int_array_class != nullptr);
1710  AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
1711  size_t component_size = int_array_class->GetComponentSize();
1712  CHECK_EQ(component_size, sizeof(int32_t));
1713  size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
1714  if (data_offset > byte_size) {
1715    // An int array is too big. Use java.lang.Object.
1716    mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object);
1717    AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object);
1718    CHECK_EQ(byte_size, java_lang_Object->GetObjectSize());
1719    dummy_obj->SetClass(java_lang_Object);
1720    CHECK_EQ(byte_size, dummy_obj->SizeOf());
1721  } else {
1722    // Use an int array.
1723    dummy_obj->SetClass(int_array_class);
1724    CHECK(dummy_obj->IsArrayInstance());
1725    int32_t length = (byte_size - data_offset) / component_size;
1726    dummy_obj->AsArray()->SetLength(length);
1727    CHECK_EQ(dummy_obj->AsArray()->GetLength(), length)
1728        << "byte_size=" << byte_size << " length=" << length
1729        << " component_size=" << component_size << " data_offset=" << data_offset;
1730    CHECK_EQ(byte_size, dummy_obj->SizeOf())
1731        << "byte_size=" << byte_size << " length=" << length
1732        << " component_size=" << component_size << " data_offset=" << data_offset;
1733  }
1734}
1735
1736// Reuse the memory blocks that were copy of objects that were lost in race.
1737mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
1738  // Try to reuse the blocks that were unused due to CAS failures.
1739  CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
1740  Thread* self = Thread::Current();
1741  size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
1742  MutexLock mu(self, skipped_blocks_lock_);
1743  auto it = skipped_blocks_map_.lower_bound(alloc_size);
1744  if (it == skipped_blocks_map_.end()) {
1745    // Not found.
1746    return nullptr;
1747  }
1748  {
1749    size_t byte_size = it->first;
1750    CHECK_GE(byte_size, alloc_size);
1751    if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
1752      // If remainder would be too small for a dummy object, retry with a larger request size.
1753      it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
1754      if (it == skipped_blocks_map_.end()) {
1755        // Not found.
1756        return nullptr;
1757      }
1758      CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
1759      CHECK_GE(it->first - alloc_size, min_object_size)
1760          << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
1761    }
1762  }
1763  // Found a block.
1764  CHECK(it != skipped_blocks_map_.end());
1765  size_t byte_size = it->first;
1766  uint8_t* addr = it->second;
1767  CHECK_GE(byte_size, alloc_size);
1768  CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
1769  CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
1770  if (kVerboseMode) {
1771    LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
1772  }
1773  skipped_blocks_map_.erase(it);
1774  memset(addr, 0, byte_size);
1775  if (byte_size > alloc_size) {
1776    // Return the remainder to the map.
1777    CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
1778    CHECK_GE(byte_size - alloc_size, min_object_size);
1779    FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
1780                        byte_size - alloc_size);
1781    CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
1782    skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
1783  }
1784  return reinterpret_cast<mirror::Object*>(addr);
1785}
1786
1787mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) {
1788  DCHECK(region_space_->IsInFromSpace(from_ref));
1789  // No read barrier to avoid nested RB that might violate the to-space
1790  // invariant. Note that from_ref is a from space ref so the SizeOf()
1791  // call will access the from-space meta objects, but it's ok and necessary.
1792  size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>();
1793  size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1794  size_t region_space_bytes_allocated = 0U;
1795  size_t non_moving_space_bytes_allocated = 0U;
1796  size_t bytes_allocated = 0U;
1797  size_t dummy;
1798  mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
1799      region_space_alloc_size, &region_space_bytes_allocated, nullptr, &dummy);
1800  bytes_allocated = region_space_bytes_allocated;
1801  if (to_ref != nullptr) {
1802    DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
1803  }
1804  bool fall_back_to_non_moving = false;
1805  if (UNLIKELY(to_ref == nullptr)) {
1806    // Failed to allocate in the region space. Try the skipped blocks.
1807    to_ref = AllocateInSkippedBlock(region_space_alloc_size);
1808    if (to_ref != nullptr) {
1809      // Succeeded to allocate in a skipped block.
1810      if (heap_->use_tlab_) {
1811        // This is necessary for the tlab case as it's not accounted in the space.
1812        region_space_->RecordAlloc(to_ref);
1813      }
1814      bytes_allocated = region_space_alloc_size;
1815    } else {
1816      // Fall back to the non-moving space.
1817      fall_back_to_non_moving = true;
1818      if (kVerboseMode) {
1819        LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
1820                  << to_space_bytes_skipped_.LoadSequentiallyConsistent()
1821                  << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
1822      }
1823      fall_back_to_non_moving = true;
1824      to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
1825                                               &non_moving_space_bytes_allocated, nullptr, &dummy);
1826      CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed";
1827      bytes_allocated = non_moving_space_bytes_allocated;
1828      // Mark it in the mark bitmap.
1829      accounting::ContinuousSpaceBitmap* mark_bitmap =
1830          heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1831      CHECK(mark_bitmap != nullptr);
1832      CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
1833    }
1834  }
1835  DCHECK(to_ref != nullptr);
1836
1837  // Attempt to install the forward pointer. This is in a loop as the
1838  // lock word atomic write can fail.
1839  while (true) {
1840    // Copy the object. TODO: copy only the lockword in the second iteration and on?
1841    memcpy(to_ref, from_ref, obj_size);
1842
1843    LockWord old_lock_word = to_ref->GetLockWord(false);
1844
1845    if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
1846      // Lost the race. Another thread (either GC or mutator) stored
1847      // the forwarding pointer first. Make the lost copy (to_ref)
1848      // look like a valid but dead (dummy) object and keep it for
1849      // future reuse.
1850      FillWithDummyObject(to_ref, bytes_allocated);
1851      if (!fall_back_to_non_moving) {
1852        DCHECK(region_space_->IsInToSpace(to_ref));
1853        if (bytes_allocated > space::RegionSpace::kRegionSize) {
1854          // Free the large alloc.
1855          region_space_->FreeLarge(to_ref, bytes_allocated);
1856        } else {
1857          // Record the lost copy for later reuse.
1858          heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1859          to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1860          to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
1861          MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1862          skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
1863                                                    reinterpret_cast<uint8_t*>(to_ref)));
1864        }
1865      } else {
1866        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1867        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1868        // Free the non-moving-space chunk.
1869        accounting::ContinuousSpaceBitmap* mark_bitmap =
1870            heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1871        CHECK(mark_bitmap != nullptr);
1872        CHECK(mark_bitmap->Clear(to_ref));
1873        heap_->non_moving_space_->Free(Thread::Current(), to_ref);
1874      }
1875
1876      // Get the winner's forward ptr.
1877      mirror::Object* lost_fwd_ptr = to_ref;
1878      to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
1879      CHECK(to_ref != nullptr);
1880      CHECK_NE(to_ref, lost_fwd_ptr);
1881      CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref));
1882      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1883      return to_ref;
1884    }
1885
1886    // Set the gray ptr.
1887    if (kUseBakerReadBarrier) {
1888      to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr());
1889    }
1890
1891    LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
1892
1893    // Try to atomically write the fwd ptr.
1894    bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word);
1895    if (LIKELY(success)) {
1896      // The CAS succeeded.
1897      objects_moved_.FetchAndAddSequentiallyConsistent(1);
1898      bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size);
1899      if (LIKELY(!fall_back_to_non_moving)) {
1900        DCHECK(region_space_->IsInToSpace(to_ref));
1901      } else {
1902        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1903        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1904      }
1905      if (kUseBakerReadBarrier) {
1906        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1907      }
1908      DCHECK(GetFwdPtr(from_ref) == to_ref);
1909      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1910      PushOntoMarkStack(to_ref);
1911      return to_ref;
1912    } else {
1913      // The CAS failed. It may have lost the race or may have failed
1914      // due to monitor/hashcode ops. Either way, retry.
1915    }
1916  }
1917}
1918
1919mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
1920  DCHECK(from_ref != nullptr);
1921  space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1922  if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
1923    // It's already marked.
1924    return from_ref;
1925  }
1926  mirror::Object* to_ref;
1927  if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
1928    to_ref = GetFwdPtr(from_ref);
1929    DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
1930           heap_->non_moving_space_->HasAddress(to_ref))
1931        << "from_ref=" << from_ref << " to_ref=" << to_ref;
1932  } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
1933    if (region_space_bitmap_->Test(from_ref)) {
1934      to_ref = from_ref;
1935    } else {
1936      to_ref = nullptr;
1937    }
1938  } else {
1939    // from_ref is in a non-moving space.
1940    if (immune_region_.ContainsObject(from_ref)) {
1941      accounting::ContinuousSpaceBitmap* cc_bitmap =
1942          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1943      DCHECK(cc_bitmap != nullptr)
1944          << "An immune space object must have a bitmap";
1945      if (kIsDebugBuild) {
1946        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1947            << "Immune space object must be already marked";
1948      }
1949      if (cc_bitmap->Test(from_ref)) {
1950        // Already marked.
1951        to_ref = from_ref;
1952      } else {
1953        // Newly marked.
1954        to_ref = nullptr;
1955      }
1956    } else {
1957      // Non-immune non-moving space. Use the mark bitmap.
1958      accounting::ContinuousSpaceBitmap* mark_bitmap =
1959          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1960      accounting::LargeObjectBitmap* los_bitmap =
1961          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1962      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1963      bool is_los = mark_bitmap == nullptr;
1964      if (!is_los && mark_bitmap->Test(from_ref)) {
1965        // Already marked.
1966        to_ref = from_ref;
1967      } else if (is_los && los_bitmap->Test(from_ref)) {
1968        // Already marked in LOS.
1969        to_ref = from_ref;
1970      } else {
1971        // Not marked.
1972        if (IsOnAllocStack(from_ref)) {
1973          // If on the allocation stack, it's considered marked.
1974          to_ref = from_ref;
1975        } else {
1976          // Not marked.
1977          to_ref = nullptr;
1978        }
1979      }
1980    }
1981  }
1982  return to_ref;
1983}
1984
1985bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
1986  QuasiAtomic::ThreadFenceAcquire();
1987  accounting::ObjectStack* alloc_stack = GetAllocationStack();
1988  return alloc_stack->Contains(ref);
1989}
1990
1991mirror::Object* ConcurrentCopying::Mark(mirror::Object* from_ref) {
1992  if (from_ref == nullptr) {
1993    return nullptr;
1994  }
1995  DCHECK(from_ref != nullptr);
1996  DCHECK(heap_->collector_type_ == kCollectorTypeCC);
1997  if (kUseBakerReadBarrier && !is_active_) {
1998    // In the lock word forward address state, the read barrier bits
1999    // in the lock word are part of the stored forwarding address and
2000    // invalid. This is usually OK as the from-space copy of objects
2001    // aren't accessed by mutators due to the to-space
2002    // invariant. However, during the dex2oat image writing relocation
2003    // and the zygote compaction, objects can be in the forward
2004    // address state (to store the forward/relocation addresses) and
2005    // they can still be accessed and the invalid read barrier bits
2006    // are consulted. If they look like gray but aren't really, the
2007    // read barriers slow path can trigger when it shouldn't. To guard
2008    // against this, return here if the CC collector isn't running.
2009    return from_ref;
2010  }
2011  DCHECK(region_space_ != nullptr) << "Read barrier slow path taken when CC isn't running?";
2012  space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
2013  if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
2014    // It's already marked.
2015    return from_ref;
2016  }
2017  mirror::Object* to_ref;
2018  if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
2019    to_ref = GetFwdPtr(from_ref);
2020    if (kUseBakerReadBarrier) {
2021      DCHECK(to_ref != ReadBarrier::GrayPtr()) << "from_ref=" << from_ref << " to_ref=" << to_ref;
2022    }
2023    if (to_ref == nullptr) {
2024      // It isn't marked yet. Mark it by copying it to the to-space.
2025      to_ref = Copy(from_ref);
2026    }
2027    DCHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
2028        << "from_ref=" << from_ref << " to_ref=" << to_ref;
2029  } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
2030    // This may or may not succeed, which is ok.
2031    if (kUseBakerReadBarrier) {
2032      from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
2033    }
2034    if (region_space_bitmap_->AtomicTestAndSet(from_ref)) {
2035      // Already marked.
2036      to_ref = from_ref;
2037    } else {
2038      // Newly marked.
2039      to_ref = from_ref;
2040      if (kUseBakerReadBarrier) {
2041        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
2042      }
2043      PushOntoMarkStack(to_ref);
2044    }
2045  } else {
2046    // from_ref is in a non-moving space.
2047    DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
2048    if (immune_region_.ContainsObject(from_ref)) {
2049      accounting::ContinuousSpaceBitmap* cc_bitmap =
2050          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
2051      DCHECK(cc_bitmap != nullptr)
2052          << "An immune space object must have a bitmap";
2053      if (kIsDebugBuild) {
2054        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
2055            << "Immune space object must be already marked";
2056      }
2057      // This may or may not succeed, which is ok.
2058      if (kUseBakerReadBarrier) {
2059        from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
2060      }
2061      if (cc_bitmap->AtomicTestAndSet(from_ref)) {
2062        // Already marked.
2063        to_ref = from_ref;
2064      } else {
2065        // Newly marked.
2066        to_ref = from_ref;
2067        if (kUseBakerReadBarrier) {
2068          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
2069        }
2070        PushOntoMarkStack(to_ref);
2071      }
2072    } else {
2073      // Use the mark bitmap.
2074      accounting::ContinuousSpaceBitmap* mark_bitmap =
2075          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
2076      accounting::LargeObjectBitmap* los_bitmap =
2077          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
2078      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
2079      bool is_los = mark_bitmap == nullptr;
2080      if (!is_los && mark_bitmap->Test(from_ref)) {
2081        // Already marked.
2082        to_ref = from_ref;
2083        if (kUseBakerReadBarrier) {
2084          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
2085                 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
2086        }
2087      } else if (is_los && los_bitmap->Test(from_ref)) {
2088        // Already marked in LOS.
2089        to_ref = from_ref;
2090        if (kUseBakerReadBarrier) {
2091          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
2092                 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
2093        }
2094      } else {
2095        // Not marked.
2096        if (IsOnAllocStack(from_ref)) {
2097          // If it's on the allocation stack, it's considered marked. Keep it white.
2098          to_ref = from_ref;
2099          // Objects on the allocation stack need not be marked.
2100          if (!is_los) {
2101            DCHECK(!mark_bitmap->Test(to_ref));
2102          } else {
2103            DCHECK(!los_bitmap->Test(to_ref));
2104          }
2105          if (kUseBakerReadBarrier) {
2106            DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
2107          }
2108        } else {
2109          // Not marked or on the allocation stack. Try to mark it.
2110          // This may or may not succeed, which is ok.
2111          if (kUseBakerReadBarrier) {
2112            from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
2113          }
2114          if (!is_los && mark_bitmap->AtomicTestAndSet(from_ref)) {
2115            // Already marked.
2116            to_ref = from_ref;
2117          } else if (is_los && los_bitmap->AtomicTestAndSet(from_ref)) {
2118            // Already marked in LOS.
2119            to_ref = from_ref;
2120          } else {
2121            // Newly marked.
2122            to_ref = from_ref;
2123            if (kUseBakerReadBarrier) {
2124              DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
2125            }
2126            PushOntoMarkStack(to_ref);
2127          }
2128        }
2129      }
2130    }
2131  }
2132  return to_ref;
2133}
2134
2135void ConcurrentCopying::FinishPhase() {
2136  {
2137    MutexLock mu(Thread::Current(), mark_stack_lock_);
2138    CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2139  }
2140  region_space_ = nullptr;
2141  {
2142    MutexLock mu(Thread::Current(), skipped_blocks_lock_);
2143    skipped_blocks_map_.clear();
2144  }
2145  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2146  heap_->ClearMarkedObjects();
2147}
2148
2149bool ConcurrentCopying::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* field) {
2150  mirror::Object* from_ref = field->AsMirrorPtr();
2151  mirror::Object* to_ref = IsMarked(from_ref);
2152  if (to_ref == nullptr) {
2153    return false;
2154  }
2155  if (from_ref != to_ref) {
2156    QuasiAtomic::ThreadFenceRelease();
2157    field->Assign(to_ref);
2158    QuasiAtomic::ThreadFenceSequentiallyConsistent();
2159  }
2160  return true;
2161}
2162
2163mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
2164  return Mark(from_ref);
2165}
2166
2167void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
2168  heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
2169}
2170
2171void ConcurrentCopying::ProcessReferences(Thread* self) {
2172  TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
2173  // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
2174  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2175  GetHeap()->GetReferenceProcessor()->ProcessReferences(
2176      true /*concurrent*/, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
2177}
2178
2179void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
2180  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
2181  region_space_->RevokeAllThreadLocalBuffers();
2182}
2183
2184}  // namespace collector
2185}  // namespace gc
2186}  // namespace art
2187