concurrent_copying.cc revision 90443477f9a0061581c420775ce3b7eeae7468bc
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "concurrent_copying.h"
18
19#include "art_field-inl.h"
20#include "base/stl_util.h"
21#include "gc/accounting/heap_bitmap-inl.h"
22#include "gc/accounting/space_bitmap-inl.h"
23#include "gc/reference_processor.h"
24#include "gc/space/image_space.h"
25#include "gc/space/space.h"
26#include "intern_table.h"
27#include "mirror/class-inl.h"
28#include "mirror/object-inl.h"
29#include "scoped_thread_state_change.h"
30#include "thread-inl.h"
31#include "thread_list.h"
32#include "well_known_classes.h"
33
34namespace art {
35namespace gc {
36namespace collector {
37
38ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix)
39    : GarbageCollector(heap,
40                       name_prefix + (name_prefix.empty() ? "" : " ") +
41                       "concurrent copying + mark sweep"),
42      region_space_(nullptr), gc_barrier_(new Barrier(0)),
43      gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
44                                                     2 * MB, 2 * MB)),
45      mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
46      thread_running_gc_(nullptr),
47      is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false),
48      heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0), mark_stack_mode_(kMarkStackModeOff),
49      weak_ref_access_enabled_(true),
50      skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
51      rb_table_(heap_->GetReadBarrierTable()),
52      force_evacuate_all_(false) {
53  static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
54                "The region space size and the read barrier table region size must match");
55  cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap));
56  Thread* self = Thread::Current();
57  {
58    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
59    // Cache this so that we won't have to lock heap_bitmap_lock_ in
60    // Mark() which could cause a nested lock on heap_bitmap_lock_
61    // when GC causes a RB while doing GC or a lock order violation
62    // (class_linker_lock_ and heap_bitmap_lock_).
63    heap_mark_bitmap_ = heap->GetMarkBitmap();
64  }
65  {
66    MutexLock mu(self, mark_stack_lock_);
67    for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
68      accounting::AtomicStack<mirror::Object>* mark_stack =
69          accounting::AtomicStack<mirror::Object>::Create(
70              "thread local mark stack", kMarkStackSize, kMarkStackSize);
71      pooled_mark_stacks_.push_back(mark_stack);
72    }
73  }
74}
75
76void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* from_ref) {
77  // Used for preserving soft references, should be OK to not have a CAS here since there should be
78  // no other threads which can trigger read barriers on the same referent during reference
79  // processing.
80  from_ref->Assign(Mark(from_ref->AsMirrorPtr()));
81  DCHECK(!from_ref->IsNull());
82}
83
84ConcurrentCopying::~ConcurrentCopying() {
85  STLDeleteElements(&pooled_mark_stacks_);
86}
87
88void ConcurrentCopying::RunPhases() {
89  CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
90  CHECK(!is_active_);
91  is_active_ = true;
92  Thread* self = Thread::Current();
93  thread_running_gc_ = self;
94  Locks::mutator_lock_->AssertNotHeld(self);
95  {
96    ReaderMutexLock mu(self, *Locks::mutator_lock_);
97    InitializePhase();
98  }
99  FlipThreadRoots();
100  {
101    ReaderMutexLock mu(self, *Locks::mutator_lock_);
102    MarkingPhase();
103  }
104  // Verify no from space refs. This causes a pause.
105  if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) {
106    TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
107    ScopedPause pause(this);
108    CheckEmptyMarkStack();
109    if (kVerboseMode) {
110      LOG(INFO) << "Verifying no from-space refs";
111    }
112    VerifyNoFromSpaceReferences();
113    if (kVerboseMode) {
114      LOG(INFO) << "Done verifying no from-space refs";
115    }
116    CheckEmptyMarkStack();
117  }
118  {
119    ReaderMutexLock mu(self, *Locks::mutator_lock_);
120    ReclaimPhase();
121  }
122  FinishPhase();
123  CHECK(is_active_);
124  is_active_ = false;
125  thread_running_gc_ = nullptr;
126}
127
128void ConcurrentCopying::BindBitmaps() {
129  Thread* self = Thread::Current();
130  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
131  // Mark all of the spaces we never collect as immune.
132  for (const auto& space : heap_->GetContinuousSpaces()) {
133    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
134        || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
135      CHECK(space->IsZygoteSpace() || space->IsImageSpace());
136      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
137      const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" :
138          "cc zygote space bitmap";
139      // TODO: try avoiding using bitmaps for image/zygote to save space.
140      accounting::ContinuousSpaceBitmap* bitmap =
141          accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity());
142      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
143      cc_bitmaps_.push_back(bitmap);
144    } else if (space == region_space_) {
145      accounting::ContinuousSpaceBitmap* bitmap =
146          accounting::ContinuousSpaceBitmap::Create("cc region space bitmap",
147                                                    space->Begin(), space->Capacity());
148      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
149      cc_bitmaps_.push_back(bitmap);
150      region_space_bitmap_ = bitmap;
151    }
152  }
153}
154
155void ConcurrentCopying::InitializePhase() {
156  TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
157  if (kVerboseMode) {
158    LOG(INFO) << "GC InitializePhase";
159    LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
160              << reinterpret_cast<void*>(region_space_->Limit());
161  }
162  CheckEmptyMarkStack();
163  immune_region_.Reset();
164  bytes_moved_.StoreRelaxed(0);
165  objects_moved_.StoreRelaxed(0);
166  if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
167      GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
168      GetCurrentIteration()->GetClearSoftReferences()) {
169    force_evacuate_all_ = true;
170  } else {
171    force_evacuate_all_ = false;
172  }
173  BindBitmaps();
174  if (kVerboseMode) {
175    LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
176    LOG(INFO) << "Immune region: " << immune_region_.Begin() << "-" << immune_region_.End();
177    LOG(INFO) << "GC end of InitializePhase";
178  }
179}
180
181// Used to switch the thread roots of a thread from from-space refs to to-space refs.
182class ThreadFlipVisitor : public Closure {
183 public:
184  explicit ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
185      : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
186  }
187
188  virtual void Run(Thread* thread) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
189    // Note: self is not necessarily equal to thread since thread may be suspended.
190    Thread* self = Thread::Current();
191    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
192        << thread->GetState() << " thread " << thread << " self " << self;
193    if (use_tlab_ && thread->HasTlab()) {
194      if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
195        // This must come before the revoke.
196        size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
197        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
198        reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
199            FetchAndAddSequentiallyConsistent(thread_local_objects);
200      } else {
201        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
202      }
203    }
204    if (kUseThreadLocalAllocationStack) {
205      thread->RevokeThreadLocalAllocationStack();
206    }
207    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
208    thread->VisitRoots(concurrent_copying_);
209    concurrent_copying_->GetBarrier().Pass(self);
210  }
211
212 private:
213  ConcurrentCopying* const concurrent_copying_;
214  const bool use_tlab_;
215};
216
217// Called back from Runtime::FlipThreadRoots() during a pause.
218class FlipCallback : public Closure {
219 public:
220  explicit FlipCallback(ConcurrentCopying* concurrent_copying)
221      : concurrent_copying_(concurrent_copying) {
222  }
223
224  virtual void Run(Thread* thread) OVERRIDE REQUIRES(Locks::mutator_lock_) {
225    ConcurrentCopying* cc = concurrent_copying_;
226    TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
227    // Note: self is not necessarily equal to thread since thread may be suspended.
228    Thread* self = Thread::Current();
229    CHECK(thread == self);
230    Locks::mutator_lock_->AssertExclusiveHeld(self);
231    cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
232    cc->SwapStacks(self);
233    if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
234      cc->RecordLiveStackFreezeSize(self);
235      cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
236      cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
237    }
238    cc->is_marking_ = true;
239    cc->mark_stack_mode_.StoreRelaxed(ConcurrentCopying::kMarkStackModeThreadLocal);
240    if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
241      CHECK(Runtime::Current()->IsAotCompiler());
242      TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
243      Runtime::Current()->VisitTransactionRoots(cc);
244    }
245  }
246
247 private:
248  ConcurrentCopying* const concurrent_copying_;
249};
250
251// Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
252void ConcurrentCopying::FlipThreadRoots() {
253  TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
254  if (kVerboseMode) {
255    LOG(INFO) << "time=" << region_space_->Time();
256    region_space_->DumpNonFreeRegions(LOG(INFO));
257  }
258  Thread* self = Thread::Current();
259  Locks::mutator_lock_->AssertNotHeld(self);
260  gc_barrier_->Init(self, 0);
261  ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
262  FlipCallback flip_callback(this);
263  size_t barrier_count = Runtime::Current()->FlipThreadRoots(
264      &thread_flip_visitor, &flip_callback, this);
265  {
266    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
267    gc_barrier_->Increment(self, barrier_count);
268  }
269  is_asserting_to_space_invariant_ = true;
270  QuasiAtomic::ThreadFenceForConstructor();
271  if (kVerboseMode) {
272    LOG(INFO) << "time=" << region_space_->Time();
273    region_space_->DumpNonFreeRegions(LOG(INFO));
274    LOG(INFO) << "GC end of FlipThreadRoots";
275  }
276}
277
278void ConcurrentCopying::SwapStacks(Thread* self) {
279  heap_->SwapStacks(self);
280}
281
282void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
283  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
284  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
285}
286
287// Used to visit objects in the immune spaces.
288class ConcurrentCopyingImmuneSpaceObjVisitor {
289 public:
290  explicit ConcurrentCopyingImmuneSpaceObjVisitor(ConcurrentCopying* cc)
291      : collector_(cc) {}
292
293  void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
294      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
295    DCHECK(obj != nullptr);
296    DCHECK(collector_->immune_region_.ContainsObject(obj));
297    accounting::ContinuousSpaceBitmap* cc_bitmap =
298        collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
299    DCHECK(cc_bitmap != nullptr)
300        << "An immune space object must have a bitmap";
301    if (kIsDebugBuild) {
302      DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj))
303          << "Immune space object must be already marked";
304    }
305    // This may or may not succeed, which is ok.
306    if (kUseBakerReadBarrier) {
307      obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
308    }
309    if (cc_bitmap->AtomicTestAndSet(obj)) {
310      // Already marked. Do nothing.
311    } else {
312      // Newly marked. Set the gray bit and push it onto the mark stack.
313      CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
314      collector_->PushOntoMarkStack(obj);
315    }
316  }
317
318 private:
319  ConcurrentCopying* const collector_;
320};
321
322class EmptyCheckpoint : public Closure {
323 public:
324  explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying)
325      : concurrent_copying_(concurrent_copying) {
326  }
327
328  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
329    // Note: self is not necessarily equal to thread since thread may be suspended.
330    Thread* self = Thread::Current();
331    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
332        << thread->GetState() << " thread " << thread << " self " << self;
333    // If thread is a running mutator, then act on behalf of the garbage collector.
334    // See the code in ThreadList::RunCheckpoint.
335    if (thread->GetState() == kRunnable) {
336      concurrent_copying_->GetBarrier().Pass(self);
337    }
338  }
339
340 private:
341  ConcurrentCopying* const concurrent_copying_;
342};
343
344// Concurrently mark roots that are guarded by read barriers and process the mark stack.
345void ConcurrentCopying::MarkingPhase() {
346  TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
347  if (kVerboseMode) {
348    LOG(INFO) << "GC MarkingPhase";
349  }
350  CHECK(weak_ref_access_enabled_);
351  {
352    // Mark the image root. The WB-based collectors do not need to
353    // scan the image objects from roots by relying on the card table,
354    // but it's necessary for the RB to-space invariant to hold.
355    TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings());
356    gc::space::ImageSpace* image = heap_->GetImageSpace();
357    if (image != nullptr) {
358      mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots();
359      mirror::Object* marked_image_root = Mark(image_root);
360      CHECK_EQ(image_root, marked_image_root) << "An image object does not move";
361      if (ReadBarrier::kEnableToSpaceInvariantChecks) {
362        AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root);
363      }
364    }
365  }
366  // TODO: Other garbage collectors uses Runtime::VisitConcurrentRoots(), refactor this part
367  // to also use the same function.
368  {
369    TimingLogger::ScopedTiming split2("VisitConstantRoots", GetTimings());
370    Runtime::Current()->VisitConstantRoots(this);
371  }
372  {
373    TimingLogger::ScopedTiming split3("VisitInternTableRoots", GetTimings());
374    Runtime::Current()->GetInternTable()->VisitRoots(this, kVisitRootFlagAllRoots);
375  }
376  {
377    TimingLogger::ScopedTiming split4("VisitClassLinkerRoots", GetTimings());
378    Runtime::Current()->GetClassLinker()->VisitRoots(this, kVisitRootFlagAllRoots);
379  }
380  {
381    // TODO: don't visit the transaction roots if it's not active.
382    TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
383    Runtime::Current()->VisitNonThreadRoots(this);
384  }
385  Runtime::Current()->GetHeap()->VisitAllocationRecords(this);
386
387  // Immune spaces.
388  for (auto& space : heap_->GetContinuousSpaces()) {
389    if (immune_region_.ContainsSpace(space)) {
390      DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
391      accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
392      ConcurrentCopyingImmuneSpaceObjVisitor visitor(this);
393      live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
394                                    reinterpret_cast<uintptr_t>(space->Limit()),
395                                    visitor);
396    }
397  }
398
399  Thread* self = Thread::Current();
400  {
401    TimingLogger::ScopedTiming split6("ProcessMarkStack", GetTimings());
402    // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
403    // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
404    // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
405    // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
406    // reach the point where we process weak references, we can avoid using a lock when accessing
407    // the GC mark stack, which makes mark stack processing more efficient.
408
409    // Process the mark stack once in the thread local stack mode. This marks most of the live
410    // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
411    // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
412    // objects and push refs on the mark stack.
413    ProcessMarkStack();
414    // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
415    // for the last time before transitioning to the shared mark stack mode, which would process new
416    // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
417    // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
418    // important to do these together in a single checkpoint so that we can ensure that mutators
419    // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and
420    // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
421    // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
422    // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
423    SwitchToSharedMarkStackMode();
424    CHECK(!self->GetWeakRefAccessEnabled());
425    // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
426    // (which may be non-empty if there were refs found on thread-local mark stacks during the above
427    // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
428    // (via read barriers) have no way to produce any more refs to process. Marking converges once
429    // before we process weak refs below.
430    ProcessMarkStack();
431    CheckEmptyMarkStack();
432    // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
433    // lock from this point on.
434    SwitchToGcExclusiveMarkStackMode();
435    CheckEmptyMarkStack();
436    if (kVerboseMode) {
437      LOG(INFO) << "ProcessReferences";
438    }
439    // Process weak references. This may produce new refs to process and have them processed via
440    // ProcessMarkStack (in the GC exclusive mark stack mode).
441    ProcessReferences(self);
442    CheckEmptyMarkStack();
443    if (kVerboseMode) {
444      LOG(INFO) << "SweepSystemWeaks";
445    }
446    SweepSystemWeaks(self);
447    if (kVerboseMode) {
448      LOG(INFO) << "SweepSystemWeaks done";
449    }
450    // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
451    // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
452    // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
453    ProcessMarkStack();
454    CheckEmptyMarkStack();
455    // Re-enable weak ref accesses.
456    ReenableWeakRefAccess(self);
457    // Issue an empty checkpoint to ensure no threads are still in the middle of a read barrier
458    // which may have a from-space ref cached in a local variable.
459    IssueEmptyCheckpoint();
460    // Marking is done. Disable marking.
461    if (kUseTableLookupReadBarrier) {
462      heap_->rb_table_->ClearAll();
463      DCHECK(heap_->rb_table_->IsAllCleared());
464    }
465    is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(1);
466    is_marking_ = false;  // This disables the read barrier/marking of weak roots.
467    mark_stack_mode_.StoreSequentiallyConsistent(kMarkStackModeOff);
468    CheckEmptyMarkStack();
469  }
470
471  CHECK(weak_ref_access_enabled_);
472  if (kVerboseMode) {
473    LOG(INFO) << "GC end of MarkingPhase";
474  }
475}
476
477void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
478  if (kVerboseMode) {
479    LOG(INFO) << "ReenableWeakRefAccess";
480  }
481  weak_ref_access_enabled_.StoreRelaxed(true);  // This is for new threads.
482  QuasiAtomic::ThreadFenceForConstructor();
483  // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
484  {
485    MutexLock mu(self, *Locks::thread_list_lock_);
486    std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
487    for (Thread* thread : thread_list) {
488      thread->SetWeakRefAccessEnabled(true);
489    }
490  }
491  // Unblock blocking threads.
492  GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
493  Runtime::Current()->BroadcastForNewSystemWeaks();
494}
495
496void ConcurrentCopying::IssueEmptyCheckpoint() {
497  Thread* self = Thread::Current();
498  EmptyCheckpoint check_point(this);
499  ThreadList* thread_list = Runtime::Current()->GetThreadList();
500  gc_barrier_->Init(self, 0);
501  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
502  // If there are no threads to wait which implys that all the checkpoint functions are finished,
503  // then no need to release the mutator lock.
504  if (barrier_count == 0) {
505    return;
506  }
507  // Release locks then wait for all mutator threads to pass the barrier.
508  Locks::mutator_lock_->SharedUnlock(self);
509  {
510    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
511    gc_barrier_->Increment(self, barrier_count);
512  }
513  Locks::mutator_lock_->SharedLock(self);
514}
515
516void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
517  CHECK_EQ(is_mark_stack_push_disallowed_.LoadRelaxed(), 0)
518      << " " << to_ref << " " << PrettyTypeOf(to_ref);
519  Thread* self = Thread::Current();  // TODO: pass self as an argument from call sites?
520  CHECK(thread_running_gc_ != nullptr);
521  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
522  if (mark_stack_mode == kMarkStackModeThreadLocal) {
523    if (self == thread_running_gc_) {
524      // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
525      CHECK(self->GetThreadLocalMarkStack() == nullptr);
526      CHECK(!gc_mark_stack_->IsFull());
527      gc_mark_stack_->PushBack(to_ref);
528    } else {
529      // Otherwise, use a thread-local mark stack.
530      accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
531      if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
532        MutexLock mu(self, mark_stack_lock_);
533        // Get a new thread local mark stack.
534        accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
535        if (!pooled_mark_stacks_.empty()) {
536          // Use a pooled mark stack.
537          new_tl_mark_stack = pooled_mark_stacks_.back();
538          pooled_mark_stacks_.pop_back();
539        } else {
540          // None pooled. Create a new one.
541          new_tl_mark_stack =
542              accounting::AtomicStack<mirror::Object>::Create(
543                  "thread local mark stack", 4 * KB, 4 * KB);
544        }
545        DCHECK(new_tl_mark_stack != nullptr);
546        DCHECK(new_tl_mark_stack->IsEmpty());
547        new_tl_mark_stack->PushBack(to_ref);
548        self->SetThreadLocalMarkStack(new_tl_mark_stack);
549        if (tl_mark_stack != nullptr) {
550          // Store the old full stack into a vector.
551          revoked_mark_stacks_.push_back(tl_mark_stack);
552        }
553      } else {
554        tl_mark_stack->PushBack(to_ref);
555      }
556    }
557  } else if (mark_stack_mode == kMarkStackModeShared) {
558    // Access the shared GC mark stack with a lock.
559    MutexLock mu(self, mark_stack_lock_);
560    CHECK(!gc_mark_stack_->IsFull());
561    gc_mark_stack_->PushBack(to_ref);
562  } else {
563    CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
564             static_cast<uint32_t>(kMarkStackModeGcExclusive));
565    CHECK(self == thread_running_gc_)
566        << "Only GC-running thread should access the mark stack "
567        << "in the GC exclusive mark stack mode";
568    // Access the GC mark stack without a lock.
569    CHECK(!gc_mark_stack_->IsFull());
570    gc_mark_stack_->PushBack(to_ref);
571  }
572}
573
574accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
575  return heap_->allocation_stack_.get();
576}
577
578accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
579  return heap_->live_stack_.get();
580}
581
582inline mirror::Object* ConcurrentCopying::GetFwdPtr(mirror::Object* from_ref) {
583  DCHECK(region_space_->IsInFromSpace(from_ref));
584  LockWord lw = from_ref->GetLockWord(false);
585  if (lw.GetState() == LockWord::kForwardingAddress) {
586    mirror::Object* fwd_ptr = reinterpret_cast<mirror::Object*>(lw.ForwardingAddress());
587    CHECK(fwd_ptr != nullptr);
588    return fwd_ptr;
589  } else {
590    return nullptr;
591  }
592}
593
594// The following visitors are that used to verify that there's no
595// references to the from-space left after marking.
596class ConcurrentCopyingVerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
597 public:
598  explicit ConcurrentCopyingVerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
599      : collector_(collector) {}
600
601  void operator()(mirror::Object* ref) const
602      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
603    if (ref == nullptr) {
604      // OK.
605      return;
606    }
607    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
608    if (kUseBakerReadBarrier) {
609      if (collector_->RegionSpace()->IsInToSpace(ref)) {
610        CHECK(ref->GetReadBarrierPointer() == nullptr)
611            << "To-space ref " << ref << " " << PrettyTypeOf(ref)
612            << " has non-white rb_ptr " << ref->GetReadBarrierPointer();
613      } else {
614        CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
615              (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
616               collector_->IsOnAllocStack(ref)))
617            << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref)
618            << " has non-black rb_ptr " << ref->GetReadBarrierPointer()
619            << " but isn't on the alloc stack (and has white rb_ptr)."
620            << " Is it in the non-moving space="
621            << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref));
622      }
623    }
624  }
625
626  void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
627      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
628    DCHECK(root != nullptr);
629    operator()(root);
630  }
631
632 private:
633  ConcurrentCopying* const collector_;
634};
635
636class ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor {
637 public:
638  explicit ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
639      : collector_(collector) {}
640
641  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
642      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
643    mirror::Object* ref =
644        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
645    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
646    visitor(ref);
647  }
648  void operator()(mirror::Class* klass, mirror::Reference* ref) const
649      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
650    CHECK(klass->IsTypeOfReferenceClass());
651    this->operator()(ref, mirror::Reference::ReferentOffset(), false);
652  }
653
654 private:
655  ConcurrentCopying* const collector_;
656};
657
658class ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor {
659 public:
660  explicit ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
661      : collector_(collector) {}
662  void operator()(mirror::Object* obj) const
663      SHARED_REQUIRES(Locks::mutator_lock_) {
664    ObjectCallback(obj, collector_);
665  }
666  static void ObjectCallback(mirror::Object* obj, void *arg)
667      SHARED_REQUIRES(Locks::mutator_lock_) {
668    CHECK(obj != nullptr);
669    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
670    space::RegionSpace* region_space = collector->RegionSpace();
671    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
672    ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor visitor(collector);
673    obj->VisitReferences<true>(visitor, visitor);
674    if (kUseBakerReadBarrier) {
675      if (collector->RegionSpace()->IsInToSpace(obj)) {
676        CHECK(obj->GetReadBarrierPointer() == nullptr)
677            << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer();
678      } else {
679        CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
680              (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
681               collector->IsOnAllocStack(obj)))
682            << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj)
683            << " has non-black rb_ptr " << obj->GetReadBarrierPointer()
684            << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space="
685            << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj));
686      }
687    }
688  }
689
690 private:
691  ConcurrentCopying* const collector_;
692};
693
694// Verify there's no from-space references left after the marking phase.
695void ConcurrentCopying::VerifyNoFromSpaceReferences() {
696  Thread* self = Thread::Current();
697  DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
698  ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor visitor(this);
699  // Roots.
700  {
701    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
702    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
703    Runtime::Current()->VisitRoots(&ref_visitor);
704  }
705  // The to-space.
706  region_space_->WalkToSpace(ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor::ObjectCallback,
707                             this);
708  // Non-moving spaces.
709  {
710    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
711    heap_->GetMarkBitmap()->Visit(visitor);
712  }
713  // The alloc stack.
714  {
715    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
716    for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
717        it < end; ++it) {
718      mirror::Object* const obj = it->AsMirrorPtr();
719      if (obj != nullptr && obj->GetClass() != nullptr) {
720        // TODO: need to call this only if obj is alive?
721        ref_visitor(obj);
722        visitor(obj);
723      }
724    }
725  }
726  // TODO: LOS. But only refs in LOS are classes.
727}
728
729// The following visitors are used to assert the to-space invariant.
730class ConcurrentCopyingAssertToSpaceInvariantRefsVisitor {
731 public:
732  explicit ConcurrentCopyingAssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
733      : collector_(collector) {}
734
735  void operator()(mirror::Object* ref) const
736      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
737    if (ref == nullptr) {
738      // OK.
739      return;
740    }
741    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
742  }
743
744 private:
745  ConcurrentCopying* const collector_;
746};
747
748class ConcurrentCopyingAssertToSpaceInvariantFieldVisitor {
749 public:
750  explicit ConcurrentCopyingAssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
751      : collector_(collector) {}
752
753  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
754      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
755    mirror::Object* ref =
756        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
757    ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
758    visitor(ref);
759  }
760  void operator()(mirror::Class* klass, mirror::Reference* /* ref */) const
761      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
762    CHECK(klass->IsTypeOfReferenceClass());
763  }
764
765 private:
766  ConcurrentCopying* const collector_;
767};
768
769class ConcurrentCopyingAssertToSpaceInvariantObjectVisitor {
770 public:
771  explicit ConcurrentCopyingAssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
772      : collector_(collector) {}
773  void operator()(mirror::Object* obj) const
774      SHARED_REQUIRES(Locks::mutator_lock_) {
775    ObjectCallback(obj, collector_);
776  }
777  static void ObjectCallback(mirror::Object* obj, void *arg)
778      SHARED_REQUIRES(Locks::mutator_lock_) {
779    CHECK(obj != nullptr);
780    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
781    space::RegionSpace* region_space = collector->RegionSpace();
782    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
783    collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
784    ConcurrentCopyingAssertToSpaceInvariantFieldVisitor visitor(collector);
785    obj->VisitReferences<true>(visitor, visitor);
786  }
787
788 private:
789  ConcurrentCopying* const collector_;
790};
791
792class RevokeThreadLocalMarkStackCheckpoint : public Closure {
793 public:
794  explicit RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
795                                                bool disable_weak_ref_access)
796      : concurrent_copying_(concurrent_copying),
797        disable_weak_ref_access_(disable_weak_ref_access) {
798  }
799
800  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
801    // Note: self is not necessarily equal to thread since thread may be suspended.
802    Thread* self = Thread::Current();
803    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
804        << thread->GetState() << " thread " << thread << " self " << self;
805    // Revoke thread local mark stacks.
806    accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
807    if (tl_mark_stack != nullptr) {
808      MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
809      concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
810      thread->SetThreadLocalMarkStack(nullptr);
811    }
812    // Disable weak ref access.
813    if (disable_weak_ref_access_) {
814      thread->SetWeakRefAccessEnabled(false);
815    }
816    // If thread is a running mutator, then act on behalf of the garbage collector.
817    // See the code in ThreadList::RunCheckpoint.
818    if (thread->GetState() == kRunnable) {
819      concurrent_copying_->GetBarrier().Pass(self);
820    }
821  }
822
823 private:
824  ConcurrentCopying* const concurrent_copying_;
825  const bool disable_weak_ref_access_;
826};
827
828void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access) {
829  Thread* self = Thread::Current();
830  RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
831  ThreadList* thread_list = Runtime::Current()->GetThreadList();
832  gc_barrier_->Init(self, 0);
833  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
834  // If there are no threads to wait which implys that all the checkpoint functions are finished,
835  // then no need to release the mutator lock.
836  if (barrier_count == 0) {
837    return;
838  }
839  Locks::mutator_lock_->SharedUnlock(self);
840  {
841    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
842    gc_barrier_->Increment(self, barrier_count);
843  }
844  Locks::mutator_lock_->SharedLock(self);
845}
846
847void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
848  Thread* self = Thread::Current();
849  CHECK_EQ(self, thread);
850  accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
851  if (tl_mark_stack != nullptr) {
852    CHECK(is_marking_);
853    MutexLock mu(self, mark_stack_lock_);
854    revoked_mark_stacks_.push_back(tl_mark_stack);
855    thread->SetThreadLocalMarkStack(nullptr);
856  }
857}
858
859void ConcurrentCopying::ProcessMarkStack() {
860  if (kVerboseMode) {
861    LOG(INFO) << "ProcessMarkStack. ";
862  }
863  bool empty_prev = false;
864  while (true) {
865    bool empty = ProcessMarkStackOnce();
866    if (empty_prev && empty) {
867      // Saw empty mark stack for a second time, done.
868      break;
869    }
870    empty_prev = empty;
871  }
872}
873
874bool ConcurrentCopying::ProcessMarkStackOnce() {
875  Thread* self = Thread::Current();
876  CHECK(thread_running_gc_ != nullptr);
877  CHECK(self == thread_running_gc_);
878  CHECK(self->GetThreadLocalMarkStack() == nullptr);
879  size_t count = 0;
880  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
881  if (mark_stack_mode == kMarkStackModeThreadLocal) {
882    // Process the thread-local mark stacks and the GC mark stack.
883    count += ProcessThreadLocalMarkStacks(false);
884    while (!gc_mark_stack_->IsEmpty()) {
885      mirror::Object* to_ref = gc_mark_stack_->PopBack();
886      ProcessMarkStackRef(to_ref);
887      ++count;
888    }
889    gc_mark_stack_->Reset();
890  } else if (mark_stack_mode == kMarkStackModeShared) {
891    // Process the shared GC mark stack with a lock.
892    {
893      MutexLock mu(self, mark_stack_lock_);
894      CHECK(revoked_mark_stacks_.empty());
895    }
896    while (true) {
897      std::vector<mirror::Object*> refs;
898      {
899        // Copy refs with lock. Note the number of refs should be small.
900        MutexLock mu(self, mark_stack_lock_);
901        if (gc_mark_stack_->IsEmpty()) {
902          break;
903        }
904        for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
905             p != gc_mark_stack_->End(); ++p) {
906          refs.push_back(p->AsMirrorPtr());
907        }
908        gc_mark_stack_->Reset();
909      }
910      for (mirror::Object* ref : refs) {
911        ProcessMarkStackRef(ref);
912        ++count;
913      }
914    }
915  } else {
916    CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
917             static_cast<uint32_t>(kMarkStackModeGcExclusive));
918    {
919      MutexLock mu(self, mark_stack_lock_);
920      CHECK(revoked_mark_stacks_.empty());
921    }
922    // Process the GC mark stack in the exclusive mode. No need to take the lock.
923    while (!gc_mark_stack_->IsEmpty()) {
924      mirror::Object* to_ref = gc_mark_stack_->PopBack();
925      ProcessMarkStackRef(to_ref);
926      ++count;
927    }
928    gc_mark_stack_->Reset();
929  }
930
931  // Return true if the stack was empty.
932  return count == 0;
933}
934
935size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access) {
936  // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
937  RevokeThreadLocalMarkStacks(disable_weak_ref_access);
938  size_t count = 0;
939  std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
940  {
941    MutexLock mu(Thread::Current(), mark_stack_lock_);
942    // Make a copy of the mark stack vector.
943    mark_stacks = revoked_mark_stacks_;
944    revoked_mark_stacks_.clear();
945  }
946  for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
947    for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
948      mirror::Object* to_ref = p->AsMirrorPtr();
949      ProcessMarkStackRef(to_ref);
950      ++count;
951    }
952    {
953      MutexLock mu(Thread::Current(), mark_stack_lock_);
954      if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
955        // The pool has enough. Delete it.
956        delete mark_stack;
957      } else {
958        // Otherwise, put it into the pool for later reuse.
959        mark_stack->Reset();
960        pooled_mark_stacks_.push_back(mark_stack);
961      }
962    }
963  }
964  return count;
965}
966
967void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
968  DCHECK(!region_space_->IsInFromSpace(to_ref));
969  if (kUseBakerReadBarrier) {
970    DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
971        << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
972        << " is_marked=" << IsMarked(to_ref);
973  }
974  // Scan ref fields.
975  Scan(to_ref);
976  // Mark the gray ref as white or black.
977  if (kUseBakerReadBarrier) {
978    DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
979        << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
980        << " is_marked=" << IsMarked(to_ref);
981  }
982  if (to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
983      to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr &&
984      !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())) {
985    // Leave References gray so that GetReferent() will trigger RB.
986    CHECK(to_ref->AsReference()->IsEnqueued()) << "Left unenqueued ref gray " << to_ref;
987  } else {
988#ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
989    if (kUseBakerReadBarrier) {
990      if (region_space_->IsInToSpace(to_ref)) {
991        // If to-space, change from gray to white.
992        bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
993                                                           ReadBarrier::WhitePtr());
994        CHECK(success) << "Must succeed as we won the race.";
995        CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
996      } else {
997        // If non-moving space/unevac from space, change from gray
998        // to black. We can't change gray to white because it's not
999        // safe to use CAS if two threads change values in opposite
1000        // directions (A->B and B->A). So, we change it to black to
1001        // indicate non-moving objects that have been marked
1002        // through. Note we'd need to change from black to white
1003        // later (concurrently).
1004        bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
1005                                                           ReadBarrier::BlackPtr());
1006        CHECK(success) << "Must succeed as we won the race.";
1007        CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1008      }
1009    }
1010#else
1011    DCHECK(!kUseBakerReadBarrier);
1012#endif
1013  }
1014  if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) {
1015    ConcurrentCopyingAssertToSpaceInvariantObjectVisitor visitor(this);
1016    visitor(to_ref);
1017  }
1018}
1019
1020void ConcurrentCopying::SwitchToSharedMarkStackMode() {
1021  Thread* self = Thread::Current();
1022  CHECK(thread_running_gc_ != nullptr);
1023  CHECK_EQ(self, thread_running_gc_);
1024  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1025  MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1026  CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1027           static_cast<uint32_t>(kMarkStackModeThreadLocal));
1028  mark_stack_mode_.StoreRelaxed(kMarkStackModeShared);
1029  CHECK(weak_ref_access_enabled_.LoadRelaxed());
1030  weak_ref_access_enabled_.StoreRelaxed(false);
1031  QuasiAtomic::ThreadFenceForConstructor();
1032  // Process the thread local mark stacks one last time after switching to the shared mark stack
1033  // mode and disable weak ref accesses.
1034  ProcessThreadLocalMarkStacks(true);
1035  if (kVerboseMode) {
1036    LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
1037  }
1038}
1039
1040void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
1041  Thread* self = Thread::Current();
1042  CHECK(thread_running_gc_ != nullptr);
1043  CHECK_EQ(self, thread_running_gc_);
1044  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1045  MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1046  CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1047           static_cast<uint32_t>(kMarkStackModeShared));
1048  mark_stack_mode_.StoreRelaxed(kMarkStackModeGcExclusive);
1049  QuasiAtomic::ThreadFenceForConstructor();
1050  if (kVerboseMode) {
1051    LOG(INFO) << "Switched to GC exclusive mark stack mode";
1052  }
1053}
1054
1055void ConcurrentCopying::CheckEmptyMarkStack() {
1056  Thread* self = Thread::Current();
1057  CHECK(thread_running_gc_ != nullptr);
1058  CHECK_EQ(self, thread_running_gc_);
1059  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1060  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1061  if (mark_stack_mode == kMarkStackModeThreadLocal) {
1062    // Thread-local mark stack mode.
1063    RevokeThreadLocalMarkStacks(false);
1064    MutexLock mu(Thread::Current(), mark_stack_lock_);
1065    if (!revoked_mark_stacks_.empty()) {
1066      for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
1067        while (!mark_stack->IsEmpty()) {
1068          mirror::Object* obj = mark_stack->PopBack();
1069          if (kUseBakerReadBarrier) {
1070            mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
1071            LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr
1072                      << " is_marked=" << IsMarked(obj);
1073          } else {
1074            LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj)
1075                      << " is_marked=" << IsMarked(obj);
1076          }
1077        }
1078      }
1079      LOG(FATAL) << "mark stack is not empty";
1080    }
1081  } else {
1082    // Shared, GC-exclusive, or off.
1083    MutexLock mu(Thread::Current(), mark_stack_lock_);
1084    CHECK(gc_mark_stack_->IsEmpty());
1085    CHECK(revoked_mark_stacks_.empty());
1086  }
1087}
1088
1089void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
1090  TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
1091  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1092  Runtime::Current()->SweepSystemWeaks(this);
1093}
1094
1095void ConcurrentCopying::Sweep(bool swap_bitmaps) {
1096  {
1097    TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
1098    accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1099    if (kEnableFromSpaceAccountingCheck) {
1100      CHECK_GE(live_stack_freeze_size_, live_stack->Size());
1101    }
1102    heap_->MarkAllocStackAsLive(live_stack);
1103    live_stack->Reset();
1104  }
1105  CheckEmptyMarkStack();
1106  TimingLogger::ScopedTiming split("Sweep", GetTimings());
1107  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1108    if (space->IsContinuousMemMapAllocSpace()) {
1109      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1110      if (space == region_space_ || immune_region_.ContainsSpace(space)) {
1111        continue;
1112      }
1113      TimingLogger::ScopedTiming split2(
1114          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
1115      RecordFree(alloc_space->Sweep(swap_bitmaps));
1116    }
1117  }
1118  SweepLargeObjects(swap_bitmaps);
1119}
1120
1121void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
1122  TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
1123  RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
1124}
1125
1126class ConcurrentCopyingClearBlackPtrsVisitor {
1127 public:
1128  explicit ConcurrentCopyingClearBlackPtrsVisitor(ConcurrentCopying* cc)
1129      : collector_(cc) {}
1130#ifndef USE_BAKER_OR_BROOKS_READ_BARRIER
1131  NO_RETURN
1132#endif
1133  void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
1134      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1135    DCHECK(obj != nullptr);
1136    DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj;
1137    DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj;
1138    obj->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1139    DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1140  }
1141
1142 private:
1143  ConcurrentCopying* const collector_;
1144};
1145
1146// Clear the black ptrs in non-moving objects back to white.
1147void ConcurrentCopying::ClearBlackPtrs() {
1148  CHECK(kUseBakerReadBarrier);
1149  TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings());
1150  ConcurrentCopyingClearBlackPtrsVisitor visitor(this);
1151  for (auto& space : heap_->GetContinuousSpaces()) {
1152    if (space == region_space_) {
1153      continue;
1154    }
1155    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1156    if (kVerboseMode) {
1157      LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap;
1158    }
1159    mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
1160                                  reinterpret_cast<uintptr_t>(space->Limit()),
1161                                  visitor);
1162  }
1163  space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
1164  large_object_space->GetMarkBitmap()->VisitMarkedRange(
1165      reinterpret_cast<uintptr_t>(large_object_space->Begin()),
1166      reinterpret_cast<uintptr_t>(large_object_space->End()),
1167      visitor);
1168  // Objects on the allocation stack?
1169  if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) {
1170    size_t count = GetAllocationStack()->Size();
1171    auto* it = GetAllocationStack()->Begin();
1172    auto* end = GetAllocationStack()->End();
1173    for (size_t i = 0; i < count; ++i, ++it) {
1174      CHECK_LT(it, end);
1175      mirror::Object* obj = it->AsMirrorPtr();
1176      if (obj != nullptr) {
1177        // Must have been cleared above.
1178        CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1179      }
1180    }
1181  }
1182}
1183
1184void ConcurrentCopying::ReclaimPhase() {
1185  TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
1186  if (kVerboseMode) {
1187    LOG(INFO) << "GC ReclaimPhase";
1188  }
1189  Thread* self = Thread::Current();
1190
1191  {
1192    // Double-check that the mark stack is empty.
1193    // Note: need to set this after VerifyNoFromSpaceRef().
1194    is_asserting_to_space_invariant_ = false;
1195    QuasiAtomic::ThreadFenceForConstructor();
1196    if (kVerboseMode) {
1197      LOG(INFO) << "Issue an empty check point. ";
1198    }
1199    IssueEmptyCheckpoint();
1200    // Disable the check.
1201    is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(0);
1202    CheckEmptyMarkStack();
1203  }
1204
1205  {
1206    // Record freed objects.
1207    TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
1208    // Don't include thread-locals that are in the to-space.
1209    uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
1210    uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
1211    uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
1212    uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
1213    uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
1214    uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
1215    if (kEnableFromSpaceAccountingCheck) {
1216      CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
1217      CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
1218    }
1219    CHECK_LE(to_objects, from_objects);
1220    CHECK_LE(to_bytes, from_bytes);
1221    int64_t freed_bytes = from_bytes - to_bytes;
1222    int64_t freed_objects = from_objects - to_objects;
1223    if (kVerboseMode) {
1224      LOG(INFO) << "RecordFree:"
1225                << " from_bytes=" << from_bytes << " from_objects=" << from_objects
1226                << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
1227                << " to_bytes=" << to_bytes << " to_objects=" << to_objects
1228                << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
1229                << " from_space size=" << region_space_->FromSpaceSize()
1230                << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
1231                << " to_space size=" << region_space_->ToSpaceSize();
1232      LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1233    }
1234    RecordFree(ObjectBytePair(freed_objects, freed_bytes));
1235    if (kVerboseMode) {
1236      LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1237    }
1238  }
1239
1240  {
1241    TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings());
1242    ComputeUnevacFromSpaceLiveRatio();
1243  }
1244
1245  {
1246    TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
1247    region_space_->ClearFromSpace();
1248  }
1249
1250  {
1251    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1252    if (kUseBakerReadBarrier) {
1253      ClearBlackPtrs();
1254    }
1255    Sweep(false);
1256    SwapBitmaps();
1257    heap_->UnBindBitmaps();
1258
1259    // Remove bitmaps for the immune spaces.
1260    while (!cc_bitmaps_.empty()) {
1261      accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back();
1262      cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap);
1263      delete cc_bitmap;
1264      cc_bitmaps_.pop_back();
1265    }
1266    region_space_bitmap_ = nullptr;
1267  }
1268
1269  CheckEmptyMarkStack();
1270
1271  if (kVerboseMode) {
1272    LOG(INFO) << "GC end of ReclaimPhase";
1273  }
1274}
1275
1276class ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor {
1277 public:
1278  explicit ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc)
1279      : collector_(cc) {}
1280  void operator()(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_)
1281      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1282    DCHECK(ref != nullptr);
1283    DCHECK(collector_->region_space_bitmap_->Test(ref)) << ref;
1284    DCHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref;
1285    if (kUseBakerReadBarrier) {
1286      DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << ref;
1287      // Clear the black ptr.
1288      ref->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1289      DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << ref;
1290    }
1291    size_t obj_size = ref->SizeOf();
1292    size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1293    collector_->region_space_->AddLiveBytes(ref, alloc_size);
1294  }
1295
1296 private:
1297  ConcurrentCopying* const collector_;
1298};
1299
1300// Compute how much live objects are left in regions.
1301void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() {
1302  region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1303  ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor visitor(this);
1304  region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()),
1305                                         reinterpret_cast<uintptr_t>(region_space_->Limit()),
1306                                         visitor);
1307}
1308
1309// Assert the to-space invariant.
1310void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
1311                                               mirror::Object* ref) {
1312  CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1313  if (is_asserting_to_space_invariant_) {
1314    if (region_space_->IsInToSpace(ref)) {
1315      // OK.
1316      return;
1317    } else if (region_space_->IsInUnevacFromSpace(ref)) {
1318      CHECK(region_space_bitmap_->Test(ref)) << ref;
1319    } else if (region_space_->IsInFromSpace(ref)) {
1320      // Not OK. Do extra logging.
1321      if (obj != nullptr) {
1322        LogFromSpaceRefHolder(obj, offset);
1323      }
1324      ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1325      CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1326    } else {
1327      AssertToSpaceInvariantInNonMovingSpace(obj, ref);
1328    }
1329  }
1330}
1331
1332class RootPrinter {
1333 public:
1334  RootPrinter() { }
1335
1336  template <class MirrorType>
1337  ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
1338      SHARED_REQUIRES(Locks::mutator_lock_) {
1339    if (!root->IsNull()) {
1340      VisitRoot(root);
1341    }
1342  }
1343
1344  template <class MirrorType>
1345  void VisitRoot(mirror::Object** root)
1346      SHARED_REQUIRES(Locks::mutator_lock_) {
1347    LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << *root;
1348  }
1349
1350  template <class MirrorType>
1351  void VisitRoot(mirror::CompressedReference<MirrorType>* root)
1352      SHARED_REQUIRES(Locks::mutator_lock_) {
1353    LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << root->AsMirrorPtr();
1354  }
1355};
1356
1357void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
1358                                               mirror::Object* ref) {
1359  CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1360  if (is_asserting_to_space_invariant_) {
1361    if (region_space_->IsInToSpace(ref)) {
1362      // OK.
1363      return;
1364    } else if (region_space_->IsInUnevacFromSpace(ref)) {
1365      CHECK(region_space_bitmap_->Test(ref)) << ref;
1366    } else if (region_space_->IsInFromSpace(ref)) {
1367      // Not OK. Do extra logging.
1368      if (gc_root_source == nullptr) {
1369        // No info.
1370      } else if (gc_root_source->HasArtField()) {
1371        ArtField* field = gc_root_source->GetArtField();
1372        LOG(INTERNAL_FATAL) << "gc root in field " << field << " " << PrettyField(field);
1373        RootPrinter root_printer;
1374        field->VisitRoots(root_printer);
1375      } else if (gc_root_source->HasArtMethod()) {
1376        ArtMethod* method = gc_root_source->GetArtMethod();
1377        LOG(INTERNAL_FATAL) << "gc root in method " << method << " " << PrettyMethod(method);
1378        RootPrinter root_printer;
1379        method->VisitRoots(root_printer);
1380      }
1381      ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1382      region_space_->DumpNonFreeRegions(LOG(INTERNAL_FATAL));
1383      PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
1384      MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
1385      CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1386    } else {
1387      AssertToSpaceInvariantInNonMovingSpace(nullptr, ref);
1388    }
1389  }
1390}
1391
1392void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
1393  if (kUseBakerReadBarrier) {
1394    LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj)
1395              << " holder rb_ptr=" << obj->GetReadBarrierPointer();
1396  } else {
1397    LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj);
1398  }
1399  if (region_space_->IsInFromSpace(obj)) {
1400    LOG(INFO) << "holder is in the from-space.";
1401  } else if (region_space_->IsInToSpace(obj)) {
1402    LOG(INFO) << "holder is in the to-space.";
1403  } else if (region_space_->IsInUnevacFromSpace(obj)) {
1404    LOG(INFO) << "holder is in the unevac from-space.";
1405    if (region_space_bitmap_->Test(obj)) {
1406      LOG(INFO) << "holder is marked in the region space bitmap.";
1407    } else {
1408      LOG(INFO) << "holder is not marked in the region space bitmap.";
1409    }
1410  } else {
1411    // In a non-moving space.
1412    if (immune_region_.ContainsObject(obj)) {
1413      LOG(INFO) << "holder is in the image or the zygote space.";
1414      accounting::ContinuousSpaceBitmap* cc_bitmap =
1415          cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
1416      CHECK(cc_bitmap != nullptr)
1417          << "An immune space object must have a bitmap.";
1418      if (cc_bitmap->Test(obj)) {
1419        LOG(INFO) << "holder is marked in the bit map.";
1420      } else {
1421        LOG(INFO) << "holder is NOT marked in the bit map.";
1422      }
1423    } else {
1424      LOG(INFO) << "holder is in a non-moving (or main) space.";
1425      accounting::ContinuousSpaceBitmap* mark_bitmap =
1426          heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1427      accounting::LargeObjectBitmap* los_bitmap =
1428          heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1429      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1430      bool is_los = mark_bitmap == nullptr;
1431      if (!is_los && mark_bitmap->Test(obj)) {
1432        LOG(INFO) << "holder is marked in the mark bit map.";
1433      } else if (is_los && los_bitmap->Test(obj)) {
1434        LOG(INFO) << "holder is marked in the los bit map.";
1435      } else {
1436        // If ref is on the allocation stack, then it is considered
1437        // mark/alive (but not necessarily on the live stack.)
1438        if (IsOnAllocStack(obj)) {
1439          LOG(INFO) << "holder is on the alloc stack.";
1440        } else {
1441          LOG(INFO) << "holder is not marked or on the alloc stack.";
1442        }
1443      }
1444    }
1445  }
1446  LOG(INFO) << "offset=" << offset.SizeValue();
1447}
1448
1449void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
1450                                                               mirror::Object* ref) {
1451  // In a non-moving spaces. Check that the ref is marked.
1452  if (immune_region_.ContainsObject(ref)) {
1453    accounting::ContinuousSpaceBitmap* cc_bitmap =
1454        cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1455    CHECK(cc_bitmap != nullptr)
1456        << "An immune space ref must have a bitmap. " << ref;
1457    if (kUseBakerReadBarrier) {
1458      CHECK(cc_bitmap->Test(ref))
1459          << "Unmarked immune space ref. obj=" << obj << " rb_ptr="
1460          << obj->GetReadBarrierPointer() << " ref=" << ref;
1461    } else {
1462      CHECK(cc_bitmap->Test(ref))
1463          << "Unmarked immune space ref. obj=" << obj << " ref=" << ref;
1464    }
1465  } else {
1466    accounting::ContinuousSpaceBitmap* mark_bitmap =
1467        heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1468    accounting::LargeObjectBitmap* los_bitmap =
1469        heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1470    CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1471    bool is_los = mark_bitmap == nullptr;
1472    if ((!is_los && mark_bitmap->Test(ref)) ||
1473        (is_los && los_bitmap->Test(ref))) {
1474      // OK.
1475    } else {
1476      // If ref is on the allocation stack, then it may not be
1477      // marked live, but considered marked/alive (but not
1478      // necessarily on the live stack).
1479      CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1480                                 << "obj=" << obj << " ref=" << ref;
1481    }
1482  }
1483}
1484
1485// Used to scan ref fields of an object.
1486class ConcurrentCopyingRefFieldsVisitor {
1487 public:
1488  explicit ConcurrentCopyingRefFieldsVisitor(ConcurrentCopying* collector)
1489      : collector_(collector) {}
1490
1491  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1492      const ALWAYS_INLINE SHARED_REQUIRES(Locks::mutator_lock_)
1493      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1494    collector_->Process(obj, offset);
1495  }
1496
1497  void operator()(mirror::Class* klass, mirror::Reference* ref) const
1498      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
1499    CHECK(klass->IsTypeOfReferenceClass());
1500    collector_->DelayReferenceReferent(klass, ref);
1501  }
1502
1503 private:
1504  ConcurrentCopying* const collector_;
1505};
1506
1507// Scan ref fields of an object.
1508void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1509  DCHECK(!region_space_->IsInFromSpace(to_ref));
1510  ConcurrentCopyingRefFieldsVisitor visitor(this);
1511  to_ref->VisitReferences<true>(visitor, visitor);
1512}
1513
1514// Process a field.
1515inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1516  mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1517  if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1518    return;
1519  }
1520  mirror::Object* to_ref = Mark(ref);
1521  if (to_ref == ref) {
1522    return;
1523  }
1524  // This may fail if the mutator writes to the field at the same time. But it's ok.
1525  mirror::Object* expected_ref = ref;
1526  mirror::Object* new_ref = to_ref;
1527  do {
1528    if (expected_ref !=
1529        obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1530      // It was updated by the mutator.
1531      break;
1532    }
1533  } while (!obj->CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier<false, false, kVerifyNone>(
1534      offset, expected_ref, new_ref));
1535}
1536
1537// Process some roots.
1538void ConcurrentCopying::VisitRoots(
1539    mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
1540  for (size_t i = 0; i < count; ++i) {
1541    mirror::Object** root = roots[i];
1542    mirror::Object* ref = *root;
1543    if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1544      continue;
1545    }
1546    mirror::Object* to_ref = Mark(ref);
1547    if (to_ref == ref) {
1548      continue;
1549    }
1550    Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1551    mirror::Object* expected_ref = ref;
1552    mirror::Object* new_ref = to_ref;
1553    do {
1554      if (expected_ref != addr->LoadRelaxed()) {
1555        // It was updated by the mutator.
1556        break;
1557      }
1558    } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1559  }
1560}
1561
1562void ConcurrentCopying::VisitRoots(
1563    mirror::CompressedReference<mirror::Object>** roots, size_t count,
1564    const RootInfo& info ATTRIBUTE_UNUSED) {
1565  for (size_t i = 0; i < count; ++i) {
1566    mirror::CompressedReference<mirror::Object>* root = roots[i];
1567    mirror::Object* ref = root->AsMirrorPtr();
1568    if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1569      continue;
1570    }
1571    mirror::Object* to_ref = Mark(ref);
1572    if (to_ref == ref) {
1573      continue;
1574    }
1575    auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
1576    auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
1577    auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
1578    do {
1579      if (ref != addr->LoadRelaxed().AsMirrorPtr()) {
1580        // It was updated by the mutator.
1581        break;
1582      }
1583    } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1584  }
1585}
1586
1587// Fill the given memory block with a dummy object. Used to fill in a
1588// copy of objects that was lost in race.
1589void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
1590  CHECK_ALIGNED(byte_size, kObjectAlignment);
1591  memset(dummy_obj, 0, byte_size);
1592  mirror::Class* int_array_class = mirror::IntArray::GetArrayClass();
1593  CHECK(int_array_class != nullptr);
1594  AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
1595  size_t component_size = int_array_class->GetComponentSize();
1596  CHECK_EQ(component_size, sizeof(int32_t));
1597  size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
1598  if (data_offset > byte_size) {
1599    // An int array is too big. Use java.lang.Object.
1600    mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object);
1601    AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object);
1602    CHECK_EQ(byte_size, java_lang_Object->GetObjectSize());
1603    dummy_obj->SetClass(java_lang_Object);
1604    CHECK_EQ(byte_size, dummy_obj->SizeOf());
1605  } else {
1606    // Use an int array.
1607    dummy_obj->SetClass(int_array_class);
1608    CHECK(dummy_obj->IsArrayInstance());
1609    int32_t length = (byte_size - data_offset) / component_size;
1610    dummy_obj->AsArray()->SetLength(length);
1611    CHECK_EQ(dummy_obj->AsArray()->GetLength(), length)
1612        << "byte_size=" << byte_size << " length=" << length
1613        << " component_size=" << component_size << " data_offset=" << data_offset;
1614    CHECK_EQ(byte_size, dummy_obj->SizeOf())
1615        << "byte_size=" << byte_size << " length=" << length
1616        << " component_size=" << component_size << " data_offset=" << data_offset;
1617  }
1618}
1619
1620// Reuse the memory blocks that were copy of objects that were lost in race.
1621mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
1622  // Try to reuse the blocks that were unused due to CAS failures.
1623  CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
1624  Thread* self = Thread::Current();
1625  size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
1626  MutexLock mu(self, skipped_blocks_lock_);
1627  auto it = skipped_blocks_map_.lower_bound(alloc_size);
1628  if (it == skipped_blocks_map_.end()) {
1629    // Not found.
1630    return nullptr;
1631  }
1632  {
1633    size_t byte_size = it->first;
1634    CHECK_GE(byte_size, alloc_size);
1635    if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
1636      // If remainder would be too small for a dummy object, retry with a larger request size.
1637      it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
1638      if (it == skipped_blocks_map_.end()) {
1639        // Not found.
1640        return nullptr;
1641      }
1642      CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
1643      CHECK_GE(it->first - alloc_size, min_object_size)
1644          << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
1645    }
1646  }
1647  // Found a block.
1648  CHECK(it != skipped_blocks_map_.end());
1649  size_t byte_size = it->first;
1650  uint8_t* addr = it->second;
1651  CHECK_GE(byte_size, alloc_size);
1652  CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
1653  CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
1654  if (kVerboseMode) {
1655    LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
1656  }
1657  skipped_blocks_map_.erase(it);
1658  memset(addr, 0, byte_size);
1659  if (byte_size > alloc_size) {
1660    // Return the remainder to the map.
1661    CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
1662    CHECK_GE(byte_size - alloc_size, min_object_size);
1663    FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
1664                        byte_size - alloc_size);
1665    CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
1666    skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
1667  }
1668  return reinterpret_cast<mirror::Object*>(addr);
1669}
1670
1671mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) {
1672  DCHECK(region_space_->IsInFromSpace(from_ref));
1673  // No read barrier to avoid nested RB that might violate the to-space
1674  // invariant. Note that from_ref is a from space ref so the SizeOf()
1675  // call will access the from-space meta objects, but it's ok and necessary.
1676  size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>();
1677  size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1678  size_t region_space_bytes_allocated = 0U;
1679  size_t non_moving_space_bytes_allocated = 0U;
1680  size_t bytes_allocated = 0U;
1681  size_t dummy;
1682  mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
1683      region_space_alloc_size, &region_space_bytes_allocated, nullptr, &dummy);
1684  bytes_allocated = region_space_bytes_allocated;
1685  if (to_ref != nullptr) {
1686    DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
1687  }
1688  bool fall_back_to_non_moving = false;
1689  if (UNLIKELY(to_ref == nullptr)) {
1690    // Failed to allocate in the region space. Try the skipped blocks.
1691    to_ref = AllocateInSkippedBlock(region_space_alloc_size);
1692    if (to_ref != nullptr) {
1693      // Succeeded to allocate in a skipped block.
1694      if (heap_->use_tlab_) {
1695        // This is necessary for the tlab case as it's not accounted in the space.
1696        region_space_->RecordAlloc(to_ref);
1697      }
1698      bytes_allocated = region_space_alloc_size;
1699    } else {
1700      // Fall back to the non-moving space.
1701      fall_back_to_non_moving = true;
1702      if (kVerboseMode) {
1703        LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
1704                  << to_space_bytes_skipped_.LoadSequentiallyConsistent()
1705                  << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
1706      }
1707      fall_back_to_non_moving = true;
1708      to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
1709                                               &non_moving_space_bytes_allocated, nullptr, &dummy);
1710      CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed";
1711      bytes_allocated = non_moving_space_bytes_allocated;
1712      // Mark it in the mark bitmap.
1713      accounting::ContinuousSpaceBitmap* mark_bitmap =
1714          heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1715      CHECK(mark_bitmap != nullptr);
1716      CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
1717    }
1718  }
1719  DCHECK(to_ref != nullptr);
1720
1721  // Attempt to install the forward pointer. This is in a loop as the
1722  // lock word atomic write can fail.
1723  while (true) {
1724    // Copy the object. TODO: copy only the lockword in the second iteration and on?
1725    memcpy(to_ref, from_ref, obj_size);
1726
1727    LockWord old_lock_word = to_ref->GetLockWord(false);
1728
1729    if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
1730      // Lost the race. Another thread (either GC or mutator) stored
1731      // the forwarding pointer first. Make the lost copy (to_ref)
1732      // look like a valid but dead (dummy) object and keep it for
1733      // future reuse.
1734      FillWithDummyObject(to_ref, bytes_allocated);
1735      if (!fall_back_to_non_moving) {
1736        DCHECK(region_space_->IsInToSpace(to_ref));
1737        if (bytes_allocated > space::RegionSpace::kRegionSize) {
1738          // Free the large alloc.
1739          region_space_->FreeLarge(to_ref, bytes_allocated);
1740        } else {
1741          // Record the lost copy for later reuse.
1742          heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1743          to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1744          to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
1745          MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1746          skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
1747                                                    reinterpret_cast<uint8_t*>(to_ref)));
1748        }
1749      } else {
1750        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1751        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1752        // Free the non-moving-space chunk.
1753        accounting::ContinuousSpaceBitmap* mark_bitmap =
1754            heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1755        CHECK(mark_bitmap != nullptr);
1756        CHECK(mark_bitmap->Clear(to_ref));
1757        heap_->non_moving_space_->Free(Thread::Current(), to_ref);
1758      }
1759
1760      // Get the winner's forward ptr.
1761      mirror::Object* lost_fwd_ptr = to_ref;
1762      to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
1763      CHECK(to_ref != nullptr);
1764      CHECK_NE(to_ref, lost_fwd_ptr);
1765      CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref));
1766      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1767      return to_ref;
1768    }
1769
1770    // Set the gray ptr.
1771    if (kUseBakerReadBarrier) {
1772      to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr());
1773    }
1774
1775    LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
1776
1777    // Try to atomically write the fwd ptr.
1778    bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word);
1779    if (LIKELY(success)) {
1780      // The CAS succeeded.
1781      objects_moved_.FetchAndAddSequentiallyConsistent(1);
1782      bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size);
1783      if (LIKELY(!fall_back_to_non_moving)) {
1784        DCHECK(region_space_->IsInToSpace(to_ref));
1785      } else {
1786        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1787        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1788      }
1789      if (kUseBakerReadBarrier) {
1790        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1791      }
1792      DCHECK(GetFwdPtr(from_ref) == to_ref);
1793      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1794      PushOntoMarkStack(to_ref);
1795      return to_ref;
1796    } else {
1797      // The CAS failed. It may have lost the race or may have failed
1798      // due to monitor/hashcode ops. Either way, retry.
1799    }
1800  }
1801}
1802
1803mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
1804  DCHECK(from_ref != nullptr);
1805  space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1806  if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
1807    // It's already marked.
1808    return from_ref;
1809  }
1810  mirror::Object* to_ref;
1811  if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
1812    to_ref = GetFwdPtr(from_ref);
1813    DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
1814           heap_->non_moving_space_->HasAddress(to_ref))
1815        << "from_ref=" << from_ref << " to_ref=" << to_ref;
1816  } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
1817    if (region_space_bitmap_->Test(from_ref)) {
1818      to_ref = from_ref;
1819    } else {
1820      to_ref = nullptr;
1821    }
1822  } else {
1823    // from_ref is in a non-moving space.
1824    if (immune_region_.ContainsObject(from_ref)) {
1825      accounting::ContinuousSpaceBitmap* cc_bitmap =
1826          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1827      DCHECK(cc_bitmap != nullptr)
1828          << "An immune space object must have a bitmap";
1829      if (kIsDebugBuild) {
1830        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1831            << "Immune space object must be already marked";
1832      }
1833      if (cc_bitmap->Test(from_ref)) {
1834        // Already marked.
1835        to_ref = from_ref;
1836      } else {
1837        // Newly marked.
1838        to_ref = nullptr;
1839      }
1840    } else {
1841      // Non-immune non-moving space. Use the mark bitmap.
1842      accounting::ContinuousSpaceBitmap* mark_bitmap =
1843          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1844      accounting::LargeObjectBitmap* los_bitmap =
1845          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1846      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1847      bool is_los = mark_bitmap == nullptr;
1848      if (!is_los && mark_bitmap->Test(from_ref)) {
1849        // Already marked.
1850        to_ref = from_ref;
1851      } else if (is_los && los_bitmap->Test(from_ref)) {
1852        // Already marked in LOS.
1853        to_ref = from_ref;
1854      } else {
1855        // Not marked.
1856        if (IsOnAllocStack(from_ref)) {
1857          // If on the allocation stack, it's considered marked.
1858          to_ref = from_ref;
1859        } else {
1860          // Not marked.
1861          to_ref = nullptr;
1862        }
1863      }
1864    }
1865  }
1866  return to_ref;
1867}
1868
1869bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
1870  QuasiAtomic::ThreadFenceAcquire();
1871  accounting::ObjectStack* alloc_stack = GetAllocationStack();
1872  return alloc_stack->Contains(ref);
1873}
1874
1875mirror::Object* ConcurrentCopying::Mark(mirror::Object* from_ref) {
1876  if (from_ref == nullptr) {
1877    return nullptr;
1878  }
1879  DCHECK(from_ref != nullptr);
1880  DCHECK(heap_->collector_type_ == kCollectorTypeCC);
1881  if (kUseBakerReadBarrier && !is_active_) {
1882    // In the lock word forward address state, the read barrier bits
1883    // in the lock word are part of the stored forwarding address and
1884    // invalid. This is usually OK as the from-space copy of objects
1885    // aren't accessed by mutators due to the to-space
1886    // invariant. However, during the dex2oat image writing relocation
1887    // and the zygote compaction, objects can be in the forward
1888    // address state (to store the forward/relocation addresses) and
1889    // they can still be accessed and the invalid read barrier bits
1890    // are consulted. If they look like gray but aren't really, the
1891    // read barriers slow path can trigger when it shouldn't. To guard
1892    // against this, return here if the CC collector isn't running.
1893    return from_ref;
1894  }
1895  DCHECK(region_space_ != nullptr) << "Read barrier slow path taken when CC isn't running?";
1896  space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1897  if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
1898    // It's already marked.
1899    return from_ref;
1900  }
1901  mirror::Object* to_ref;
1902  if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
1903    to_ref = GetFwdPtr(from_ref);
1904    if (kUseBakerReadBarrier) {
1905      DCHECK(to_ref != ReadBarrier::GrayPtr()) << "from_ref=" << from_ref << " to_ref=" << to_ref;
1906    }
1907    if (to_ref == nullptr) {
1908      // It isn't marked yet. Mark it by copying it to the to-space.
1909      to_ref = Copy(from_ref);
1910    }
1911    DCHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
1912        << "from_ref=" << from_ref << " to_ref=" << to_ref;
1913  } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
1914    // This may or may not succeed, which is ok.
1915    if (kUseBakerReadBarrier) {
1916      from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1917    }
1918    if (region_space_bitmap_->AtomicTestAndSet(from_ref)) {
1919      // Already marked.
1920      to_ref = from_ref;
1921    } else {
1922      // Newly marked.
1923      to_ref = from_ref;
1924      if (kUseBakerReadBarrier) {
1925        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1926      }
1927      PushOntoMarkStack(to_ref);
1928    }
1929  } else {
1930    // from_ref is in a non-moving space.
1931    DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
1932    if (immune_region_.ContainsObject(from_ref)) {
1933      accounting::ContinuousSpaceBitmap* cc_bitmap =
1934          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1935      DCHECK(cc_bitmap != nullptr)
1936          << "An immune space object must have a bitmap";
1937      if (kIsDebugBuild) {
1938        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1939            << "Immune space object must be already marked";
1940      }
1941      // This may or may not succeed, which is ok.
1942      if (kUseBakerReadBarrier) {
1943        from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1944      }
1945      if (cc_bitmap->AtomicTestAndSet(from_ref)) {
1946        // Already marked.
1947        to_ref = from_ref;
1948      } else {
1949        // Newly marked.
1950        to_ref = from_ref;
1951        if (kUseBakerReadBarrier) {
1952          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1953        }
1954        PushOntoMarkStack(to_ref);
1955      }
1956    } else {
1957      // Use the mark bitmap.
1958      accounting::ContinuousSpaceBitmap* mark_bitmap =
1959          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1960      accounting::LargeObjectBitmap* los_bitmap =
1961          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1962      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1963      bool is_los = mark_bitmap == nullptr;
1964      if (!is_los && mark_bitmap->Test(from_ref)) {
1965        // Already marked.
1966        to_ref = from_ref;
1967        if (kUseBakerReadBarrier) {
1968          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
1969                 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1970        }
1971      } else if (is_los && los_bitmap->Test(from_ref)) {
1972        // Already marked in LOS.
1973        to_ref = from_ref;
1974        if (kUseBakerReadBarrier) {
1975          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
1976                 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1977        }
1978      } else {
1979        // Not marked.
1980        if (IsOnAllocStack(from_ref)) {
1981          // If it's on the allocation stack, it's considered marked. Keep it white.
1982          to_ref = from_ref;
1983          // Objects on the allocation stack need not be marked.
1984          if (!is_los) {
1985            DCHECK(!mark_bitmap->Test(to_ref));
1986          } else {
1987            DCHECK(!los_bitmap->Test(to_ref));
1988          }
1989          if (kUseBakerReadBarrier) {
1990            DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
1991          }
1992        } else {
1993          // Not marked or on the allocation stack. Try to mark it.
1994          // This may or may not succeed, which is ok.
1995          if (kUseBakerReadBarrier) {
1996            from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1997          }
1998          if (!is_los && mark_bitmap->AtomicTestAndSet(from_ref)) {
1999            // Already marked.
2000            to_ref = from_ref;
2001          } else if (is_los && los_bitmap->AtomicTestAndSet(from_ref)) {
2002            // Already marked in LOS.
2003            to_ref = from_ref;
2004          } else {
2005            // Newly marked.
2006            to_ref = from_ref;
2007            if (kUseBakerReadBarrier) {
2008              DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
2009            }
2010            PushOntoMarkStack(to_ref);
2011          }
2012        }
2013      }
2014    }
2015  }
2016  return to_ref;
2017}
2018
2019void ConcurrentCopying::FinishPhase() {
2020  {
2021    MutexLock mu(Thread::Current(), mark_stack_lock_);
2022    CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2023  }
2024  region_space_ = nullptr;
2025  {
2026    MutexLock mu(Thread::Current(), skipped_blocks_lock_);
2027    skipped_blocks_map_.clear();
2028  }
2029  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2030  heap_->ClearMarkedObjects();
2031}
2032
2033bool ConcurrentCopying::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* field) {
2034  mirror::Object* from_ref = field->AsMirrorPtr();
2035  mirror::Object* to_ref = IsMarked(from_ref);
2036  if (to_ref == nullptr) {
2037    return false;
2038  }
2039  if (from_ref != to_ref) {
2040    QuasiAtomic::ThreadFenceRelease();
2041    field->Assign(to_ref);
2042    QuasiAtomic::ThreadFenceSequentiallyConsistent();
2043  }
2044  return true;
2045}
2046
2047mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
2048  return Mark(from_ref);
2049}
2050
2051void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
2052  heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
2053}
2054
2055void ConcurrentCopying::ProcessReferences(Thread* self) {
2056  TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
2057  // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
2058  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2059  GetHeap()->GetReferenceProcessor()->ProcessReferences(
2060      true /*concurrent*/, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
2061}
2062
2063void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
2064  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
2065  region_space_->RevokeAllThreadLocalBuffers();
2066}
2067
2068}  // namespace collector
2069}  // namespace gc
2070}  // namespace art
2071