concurrent_copying.cc revision 951ec2c93c79c5539cbcc669566f0808d4460338
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "concurrent_copying.h"
18
19#include "art_field-inl.h"
20#include "base/stl_util.h"
21#include "gc/accounting/heap_bitmap-inl.h"
22#include "gc/accounting/space_bitmap-inl.h"
23#include "gc/reference_processor.h"
24#include "gc/space/image_space.h"
25#include "gc/space/space.h"
26#include "intern_table.h"
27#include "mirror/class-inl.h"
28#include "mirror/object-inl.h"
29#include "scoped_thread_state_change.h"
30#include "thread-inl.h"
31#include "thread_list.h"
32#include "well_known_classes.h"
33
34namespace art {
35namespace gc {
36namespace collector {
37
38ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix)
39    : GarbageCollector(heap,
40                       name_prefix + (name_prefix.empty() ? "" : " ") +
41                       "concurrent copying + mark sweep"),
42      region_space_(nullptr), gc_barrier_(new Barrier(0)),
43      gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
44                                                     2 * MB, 2 * MB)),
45      mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
46      thread_running_gc_(nullptr),
47      is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false),
48      heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0), mark_stack_mode_(kMarkStackModeOff),
49      weak_ref_access_enabled_(true),
50      skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
51      rb_table_(heap_->GetReadBarrierTable()),
52      force_evacuate_all_(false) {
53  static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
54                "The region space size and the read barrier table region size must match");
55  cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap));
56  Thread* self = Thread::Current();
57  {
58    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
59    // Cache this so that we won't have to lock heap_bitmap_lock_ in
60    // Mark() which could cause a nested lock on heap_bitmap_lock_
61    // when GC causes a RB while doing GC or a lock order violation
62    // (class_linker_lock_ and heap_bitmap_lock_).
63    heap_mark_bitmap_ = heap->GetMarkBitmap();
64  }
65  {
66    MutexLock mu(self, mark_stack_lock_);
67    for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
68      accounting::AtomicStack<mirror::Object>* mark_stack =
69          accounting::AtomicStack<mirror::Object>::Create(
70              "thread local mark stack", kMarkStackSize, kMarkStackSize);
71      pooled_mark_stacks_.push_back(mark_stack);
72    }
73  }
74}
75
76void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* from_ref) {
77  // Used for preserving soft references, should be OK to not have a CAS here since there should be
78  // no other threads which can trigger read barriers on the same referent during reference
79  // processing.
80  from_ref->Assign(Mark(from_ref->AsMirrorPtr()));
81  DCHECK(!from_ref->IsNull());
82}
83
84ConcurrentCopying::~ConcurrentCopying() {
85  STLDeleteElements(&pooled_mark_stacks_);
86}
87
88void ConcurrentCopying::RunPhases() {
89  CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
90  CHECK(!is_active_);
91  is_active_ = true;
92  Thread* self = Thread::Current();
93  thread_running_gc_ = self;
94  Locks::mutator_lock_->AssertNotHeld(self);
95  {
96    ReaderMutexLock mu(self, *Locks::mutator_lock_);
97    InitializePhase();
98  }
99  FlipThreadRoots();
100  {
101    ReaderMutexLock mu(self, *Locks::mutator_lock_);
102    MarkingPhase();
103  }
104  // Verify no from space refs. This causes a pause.
105  if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) {
106    TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
107    ScopedPause pause(this);
108    CheckEmptyMarkStack();
109    if (kVerboseMode) {
110      LOG(INFO) << "Verifying no from-space refs";
111    }
112    VerifyNoFromSpaceReferences();
113    if (kVerboseMode) {
114      LOG(INFO) << "Done verifying no from-space refs";
115    }
116    CheckEmptyMarkStack();
117  }
118  {
119    ReaderMutexLock mu(self, *Locks::mutator_lock_);
120    ReclaimPhase();
121  }
122  FinishPhase();
123  CHECK(is_active_);
124  is_active_ = false;
125  thread_running_gc_ = nullptr;
126}
127
128void ConcurrentCopying::BindBitmaps() {
129  Thread* self = Thread::Current();
130  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
131  // Mark all of the spaces we never collect as immune.
132  for (const auto& space : heap_->GetContinuousSpaces()) {
133    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
134        || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
135      CHECK(space->IsZygoteSpace() || space->IsImageSpace());
136      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
137      const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" :
138          "cc zygote space bitmap";
139      // TODO: try avoiding using bitmaps for image/zygote to save space.
140      accounting::ContinuousSpaceBitmap* bitmap =
141          accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity());
142      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
143      cc_bitmaps_.push_back(bitmap);
144    } else if (space == region_space_) {
145      accounting::ContinuousSpaceBitmap* bitmap =
146          accounting::ContinuousSpaceBitmap::Create("cc region space bitmap",
147                                                    space->Begin(), space->Capacity());
148      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
149      cc_bitmaps_.push_back(bitmap);
150      region_space_bitmap_ = bitmap;
151    }
152  }
153}
154
155void ConcurrentCopying::InitializePhase() {
156  TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
157  if (kVerboseMode) {
158    LOG(INFO) << "GC InitializePhase";
159    LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
160              << reinterpret_cast<void*>(region_space_->Limit());
161  }
162  CheckEmptyMarkStack();
163  immune_region_.Reset();
164  bytes_moved_.StoreRelaxed(0);
165  objects_moved_.StoreRelaxed(0);
166  if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
167      GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
168      GetCurrentIteration()->GetClearSoftReferences()) {
169    force_evacuate_all_ = true;
170  } else {
171    force_evacuate_all_ = false;
172  }
173  BindBitmaps();
174  if (kVerboseMode) {
175    LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
176    LOG(INFO) << "Immune region: " << immune_region_.Begin() << "-" << immune_region_.End();
177    LOG(INFO) << "GC end of InitializePhase";
178  }
179}
180
181// Used to switch the thread roots of a thread from from-space refs to to-space refs.
182class ThreadFlipVisitor : public Closure {
183 public:
184  ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
185      : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
186  }
187
188  virtual void Run(Thread* thread) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
189    // Note: self is not necessarily equal to thread since thread may be suspended.
190    Thread* self = Thread::Current();
191    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
192        << thread->GetState() << " thread " << thread << " self " << self;
193    thread->SetIsGcMarking(true);
194    if (use_tlab_ && thread->HasTlab()) {
195      if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
196        // This must come before the revoke.
197        size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
198        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
199        reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
200            FetchAndAddSequentiallyConsistent(thread_local_objects);
201      } else {
202        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
203      }
204    }
205    if (kUseThreadLocalAllocationStack) {
206      thread->RevokeThreadLocalAllocationStack();
207    }
208    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
209    thread->VisitRoots(concurrent_copying_);
210    concurrent_copying_->GetBarrier().Pass(self);
211  }
212
213 private:
214  ConcurrentCopying* const concurrent_copying_;
215  const bool use_tlab_;
216};
217
218// Called back from Runtime::FlipThreadRoots() during a pause.
219class FlipCallback : public Closure {
220 public:
221  explicit FlipCallback(ConcurrentCopying* concurrent_copying)
222      : concurrent_copying_(concurrent_copying) {
223  }
224
225  virtual void Run(Thread* thread) OVERRIDE REQUIRES(Locks::mutator_lock_) {
226    ConcurrentCopying* cc = concurrent_copying_;
227    TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
228    // Note: self is not necessarily equal to thread since thread may be suspended.
229    Thread* self = Thread::Current();
230    CHECK(thread == self);
231    Locks::mutator_lock_->AssertExclusiveHeld(self);
232    cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
233    cc->SwapStacks();
234    if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
235      cc->RecordLiveStackFreezeSize(self);
236      cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
237      cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
238    }
239    cc->is_marking_ = true;
240    cc->mark_stack_mode_.StoreRelaxed(ConcurrentCopying::kMarkStackModeThreadLocal);
241    if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
242      CHECK(Runtime::Current()->IsAotCompiler());
243      TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
244      Runtime::Current()->VisitTransactionRoots(cc);
245    }
246  }
247
248 private:
249  ConcurrentCopying* const concurrent_copying_;
250};
251
252// Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
253void ConcurrentCopying::FlipThreadRoots() {
254  TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
255  if (kVerboseMode) {
256    LOG(INFO) << "time=" << region_space_->Time();
257    region_space_->DumpNonFreeRegions(LOG(INFO));
258  }
259  Thread* self = Thread::Current();
260  Locks::mutator_lock_->AssertNotHeld(self);
261  gc_barrier_->Init(self, 0);
262  ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
263  FlipCallback flip_callback(this);
264  heap_->ThreadFlipBegin(self);  // Sync with JNI critical calls.
265  size_t barrier_count = Runtime::Current()->FlipThreadRoots(
266      &thread_flip_visitor, &flip_callback, this);
267  heap_->ThreadFlipEnd(self);
268  {
269    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
270    gc_barrier_->Increment(self, barrier_count);
271  }
272  is_asserting_to_space_invariant_ = true;
273  QuasiAtomic::ThreadFenceForConstructor();
274  if (kVerboseMode) {
275    LOG(INFO) << "time=" << region_space_->Time();
276    region_space_->DumpNonFreeRegions(LOG(INFO));
277    LOG(INFO) << "GC end of FlipThreadRoots";
278  }
279}
280
281void ConcurrentCopying::SwapStacks() {
282  heap_->SwapStacks();
283}
284
285void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
286  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
287  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
288}
289
290// Used to visit objects in the immune spaces.
291class ConcurrentCopyingImmuneSpaceObjVisitor {
292 public:
293  explicit ConcurrentCopyingImmuneSpaceObjVisitor(ConcurrentCopying* cc)
294      : collector_(cc) {}
295
296  void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
297      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
298    DCHECK(obj != nullptr);
299    DCHECK(collector_->immune_region_.ContainsObject(obj));
300    accounting::ContinuousSpaceBitmap* cc_bitmap =
301        collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
302    DCHECK(cc_bitmap != nullptr)
303        << "An immune space object must have a bitmap";
304    if (kIsDebugBuild) {
305      DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj))
306          << "Immune space object must be already marked";
307    }
308    // This may or may not succeed, which is ok.
309    if (kUseBakerReadBarrier) {
310      obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
311    }
312    if (cc_bitmap->AtomicTestAndSet(obj)) {
313      // Already marked. Do nothing.
314    } else {
315      // Newly marked. Set the gray bit and push it onto the mark stack.
316      CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
317      collector_->PushOntoMarkStack(obj);
318    }
319  }
320
321 private:
322  ConcurrentCopying* const collector_;
323};
324
325class EmptyCheckpoint : public Closure {
326 public:
327  explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying)
328      : concurrent_copying_(concurrent_copying) {
329  }
330
331  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
332    // Note: self is not necessarily equal to thread since thread may be suspended.
333    Thread* self = Thread::Current();
334    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
335        << thread->GetState() << " thread " << thread << " self " << self;
336    // If thread is a running mutator, then act on behalf of the garbage collector.
337    // See the code in ThreadList::RunCheckpoint.
338    if (thread->GetState() == kRunnable) {
339      concurrent_copying_->GetBarrier().Pass(self);
340    }
341  }
342
343 private:
344  ConcurrentCopying* const concurrent_copying_;
345};
346
347// Concurrently mark roots that are guarded by read barriers and process the mark stack.
348void ConcurrentCopying::MarkingPhase() {
349  TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
350  if (kVerboseMode) {
351    LOG(INFO) << "GC MarkingPhase";
352  }
353  CHECK(weak_ref_access_enabled_);
354  {
355    // Mark the image root. The WB-based collectors do not need to
356    // scan the image objects from roots by relying on the card table,
357    // but it's necessary for the RB to-space invariant to hold.
358    TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings());
359    gc::space::ImageSpace* image = heap_->GetImageSpace();
360    if (image != nullptr) {
361      mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots();
362      mirror::Object* marked_image_root = Mark(image_root);
363      CHECK_EQ(image_root, marked_image_root) << "An image object does not move";
364      if (ReadBarrier::kEnableToSpaceInvariantChecks) {
365        AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root);
366      }
367    }
368  }
369  // TODO: Other garbage collectors uses Runtime::VisitConcurrentRoots(), refactor this part
370  // to also use the same function.
371  {
372    TimingLogger::ScopedTiming split2("VisitConstantRoots", GetTimings());
373    Runtime::Current()->VisitConstantRoots(this);
374  }
375  {
376    TimingLogger::ScopedTiming split3("VisitInternTableRoots", GetTimings());
377    Runtime::Current()->GetInternTable()->VisitRoots(this, kVisitRootFlagAllRoots);
378  }
379  {
380    TimingLogger::ScopedTiming split4("VisitClassLinkerRoots", GetTimings());
381    Runtime::Current()->GetClassLinker()->VisitRoots(this, kVisitRootFlagAllRoots);
382  }
383  {
384    // TODO: don't visit the transaction roots if it's not active.
385    TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
386    Runtime::Current()->VisitNonThreadRoots(this);
387  }
388  Runtime::Current()->GetHeap()->VisitAllocationRecords(this);
389
390  // Immune spaces.
391  for (auto& space : heap_->GetContinuousSpaces()) {
392    if (immune_region_.ContainsSpace(space)) {
393      DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
394      accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
395      ConcurrentCopyingImmuneSpaceObjVisitor visitor(this);
396      live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
397                                    reinterpret_cast<uintptr_t>(space->Limit()),
398                                    visitor);
399    }
400  }
401
402  Thread* self = Thread::Current();
403  {
404    TimingLogger::ScopedTiming split6("ProcessMarkStack", GetTimings());
405    // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
406    // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
407    // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
408    // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
409    // reach the point where we process weak references, we can avoid using a lock when accessing
410    // the GC mark stack, which makes mark stack processing more efficient.
411
412    // Process the mark stack once in the thread local stack mode. This marks most of the live
413    // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
414    // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
415    // objects and push refs on the mark stack.
416    ProcessMarkStack();
417    // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
418    // for the last time before transitioning to the shared mark stack mode, which would process new
419    // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
420    // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
421    // important to do these together in a single checkpoint so that we can ensure that mutators
422    // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and
423    // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
424    // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
425    // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
426    SwitchToSharedMarkStackMode();
427    CHECK(!self->GetWeakRefAccessEnabled());
428    // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
429    // (which may be non-empty if there were refs found on thread-local mark stacks during the above
430    // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
431    // (via read barriers) have no way to produce any more refs to process. Marking converges once
432    // before we process weak refs below.
433    ProcessMarkStack();
434    CheckEmptyMarkStack();
435    // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
436    // lock from this point on.
437    SwitchToGcExclusiveMarkStackMode();
438    CheckEmptyMarkStack();
439    if (kVerboseMode) {
440      LOG(INFO) << "ProcessReferences";
441    }
442    // Process weak references. This may produce new refs to process and have them processed via
443    // ProcessMarkStack (in the GC exclusive mark stack mode).
444    ProcessReferences(self);
445    CheckEmptyMarkStack();
446    if (kVerboseMode) {
447      LOG(INFO) << "SweepSystemWeaks";
448    }
449    SweepSystemWeaks(self);
450    if (kVerboseMode) {
451      LOG(INFO) << "SweepSystemWeaks done";
452    }
453    // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
454    // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
455    // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
456    ProcessMarkStack();
457    CheckEmptyMarkStack();
458    // Re-enable weak ref accesses.
459    ReenableWeakRefAccess(self);
460    // Free data for class loaders that we unloaded.
461    Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
462    // Marking is done. Disable marking.
463    DisableMarking();
464    CheckEmptyMarkStack();
465  }
466
467  CHECK(weak_ref_access_enabled_);
468  if (kVerboseMode) {
469    LOG(INFO) << "GC end of MarkingPhase";
470  }
471}
472
473void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
474  if (kVerboseMode) {
475    LOG(INFO) << "ReenableWeakRefAccess";
476  }
477  weak_ref_access_enabled_.StoreRelaxed(true);  // This is for new threads.
478  QuasiAtomic::ThreadFenceForConstructor();
479  // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
480  {
481    MutexLock mu(self, *Locks::thread_list_lock_);
482    std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
483    for (Thread* thread : thread_list) {
484      thread->SetWeakRefAccessEnabled(true);
485    }
486  }
487  // Unblock blocking threads.
488  GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
489  Runtime::Current()->BroadcastForNewSystemWeaks();
490}
491
492class DisableMarkingCheckpoint : public Closure {
493 public:
494  explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
495      : concurrent_copying_(concurrent_copying) {
496  }
497
498  void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
499    // Note: self is not necessarily equal to thread since thread may be suspended.
500    Thread* self = Thread::Current();
501    DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
502        << thread->GetState() << " thread " << thread << " self " << self;
503    // Disable the thread-local is_gc_marking flag.
504    // Note a thread that has just started right before this checkpoint may have already this flag
505    // set to false, which is ok.
506    thread->SetIsGcMarking(false);
507    // If thread is a running mutator, then act on behalf of the garbage collector.
508    // See the code in ThreadList::RunCheckpoint.
509    if (thread->GetState() == kRunnable) {
510      concurrent_copying_->GetBarrier().Pass(self);
511    }
512  }
513
514 private:
515  ConcurrentCopying* const concurrent_copying_;
516};
517
518void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
519  Thread* self = Thread::Current();
520  DisableMarkingCheckpoint check_point(this);
521  ThreadList* thread_list = Runtime::Current()->GetThreadList();
522  gc_barrier_->Init(self, 0);
523  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
524  // If there are no threads to wait which implies that all the checkpoint functions are finished,
525  // then no need to release the mutator lock.
526  if (barrier_count == 0) {
527    return;
528  }
529  // Release locks then wait for all mutator threads to pass the barrier.
530  Locks::mutator_lock_->SharedUnlock(self);
531  {
532    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
533    gc_barrier_->Increment(self, barrier_count);
534  }
535  Locks::mutator_lock_->SharedLock(self);
536}
537
538void ConcurrentCopying::DisableMarking() {
539  // Change the global is_marking flag to false. Do a fence before doing a checkpoint to update the
540  // thread-local flags so that a new thread starting up will get the correct is_marking flag.
541  is_marking_ = false;
542  QuasiAtomic::ThreadFenceForConstructor();
543  // Use a checkpoint to turn off the thread-local is_gc_marking flags and to ensure no threads are
544  // still in the middle of a read barrier which may have a from-space ref cached in a local
545  // variable.
546  IssueDisableMarkingCheckpoint();
547  if (kUseTableLookupReadBarrier) {
548    heap_->rb_table_->ClearAll();
549    DCHECK(heap_->rb_table_->IsAllCleared());
550  }
551  is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(1);
552  mark_stack_mode_.StoreSequentiallyConsistent(kMarkStackModeOff);
553}
554
555void ConcurrentCopying::IssueEmptyCheckpoint() {
556  Thread* self = Thread::Current();
557  EmptyCheckpoint check_point(this);
558  ThreadList* thread_list = Runtime::Current()->GetThreadList();
559  gc_barrier_->Init(self, 0);
560  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
561  // If there are no threads to wait which implys that all the checkpoint functions are finished,
562  // then no need to release the mutator lock.
563  if (barrier_count == 0) {
564    return;
565  }
566  // Release locks then wait for all mutator threads to pass the barrier.
567  Locks::mutator_lock_->SharedUnlock(self);
568  {
569    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
570    gc_barrier_->Increment(self, barrier_count);
571  }
572  Locks::mutator_lock_->SharedLock(self);
573}
574
575void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
576  CHECK_EQ(is_mark_stack_push_disallowed_.LoadRelaxed(), 0)
577      << " " << to_ref << " " << PrettyTypeOf(to_ref);
578  Thread* self = Thread::Current();  // TODO: pass self as an argument from call sites?
579  CHECK(thread_running_gc_ != nullptr);
580  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
581  if (mark_stack_mode == kMarkStackModeThreadLocal) {
582    if (self == thread_running_gc_) {
583      // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
584      CHECK(self->GetThreadLocalMarkStack() == nullptr);
585      CHECK(!gc_mark_stack_->IsFull());
586      gc_mark_stack_->PushBack(to_ref);
587    } else {
588      // Otherwise, use a thread-local mark stack.
589      accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
590      if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
591        MutexLock mu(self, mark_stack_lock_);
592        // Get a new thread local mark stack.
593        accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
594        if (!pooled_mark_stacks_.empty()) {
595          // Use a pooled mark stack.
596          new_tl_mark_stack = pooled_mark_stacks_.back();
597          pooled_mark_stacks_.pop_back();
598        } else {
599          // None pooled. Create a new one.
600          new_tl_mark_stack =
601              accounting::AtomicStack<mirror::Object>::Create(
602                  "thread local mark stack", 4 * KB, 4 * KB);
603        }
604        DCHECK(new_tl_mark_stack != nullptr);
605        DCHECK(new_tl_mark_stack->IsEmpty());
606        new_tl_mark_stack->PushBack(to_ref);
607        self->SetThreadLocalMarkStack(new_tl_mark_stack);
608        if (tl_mark_stack != nullptr) {
609          // Store the old full stack into a vector.
610          revoked_mark_stacks_.push_back(tl_mark_stack);
611        }
612      } else {
613        tl_mark_stack->PushBack(to_ref);
614      }
615    }
616  } else if (mark_stack_mode == kMarkStackModeShared) {
617    // Access the shared GC mark stack with a lock.
618    MutexLock mu(self, mark_stack_lock_);
619    CHECK(!gc_mark_stack_->IsFull());
620    gc_mark_stack_->PushBack(to_ref);
621  } else {
622    CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
623             static_cast<uint32_t>(kMarkStackModeGcExclusive));
624    CHECK(self == thread_running_gc_)
625        << "Only GC-running thread should access the mark stack "
626        << "in the GC exclusive mark stack mode";
627    // Access the GC mark stack without a lock.
628    CHECK(!gc_mark_stack_->IsFull());
629    gc_mark_stack_->PushBack(to_ref);
630  }
631}
632
633accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
634  return heap_->allocation_stack_.get();
635}
636
637accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
638  return heap_->live_stack_.get();
639}
640
641inline mirror::Object* ConcurrentCopying::GetFwdPtr(mirror::Object* from_ref) {
642  DCHECK(region_space_->IsInFromSpace(from_ref));
643  LockWord lw = from_ref->GetLockWord(false);
644  if (lw.GetState() == LockWord::kForwardingAddress) {
645    mirror::Object* fwd_ptr = reinterpret_cast<mirror::Object*>(lw.ForwardingAddress());
646    CHECK(fwd_ptr != nullptr);
647    return fwd_ptr;
648  } else {
649    return nullptr;
650  }
651}
652
653// The following visitors are that used to verify that there's no
654// references to the from-space left after marking.
655class ConcurrentCopyingVerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
656 public:
657  explicit ConcurrentCopyingVerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
658      : collector_(collector) {}
659
660  void operator()(mirror::Object* ref) const
661      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
662    if (ref == nullptr) {
663      // OK.
664      return;
665    }
666    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
667    if (kUseBakerReadBarrier) {
668      if (collector_->RegionSpace()->IsInToSpace(ref)) {
669        CHECK(ref->GetReadBarrierPointer() == nullptr)
670            << "To-space ref " << ref << " " << PrettyTypeOf(ref)
671            << " has non-white rb_ptr " << ref->GetReadBarrierPointer();
672      } else {
673        CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
674              (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
675               collector_->IsOnAllocStack(ref)))
676            << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref)
677            << " has non-black rb_ptr " << ref->GetReadBarrierPointer()
678            << " but isn't on the alloc stack (and has white rb_ptr)."
679            << " Is it in the non-moving space="
680            << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref));
681      }
682    }
683  }
684
685  void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
686      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
687    DCHECK(root != nullptr);
688    operator()(root);
689  }
690
691 private:
692  ConcurrentCopying* const collector_;
693};
694
695class ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor {
696 public:
697  explicit ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
698      : collector_(collector) {}
699
700  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
701      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
702    mirror::Object* ref =
703        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
704    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
705    visitor(ref);
706  }
707  void operator()(mirror::Class* klass, mirror::Reference* ref) const
708      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
709    CHECK(klass->IsTypeOfReferenceClass());
710    this->operator()(ref, mirror::Reference::ReferentOffset(), false);
711  }
712
713  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
714      SHARED_REQUIRES(Locks::mutator_lock_) {
715    if (!root->IsNull()) {
716      VisitRoot(root);
717    }
718  }
719
720  void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
721      SHARED_REQUIRES(Locks::mutator_lock_) {
722    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
723    visitor(root->AsMirrorPtr());
724  }
725
726 private:
727  ConcurrentCopying* const collector_;
728};
729
730class ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor {
731 public:
732  explicit ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
733      : collector_(collector) {}
734  void operator()(mirror::Object* obj) const
735      SHARED_REQUIRES(Locks::mutator_lock_) {
736    ObjectCallback(obj, collector_);
737  }
738  static void ObjectCallback(mirror::Object* obj, void *arg)
739      SHARED_REQUIRES(Locks::mutator_lock_) {
740    CHECK(obj != nullptr);
741    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
742    space::RegionSpace* region_space = collector->RegionSpace();
743    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
744    ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor visitor(collector);
745    obj->VisitReferences(visitor, visitor);
746    if (kUseBakerReadBarrier) {
747      if (collector->RegionSpace()->IsInToSpace(obj)) {
748        CHECK(obj->GetReadBarrierPointer() == nullptr)
749            << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer();
750      } else {
751        CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
752              (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
753               collector->IsOnAllocStack(obj)))
754            << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj)
755            << " has non-black rb_ptr " << obj->GetReadBarrierPointer()
756            << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space="
757            << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj));
758      }
759    }
760  }
761
762 private:
763  ConcurrentCopying* const collector_;
764};
765
766// Verify there's no from-space references left after the marking phase.
767void ConcurrentCopying::VerifyNoFromSpaceReferences() {
768  Thread* self = Thread::Current();
769  DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
770  // Verify all threads have is_gc_marking to be false
771  {
772    MutexLock mu(self, *Locks::thread_list_lock_);
773    std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
774    for (Thread* thread : thread_list) {
775      CHECK(!thread->GetIsGcMarking());
776    }
777  }
778  ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor visitor(this);
779  // Roots.
780  {
781    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
782    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
783    Runtime::Current()->VisitRoots(&ref_visitor);
784  }
785  // The to-space.
786  region_space_->WalkToSpace(ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor::ObjectCallback,
787                             this);
788  // Non-moving spaces.
789  {
790    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
791    heap_->GetMarkBitmap()->Visit(visitor);
792  }
793  // The alloc stack.
794  {
795    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
796    for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
797        it < end; ++it) {
798      mirror::Object* const obj = it->AsMirrorPtr();
799      if (obj != nullptr && obj->GetClass() != nullptr) {
800        // TODO: need to call this only if obj is alive?
801        ref_visitor(obj);
802        visitor(obj);
803      }
804    }
805  }
806  // TODO: LOS. But only refs in LOS are classes.
807}
808
809// The following visitors are used to assert the to-space invariant.
810class ConcurrentCopyingAssertToSpaceInvariantRefsVisitor {
811 public:
812  explicit ConcurrentCopyingAssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
813      : collector_(collector) {}
814
815  void operator()(mirror::Object* ref) const
816      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
817    if (ref == nullptr) {
818      // OK.
819      return;
820    }
821    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
822  }
823
824 private:
825  ConcurrentCopying* const collector_;
826};
827
828class ConcurrentCopyingAssertToSpaceInvariantFieldVisitor {
829 public:
830  explicit ConcurrentCopyingAssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
831      : collector_(collector) {}
832
833  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
834      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
835    mirror::Object* ref =
836        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
837    ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
838    visitor(ref);
839  }
840  void operator()(mirror::Class* klass, mirror::Reference* ref ATTRIBUTE_UNUSED) const
841      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
842    CHECK(klass->IsTypeOfReferenceClass());
843  }
844
845  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
846      SHARED_REQUIRES(Locks::mutator_lock_) {
847    if (!root->IsNull()) {
848      VisitRoot(root);
849    }
850  }
851
852  void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
853      SHARED_REQUIRES(Locks::mutator_lock_) {
854    ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
855    visitor(root->AsMirrorPtr());
856  }
857
858 private:
859  ConcurrentCopying* const collector_;
860};
861
862class ConcurrentCopyingAssertToSpaceInvariantObjectVisitor {
863 public:
864  explicit ConcurrentCopyingAssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
865      : collector_(collector) {}
866  void operator()(mirror::Object* obj) const
867      SHARED_REQUIRES(Locks::mutator_lock_) {
868    ObjectCallback(obj, collector_);
869  }
870  static void ObjectCallback(mirror::Object* obj, void *arg)
871      SHARED_REQUIRES(Locks::mutator_lock_) {
872    CHECK(obj != nullptr);
873    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
874    space::RegionSpace* region_space = collector->RegionSpace();
875    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
876    collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
877    ConcurrentCopyingAssertToSpaceInvariantFieldVisitor visitor(collector);
878    obj->VisitReferences(visitor, visitor);
879  }
880
881 private:
882  ConcurrentCopying* const collector_;
883};
884
885class RevokeThreadLocalMarkStackCheckpoint : public Closure {
886 public:
887  RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
888                                       bool disable_weak_ref_access)
889      : concurrent_copying_(concurrent_copying),
890        disable_weak_ref_access_(disable_weak_ref_access) {
891  }
892
893  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
894    // Note: self is not necessarily equal to thread since thread may be suspended.
895    Thread* self = Thread::Current();
896    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
897        << thread->GetState() << " thread " << thread << " self " << self;
898    // Revoke thread local mark stacks.
899    accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
900    if (tl_mark_stack != nullptr) {
901      MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
902      concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
903      thread->SetThreadLocalMarkStack(nullptr);
904    }
905    // Disable weak ref access.
906    if (disable_weak_ref_access_) {
907      thread->SetWeakRefAccessEnabled(false);
908    }
909    // If thread is a running mutator, then act on behalf of the garbage collector.
910    // See the code in ThreadList::RunCheckpoint.
911    if (thread->GetState() == kRunnable) {
912      concurrent_copying_->GetBarrier().Pass(self);
913    }
914  }
915
916 private:
917  ConcurrentCopying* const concurrent_copying_;
918  const bool disable_weak_ref_access_;
919};
920
921void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access) {
922  Thread* self = Thread::Current();
923  RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
924  ThreadList* thread_list = Runtime::Current()->GetThreadList();
925  gc_barrier_->Init(self, 0);
926  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
927  // If there are no threads to wait which implys that all the checkpoint functions are finished,
928  // then no need to release the mutator lock.
929  if (barrier_count == 0) {
930    return;
931  }
932  Locks::mutator_lock_->SharedUnlock(self);
933  {
934    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
935    gc_barrier_->Increment(self, barrier_count);
936  }
937  Locks::mutator_lock_->SharedLock(self);
938}
939
940void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
941  Thread* self = Thread::Current();
942  CHECK_EQ(self, thread);
943  accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
944  if (tl_mark_stack != nullptr) {
945    CHECK(is_marking_);
946    MutexLock mu(self, mark_stack_lock_);
947    revoked_mark_stacks_.push_back(tl_mark_stack);
948    thread->SetThreadLocalMarkStack(nullptr);
949  }
950}
951
952void ConcurrentCopying::ProcessMarkStack() {
953  if (kVerboseMode) {
954    LOG(INFO) << "ProcessMarkStack. ";
955  }
956  bool empty_prev = false;
957  while (true) {
958    bool empty = ProcessMarkStackOnce();
959    if (empty_prev && empty) {
960      // Saw empty mark stack for a second time, done.
961      break;
962    }
963    empty_prev = empty;
964  }
965}
966
967bool ConcurrentCopying::ProcessMarkStackOnce() {
968  Thread* self = Thread::Current();
969  CHECK(thread_running_gc_ != nullptr);
970  CHECK(self == thread_running_gc_);
971  CHECK(self->GetThreadLocalMarkStack() == nullptr);
972  size_t count = 0;
973  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
974  if (mark_stack_mode == kMarkStackModeThreadLocal) {
975    // Process the thread-local mark stacks and the GC mark stack.
976    count += ProcessThreadLocalMarkStacks(false);
977    while (!gc_mark_stack_->IsEmpty()) {
978      mirror::Object* to_ref = gc_mark_stack_->PopBack();
979      ProcessMarkStackRef(to_ref);
980      ++count;
981    }
982    gc_mark_stack_->Reset();
983  } else if (mark_stack_mode == kMarkStackModeShared) {
984    // Process the shared GC mark stack with a lock.
985    {
986      MutexLock mu(self, mark_stack_lock_);
987      CHECK(revoked_mark_stacks_.empty());
988    }
989    while (true) {
990      std::vector<mirror::Object*> refs;
991      {
992        // Copy refs with lock. Note the number of refs should be small.
993        MutexLock mu(self, mark_stack_lock_);
994        if (gc_mark_stack_->IsEmpty()) {
995          break;
996        }
997        for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
998             p != gc_mark_stack_->End(); ++p) {
999          refs.push_back(p->AsMirrorPtr());
1000        }
1001        gc_mark_stack_->Reset();
1002      }
1003      for (mirror::Object* ref : refs) {
1004        ProcessMarkStackRef(ref);
1005        ++count;
1006      }
1007    }
1008  } else {
1009    CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1010             static_cast<uint32_t>(kMarkStackModeGcExclusive));
1011    {
1012      MutexLock mu(self, mark_stack_lock_);
1013      CHECK(revoked_mark_stacks_.empty());
1014    }
1015    // Process the GC mark stack in the exclusive mode. No need to take the lock.
1016    while (!gc_mark_stack_->IsEmpty()) {
1017      mirror::Object* to_ref = gc_mark_stack_->PopBack();
1018      ProcessMarkStackRef(to_ref);
1019      ++count;
1020    }
1021    gc_mark_stack_->Reset();
1022  }
1023
1024  // Return true if the stack was empty.
1025  return count == 0;
1026}
1027
1028size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access) {
1029  // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
1030  RevokeThreadLocalMarkStacks(disable_weak_ref_access);
1031  size_t count = 0;
1032  std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
1033  {
1034    MutexLock mu(Thread::Current(), mark_stack_lock_);
1035    // Make a copy of the mark stack vector.
1036    mark_stacks = revoked_mark_stacks_;
1037    revoked_mark_stacks_.clear();
1038  }
1039  for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
1040    for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
1041      mirror::Object* to_ref = p->AsMirrorPtr();
1042      ProcessMarkStackRef(to_ref);
1043      ++count;
1044    }
1045    {
1046      MutexLock mu(Thread::Current(), mark_stack_lock_);
1047      if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
1048        // The pool has enough. Delete it.
1049        delete mark_stack;
1050      } else {
1051        // Otherwise, put it into the pool for later reuse.
1052        mark_stack->Reset();
1053        pooled_mark_stacks_.push_back(mark_stack);
1054      }
1055    }
1056  }
1057  return count;
1058}
1059
1060void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
1061  DCHECK(!region_space_->IsInFromSpace(to_ref));
1062  if (kUseBakerReadBarrier) {
1063    DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
1064        << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
1065        << " is_marked=" << IsMarked(to_ref);
1066  }
1067  // Scan ref fields.
1068  Scan(to_ref);
1069  // Mark the gray ref as white or black.
1070  if (kUseBakerReadBarrier) {
1071    DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
1072        << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
1073        << " is_marked=" << IsMarked(to_ref);
1074  }
1075  if (to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
1076      to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr &&
1077      !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())) {
1078    // Leave this Reference gray in the queue so that GetReferent() will trigger a read barrier. We
1079    // will change it to black or white later in ReferenceQueue::DequeuePendingReference().
1080    CHECK(to_ref->AsReference()->IsEnqueued()) << "Left unenqueued ref gray " << to_ref;
1081  } else {
1082    // We may occasionally leave a Reference black or white in the queue if its referent happens to
1083    // be concurrently marked after the Scan() call above has enqueued the Reference, in which case
1084    // the above IsInToSpace() evaluates to true and we change the color from gray to black or white
1085    // here in this else block.
1086#ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
1087    if (kUseBakerReadBarrier) {
1088      if (region_space_->IsInToSpace(to_ref)) {
1089        // If to-space, change from gray to white.
1090        bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
1091                                                           ReadBarrier::WhitePtr());
1092        CHECK(success) << "Must succeed as we won the race.";
1093        CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
1094      } else {
1095        // If non-moving space/unevac from space, change from gray
1096        // to black. We can't change gray to white because it's not
1097        // safe to use CAS if two threads change values in opposite
1098        // directions (A->B and B->A). So, we change it to black to
1099        // indicate non-moving objects that have been marked
1100        // through. Note we'd need to change from black to white
1101        // later (concurrently).
1102        bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
1103                                                           ReadBarrier::BlackPtr());
1104        CHECK(success) << "Must succeed as we won the race.";
1105        CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1106      }
1107    }
1108#else
1109    DCHECK(!kUseBakerReadBarrier);
1110#endif
1111  }
1112  if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) {
1113    ConcurrentCopyingAssertToSpaceInvariantObjectVisitor visitor(this);
1114    visitor(to_ref);
1115  }
1116}
1117
1118void ConcurrentCopying::SwitchToSharedMarkStackMode() {
1119  Thread* self = Thread::Current();
1120  CHECK(thread_running_gc_ != nullptr);
1121  CHECK_EQ(self, thread_running_gc_);
1122  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1123  MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1124  CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1125           static_cast<uint32_t>(kMarkStackModeThreadLocal));
1126  mark_stack_mode_.StoreRelaxed(kMarkStackModeShared);
1127  CHECK(weak_ref_access_enabled_.LoadRelaxed());
1128  weak_ref_access_enabled_.StoreRelaxed(false);
1129  QuasiAtomic::ThreadFenceForConstructor();
1130  // Process the thread local mark stacks one last time after switching to the shared mark stack
1131  // mode and disable weak ref accesses.
1132  ProcessThreadLocalMarkStacks(true);
1133  if (kVerboseMode) {
1134    LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
1135  }
1136}
1137
1138void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
1139  Thread* self = Thread::Current();
1140  CHECK(thread_running_gc_ != nullptr);
1141  CHECK_EQ(self, thread_running_gc_);
1142  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1143  MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1144  CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1145           static_cast<uint32_t>(kMarkStackModeShared));
1146  mark_stack_mode_.StoreRelaxed(kMarkStackModeGcExclusive);
1147  QuasiAtomic::ThreadFenceForConstructor();
1148  if (kVerboseMode) {
1149    LOG(INFO) << "Switched to GC exclusive mark stack mode";
1150  }
1151}
1152
1153void ConcurrentCopying::CheckEmptyMarkStack() {
1154  Thread* self = Thread::Current();
1155  CHECK(thread_running_gc_ != nullptr);
1156  CHECK_EQ(self, thread_running_gc_);
1157  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1158  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1159  if (mark_stack_mode == kMarkStackModeThreadLocal) {
1160    // Thread-local mark stack mode.
1161    RevokeThreadLocalMarkStacks(false);
1162    MutexLock mu(Thread::Current(), mark_stack_lock_);
1163    if (!revoked_mark_stacks_.empty()) {
1164      for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
1165        while (!mark_stack->IsEmpty()) {
1166          mirror::Object* obj = mark_stack->PopBack();
1167          if (kUseBakerReadBarrier) {
1168            mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
1169            LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr
1170                      << " is_marked=" << IsMarked(obj);
1171          } else {
1172            LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj)
1173                      << " is_marked=" << IsMarked(obj);
1174          }
1175        }
1176      }
1177      LOG(FATAL) << "mark stack is not empty";
1178    }
1179  } else {
1180    // Shared, GC-exclusive, or off.
1181    MutexLock mu(Thread::Current(), mark_stack_lock_);
1182    CHECK(gc_mark_stack_->IsEmpty());
1183    CHECK(revoked_mark_stacks_.empty());
1184  }
1185}
1186
1187void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
1188  TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
1189  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1190  Runtime::Current()->SweepSystemWeaks(this);
1191}
1192
1193void ConcurrentCopying::Sweep(bool swap_bitmaps) {
1194  {
1195    TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
1196    accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1197    if (kEnableFromSpaceAccountingCheck) {
1198      CHECK_GE(live_stack_freeze_size_, live_stack->Size());
1199    }
1200    heap_->MarkAllocStackAsLive(live_stack);
1201    live_stack->Reset();
1202  }
1203  CheckEmptyMarkStack();
1204  TimingLogger::ScopedTiming split("Sweep", GetTimings());
1205  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1206    if (space->IsContinuousMemMapAllocSpace()) {
1207      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1208      if (space == region_space_ || immune_region_.ContainsSpace(space)) {
1209        continue;
1210      }
1211      TimingLogger::ScopedTiming split2(
1212          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
1213      RecordFree(alloc_space->Sweep(swap_bitmaps));
1214    }
1215  }
1216  SweepLargeObjects(swap_bitmaps);
1217}
1218
1219void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
1220  TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
1221  RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
1222}
1223
1224class ConcurrentCopyingClearBlackPtrsVisitor {
1225 public:
1226  explicit ConcurrentCopyingClearBlackPtrsVisitor(ConcurrentCopying* cc)
1227      : collector_(cc) {}
1228#ifndef USE_BAKER_OR_BROOKS_READ_BARRIER
1229  NO_RETURN
1230#endif
1231  void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
1232      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1233    DCHECK(obj != nullptr);
1234    DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj;
1235    DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj;
1236    obj->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1237    DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1238  }
1239
1240 private:
1241  ConcurrentCopying* const collector_;
1242};
1243
1244// Clear the black ptrs in non-moving objects back to white.
1245void ConcurrentCopying::ClearBlackPtrs() {
1246  CHECK(kUseBakerReadBarrier);
1247  TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings());
1248  ConcurrentCopyingClearBlackPtrsVisitor visitor(this);
1249  for (auto& space : heap_->GetContinuousSpaces()) {
1250    if (space == region_space_) {
1251      continue;
1252    }
1253    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1254    if (kVerboseMode) {
1255      LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap;
1256    }
1257    mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
1258                                  reinterpret_cast<uintptr_t>(space->Limit()),
1259                                  visitor);
1260  }
1261  space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
1262  large_object_space->GetMarkBitmap()->VisitMarkedRange(
1263      reinterpret_cast<uintptr_t>(large_object_space->Begin()),
1264      reinterpret_cast<uintptr_t>(large_object_space->End()),
1265      visitor);
1266  // Objects on the allocation stack?
1267  if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) {
1268    size_t count = GetAllocationStack()->Size();
1269    auto* it = GetAllocationStack()->Begin();
1270    auto* end = GetAllocationStack()->End();
1271    for (size_t i = 0; i < count; ++i, ++it) {
1272      CHECK_LT(it, end);
1273      mirror::Object* obj = it->AsMirrorPtr();
1274      if (obj != nullptr) {
1275        // Must have been cleared above.
1276        CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1277      }
1278    }
1279  }
1280}
1281
1282void ConcurrentCopying::ReclaimPhase() {
1283  TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
1284  if (kVerboseMode) {
1285    LOG(INFO) << "GC ReclaimPhase";
1286  }
1287  Thread* self = Thread::Current();
1288
1289  {
1290    // Double-check that the mark stack is empty.
1291    // Note: need to set this after VerifyNoFromSpaceRef().
1292    is_asserting_to_space_invariant_ = false;
1293    QuasiAtomic::ThreadFenceForConstructor();
1294    if (kVerboseMode) {
1295      LOG(INFO) << "Issue an empty check point. ";
1296    }
1297    IssueEmptyCheckpoint();
1298    // Disable the check.
1299    is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(0);
1300    CheckEmptyMarkStack();
1301  }
1302
1303  {
1304    // Record freed objects.
1305    TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
1306    // Don't include thread-locals that are in the to-space.
1307    uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
1308    uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
1309    uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
1310    uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
1311    uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
1312    uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
1313    if (kEnableFromSpaceAccountingCheck) {
1314      CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
1315      CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
1316    }
1317    CHECK_LE(to_objects, from_objects);
1318    CHECK_LE(to_bytes, from_bytes);
1319    int64_t freed_bytes = from_bytes - to_bytes;
1320    int64_t freed_objects = from_objects - to_objects;
1321    if (kVerboseMode) {
1322      LOG(INFO) << "RecordFree:"
1323                << " from_bytes=" << from_bytes << " from_objects=" << from_objects
1324                << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
1325                << " to_bytes=" << to_bytes << " to_objects=" << to_objects
1326                << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
1327                << " from_space size=" << region_space_->FromSpaceSize()
1328                << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
1329                << " to_space size=" << region_space_->ToSpaceSize();
1330      LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1331    }
1332    RecordFree(ObjectBytePair(freed_objects, freed_bytes));
1333    if (kVerboseMode) {
1334      LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1335    }
1336  }
1337
1338  {
1339    TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings());
1340    ComputeUnevacFromSpaceLiveRatio();
1341  }
1342
1343  {
1344    TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
1345    region_space_->ClearFromSpace();
1346  }
1347
1348  {
1349    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1350    if (kUseBakerReadBarrier) {
1351      ClearBlackPtrs();
1352    }
1353    Sweep(false);
1354    SwapBitmaps();
1355    heap_->UnBindBitmaps();
1356
1357    // Remove bitmaps for the immune spaces.
1358    while (!cc_bitmaps_.empty()) {
1359      accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back();
1360      cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap);
1361      delete cc_bitmap;
1362      cc_bitmaps_.pop_back();
1363    }
1364    region_space_bitmap_ = nullptr;
1365  }
1366
1367  CheckEmptyMarkStack();
1368
1369  if (kVerboseMode) {
1370    LOG(INFO) << "GC end of ReclaimPhase";
1371  }
1372}
1373
1374class ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor {
1375 public:
1376  explicit ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc)
1377      : collector_(cc) {}
1378  void operator()(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_)
1379      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1380    DCHECK(ref != nullptr);
1381    DCHECK(collector_->region_space_bitmap_->Test(ref)) << ref;
1382    DCHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref;
1383    if (kUseBakerReadBarrier) {
1384      DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << ref;
1385      // Clear the black ptr.
1386      ref->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1387      DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << ref;
1388    }
1389    size_t obj_size = ref->SizeOf();
1390    size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1391    collector_->region_space_->AddLiveBytes(ref, alloc_size);
1392  }
1393
1394 private:
1395  ConcurrentCopying* const collector_;
1396};
1397
1398// Compute how much live objects are left in regions.
1399void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() {
1400  region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1401  ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor visitor(this);
1402  region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()),
1403                                         reinterpret_cast<uintptr_t>(region_space_->Limit()),
1404                                         visitor);
1405}
1406
1407// Assert the to-space invariant.
1408void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
1409                                               mirror::Object* ref) {
1410  CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1411  if (is_asserting_to_space_invariant_) {
1412    if (region_space_->IsInToSpace(ref)) {
1413      // OK.
1414      return;
1415    } else if (region_space_->IsInUnevacFromSpace(ref)) {
1416      CHECK(region_space_bitmap_->Test(ref)) << ref;
1417    } else if (region_space_->IsInFromSpace(ref)) {
1418      // Not OK. Do extra logging.
1419      if (obj != nullptr) {
1420        LogFromSpaceRefHolder(obj, offset);
1421      }
1422      ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1423      CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1424    } else {
1425      AssertToSpaceInvariantInNonMovingSpace(obj, ref);
1426    }
1427  }
1428}
1429
1430class RootPrinter {
1431 public:
1432  RootPrinter() { }
1433
1434  template <class MirrorType>
1435  ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
1436      SHARED_REQUIRES(Locks::mutator_lock_) {
1437    if (!root->IsNull()) {
1438      VisitRoot(root);
1439    }
1440  }
1441
1442  template <class MirrorType>
1443  void VisitRoot(mirror::Object** root)
1444      SHARED_REQUIRES(Locks::mutator_lock_) {
1445    LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << *root;
1446  }
1447
1448  template <class MirrorType>
1449  void VisitRoot(mirror::CompressedReference<MirrorType>* root)
1450      SHARED_REQUIRES(Locks::mutator_lock_) {
1451    LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << root->AsMirrorPtr();
1452  }
1453};
1454
1455void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
1456                                               mirror::Object* ref) {
1457  CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1458  if (is_asserting_to_space_invariant_) {
1459    if (region_space_->IsInToSpace(ref)) {
1460      // OK.
1461      return;
1462    } else if (region_space_->IsInUnevacFromSpace(ref)) {
1463      CHECK(region_space_bitmap_->Test(ref)) << ref;
1464    } else if (region_space_->IsInFromSpace(ref)) {
1465      // Not OK. Do extra logging.
1466      if (gc_root_source == nullptr) {
1467        // No info.
1468      } else if (gc_root_source->HasArtField()) {
1469        ArtField* field = gc_root_source->GetArtField();
1470        LOG(INTERNAL_FATAL) << "gc root in field " << field << " " << PrettyField(field);
1471        RootPrinter root_printer;
1472        field->VisitRoots(root_printer);
1473      } else if (gc_root_source->HasArtMethod()) {
1474        ArtMethod* method = gc_root_source->GetArtMethod();
1475        LOG(INTERNAL_FATAL) << "gc root in method " << method << " " << PrettyMethod(method);
1476        RootPrinter root_printer;
1477        method->VisitRoots(root_printer, sizeof(void*));
1478      }
1479      ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1480      region_space_->DumpNonFreeRegions(LOG(INTERNAL_FATAL));
1481      PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
1482      MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
1483      CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1484    } else {
1485      AssertToSpaceInvariantInNonMovingSpace(nullptr, ref);
1486    }
1487  }
1488}
1489
1490void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
1491  if (kUseBakerReadBarrier) {
1492    LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj)
1493              << " holder rb_ptr=" << obj->GetReadBarrierPointer();
1494  } else {
1495    LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj);
1496  }
1497  if (region_space_->IsInFromSpace(obj)) {
1498    LOG(INFO) << "holder is in the from-space.";
1499  } else if (region_space_->IsInToSpace(obj)) {
1500    LOG(INFO) << "holder is in the to-space.";
1501  } else if (region_space_->IsInUnevacFromSpace(obj)) {
1502    LOG(INFO) << "holder is in the unevac from-space.";
1503    if (region_space_bitmap_->Test(obj)) {
1504      LOG(INFO) << "holder is marked in the region space bitmap.";
1505    } else {
1506      LOG(INFO) << "holder is not marked in the region space bitmap.";
1507    }
1508  } else {
1509    // In a non-moving space.
1510    if (immune_region_.ContainsObject(obj)) {
1511      LOG(INFO) << "holder is in the image or the zygote space.";
1512      accounting::ContinuousSpaceBitmap* cc_bitmap =
1513          cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
1514      CHECK(cc_bitmap != nullptr)
1515          << "An immune space object must have a bitmap.";
1516      if (cc_bitmap->Test(obj)) {
1517        LOG(INFO) << "holder is marked in the bit map.";
1518      } else {
1519        LOG(INFO) << "holder is NOT marked in the bit map.";
1520      }
1521    } else {
1522      LOG(INFO) << "holder is in a non-moving (or main) space.";
1523      accounting::ContinuousSpaceBitmap* mark_bitmap =
1524          heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1525      accounting::LargeObjectBitmap* los_bitmap =
1526          heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1527      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1528      bool is_los = mark_bitmap == nullptr;
1529      if (!is_los && mark_bitmap->Test(obj)) {
1530        LOG(INFO) << "holder is marked in the mark bit map.";
1531      } else if (is_los && los_bitmap->Test(obj)) {
1532        LOG(INFO) << "holder is marked in the los bit map.";
1533      } else {
1534        // If ref is on the allocation stack, then it is considered
1535        // mark/alive (but not necessarily on the live stack.)
1536        if (IsOnAllocStack(obj)) {
1537          LOG(INFO) << "holder is on the alloc stack.";
1538        } else {
1539          LOG(INFO) << "holder is not marked or on the alloc stack.";
1540        }
1541      }
1542    }
1543  }
1544  LOG(INFO) << "offset=" << offset.SizeValue();
1545}
1546
1547void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
1548                                                               mirror::Object* ref) {
1549  // In a non-moving spaces. Check that the ref is marked.
1550  if (immune_region_.ContainsObject(ref)) {
1551    accounting::ContinuousSpaceBitmap* cc_bitmap =
1552        cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1553    CHECK(cc_bitmap != nullptr)
1554        << "An immune space ref must have a bitmap. " << ref;
1555    if (kUseBakerReadBarrier) {
1556      CHECK(cc_bitmap->Test(ref))
1557          << "Unmarked immune space ref. obj=" << obj << " rb_ptr="
1558          << obj->GetReadBarrierPointer() << " ref=" << ref;
1559    } else {
1560      CHECK(cc_bitmap->Test(ref))
1561          << "Unmarked immune space ref. obj=" << obj << " ref=" << ref;
1562    }
1563  } else {
1564    accounting::ContinuousSpaceBitmap* mark_bitmap =
1565        heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1566    accounting::LargeObjectBitmap* los_bitmap =
1567        heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1568    CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1569    bool is_los = mark_bitmap == nullptr;
1570    if ((!is_los && mark_bitmap->Test(ref)) ||
1571        (is_los && los_bitmap->Test(ref))) {
1572      // OK.
1573    } else {
1574      // If ref is on the allocation stack, then it may not be
1575      // marked live, but considered marked/alive (but not
1576      // necessarily on the live stack).
1577      CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1578                                 << "obj=" << obj << " ref=" << ref;
1579    }
1580  }
1581}
1582
1583// Used to scan ref fields of an object.
1584class ConcurrentCopyingRefFieldsVisitor {
1585 public:
1586  explicit ConcurrentCopyingRefFieldsVisitor(ConcurrentCopying* collector)
1587      : collector_(collector) {}
1588
1589  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1590      const ALWAYS_INLINE SHARED_REQUIRES(Locks::mutator_lock_)
1591      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1592    collector_->Process(obj, offset);
1593  }
1594
1595  void operator()(mirror::Class* klass, mirror::Reference* ref) const
1596      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
1597    CHECK(klass->IsTypeOfReferenceClass());
1598    collector_->DelayReferenceReferent(klass, ref);
1599  }
1600
1601  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1602      SHARED_REQUIRES(Locks::mutator_lock_) {
1603    if (!root->IsNull()) {
1604      VisitRoot(root);
1605    }
1606  }
1607
1608  void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1609      SHARED_REQUIRES(Locks::mutator_lock_) {
1610    collector_->MarkRoot(root);
1611  }
1612
1613 private:
1614  ConcurrentCopying* const collector_;
1615};
1616
1617// Scan ref fields of an object.
1618void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1619  DCHECK(!region_space_->IsInFromSpace(to_ref));
1620  ConcurrentCopyingRefFieldsVisitor visitor(this);
1621  to_ref->VisitReferences(visitor, visitor);
1622}
1623
1624// Process a field.
1625inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1626  mirror::Object* ref = obj->GetFieldObject<
1627      mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1628  if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1629    return;
1630  }
1631  mirror::Object* to_ref = Mark(ref);
1632  if (to_ref == ref) {
1633    return;
1634  }
1635  // This may fail if the mutator writes to the field at the same time. But it's ok.
1636  mirror::Object* expected_ref = ref;
1637  mirror::Object* new_ref = to_ref;
1638  do {
1639    if (expected_ref !=
1640        obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1641      // It was updated by the mutator.
1642      break;
1643    }
1644  } while (!obj->CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier<
1645      false, false, kVerifyNone>(offset, expected_ref, new_ref));
1646}
1647
1648// Process some roots.
1649void ConcurrentCopying::VisitRoots(
1650    mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
1651  for (size_t i = 0; i < count; ++i) {
1652    mirror::Object** root = roots[i];
1653    mirror::Object* ref = *root;
1654    if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1655      continue;
1656    }
1657    mirror::Object* to_ref = Mark(ref);
1658    if (to_ref == ref) {
1659      continue;
1660    }
1661    Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1662    mirror::Object* expected_ref = ref;
1663    mirror::Object* new_ref = to_ref;
1664    do {
1665      if (expected_ref != addr->LoadRelaxed()) {
1666        // It was updated by the mutator.
1667        break;
1668      }
1669    } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1670  }
1671}
1672
1673void ConcurrentCopying::MarkRoot(mirror::CompressedReference<mirror::Object>* root) {
1674  DCHECK(!root->IsNull());
1675  mirror::Object* const ref = root->AsMirrorPtr();
1676  if (region_space_->IsInToSpace(ref)) {
1677    return;
1678  }
1679  mirror::Object* to_ref = Mark(ref);
1680  if (to_ref != ref) {
1681    auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
1682    auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
1683    auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
1684    // If the cas fails, then it was updated by the mutator.
1685    do {
1686      if (ref != addr->LoadRelaxed().AsMirrorPtr()) {
1687        // It was updated by the mutator.
1688        break;
1689      }
1690    } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1691  }
1692}
1693
1694void ConcurrentCopying::VisitRoots(
1695    mirror::CompressedReference<mirror::Object>** roots, size_t count,
1696    const RootInfo& info ATTRIBUTE_UNUSED) {
1697  for (size_t i = 0; i < count; ++i) {
1698    mirror::CompressedReference<mirror::Object>* const root = roots[i];
1699    if (!root->IsNull()) {
1700      MarkRoot(root);
1701    }
1702  }
1703}
1704
1705// Fill the given memory block with a dummy object. Used to fill in a
1706// copy of objects that was lost in race.
1707void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
1708  CHECK_ALIGNED(byte_size, kObjectAlignment);
1709  memset(dummy_obj, 0, byte_size);
1710  mirror::Class* int_array_class = mirror::IntArray::GetArrayClass();
1711  CHECK(int_array_class != nullptr);
1712  AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
1713  size_t component_size = int_array_class->GetComponentSize();
1714  CHECK_EQ(component_size, sizeof(int32_t));
1715  size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
1716  if (data_offset > byte_size) {
1717    // An int array is too big. Use java.lang.Object.
1718    mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object);
1719    AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object);
1720    CHECK_EQ(byte_size, java_lang_Object->GetObjectSize());
1721    dummy_obj->SetClass(java_lang_Object);
1722    CHECK_EQ(byte_size, dummy_obj->SizeOf());
1723  } else {
1724    // Use an int array.
1725    dummy_obj->SetClass(int_array_class);
1726    CHECK(dummy_obj->IsArrayInstance());
1727    int32_t length = (byte_size - data_offset) / component_size;
1728    dummy_obj->AsArray()->SetLength(length);
1729    CHECK_EQ(dummy_obj->AsArray()->GetLength(), length)
1730        << "byte_size=" << byte_size << " length=" << length
1731        << " component_size=" << component_size << " data_offset=" << data_offset;
1732    CHECK_EQ(byte_size, dummy_obj->SizeOf())
1733        << "byte_size=" << byte_size << " length=" << length
1734        << " component_size=" << component_size << " data_offset=" << data_offset;
1735  }
1736}
1737
1738// Reuse the memory blocks that were copy of objects that were lost in race.
1739mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
1740  // Try to reuse the blocks that were unused due to CAS failures.
1741  CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
1742  Thread* self = Thread::Current();
1743  size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
1744  MutexLock mu(self, skipped_blocks_lock_);
1745  auto it = skipped_blocks_map_.lower_bound(alloc_size);
1746  if (it == skipped_blocks_map_.end()) {
1747    // Not found.
1748    return nullptr;
1749  }
1750  {
1751    size_t byte_size = it->first;
1752    CHECK_GE(byte_size, alloc_size);
1753    if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
1754      // If remainder would be too small for a dummy object, retry with a larger request size.
1755      it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
1756      if (it == skipped_blocks_map_.end()) {
1757        // Not found.
1758        return nullptr;
1759      }
1760      CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
1761      CHECK_GE(it->first - alloc_size, min_object_size)
1762          << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
1763    }
1764  }
1765  // Found a block.
1766  CHECK(it != skipped_blocks_map_.end());
1767  size_t byte_size = it->first;
1768  uint8_t* addr = it->second;
1769  CHECK_GE(byte_size, alloc_size);
1770  CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
1771  CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
1772  if (kVerboseMode) {
1773    LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
1774  }
1775  skipped_blocks_map_.erase(it);
1776  memset(addr, 0, byte_size);
1777  if (byte_size > alloc_size) {
1778    // Return the remainder to the map.
1779    CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
1780    CHECK_GE(byte_size - alloc_size, min_object_size);
1781    FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
1782                        byte_size - alloc_size);
1783    CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
1784    skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
1785  }
1786  return reinterpret_cast<mirror::Object*>(addr);
1787}
1788
1789mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) {
1790  DCHECK(region_space_->IsInFromSpace(from_ref));
1791  // No read barrier to avoid nested RB that might violate the to-space
1792  // invariant. Note that from_ref is a from space ref so the SizeOf()
1793  // call will access the from-space meta objects, but it's ok and necessary.
1794  size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>();
1795  size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1796  size_t region_space_bytes_allocated = 0U;
1797  size_t non_moving_space_bytes_allocated = 0U;
1798  size_t bytes_allocated = 0U;
1799  size_t dummy;
1800  mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
1801      region_space_alloc_size, &region_space_bytes_allocated, nullptr, &dummy);
1802  bytes_allocated = region_space_bytes_allocated;
1803  if (to_ref != nullptr) {
1804    DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
1805  }
1806  bool fall_back_to_non_moving = false;
1807  if (UNLIKELY(to_ref == nullptr)) {
1808    // Failed to allocate in the region space. Try the skipped blocks.
1809    to_ref = AllocateInSkippedBlock(region_space_alloc_size);
1810    if (to_ref != nullptr) {
1811      // Succeeded to allocate in a skipped block.
1812      if (heap_->use_tlab_) {
1813        // This is necessary for the tlab case as it's not accounted in the space.
1814        region_space_->RecordAlloc(to_ref);
1815      }
1816      bytes_allocated = region_space_alloc_size;
1817    } else {
1818      // Fall back to the non-moving space.
1819      fall_back_to_non_moving = true;
1820      if (kVerboseMode) {
1821        LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
1822                  << to_space_bytes_skipped_.LoadSequentiallyConsistent()
1823                  << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
1824      }
1825      fall_back_to_non_moving = true;
1826      to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
1827                                               &non_moving_space_bytes_allocated, nullptr, &dummy);
1828      CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed";
1829      bytes_allocated = non_moving_space_bytes_allocated;
1830      // Mark it in the mark bitmap.
1831      accounting::ContinuousSpaceBitmap* mark_bitmap =
1832          heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1833      CHECK(mark_bitmap != nullptr);
1834      CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
1835    }
1836  }
1837  DCHECK(to_ref != nullptr);
1838
1839  // Attempt to install the forward pointer. This is in a loop as the
1840  // lock word atomic write can fail.
1841  while (true) {
1842    // Copy the object. TODO: copy only the lockword in the second iteration and on?
1843    memcpy(to_ref, from_ref, obj_size);
1844
1845    LockWord old_lock_word = to_ref->GetLockWord(false);
1846
1847    if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
1848      // Lost the race. Another thread (either GC or mutator) stored
1849      // the forwarding pointer first. Make the lost copy (to_ref)
1850      // look like a valid but dead (dummy) object and keep it for
1851      // future reuse.
1852      FillWithDummyObject(to_ref, bytes_allocated);
1853      if (!fall_back_to_non_moving) {
1854        DCHECK(region_space_->IsInToSpace(to_ref));
1855        if (bytes_allocated > space::RegionSpace::kRegionSize) {
1856          // Free the large alloc.
1857          region_space_->FreeLarge(to_ref, bytes_allocated);
1858        } else {
1859          // Record the lost copy for later reuse.
1860          heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1861          to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1862          to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
1863          MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1864          skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
1865                                                    reinterpret_cast<uint8_t*>(to_ref)));
1866        }
1867      } else {
1868        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1869        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1870        // Free the non-moving-space chunk.
1871        accounting::ContinuousSpaceBitmap* mark_bitmap =
1872            heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1873        CHECK(mark_bitmap != nullptr);
1874        CHECK(mark_bitmap->Clear(to_ref));
1875        heap_->non_moving_space_->Free(Thread::Current(), to_ref);
1876      }
1877
1878      // Get the winner's forward ptr.
1879      mirror::Object* lost_fwd_ptr = to_ref;
1880      to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
1881      CHECK(to_ref != nullptr);
1882      CHECK_NE(to_ref, lost_fwd_ptr);
1883      CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref));
1884      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1885      return to_ref;
1886    }
1887
1888    // Set the gray ptr.
1889    if (kUseBakerReadBarrier) {
1890      to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr());
1891    }
1892
1893    LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
1894
1895    // Try to atomically write the fwd ptr.
1896    bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word);
1897    if (LIKELY(success)) {
1898      // The CAS succeeded.
1899      objects_moved_.FetchAndAddSequentiallyConsistent(1);
1900      bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size);
1901      if (LIKELY(!fall_back_to_non_moving)) {
1902        DCHECK(region_space_->IsInToSpace(to_ref));
1903      } else {
1904        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1905        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1906      }
1907      if (kUseBakerReadBarrier) {
1908        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1909      }
1910      DCHECK(GetFwdPtr(from_ref) == to_ref);
1911      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1912      PushOntoMarkStack(to_ref);
1913      return to_ref;
1914    } else {
1915      // The CAS failed. It may have lost the race or may have failed
1916      // due to monitor/hashcode ops. Either way, retry.
1917    }
1918  }
1919}
1920
1921mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
1922  DCHECK(from_ref != nullptr);
1923  space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1924  if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
1925    // It's already marked.
1926    return from_ref;
1927  }
1928  mirror::Object* to_ref;
1929  if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
1930    to_ref = GetFwdPtr(from_ref);
1931    DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
1932           heap_->non_moving_space_->HasAddress(to_ref))
1933        << "from_ref=" << from_ref << " to_ref=" << to_ref;
1934  } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
1935    if (region_space_bitmap_->Test(from_ref)) {
1936      to_ref = from_ref;
1937    } else {
1938      to_ref = nullptr;
1939    }
1940  } else {
1941    // from_ref is in a non-moving space.
1942    if (immune_region_.ContainsObject(from_ref)) {
1943      accounting::ContinuousSpaceBitmap* cc_bitmap =
1944          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1945      DCHECK(cc_bitmap != nullptr)
1946          << "An immune space object must have a bitmap";
1947      if (kIsDebugBuild) {
1948        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1949            << "Immune space object must be already marked";
1950      }
1951      if (cc_bitmap->Test(from_ref)) {
1952        // Already marked.
1953        to_ref = from_ref;
1954      } else {
1955        // Newly marked.
1956        to_ref = nullptr;
1957      }
1958    } else {
1959      // Non-immune non-moving space. Use the mark bitmap.
1960      accounting::ContinuousSpaceBitmap* mark_bitmap =
1961          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1962      accounting::LargeObjectBitmap* los_bitmap =
1963          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1964      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1965      bool is_los = mark_bitmap == nullptr;
1966      if (!is_los && mark_bitmap->Test(from_ref)) {
1967        // Already marked.
1968        to_ref = from_ref;
1969      } else if (is_los && los_bitmap->Test(from_ref)) {
1970        // Already marked in LOS.
1971        to_ref = from_ref;
1972      } else {
1973        // Not marked.
1974        if (IsOnAllocStack(from_ref)) {
1975          // If on the allocation stack, it's considered marked.
1976          to_ref = from_ref;
1977        } else {
1978          // Not marked.
1979          to_ref = nullptr;
1980        }
1981      }
1982    }
1983  }
1984  return to_ref;
1985}
1986
1987bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
1988  QuasiAtomic::ThreadFenceAcquire();
1989  accounting::ObjectStack* alloc_stack = GetAllocationStack();
1990  return alloc_stack->Contains(ref);
1991}
1992
1993mirror::Object* ConcurrentCopying::Mark(mirror::Object* from_ref) {
1994  if (from_ref == nullptr) {
1995    return nullptr;
1996  }
1997  DCHECK(from_ref != nullptr);
1998  DCHECK(heap_->collector_type_ == kCollectorTypeCC);
1999  if (kUseBakerReadBarrier && !is_active_) {
2000    // In the lock word forward address state, the read barrier bits
2001    // in the lock word are part of the stored forwarding address and
2002    // invalid. This is usually OK as the from-space copy of objects
2003    // aren't accessed by mutators due to the to-space
2004    // invariant. However, during the dex2oat image writing relocation
2005    // and the zygote compaction, objects can be in the forward
2006    // address state (to store the forward/relocation addresses) and
2007    // they can still be accessed and the invalid read barrier bits
2008    // are consulted. If they look like gray but aren't really, the
2009    // read barriers slow path can trigger when it shouldn't. To guard
2010    // against this, return here if the CC collector isn't running.
2011    return from_ref;
2012  }
2013  DCHECK(region_space_ != nullptr) << "Read barrier slow path taken when CC isn't running?";
2014  space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
2015  if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
2016    // It's already marked.
2017    return from_ref;
2018  }
2019  mirror::Object* to_ref;
2020  if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
2021    to_ref = GetFwdPtr(from_ref);
2022    if (kUseBakerReadBarrier) {
2023      DCHECK(to_ref != ReadBarrier::GrayPtr()) << "from_ref=" << from_ref << " to_ref=" << to_ref;
2024    }
2025    if (to_ref == nullptr) {
2026      // It isn't marked yet. Mark it by copying it to the to-space.
2027      to_ref = Copy(from_ref);
2028    }
2029    DCHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
2030        << "from_ref=" << from_ref << " to_ref=" << to_ref;
2031  } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
2032    // This may or may not succeed, which is ok.
2033    if (kUseBakerReadBarrier) {
2034      from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
2035    }
2036    if (region_space_bitmap_->AtomicTestAndSet(from_ref)) {
2037      // Already marked.
2038      to_ref = from_ref;
2039    } else {
2040      // Newly marked.
2041      to_ref = from_ref;
2042      if (kUseBakerReadBarrier) {
2043        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
2044      }
2045      PushOntoMarkStack(to_ref);
2046    }
2047  } else {
2048    // from_ref is in a non-moving space.
2049    DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
2050    if (immune_region_.ContainsObject(from_ref)) {
2051      accounting::ContinuousSpaceBitmap* cc_bitmap =
2052          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
2053      DCHECK(cc_bitmap != nullptr)
2054          << "An immune space object must have a bitmap";
2055      if (kIsDebugBuild) {
2056        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
2057            << "Immune space object must be already marked";
2058      }
2059      // This may or may not succeed, which is ok.
2060      if (kUseBakerReadBarrier) {
2061        from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
2062      }
2063      if (cc_bitmap->AtomicTestAndSet(from_ref)) {
2064        // Already marked.
2065        to_ref = from_ref;
2066      } else {
2067        // Newly marked.
2068        to_ref = from_ref;
2069        if (kUseBakerReadBarrier) {
2070          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
2071        }
2072        PushOntoMarkStack(to_ref);
2073      }
2074    } else {
2075      // Use the mark bitmap.
2076      accounting::ContinuousSpaceBitmap* mark_bitmap =
2077          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
2078      accounting::LargeObjectBitmap* los_bitmap =
2079          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
2080      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
2081      bool is_los = mark_bitmap == nullptr;
2082      if (!is_los && mark_bitmap->Test(from_ref)) {
2083        // Already marked.
2084        to_ref = from_ref;
2085        if (kUseBakerReadBarrier) {
2086          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
2087                 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
2088        }
2089      } else if (is_los && los_bitmap->Test(from_ref)) {
2090        // Already marked in LOS.
2091        to_ref = from_ref;
2092        if (kUseBakerReadBarrier) {
2093          DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
2094                 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
2095        }
2096      } else {
2097        // Not marked.
2098        if (IsOnAllocStack(from_ref)) {
2099          // If it's on the allocation stack, it's considered marked. Keep it white.
2100          to_ref = from_ref;
2101          // Objects on the allocation stack need not be marked.
2102          if (!is_los) {
2103            DCHECK(!mark_bitmap->Test(to_ref));
2104          } else {
2105            DCHECK(!los_bitmap->Test(to_ref));
2106          }
2107          if (kUseBakerReadBarrier) {
2108            DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
2109          }
2110        } else {
2111          // Not marked or on the allocation stack. Try to mark it.
2112          // This may or may not succeed, which is ok.
2113          if (kUseBakerReadBarrier) {
2114            from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
2115          }
2116          if (!is_los && mark_bitmap->AtomicTestAndSet(from_ref)) {
2117            // Already marked.
2118            to_ref = from_ref;
2119          } else if (is_los && los_bitmap->AtomicTestAndSet(from_ref)) {
2120            // Already marked in LOS.
2121            to_ref = from_ref;
2122          } else {
2123            // Newly marked.
2124            to_ref = from_ref;
2125            if (kUseBakerReadBarrier) {
2126              DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
2127            }
2128            PushOntoMarkStack(to_ref);
2129          }
2130        }
2131      }
2132    }
2133  }
2134  return to_ref;
2135}
2136
2137void ConcurrentCopying::FinishPhase() {
2138  {
2139    MutexLock mu(Thread::Current(), mark_stack_lock_);
2140    CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2141  }
2142  region_space_ = nullptr;
2143  {
2144    MutexLock mu(Thread::Current(), skipped_blocks_lock_);
2145    skipped_blocks_map_.clear();
2146  }
2147  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2148  heap_->ClearMarkedObjects();
2149}
2150
2151bool ConcurrentCopying::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* field) {
2152  mirror::Object* from_ref = field->AsMirrorPtr();
2153  mirror::Object* to_ref = IsMarked(from_ref);
2154  if (to_ref == nullptr) {
2155    return false;
2156  }
2157  if (from_ref != to_ref) {
2158    QuasiAtomic::ThreadFenceRelease();
2159    field->Assign(to_ref);
2160    QuasiAtomic::ThreadFenceSequentiallyConsistent();
2161  }
2162  return true;
2163}
2164
2165mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
2166  return Mark(from_ref);
2167}
2168
2169void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
2170  heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
2171}
2172
2173void ConcurrentCopying::ProcessReferences(Thread* self) {
2174  TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
2175  // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
2176  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2177  GetHeap()->GetReferenceProcessor()->ProcessReferences(
2178      true /*concurrent*/, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
2179}
2180
2181void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
2182  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
2183  region_space_->RevokeAllThreadLocalBuffers();
2184}
2185
2186}  // namespace collector
2187}  // namespace gc
2188}  // namespace art
2189