concurrent_copying.cc revision ed70b4a439acea537d55266bb9b1f309de8cbec9
1/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "concurrent_copying.h"
18
19#include "art_field-inl.h"
20#include "base/stl_util.h"
21#include "debugger.h"
22#include "gc/accounting/heap_bitmap-inl.h"
23#include "gc/accounting/space_bitmap-inl.h"
24#include "gc/reference_processor.h"
25#include "gc/space/image_space.h"
26#include "gc/space/space-inl.h"
27#include "intern_table.h"
28#include "mirror/class-inl.h"
29#include "mirror/object-inl.h"
30#include "scoped_thread_state_change.h"
31#include "thread-inl.h"
32#include "thread_list.h"
33#include "well_known_classes.h"
34
35namespace art {
36namespace gc {
37namespace collector {
38
39static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
40
41ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix)
42    : GarbageCollector(heap,
43                       name_prefix + (name_prefix.empty() ? "" : " ") +
44                       "concurrent copying + mark sweep"),
45      region_space_(nullptr), gc_barrier_(new Barrier(0)),
46      gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
47                                                     kDefaultGcMarkStackSize,
48                                                     kDefaultGcMarkStackSize)),
49      mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
50      thread_running_gc_(nullptr),
51      is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false),
52      heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0), mark_stack_mode_(kMarkStackModeOff),
53      weak_ref_access_enabled_(true),
54      skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
55      rb_table_(heap_->GetReadBarrierTable()),
56      force_evacuate_all_(false) {
57  static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
58                "The region space size and the read barrier table region size must match");
59  cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap));
60  Thread* self = Thread::Current();
61  {
62    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
63    // Cache this so that we won't have to lock heap_bitmap_lock_ in
64    // Mark() which could cause a nested lock on heap_bitmap_lock_
65    // when GC causes a RB while doing GC or a lock order violation
66    // (class_linker_lock_ and heap_bitmap_lock_).
67    heap_mark_bitmap_ = heap->GetMarkBitmap();
68  }
69  {
70    MutexLock mu(self, mark_stack_lock_);
71    for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
72      accounting::AtomicStack<mirror::Object>* mark_stack =
73          accounting::AtomicStack<mirror::Object>::Create(
74              "thread local mark stack", kMarkStackSize, kMarkStackSize);
75      pooled_mark_stacks_.push_back(mark_stack);
76    }
77  }
78}
79
80void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* from_ref) {
81  // Used for preserving soft references, should be OK to not have a CAS here since there should be
82  // no other threads which can trigger read barriers on the same referent during reference
83  // processing.
84  from_ref->Assign(Mark(from_ref->AsMirrorPtr()));
85  DCHECK(!from_ref->IsNull());
86}
87
88ConcurrentCopying::~ConcurrentCopying() {
89  STLDeleteElements(&pooled_mark_stacks_);
90}
91
92void ConcurrentCopying::RunPhases() {
93  CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
94  CHECK(!is_active_);
95  is_active_ = true;
96  Thread* self = Thread::Current();
97  thread_running_gc_ = self;
98  Locks::mutator_lock_->AssertNotHeld(self);
99  {
100    ReaderMutexLock mu(self, *Locks::mutator_lock_);
101    InitializePhase();
102  }
103  FlipThreadRoots();
104  {
105    ReaderMutexLock mu(self, *Locks::mutator_lock_);
106    MarkingPhase();
107  }
108  // Verify no from space refs. This causes a pause.
109  if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) {
110    TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
111    ScopedPause pause(this);
112    CheckEmptyMarkStack();
113    if (kVerboseMode) {
114      LOG(INFO) << "Verifying no from-space refs";
115    }
116    VerifyNoFromSpaceReferences();
117    if (kVerboseMode) {
118      LOG(INFO) << "Done verifying no from-space refs";
119    }
120    CheckEmptyMarkStack();
121  }
122  {
123    ReaderMutexLock mu(self, *Locks::mutator_lock_);
124    ReclaimPhase();
125  }
126  FinishPhase();
127  CHECK(is_active_);
128  is_active_ = false;
129  thread_running_gc_ = nullptr;
130}
131
132void ConcurrentCopying::BindBitmaps() {
133  Thread* self = Thread::Current();
134  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
135  // Mark all of the spaces we never collect as immune.
136  for (const auto& space : heap_->GetContinuousSpaces()) {
137    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
138        || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
139      CHECK(space->IsZygoteSpace() || space->IsImageSpace());
140      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
141      const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" :
142          "cc zygote space bitmap";
143      // TODO: try avoiding using bitmaps for image/zygote to save space.
144      accounting::ContinuousSpaceBitmap* bitmap =
145          accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity());
146      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
147      cc_bitmaps_.push_back(bitmap);
148    } else if (space == region_space_) {
149      accounting::ContinuousSpaceBitmap* bitmap =
150          accounting::ContinuousSpaceBitmap::Create("cc region space bitmap",
151                                                    space->Begin(), space->Capacity());
152      cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
153      cc_bitmaps_.push_back(bitmap);
154      region_space_bitmap_ = bitmap;
155    }
156  }
157}
158
159void ConcurrentCopying::InitializePhase() {
160  TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
161  if (kVerboseMode) {
162    LOG(INFO) << "GC InitializePhase";
163    LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
164              << reinterpret_cast<void*>(region_space_->Limit());
165  }
166  CheckEmptyMarkStack();
167  immune_region_.Reset();
168  bytes_moved_.StoreRelaxed(0);
169  objects_moved_.StoreRelaxed(0);
170  if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
171      GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
172      GetCurrentIteration()->GetClearSoftReferences()) {
173    force_evacuate_all_ = true;
174  } else {
175    force_evacuate_all_ = false;
176  }
177  BindBitmaps();
178  if (kVerboseMode) {
179    LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
180    LOG(INFO) << "Immune region: " << immune_region_.Begin() << "-" << immune_region_.End();
181    LOG(INFO) << "GC end of InitializePhase";
182  }
183}
184
185// Used to switch the thread roots of a thread from from-space refs to to-space refs.
186class ThreadFlipVisitor : public Closure {
187 public:
188  ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
189      : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
190  }
191
192  virtual void Run(Thread* thread) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
193    // Note: self is not necessarily equal to thread since thread may be suspended.
194    Thread* self = Thread::Current();
195    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
196        << thread->GetState() << " thread " << thread << " self " << self;
197    thread->SetIsGcMarking(true);
198    if (use_tlab_ && thread->HasTlab()) {
199      if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
200        // This must come before the revoke.
201        size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
202        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
203        reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
204            FetchAndAddSequentiallyConsistent(thread_local_objects);
205      } else {
206        concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
207      }
208    }
209    if (kUseThreadLocalAllocationStack) {
210      thread->RevokeThreadLocalAllocationStack();
211    }
212    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
213    thread->VisitRoots(concurrent_copying_);
214    concurrent_copying_->GetBarrier().Pass(self);
215  }
216
217 private:
218  ConcurrentCopying* const concurrent_copying_;
219  const bool use_tlab_;
220};
221
222// Called back from Runtime::FlipThreadRoots() during a pause.
223class FlipCallback : public Closure {
224 public:
225  explicit FlipCallback(ConcurrentCopying* concurrent_copying)
226      : concurrent_copying_(concurrent_copying) {
227  }
228
229  virtual void Run(Thread* thread) OVERRIDE REQUIRES(Locks::mutator_lock_) {
230    ConcurrentCopying* cc = concurrent_copying_;
231    TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
232    // Note: self is not necessarily equal to thread since thread may be suspended.
233    Thread* self = Thread::Current();
234    CHECK(thread == self);
235    Locks::mutator_lock_->AssertExclusiveHeld(self);
236    cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
237    cc->SwapStacks();
238    if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
239      cc->RecordLiveStackFreezeSize(self);
240      cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
241      cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
242    }
243    cc->is_marking_ = true;
244    cc->mark_stack_mode_.StoreRelaxed(ConcurrentCopying::kMarkStackModeThreadLocal);
245    if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
246      CHECK(Runtime::Current()->IsAotCompiler());
247      TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
248      Runtime::Current()->VisitTransactionRoots(cc);
249    }
250  }
251
252 private:
253  ConcurrentCopying* const concurrent_copying_;
254};
255
256// Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
257void ConcurrentCopying::FlipThreadRoots() {
258  TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
259  if (kVerboseMode) {
260    LOG(INFO) << "time=" << region_space_->Time();
261    region_space_->DumpNonFreeRegions(LOG(INFO));
262  }
263  Thread* self = Thread::Current();
264  Locks::mutator_lock_->AssertNotHeld(self);
265  gc_barrier_->Init(self, 0);
266  ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
267  FlipCallback flip_callback(this);
268  heap_->ThreadFlipBegin(self);  // Sync with JNI critical calls.
269  size_t barrier_count = Runtime::Current()->FlipThreadRoots(
270      &thread_flip_visitor, &flip_callback, this);
271  heap_->ThreadFlipEnd(self);
272  {
273    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
274    gc_barrier_->Increment(self, barrier_count);
275  }
276  is_asserting_to_space_invariant_ = true;
277  QuasiAtomic::ThreadFenceForConstructor();
278  if (kVerboseMode) {
279    LOG(INFO) << "time=" << region_space_->Time();
280    region_space_->DumpNonFreeRegions(LOG(INFO));
281    LOG(INFO) << "GC end of FlipThreadRoots";
282  }
283}
284
285void ConcurrentCopying::SwapStacks() {
286  heap_->SwapStacks();
287}
288
289void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
290  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
291  live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
292}
293
294// Used to visit objects in the immune spaces.
295class ConcurrentCopyingImmuneSpaceObjVisitor {
296 public:
297  explicit ConcurrentCopyingImmuneSpaceObjVisitor(ConcurrentCopying* cc)
298      : collector_(cc) {}
299
300  void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
301      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
302    DCHECK(obj != nullptr);
303    DCHECK(collector_->immune_region_.ContainsObject(obj));
304    accounting::ContinuousSpaceBitmap* cc_bitmap =
305        collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
306    DCHECK(cc_bitmap != nullptr)
307        << "An immune space object must have a bitmap";
308    if (kIsDebugBuild) {
309      DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj))
310          << "Immune space object must be already marked";
311    }
312    // This may or may not succeed, which is ok.
313    if (kUseBakerReadBarrier) {
314      obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
315    }
316    if (cc_bitmap->AtomicTestAndSet(obj)) {
317      // Already marked. Do nothing.
318    } else {
319      // Newly marked. Set the gray bit and push it onto the mark stack.
320      CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
321      collector_->PushOntoMarkStack(obj);
322    }
323  }
324
325 private:
326  ConcurrentCopying* const collector_;
327};
328
329class EmptyCheckpoint : public Closure {
330 public:
331  explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying)
332      : concurrent_copying_(concurrent_copying) {
333  }
334
335  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
336    // Note: self is not necessarily equal to thread since thread may be suspended.
337    Thread* self = Thread::Current();
338    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
339        << thread->GetState() << " thread " << thread << " self " << self;
340    // If thread is a running mutator, then act on behalf of the garbage collector.
341    // See the code in ThreadList::RunCheckpoint.
342    concurrent_copying_->GetBarrier().Pass(self);
343  }
344
345 private:
346  ConcurrentCopying* const concurrent_copying_;
347};
348
349// Concurrently mark roots that are guarded by read barriers and process the mark stack.
350void ConcurrentCopying::MarkingPhase() {
351  TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
352  if (kVerboseMode) {
353    LOG(INFO) << "GC MarkingPhase";
354  }
355  CHECK(weak_ref_access_enabled_);
356  {
357    // Mark the image root. The WB-based collectors do not need to
358    // scan the image objects from roots by relying on the card table,
359    // but it's necessary for the RB to-space invariant to hold.
360    TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings());
361    for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
362      if (space->IsImageSpace()) {
363        gc::space::ImageSpace* image = space->AsImageSpace();
364        if (image != nullptr) {
365          mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots();
366          mirror::Object* marked_image_root = Mark(image_root);
367          CHECK_EQ(image_root, marked_image_root) << "An image object does not move";
368          if (ReadBarrier::kEnableToSpaceInvariantChecks) {
369            AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root);
370          }
371        }
372      }
373    }
374  }
375  {
376    TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
377    Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
378  }
379  {
380    // TODO: don't visit the transaction roots if it's not active.
381    TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
382    Runtime::Current()->VisitNonThreadRoots(this);
383  }
384
385  // Immune spaces.
386  for (auto& space : heap_->GetContinuousSpaces()) {
387    if (immune_region_.ContainsSpace(space)) {
388      DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
389      accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
390      ConcurrentCopyingImmuneSpaceObjVisitor visitor(this);
391      live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
392                                    reinterpret_cast<uintptr_t>(space->Limit()),
393                                    visitor);
394    }
395  }
396
397  Thread* self = Thread::Current();
398  {
399    TimingLogger::ScopedTiming split7("ProcessMarkStack", GetTimings());
400    // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
401    // primary reasons are the fact that we need to use a checkpoint to process thread-local mark
402    // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
403    // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
404    // reach the point where we process weak references, we can avoid using a lock when accessing
405    // the GC mark stack, which makes mark stack processing more efficient.
406
407    // Process the mark stack once in the thread local stack mode. This marks most of the live
408    // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and system
409    // weaks) that may happen concurrently while we processing the mark stack and newly mark/gray
410    // objects and push refs on the mark stack.
411    ProcessMarkStack();
412    // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
413    // for the last time before transitioning to the shared mark stack mode, which would process new
414    // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
415    // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
416    // important to do these together in a single checkpoint so that we can ensure that mutators
417    // won't newly gray objects and push new refs onto the mark stack due to weak ref accesses and
418    // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
419    // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
420    // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
421    SwitchToSharedMarkStackMode();
422    CHECK(!self->GetWeakRefAccessEnabled());
423    // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
424    // (which may be non-empty if there were refs found on thread-local mark stacks during the above
425    // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
426    // (via read barriers) have no way to produce any more refs to process. Marking converges once
427    // before we process weak refs below.
428    ProcessMarkStack();
429    CheckEmptyMarkStack();
430    // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
431    // lock from this point on.
432    SwitchToGcExclusiveMarkStackMode();
433    CheckEmptyMarkStack();
434    if (kVerboseMode) {
435      LOG(INFO) << "ProcessReferences";
436    }
437    // Process weak references. This may produce new refs to process and have them processed via
438    // ProcessMarkStack (in the GC exclusive mark stack mode).
439    ProcessReferences(self);
440    CheckEmptyMarkStack();
441    if (kVerboseMode) {
442      LOG(INFO) << "SweepSystemWeaks";
443    }
444    SweepSystemWeaks(self);
445    if (kVerboseMode) {
446      LOG(INFO) << "SweepSystemWeaks done";
447    }
448    // Process the mark stack here one last time because the above SweepSystemWeaks() call may have
449    // marked some objects (strings alive) as hash_set::Erase() can call the hash function for
450    // arbitrary elements in the weak intern table in InternTable::Table::SweepWeaks().
451    ProcessMarkStack();
452    CheckEmptyMarkStack();
453    // Re-enable weak ref accesses.
454    ReenableWeakRefAccess(self);
455    // Free data for class loaders that we unloaded.
456    Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
457    // Marking is done. Disable marking.
458    DisableMarking();
459    CheckEmptyMarkStack();
460  }
461
462  CHECK(weak_ref_access_enabled_);
463  if (kVerboseMode) {
464    LOG(INFO) << "GC end of MarkingPhase";
465  }
466}
467
468void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
469  if (kVerboseMode) {
470    LOG(INFO) << "ReenableWeakRefAccess";
471  }
472  weak_ref_access_enabled_.StoreRelaxed(true);  // This is for new threads.
473  QuasiAtomic::ThreadFenceForConstructor();
474  // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
475  {
476    MutexLock mu(self, *Locks::thread_list_lock_);
477    std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
478    for (Thread* thread : thread_list) {
479      thread->SetWeakRefAccessEnabled(true);
480    }
481  }
482  // Unblock blocking threads.
483  GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
484  Runtime::Current()->BroadcastForNewSystemWeaks();
485}
486
487class DisableMarkingCheckpoint : public Closure {
488 public:
489  explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
490      : concurrent_copying_(concurrent_copying) {
491  }
492
493  void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
494    // Note: self is not necessarily equal to thread since thread may be suspended.
495    Thread* self = Thread::Current();
496    DCHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
497        << thread->GetState() << " thread " << thread << " self " << self;
498    // Disable the thread-local is_gc_marking flag.
499    // Note a thread that has just started right before this checkpoint may have already this flag
500    // set to false, which is ok.
501    thread->SetIsGcMarking(false);
502    // If thread is a running mutator, then act on behalf of the garbage collector.
503    // See the code in ThreadList::RunCheckpoint.
504    concurrent_copying_->GetBarrier().Pass(self);
505  }
506
507 private:
508  ConcurrentCopying* const concurrent_copying_;
509};
510
511void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
512  Thread* self = Thread::Current();
513  DisableMarkingCheckpoint check_point(this);
514  ThreadList* thread_list = Runtime::Current()->GetThreadList();
515  gc_barrier_->Init(self, 0);
516  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
517  // If there are no threads to wait which implies that all the checkpoint functions are finished,
518  // then no need to release the mutator lock.
519  if (barrier_count == 0) {
520    return;
521  }
522  // Release locks then wait for all mutator threads to pass the barrier.
523  Locks::mutator_lock_->SharedUnlock(self);
524  {
525    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
526    gc_barrier_->Increment(self, barrier_count);
527  }
528  Locks::mutator_lock_->SharedLock(self);
529}
530
531void ConcurrentCopying::DisableMarking() {
532  // Change the global is_marking flag to false. Do a fence before doing a checkpoint to update the
533  // thread-local flags so that a new thread starting up will get the correct is_marking flag.
534  is_marking_ = false;
535  QuasiAtomic::ThreadFenceForConstructor();
536  // Use a checkpoint to turn off the thread-local is_gc_marking flags and to ensure no threads are
537  // still in the middle of a read barrier which may have a from-space ref cached in a local
538  // variable.
539  IssueDisableMarkingCheckpoint();
540  if (kUseTableLookupReadBarrier) {
541    heap_->rb_table_->ClearAll();
542    DCHECK(heap_->rb_table_->IsAllCleared());
543  }
544  is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(1);
545  mark_stack_mode_.StoreSequentiallyConsistent(kMarkStackModeOff);
546}
547
548void ConcurrentCopying::IssueEmptyCheckpoint() {
549  Thread* self = Thread::Current();
550  EmptyCheckpoint check_point(this);
551  ThreadList* thread_list = Runtime::Current()->GetThreadList();
552  gc_barrier_->Init(self, 0);
553  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
554  // If there are no threads to wait which implys that all the checkpoint functions are finished,
555  // then no need to release the mutator lock.
556  if (barrier_count == 0) {
557    return;
558  }
559  // Release locks then wait for all mutator threads to pass the barrier.
560  Locks::mutator_lock_->SharedUnlock(self);
561  {
562    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
563    gc_barrier_->Increment(self, barrier_count);
564  }
565  Locks::mutator_lock_->SharedLock(self);
566}
567
568void ConcurrentCopying::ExpandGcMarkStack() {
569  DCHECK(gc_mark_stack_->IsFull());
570  const size_t new_size = gc_mark_stack_->Capacity() * 2;
571  std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
572                                                   gc_mark_stack_->End());
573  gc_mark_stack_->Resize(new_size);
574  for (auto& ref : temp) {
575    gc_mark_stack_->PushBack(ref.AsMirrorPtr());
576  }
577  DCHECK(!gc_mark_stack_->IsFull());
578}
579
580void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
581  CHECK_EQ(is_mark_stack_push_disallowed_.LoadRelaxed(), 0)
582      << " " << to_ref << " " << PrettyTypeOf(to_ref);
583  Thread* self = Thread::Current();  // TODO: pass self as an argument from call sites?
584  CHECK(thread_running_gc_ != nullptr);
585  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
586  if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
587    if (LIKELY(self == thread_running_gc_)) {
588      // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
589      CHECK(self->GetThreadLocalMarkStack() == nullptr);
590      if (UNLIKELY(gc_mark_stack_->IsFull())) {
591        ExpandGcMarkStack();
592      }
593      gc_mark_stack_->PushBack(to_ref);
594    } else {
595      // Otherwise, use a thread-local mark stack.
596      accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
597      if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
598        MutexLock mu(self, mark_stack_lock_);
599        // Get a new thread local mark stack.
600        accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
601        if (!pooled_mark_stacks_.empty()) {
602          // Use a pooled mark stack.
603          new_tl_mark_stack = pooled_mark_stacks_.back();
604          pooled_mark_stacks_.pop_back();
605        } else {
606          // None pooled. Create a new one.
607          new_tl_mark_stack =
608              accounting::AtomicStack<mirror::Object>::Create(
609                  "thread local mark stack", 4 * KB, 4 * KB);
610        }
611        DCHECK(new_tl_mark_stack != nullptr);
612        DCHECK(new_tl_mark_stack->IsEmpty());
613        new_tl_mark_stack->PushBack(to_ref);
614        self->SetThreadLocalMarkStack(new_tl_mark_stack);
615        if (tl_mark_stack != nullptr) {
616          // Store the old full stack into a vector.
617          revoked_mark_stacks_.push_back(tl_mark_stack);
618        }
619      } else {
620        tl_mark_stack->PushBack(to_ref);
621      }
622    }
623  } else if (mark_stack_mode == kMarkStackModeShared) {
624    // Access the shared GC mark stack with a lock.
625    MutexLock mu(self, mark_stack_lock_);
626    if (UNLIKELY(gc_mark_stack_->IsFull())) {
627      ExpandGcMarkStack();
628    }
629    gc_mark_stack_->PushBack(to_ref);
630  } else {
631    CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
632             static_cast<uint32_t>(kMarkStackModeGcExclusive))
633        << "ref=" << to_ref
634        << " self->gc_marking=" << self->GetIsGcMarking()
635        << " cc->is_marking=" << is_marking_;
636    CHECK(self == thread_running_gc_)
637        << "Only GC-running thread should access the mark stack "
638        << "in the GC exclusive mark stack mode";
639    // Access the GC mark stack without a lock.
640    if (UNLIKELY(gc_mark_stack_->IsFull())) {
641      ExpandGcMarkStack();
642    }
643    gc_mark_stack_->PushBack(to_ref);
644  }
645}
646
647accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
648  return heap_->allocation_stack_.get();
649}
650
651accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
652  return heap_->live_stack_.get();
653}
654
655// The following visitors are that used to verify that there's no
656// references to the from-space left after marking.
657class ConcurrentCopyingVerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
658 public:
659  explicit ConcurrentCopyingVerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
660      : collector_(collector) {}
661
662  void operator()(mirror::Object* ref) const
663      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
664    if (ref == nullptr) {
665      // OK.
666      return;
667    }
668    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
669    if (kUseBakerReadBarrier) {
670      if (collector_->RegionSpace()->IsInToSpace(ref)) {
671        CHECK(ref->GetReadBarrierPointer() == nullptr)
672            << "To-space ref " << ref << " " << PrettyTypeOf(ref)
673            << " has non-white rb_ptr " << ref->GetReadBarrierPointer();
674      } else {
675        CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
676              (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
677               collector_->IsOnAllocStack(ref)))
678            << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref)
679            << " has non-black rb_ptr " << ref->GetReadBarrierPointer()
680            << " but isn't on the alloc stack (and has white rb_ptr)."
681            << " Is it in the non-moving space="
682            << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref));
683      }
684    }
685  }
686
687  void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
688      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
689    DCHECK(root != nullptr);
690    operator()(root);
691  }
692
693 private:
694  ConcurrentCopying* const collector_;
695};
696
697class ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor {
698 public:
699  explicit ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
700      : collector_(collector) {}
701
702  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
703      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
704    mirror::Object* ref =
705        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
706    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
707    visitor(ref);
708  }
709  void operator()(mirror::Class* klass, mirror::Reference* ref) const
710      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
711    CHECK(klass->IsTypeOfReferenceClass());
712    this->operator()(ref, mirror::Reference::ReferentOffset(), false);
713  }
714
715  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
716      SHARED_REQUIRES(Locks::mutator_lock_) {
717    if (!root->IsNull()) {
718      VisitRoot(root);
719    }
720  }
721
722  void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
723      SHARED_REQUIRES(Locks::mutator_lock_) {
724    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
725    visitor(root->AsMirrorPtr());
726  }
727
728 private:
729  ConcurrentCopying* const collector_;
730};
731
732class ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor {
733 public:
734  explicit ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
735      : collector_(collector) {}
736  void operator()(mirror::Object* obj) const
737      SHARED_REQUIRES(Locks::mutator_lock_) {
738    ObjectCallback(obj, collector_);
739  }
740  static void ObjectCallback(mirror::Object* obj, void *arg)
741      SHARED_REQUIRES(Locks::mutator_lock_) {
742    CHECK(obj != nullptr);
743    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
744    space::RegionSpace* region_space = collector->RegionSpace();
745    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
746    ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor visitor(collector);
747    obj->VisitReferences(visitor, visitor);
748    if (kUseBakerReadBarrier) {
749      if (collector->RegionSpace()->IsInToSpace(obj)) {
750        CHECK(obj->GetReadBarrierPointer() == nullptr)
751            << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer();
752      } else {
753        CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
754              (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
755               collector->IsOnAllocStack(obj)))
756            << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj)
757            << " has non-black rb_ptr " << obj->GetReadBarrierPointer()
758            << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space="
759            << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj));
760      }
761    }
762  }
763
764 private:
765  ConcurrentCopying* const collector_;
766};
767
768// Verify there's no from-space references left after the marking phase.
769void ConcurrentCopying::VerifyNoFromSpaceReferences() {
770  Thread* self = Thread::Current();
771  DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
772  // Verify all threads have is_gc_marking to be false
773  {
774    MutexLock mu(self, *Locks::thread_list_lock_);
775    std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
776    for (Thread* thread : thread_list) {
777      CHECK(!thread->GetIsGcMarking());
778    }
779  }
780  ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor visitor(this);
781  // Roots.
782  {
783    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
784    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
785    Runtime::Current()->VisitRoots(&ref_visitor);
786  }
787  // The to-space.
788  region_space_->WalkToSpace(ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor::ObjectCallback,
789                             this);
790  // Non-moving spaces.
791  {
792    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
793    heap_->GetMarkBitmap()->Visit(visitor);
794  }
795  // The alloc stack.
796  {
797    ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
798    for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
799        it < end; ++it) {
800      mirror::Object* const obj = it->AsMirrorPtr();
801      if (obj != nullptr && obj->GetClass() != nullptr) {
802        // TODO: need to call this only if obj is alive?
803        ref_visitor(obj);
804        visitor(obj);
805      }
806    }
807  }
808  // TODO: LOS. But only refs in LOS are classes.
809}
810
811// The following visitors are used to assert the to-space invariant.
812class ConcurrentCopyingAssertToSpaceInvariantRefsVisitor {
813 public:
814  explicit ConcurrentCopyingAssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
815      : collector_(collector) {}
816
817  void operator()(mirror::Object* ref) const
818      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
819    if (ref == nullptr) {
820      // OK.
821      return;
822    }
823    collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
824  }
825
826 private:
827  ConcurrentCopying* const collector_;
828};
829
830class ConcurrentCopyingAssertToSpaceInvariantFieldVisitor {
831 public:
832  explicit ConcurrentCopyingAssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
833      : collector_(collector) {}
834
835  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
836      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
837    mirror::Object* ref =
838        obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
839    ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
840    visitor(ref);
841  }
842  void operator()(mirror::Class* klass, mirror::Reference* ref ATTRIBUTE_UNUSED) const
843      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
844    CHECK(klass->IsTypeOfReferenceClass());
845  }
846
847  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
848      SHARED_REQUIRES(Locks::mutator_lock_) {
849    if (!root->IsNull()) {
850      VisitRoot(root);
851    }
852  }
853
854  void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
855      SHARED_REQUIRES(Locks::mutator_lock_) {
856    ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
857    visitor(root->AsMirrorPtr());
858  }
859
860 private:
861  ConcurrentCopying* const collector_;
862};
863
864class ConcurrentCopyingAssertToSpaceInvariantObjectVisitor {
865 public:
866  explicit ConcurrentCopyingAssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
867      : collector_(collector) {}
868  void operator()(mirror::Object* obj) const
869      SHARED_REQUIRES(Locks::mutator_lock_) {
870    ObjectCallback(obj, collector_);
871  }
872  static void ObjectCallback(mirror::Object* obj, void *arg)
873      SHARED_REQUIRES(Locks::mutator_lock_) {
874    CHECK(obj != nullptr);
875    ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
876    space::RegionSpace* region_space = collector->RegionSpace();
877    CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
878    collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
879    ConcurrentCopyingAssertToSpaceInvariantFieldVisitor visitor(collector);
880    obj->VisitReferences(visitor, visitor);
881  }
882
883 private:
884  ConcurrentCopying* const collector_;
885};
886
887class RevokeThreadLocalMarkStackCheckpoint : public Closure {
888 public:
889  RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
890                                       bool disable_weak_ref_access)
891      : concurrent_copying_(concurrent_copying),
892        disable_weak_ref_access_(disable_weak_ref_access) {
893  }
894
895  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
896    // Note: self is not necessarily equal to thread since thread may be suspended.
897    Thread* self = Thread::Current();
898    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
899        << thread->GetState() << " thread " << thread << " self " << self;
900    // Revoke thread local mark stacks.
901    accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
902    if (tl_mark_stack != nullptr) {
903      MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
904      concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
905      thread->SetThreadLocalMarkStack(nullptr);
906    }
907    // Disable weak ref access.
908    if (disable_weak_ref_access_) {
909      thread->SetWeakRefAccessEnabled(false);
910    }
911    // If thread is a running mutator, then act on behalf of the garbage collector.
912    // See the code in ThreadList::RunCheckpoint.
913    concurrent_copying_->GetBarrier().Pass(self);
914  }
915
916 private:
917  ConcurrentCopying* const concurrent_copying_;
918  const bool disable_weak_ref_access_;
919};
920
921void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access) {
922  Thread* self = Thread::Current();
923  RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
924  ThreadList* thread_list = Runtime::Current()->GetThreadList();
925  gc_barrier_->Init(self, 0);
926  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
927  // If there are no threads to wait which implys that all the checkpoint functions are finished,
928  // then no need to release the mutator lock.
929  if (barrier_count == 0) {
930    return;
931  }
932  Locks::mutator_lock_->SharedUnlock(self);
933  {
934    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
935    gc_barrier_->Increment(self, barrier_count);
936  }
937  Locks::mutator_lock_->SharedLock(self);
938}
939
940void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
941  Thread* self = Thread::Current();
942  CHECK_EQ(self, thread);
943  accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
944  if (tl_mark_stack != nullptr) {
945    CHECK(is_marking_);
946    MutexLock mu(self, mark_stack_lock_);
947    revoked_mark_stacks_.push_back(tl_mark_stack);
948    thread->SetThreadLocalMarkStack(nullptr);
949  }
950}
951
952void ConcurrentCopying::ProcessMarkStack() {
953  if (kVerboseMode) {
954    LOG(INFO) << "ProcessMarkStack. ";
955  }
956  bool empty_prev = false;
957  while (true) {
958    bool empty = ProcessMarkStackOnce();
959    if (empty_prev && empty) {
960      // Saw empty mark stack for a second time, done.
961      break;
962    }
963    empty_prev = empty;
964  }
965}
966
967bool ConcurrentCopying::ProcessMarkStackOnce() {
968  Thread* self = Thread::Current();
969  CHECK(thread_running_gc_ != nullptr);
970  CHECK(self == thread_running_gc_);
971  CHECK(self->GetThreadLocalMarkStack() == nullptr);
972  size_t count = 0;
973  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
974  if (mark_stack_mode == kMarkStackModeThreadLocal) {
975    // Process the thread-local mark stacks and the GC mark stack.
976    count += ProcessThreadLocalMarkStacks(false);
977    while (!gc_mark_stack_->IsEmpty()) {
978      mirror::Object* to_ref = gc_mark_stack_->PopBack();
979      ProcessMarkStackRef(to_ref);
980      ++count;
981    }
982    gc_mark_stack_->Reset();
983  } else if (mark_stack_mode == kMarkStackModeShared) {
984    // Process the shared GC mark stack with a lock.
985    {
986      MutexLock mu(self, mark_stack_lock_);
987      CHECK(revoked_mark_stacks_.empty());
988    }
989    while (true) {
990      std::vector<mirror::Object*> refs;
991      {
992        // Copy refs with lock. Note the number of refs should be small.
993        MutexLock mu(self, mark_stack_lock_);
994        if (gc_mark_stack_->IsEmpty()) {
995          break;
996        }
997        for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
998             p != gc_mark_stack_->End(); ++p) {
999          refs.push_back(p->AsMirrorPtr());
1000        }
1001        gc_mark_stack_->Reset();
1002      }
1003      for (mirror::Object* ref : refs) {
1004        ProcessMarkStackRef(ref);
1005        ++count;
1006      }
1007    }
1008  } else {
1009    CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1010             static_cast<uint32_t>(kMarkStackModeGcExclusive));
1011    {
1012      MutexLock mu(self, mark_stack_lock_);
1013      CHECK(revoked_mark_stacks_.empty());
1014    }
1015    // Process the GC mark stack in the exclusive mode. No need to take the lock.
1016    while (!gc_mark_stack_->IsEmpty()) {
1017      mirror::Object* to_ref = gc_mark_stack_->PopBack();
1018      ProcessMarkStackRef(to_ref);
1019      ++count;
1020    }
1021    gc_mark_stack_->Reset();
1022  }
1023
1024  // Return true if the stack was empty.
1025  return count == 0;
1026}
1027
1028size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access) {
1029  // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
1030  RevokeThreadLocalMarkStacks(disable_weak_ref_access);
1031  size_t count = 0;
1032  std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
1033  {
1034    MutexLock mu(Thread::Current(), mark_stack_lock_);
1035    // Make a copy of the mark stack vector.
1036    mark_stacks = revoked_mark_stacks_;
1037    revoked_mark_stacks_.clear();
1038  }
1039  for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
1040    for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
1041      mirror::Object* to_ref = p->AsMirrorPtr();
1042      ProcessMarkStackRef(to_ref);
1043      ++count;
1044    }
1045    {
1046      MutexLock mu(Thread::Current(), mark_stack_lock_);
1047      if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
1048        // The pool has enough. Delete it.
1049        delete mark_stack;
1050      } else {
1051        // Otherwise, put it into the pool for later reuse.
1052        mark_stack->Reset();
1053        pooled_mark_stacks_.push_back(mark_stack);
1054      }
1055    }
1056  }
1057  return count;
1058}
1059
1060inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
1061  DCHECK(!region_space_->IsInFromSpace(to_ref));
1062  if (kUseBakerReadBarrier) {
1063    DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
1064        << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
1065        << " is_marked=" << IsMarked(to_ref);
1066  }
1067  // Scan ref fields.
1068  Scan(to_ref);
1069  // Mark the gray ref as white or black.
1070  if (kUseBakerReadBarrier) {
1071    DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
1072        << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
1073        << " is_marked=" << IsMarked(to_ref);
1074  }
1075#ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
1076  if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
1077                to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr &&
1078                !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())))) {
1079    // Leave this Reference gray in the queue so that GetReferent() will trigger a read barrier. We
1080    // will change it to black or white later in ReferenceQueue::DequeuePendingReference().
1081    DCHECK(to_ref->AsReference()->IsEnqueued()) << "Left unenqueued ref gray " << to_ref;
1082  } else {
1083    // We may occasionally leave a Reference black or white in the queue if its referent happens to
1084    // be concurrently marked after the Scan() call above has enqueued the Reference, in which case
1085    // the above IsInToSpace() evaluates to true and we change the color from gray to black or white
1086    // here in this else block.
1087    if (kUseBakerReadBarrier) {
1088      if (region_space_->IsInToSpace(to_ref)) {
1089        // If to-space, change from gray to white.
1090        bool success = to_ref->AtomicSetReadBarrierPointer</*kCasRelease*/true>(
1091            ReadBarrier::GrayPtr(),
1092            ReadBarrier::WhitePtr());
1093        DCHECK(success) << "Must succeed as we won the race.";
1094        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
1095      } else {
1096        // If non-moving space/unevac from space, change from gray
1097        // to black. We can't change gray to white because it's not
1098        // safe to use CAS if two threads change values in opposite
1099        // directions (A->B and B->A). So, we change it to black to
1100        // indicate non-moving objects that have been marked
1101        // through. Note we'd need to change from black to white
1102        // later (concurrently).
1103        bool success = to_ref->AtomicSetReadBarrierPointer</*kCasRelease*/true>(
1104            ReadBarrier::GrayPtr(),
1105            ReadBarrier::BlackPtr());
1106        DCHECK(success) << "Must succeed as we won the race.";
1107        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1108      }
1109    }
1110  }
1111#else
1112  DCHECK(!kUseBakerReadBarrier);
1113#endif
1114  if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) {
1115    ConcurrentCopyingAssertToSpaceInvariantObjectVisitor visitor(this);
1116    visitor(to_ref);
1117  }
1118}
1119
1120void ConcurrentCopying::SwitchToSharedMarkStackMode() {
1121  Thread* self = Thread::Current();
1122  CHECK(thread_running_gc_ != nullptr);
1123  CHECK_EQ(self, thread_running_gc_);
1124  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1125  MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1126  CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1127           static_cast<uint32_t>(kMarkStackModeThreadLocal));
1128  mark_stack_mode_.StoreRelaxed(kMarkStackModeShared);
1129  CHECK(weak_ref_access_enabled_.LoadRelaxed());
1130  weak_ref_access_enabled_.StoreRelaxed(false);
1131  QuasiAtomic::ThreadFenceForConstructor();
1132  // Process the thread local mark stacks one last time after switching to the shared mark stack
1133  // mode and disable weak ref accesses.
1134  ProcessThreadLocalMarkStacks(true);
1135  if (kVerboseMode) {
1136    LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
1137  }
1138}
1139
1140void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
1141  Thread* self = Thread::Current();
1142  CHECK(thread_running_gc_ != nullptr);
1143  CHECK_EQ(self, thread_running_gc_);
1144  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1145  MarkStackMode before_mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1146  CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
1147           static_cast<uint32_t>(kMarkStackModeShared));
1148  mark_stack_mode_.StoreRelaxed(kMarkStackModeGcExclusive);
1149  QuasiAtomic::ThreadFenceForConstructor();
1150  if (kVerboseMode) {
1151    LOG(INFO) << "Switched to GC exclusive mark stack mode";
1152  }
1153}
1154
1155void ConcurrentCopying::CheckEmptyMarkStack() {
1156  Thread* self = Thread::Current();
1157  CHECK(thread_running_gc_ != nullptr);
1158  CHECK_EQ(self, thread_running_gc_);
1159  CHECK(self->GetThreadLocalMarkStack() == nullptr);
1160  MarkStackMode mark_stack_mode = mark_stack_mode_.LoadRelaxed();
1161  if (mark_stack_mode == kMarkStackModeThreadLocal) {
1162    // Thread-local mark stack mode.
1163    RevokeThreadLocalMarkStacks(false);
1164    MutexLock mu(Thread::Current(), mark_stack_lock_);
1165    if (!revoked_mark_stacks_.empty()) {
1166      for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
1167        while (!mark_stack->IsEmpty()) {
1168          mirror::Object* obj = mark_stack->PopBack();
1169          if (kUseBakerReadBarrier) {
1170            mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
1171            LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr
1172                      << " is_marked=" << IsMarked(obj);
1173          } else {
1174            LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj)
1175                      << " is_marked=" << IsMarked(obj);
1176          }
1177        }
1178      }
1179      LOG(FATAL) << "mark stack is not empty";
1180    }
1181  } else {
1182    // Shared, GC-exclusive, or off.
1183    MutexLock mu(Thread::Current(), mark_stack_lock_);
1184    CHECK(gc_mark_stack_->IsEmpty());
1185    CHECK(revoked_mark_stacks_.empty());
1186  }
1187}
1188
1189void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
1190  TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
1191  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1192  Runtime::Current()->SweepSystemWeaks(this);
1193}
1194
1195void ConcurrentCopying::Sweep(bool swap_bitmaps) {
1196  {
1197    TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
1198    accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1199    if (kEnableFromSpaceAccountingCheck) {
1200      CHECK_GE(live_stack_freeze_size_, live_stack->Size());
1201    }
1202    heap_->MarkAllocStackAsLive(live_stack);
1203    live_stack->Reset();
1204  }
1205  CheckEmptyMarkStack();
1206  TimingLogger::ScopedTiming split("Sweep", GetTimings());
1207  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1208    if (space->IsContinuousMemMapAllocSpace()) {
1209      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1210      if (space == region_space_ || immune_region_.ContainsSpace(space)) {
1211        continue;
1212      }
1213      TimingLogger::ScopedTiming split2(
1214          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
1215      RecordFree(alloc_space->Sweep(swap_bitmaps));
1216    }
1217  }
1218  SweepLargeObjects(swap_bitmaps);
1219}
1220
1221void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
1222  TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
1223  RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
1224}
1225
1226class ConcurrentCopyingClearBlackPtrsVisitor {
1227 public:
1228  explicit ConcurrentCopyingClearBlackPtrsVisitor(ConcurrentCopying* cc)
1229      : collector_(cc) {}
1230  void operator()(mirror::Object* obj) const SHARED_REQUIRES(Locks::mutator_lock_)
1231      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1232    DCHECK(obj != nullptr);
1233    DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj;
1234    DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj;
1235    obj->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1236    DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1237  }
1238
1239 private:
1240  ConcurrentCopying* const collector_;
1241};
1242
1243// Clear the black ptrs in non-moving objects back to white.
1244void ConcurrentCopying::ClearBlackPtrs() {
1245  CHECK(kUseBakerReadBarrier);
1246  TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings());
1247  ConcurrentCopyingClearBlackPtrsVisitor visitor(this);
1248  for (auto& space : heap_->GetContinuousSpaces()) {
1249    if (space == region_space_) {
1250      continue;
1251    }
1252    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1253    if (kVerboseMode) {
1254      LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap;
1255    }
1256    mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
1257                                  reinterpret_cast<uintptr_t>(space->Limit()),
1258                                  visitor);
1259  }
1260  space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
1261  large_object_space->GetMarkBitmap()->VisitMarkedRange(
1262      reinterpret_cast<uintptr_t>(large_object_space->Begin()),
1263      reinterpret_cast<uintptr_t>(large_object_space->End()),
1264      visitor);
1265  // Objects on the allocation stack?
1266  if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) {
1267    size_t count = GetAllocationStack()->Size();
1268    auto* it = GetAllocationStack()->Begin();
1269    auto* end = GetAllocationStack()->End();
1270    for (size_t i = 0; i < count; ++i, ++it) {
1271      CHECK_LT(it, end);
1272      mirror::Object* obj = it->AsMirrorPtr();
1273      if (obj != nullptr) {
1274        // Must have been cleared above.
1275        CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
1276      }
1277    }
1278  }
1279}
1280
1281void ConcurrentCopying::ReclaimPhase() {
1282  TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
1283  if (kVerboseMode) {
1284    LOG(INFO) << "GC ReclaimPhase";
1285  }
1286  Thread* self = Thread::Current();
1287
1288  {
1289    // Double-check that the mark stack is empty.
1290    // Note: need to set this after VerifyNoFromSpaceRef().
1291    is_asserting_to_space_invariant_ = false;
1292    QuasiAtomic::ThreadFenceForConstructor();
1293    if (kVerboseMode) {
1294      LOG(INFO) << "Issue an empty check point. ";
1295    }
1296    IssueEmptyCheckpoint();
1297    // Disable the check.
1298    is_mark_stack_push_disallowed_.StoreSequentiallyConsistent(0);
1299    CheckEmptyMarkStack();
1300  }
1301
1302  {
1303    // Record freed objects.
1304    TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
1305    // Don't include thread-locals that are in the to-space.
1306    uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
1307    uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
1308    uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
1309    uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
1310    uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
1311    uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
1312    if (kEnableFromSpaceAccountingCheck) {
1313      CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
1314      CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
1315    }
1316    CHECK_LE(to_objects, from_objects);
1317    CHECK_LE(to_bytes, from_bytes);
1318    int64_t freed_bytes = from_bytes - to_bytes;
1319    int64_t freed_objects = from_objects - to_objects;
1320    if (kVerboseMode) {
1321      LOG(INFO) << "RecordFree:"
1322                << " from_bytes=" << from_bytes << " from_objects=" << from_objects
1323                << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
1324                << " to_bytes=" << to_bytes << " to_objects=" << to_objects
1325                << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
1326                << " from_space size=" << region_space_->FromSpaceSize()
1327                << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
1328                << " to_space size=" << region_space_->ToSpaceSize();
1329      LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1330    }
1331    RecordFree(ObjectBytePair(freed_objects, freed_bytes));
1332    if (kVerboseMode) {
1333      LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
1334    }
1335  }
1336
1337  {
1338    TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings());
1339    ComputeUnevacFromSpaceLiveRatio();
1340  }
1341
1342  {
1343    TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
1344    region_space_->ClearFromSpace();
1345  }
1346
1347  {
1348    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1349    if (kUseBakerReadBarrier) {
1350      ClearBlackPtrs();
1351    }
1352    Sweep(false);
1353    SwapBitmaps();
1354    heap_->UnBindBitmaps();
1355
1356    // Remove bitmaps for the immune spaces.
1357    while (!cc_bitmaps_.empty()) {
1358      accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back();
1359      cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap);
1360      delete cc_bitmap;
1361      cc_bitmaps_.pop_back();
1362    }
1363    region_space_bitmap_ = nullptr;
1364  }
1365
1366  CheckEmptyMarkStack();
1367
1368  if (kVerboseMode) {
1369    LOG(INFO) << "GC end of ReclaimPhase";
1370  }
1371}
1372
1373class ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor {
1374 public:
1375  explicit ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc)
1376      : collector_(cc) {}
1377  void operator()(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_)
1378      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1379    DCHECK(ref != nullptr);
1380    DCHECK(collector_->region_space_bitmap_->Test(ref)) << ref;
1381    DCHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref;
1382    if (kUseBakerReadBarrier) {
1383      DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << ref;
1384      // Clear the black ptr.
1385      ref->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
1386      DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << ref;
1387    }
1388    size_t obj_size = ref->SizeOf();
1389    size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1390    collector_->region_space_->AddLiveBytes(ref, alloc_size);
1391  }
1392
1393 private:
1394  ConcurrentCopying* const collector_;
1395};
1396
1397// Compute how much live objects are left in regions.
1398void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() {
1399  region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1400  ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor visitor(this);
1401  region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()),
1402                                         reinterpret_cast<uintptr_t>(region_space_->Limit()),
1403                                         visitor);
1404}
1405
1406// Assert the to-space invariant.
1407void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
1408                                               mirror::Object* ref) {
1409  CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1410  if (is_asserting_to_space_invariant_) {
1411    if (region_space_->IsInToSpace(ref)) {
1412      // OK.
1413      return;
1414    } else if (region_space_->IsInUnevacFromSpace(ref)) {
1415      CHECK(region_space_bitmap_->Test(ref)) << ref;
1416    } else if (region_space_->IsInFromSpace(ref)) {
1417      // Not OK. Do extra logging.
1418      if (obj != nullptr) {
1419        LogFromSpaceRefHolder(obj, offset);
1420      }
1421      ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1422      CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1423    } else {
1424      AssertToSpaceInvariantInNonMovingSpace(obj, ref);
1425    }
1426  }
1427}
1428
1429class RootPrinter {
1430 public:
1431  RootPrinter() { }
1432
1433  template <class MirrorType>
1434  ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
1435      SHARED_REQUIRES(Locks::mutator_lock_) {
1436    if (!root->IsNull()) {
1437      VisitRoot(root);
1438    }
1439  }
1440
1441  template <class MirrorType>
1442  void VisitRoot(mirror::Object** root)
1443      SHARED_REQUIRES(Locks::mutator_lock_) {
1444    LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << *root;
1445  }
1446
1447  template <class MirrorType>
1448  void VisitRoot(mirror::CompressedReference<MirrorType>* root)
1449      SHARED_REQUIRES(Locks::mutator_lock_) {
1450    LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << root->AsMirrorPtr();
1451  }
1452};
1453
1454void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
1455                                               mirror::Object* ref) {
1456  CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1457  if (is_asserting_to_space_invariant_) {
1458    if (region_space_->IsInToSpace(ref)) {
1459      // OK.
1460      return;
1461    } else if (region_space_->IsInUnevacFromSpace(ref)) {
1462      CHECK(region_space_bitmap_->Test(ref)) << ref;
1463    } else if (region_space_->IsInFromSpace(ref)) {
1464      // Not OK. Do extra logging.
1465      if (gc_root_source == nullptr) {
1466        // No info.
1467      } else if (gc_root_source->HasArtField()) {
1468        ArtField* field = gc_root_source->GetArtField();
1469        LOG(INTERNAL_FATAL) << "gc root in field " << field << " " << PrettyField(field);
1470        RootPrinter root_printer;
1471        field->VisitRoots(root_printer);
1472      } else if (gc_root_source->HasArtMethod()) {
1473        ArtMethod* method = gc_root_source->GetArtMethod();
1474        LOG(INTERNAL_FATAL) << "gc root in method " << method << " " << PrettyMethod(method);
1475        RootPrinter root_printer;
1476        method->VisitRoots(root_printer, sizeof(void*));
1477      }
1478      ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1479      region_space_->DumpNonFreeRegions(LOG(INTERNAL_FATAL));
1480      PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
1481      MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
1482      CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1483    } else {
1484      AssertToSpaceInvariantInNonMovingSpace(nullptr, ref);
1485    }
1486  }
1487}
1488
1489void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
1490  if (kUseBakerReadBarrier) {
1491    LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj)
1492              << " holder rb_ptr=" << obj->GetReadBarrierPointer();
1493  } else {
1494    LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj);
1495  }
1496  if (region_space_->IsInFromSpace(obj)) {
1497    LOG(INFO) << "holder is in the from-space.";
1498  } else if (region_space_->IsInToSpace(obj)) {
1499    LOG(INFO) << "holder is in the to-space.";
1500  } else if (region_space_->IsInUnevacFromSpace(obj)) {
1501    LOG(INFO) << "holder is in the unevac from-space.";
1502    if (region_space_bitmap_->Test(obj)) {
1503      LOG(INFO) << "holder is marked in the region space bitmap.";
1504    } else {
1505      LOG(INFO) << "holder is not marked in the region space bitmap.";
1506    }
1507  } else {
1508    // In a non-moving space.
1509    if (immune_region_.ContainsObject(obj)) {
1510      LOG(INFO) << "holder is in the image or the zygote space.";
1511      accounting::ContinuousSpaceBitmap* cc_bitmap =
1512          cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
1513      CHECK(cc_bitmap != nullptr)
1514          << "An immune space object must have a bitmap.";
1515      if (cc_bitmap->Test(obj)) {
1516        LOG(INFO) << "holder is marked in the bit map.";
1517      } else {
1518        LOG(INFO) << "holder is NOT marked in the bit map.";
1519      }
1520    } else {
1521      LOG(INFO) << "holder is in a non-moving (or main) space.";
1522      accounting::ContinuousSpaceBitmap* mark_bitmap =
1523          heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1524      accounting::LargeObjectBitmap* los_bitmap =
1525          heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1526      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1527      bool is_los = mark_bitmap == nullptr;
1528      if (!is_los && mark_bitmap->Test(obj)) {
1529        LOG(INFO) << "holder is marked in the mark bit map.";
1530      } else if (is_los && los_bitmap->Test(obj)) {
1531        LOG(INFO) << "holder is marked in the los bit map.";
1532      } else {
1533        // If ref is on the allocation stack, then it is considered
1534        // mark/alive (but not necessarily on the live stack.)
1535        if (IsOnAllocStack(obj)) {
1536          LOG(INFO) << "holder is on the alloc stack.";
1537        } else {
1538          LOG(INFO) << "holder is not marked or on the alloc stack.";
1539        }
1540      }
1541    }
1542  }
1543  LOG(INFO) << "offset=" << offset.SizeValue();
1544}
1545
1546void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
1547                                                               mirror::Object* ref) {
1548  // In a non-moving spaces. Check that the ref is marked.
1549  if (immune_region_.ContainsObject(ref)) {
1550    accounting::ContinuousSpaceBitmap* cc_bitmap =
1551        cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1552    CHECK(cc_bitmap != nullptr)
1553        << "An immune space ref must have a bitmap. " << ref;
1554    if (kUseBakerReadBarrier) {
1555      CHECK(cc_bitmap->Test(ref))
1556          << "Unmarked immune space ref. obj=" << obj << " rb_ptr="
1557          << obj->GetReadBarrierPointer() << " ref=" << ref;
1558    } else {
1559      CHECK(cc_bitmap->Test(ref))
1560          << "Unmarked immune space ref. obj=" << obj << " ref=" << ref;
1561    }
1562  } else {
1563    accounting::ContinuousSpaceBitmap* mark_bitmap =
1564        heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1565    accounting::LargeObjectBitmap* los_bitmap =
1566        heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1567    CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1568    bool is_los = mark_bitmap == nullptr;
1569    if ((!is_los && mark_bitmap->Test(ref)) ||
1570        (is_los && los_bitmap->Test(ref))) {
1571      // OK.
1572    } else {
1573      // If ref is on the allocation stack, then it may not be
1574      // marked live, but considered marked/alive (but not
1575      // necessarily on the live stack).
1576      CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1577                                 << "obj=" << obj << " ref=" << ref;
1578    }
1579  }
1580}
1581
1582// Used to scan ref fields of an object.
1583class ConcurrentCopyingRefFieldsVisitor {
1584 public:
1585  explicit ConcurrentCopyingRefFieldsVisitor(ConcurrentCopying* collector)
1586      : collector_(collector) {}
1587
1588  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1589      const ALWAYS_INLINE SHARED_REQUIRES(Locks::mutator_lock_)
1590      SHARED_REQUIRES(Locks::heap_bitmap_lock_) {
1591    collector_->Process(obj, offset);
1592  }
1593
1594  void operator()(mirror::Class* klass, mirror::Reference* ref) const
1595      SHARED_REQUIRES(Locks::mutator_lock_) ALWAYS_INLINE {
1596    CHECK(klass->IsTypeOfReferenceClass());
1597    collector_->DelayReferenceReferent(klass, ref);
1598  }
1599
1600  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1601      ALWAYS_INLINE
1602      SHARED_REQUIRES(Locks::mutator_lock_) {
1603    if (!root->IsNull()) {
1604      VisitRoot(root);
1605    }
1606  }
1607
1608  void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1609      ALWAYS_INLINE
1610      SHARED_REQUIRES(Locks::mutator_lock_) {
1611    collector_->MarkRoot(root);
1612  }
1613
1614 private:
1615  ConcurrentCopying* const collector_;
1616};
1617
1618// Scan ref fields of an object.
1619inline void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1620  DCHECK(!region_space_->IsInFromSpace(to_ref));
1621  ConcurrentCopyingRefFieldsVisitor visitor(this);
1622  to_ref->VisitReferences(visitor, visitor);
1623}
1624
1625// Process a field.
1626inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1627  mirror::Object* ref = obj->GetFieldObject<
1628      mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1629  mirror::Object* to_ref = Mark(ref);
1630  if (to_ref == ref) {
1631    return;
1632  }
1633  // This may fail if the mutator writes to the field at the same time. But it's ok.
1634  mirror::Object* expected_ref = ref;
1635  mirror::Object* new_ref = to_ref;
1636  do {
1637    if (expected_ref !=
1638        obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1639      // It was updated by the mutator.
1640      break;
1641    }
1642  } while (!obj->CasFieldWeakRelaxedObjectWithoutWriteBarrier<
1643      false, false, kVerifyNone>(offset, expected_ref, new_ref));
1644}
1645
1646// Process some roots.
1647inline void ConcurrentCopying::VisitRoots(
1648    mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
1649  for (size_t i = 0; i < count; ++i) {
1650    mirror::Object** root = roots[i];
1651    mirror::Object* ref = *root;
1652    mirror::Object* to_ref = Mark(ref);
1653    if (to_ref == ref) {
1654      continue;
1655    }
1656    Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1657    mirror::Object* expected_ref = ref;
1658    mirror::Object* new_ref = to_ref;
1659    do {
1660      if (expected_ref != addr->LoadRelaxed()) {
1661        // It was updated by the mutator.
1662        break;
1663      }
1664    } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref));
1665  }
1666}
1667
1668inline void ConcurrentCopying::MarkRoot(mirror::CompressedReference<mirror::Object>* root) {
1669  DCHECK(!root->IsNull());
1670  mirror::Object* const ref = root->AsMirrorPtr();
1671  mirror::Object* to_ref = Mark(ref);
1672  if (to_ref != ref) {
1673    auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
1674    auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
1675    auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
1676    // If the cas fails, then it was updated by the mutator.
1677    do {
1678      if (ref != addr->LoadRelaxed().AsMirrorPtr()) {
1679        // It was updated by the mutator.
1680        break;
1681      }
1682    } while (!addr->CompareExchangeWeakRelaxed(expected_ref, new_ref));
1683  }
1684}
1685
1686inline void ConcurrentCopying::VisitRoots(
1687    mirror::CompressedReference<mirror::Object>** roots, size_t count,
1688    const RootInfo& info ATTRIBUTE_UNUSED) {
1689  for (size_t i = 0; i < count; ++i) {
1690    mirror::CompressedReference<mirror::Object>* const root = roots[i];
1691    if (!root->IsNull()) {
1692      MarkRoot(root);
1693    }
1694  }
1695}
1696
1697// Fill the given memory block with a dummy object. Used to fill in a
1698// copy of objects that was lost in race.
1699void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
1700  CHECK_ALIGNED(byte_size, kObjectAlignment);
1701  memset(dummy_obj, 0, byte_size);
1702  mirror::Class* int_array_class = mirror::IntArray::GetArrayClass();
1703  CHECK(int_array_class != nullptr);
1704  AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
1705  size_t component_size = int_array_class->GetComponentSize();
1706  CHECK_EQ(component_size, sizeof(int32_t));
1707  size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
1708  if (data_offset > byte_size) {
1709    // An int array is too big. Use java.lang.Object.
1710    mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object);
1711    AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object);
1712    CHECK_EQ(byte_size, java_lang_Object->GetObjectSize());
1713    dummy_obj->SetClass(java_lang_Object);
1714    CHECK_EQ(byte_size, dummy_obj->SizeOf());
1715  } else {
1716    // Use an int array.
1717    dummy_obj->SetClass(int_array_class);
1718    CHECK(dummy_obj->IsArrayInstance());
1719    int32_t length = (byte_size - data_offset) / component_size;
1720    dummy_obj->AsArray()->SetLength(length);
1721    CHECK_EQ(dummy_obj->AsArray()->GetLength(), length)
1722        << "byte_size=" << byte_size << " length=" << length
1723        << " component_size=" << component_size << " data_offset=" << data_offset;
1724    CHECK_EQ(byte_size, dummy_obj->SizeOf())
1725        << "byte_size=" << byte_size << " length=" << length
1726        << " component_size=" << component_size << " data_offset=" << data_offset;
1727  }
1728}
1729
1730// Reuse the memory blocks that were copy of objects that were lost in race.
1731mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
1732  // Try to reuse the blocks that were unused due to CAS failures.
1733  CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
1734  Thread* self = Thread::Current();
1735  size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
1736  MutexLock mu(self, skipped_blocks_lock_);
1737  auto it = skipped_blocks_map_.lower_bound(alloc_size);
1738  if (it == skipped_blocks_map_.end()) {
1739    // Not found.
1740    return nullptr;
1741  }
1742  {
1743    size_t byte_size = it->first;
1744    CHECK_GE(byte_size, alloc_size);
1745    if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
1746      // If remainder would be too small for a dummy object, retry with a larger request size.
1747      it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
1748      if (it == skipped_blocks_map_.end()) {
1749        // Not found.
1750        return nullptr;
1751      }
1752      CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
1753      CHECK_GE(it->first - alloc_size, min_object_size)
1754          << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
1755    }
1756  }
1757  // Found a block.
1758  CHECK(it != skipped_blocks_map_.end());
1759  size_t byte_size = it->first;
1760  uint8_t* addr = it->second;
1761  CHECK_GE(byte_size, alloc_size);
1762  CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
1763  CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
1764  if (kVerboseMode) {
1765    LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
1766  }
1767  skipped_blocks_map_.erase(it);
1768  memset(addr, 0, byte_size);
1769  if (byte_size > alloc_size) {
1770    // Return the remainder to the map.
1771    CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
1772    CHECK_GE(byte_size - alloc_size, min_object_size);
1773    FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
1774                        byte_size - alloc_size);
1775    CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
1776    skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
1777  }
1778  return reinterpret_cast<mirror::Object*>(addr);
1779}
1780
1781mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) {
1782  DCHECK(region_space_->IsInFromSpace(from_ref));
1783  // No read barrier to avoid nested RB that might violate the to-space
1784  // invariant. Note that from_ref is a from space ref so the SizeOf()
1785  // call will access the from-space meta objects, but it's ok and necessary.
1786  size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>();
1787  size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1788  size_t region_space_bytes_allocated = 0U;
1789  size_t non_moving_space_bytes_allocated = 0U;
1790  size_t bytes_allocated = 0U;
1791  size_t dummy;
1792  mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
1793      region_space_alloc_size, &region_space_bytes_allocated, nullptr, &dummy);
1794  bytes_allocated = region_space_bytes_allocated;
1795  if (to_ref != nullptr) {
1796    DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
1797  }
1798  bool fall_back_to_non_moving = false;
1799  if (UNLIKELY(to_ref == nullptr)) {
1800    // Failed to allocate in the region space. Try the skipped blocks.
1801    to_ref = AllocateInSkippedBlock(region_space_alloc_size);
1802    if (to_ref != nullptr) {
1803      // Succeeded to allocate in a skipped block.
1804      if (heap_->use_tlab_) {
1805        // This is necessary for the tlab case as it's not accounted in the space.
1806        region_space_->RecordAlloc(to_ref);
1807      }
1808      bytes_allocated = region_space_alloc_size;
1809    } else {
1810      // Fall back to the non-moving space.
1811      fall_back_to_non_moving = true;
1812      if (kVerboseMode) {
1813        LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
1814                  << to_space_bytes_skipped_.LoadSequentiallyConsistent()
1815                  << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
1816      }
1817      fall_back_to_non_moving = true;
1818      to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
1819                                               &non_moving_space_bytes_allocated, nullptr, &dummy);
1820      CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed";
1821      bytes_allocated = non_moving_space_bytes_allocated;
1822      // Mark it in the mark bitmap.
1823      accounting::ContinuousSpaceBitmap* mark_bitmap =
1824          heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1825      CHECK(mark_bitmap != nullptr);
1826      CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
1827    }
1828  }
1829  DCHECK(to_ref != nullptr);
1830
1831  // Attempt to install the forward pointer. This is in a loop as the
1832  // lock word atomic write can fail.
1833  while (true) {
1834    // Copy the object. TODO: copy only the lockword in the second iteration and on?
1835    memcpy(to_ref, from_ref, obj_size);
1836
1837    LockWord old_lock_word = to_ref->GetLockWord(false);
1838
1839    if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
1840      // Lost the race. Another thread (either GC or mutator) stored
1841      // the forwarding pointer first. Make the lost copy (to_ref)
1842      // look like a valid but dead (dummy) object and keep it for
1843      // future reuse.
1844      FillWithDummyObject(to_ref, bytes_allocated);
1845      if (!fall_back_to_non_moving) {
1846        DCHECK(region_space_->IsInToSpace(to_ref));
1847        if (bytes_allocated > space::RegionSpace::kRegionSize) {
1848          // Free the large alloc.
1849          region_space_->FreeLarge(to_ref, bytes_allocated);
1850        } else {
1851          // Record the lost copy for later reuse.
1852          heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1853          to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1854          to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
1855          MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1856          skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
1857                                                    reinterpret_cast<uint8_t*>(to_ref)));
1858        }
1859      } else {
1860        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1861        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1862        // Free the non-moving-space chunk.
1863        accounting::ContinuousSpaceBitmap* mark_bitmap =
1864            heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1865        CHECK(mark_bitmap != nullptr);
1866        CHECK(mark_bitmap->Clear(to_ref));
1867        heap_->non_moving_space_->Free(Thread::Current(), to_ref);
1868      }
1869
1870      // Get the winner's forward ptr.
1871      mirror::Object* lost_fwd_ptr = to_ref;
1872      to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
1873      CHECK(to_ref != nullptr);
1874      CHECK_NE(to_ref, lost_fwd_ptr);
1875      CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref));
1876      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1877      return to_ref;
1878    }
1879
1880    // Set the gray ptr.
1881    if (kUseBakerReadBarrier) {
1882      to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr());
1883    }
1884
1885    LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
1886
1887    // Try to atomically write the fwd ptr.
1888    bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word);
1889    if (LIKELY(success)) {
1890      // The CAS succeeded.
1891      objects_moved_.FetchAndAddSequentiallyConsistent(1);
1892      bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size);
1893      if (LIKELY(!fall_back_to_non_moving)) {
1894        DCHECK(region_space_->IsInToSpace(to_ref));
1895      } else {
1896        DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1897        DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1898      }
1899      if (kUseBakerReadBarrier) {
1900        DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1901      }
1902      DCHECK(GetFwdPtr(from_ref) == to_ref);
1903      CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1904      PushOntoMarkStack(to_ref);
1905      return to_ref;
1906    } else {
1907      // The CAS failed. It may have lost the race or may have failed
1908      // due to monitor/hashcode ops. Either way, retry.
1909    }
1910  }
1911}
1912
1913mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
1914  DCHECK(from_ref != nullptr);
1915  space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1916  if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
1917    // It's already marked.
1918    return from_ref;
1919  }
1920  mirror::Object* to_ref;
1921  if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
1922    to_ref = GetFwdPtr(from_ref);
1923    DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
1924           heap_->non_moving_space_->HasAddress(to_ref))
1925        << "from_ref=" << from_ref << " to_ref=" << to_ref;
1926  } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
1927    if (region_space_bitmap_->Test(from_ref)) {
1928      to_ref = from_ref;
1929    } else {
1930      to_ref = nullptr;
1931    }
1932  } else {
1933    // from_ref is in a non-moving space.
1934    if (immune_region_.ContainsObject(from_ref)) {
1935      accounting::ContinuousSpaceBitmap* cc_bitmap =
1936          cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1937      DCHECK(cc_bitmap != nullptr)
1938          << "An immune space object must have a bitmap";
1939      if (kIsDebugBuild) {
1940        DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1941            << "Immune space object must be already marked";
1942      }
1943      if (cc_bitmap->Test(from_ref)) {
1944        // Already marked.
1945        to_ref = from_ref;
1946      } else {
1947        // Newly marked.
1948        to_ref = nullptr;
1949      }
1950    } else {
1951      // Non-immune non-moving space. Use the mark bitmap.
1952      accounting::ContinuousSpaceBitmap* mark_bitmap =
1953          heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1954      accounting::LargeObjectBitmap* los_bitmap =
1955          heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1956      CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1957      bool is_los = mark_bitmap == nullptr;
1958      if (!is_los && mark_bitmap->Test(from_ref)) {
1959        // Already marked.
1960        to_ref = from_ref;
1961      } else if (is_los && los_bitmap->Test(from_ref)) {
1962        // Already marked in LOS.
1963        to_ref = from_ref;
1964      } else {
1965        // Not marked.
1966        if (IsOnAllocStack(from_ref)) {
1967          // If on the allocation stack, it's considered marked.
1968          to_ref = from_ref;
1969        } else {
1970          // Not marked.
1971          to_ref = nullptr;
1972        }
1973      }
1974    }
1975  }
1976  return to_ref;
1977}
1978
1979bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
1980  QuasiAtomic::ThreadFenceAcquire();
1981  accounting::ObjectStack* alloc_stack = GetAllocationStack();
1982  return alloc_stack->Contains(ref);
1983}
1984
1985mirror::Object* ConcurrentCopying::MarkNonMoving(mirror::Object* ref) {
1986  // ref is in a non-moving space (from_ref == to_ref).
1987  DCHECK(!region_space_->HasAddress(ref)) << ref;
1988  if (immune_region_.ContainsObject(ref)) {
1989    accounting::ContinuousSpaceBitmap* cc_bitmap =
1990        cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1991    DCHECK(cc_bitmap != nullptr)
1992        << "An immune space object must have a bitmap";
1993    if (kIsDebugBuild) {
1994      DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref))
1995          << "Immune space object must be already marked";
1996    }
1997    // This may or may not succeed, which is ok.
1998    if (kUseBakerReadBarrier) {
1999      ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
2000    }
2001    if (cc_bitmap->AtomicTestAndSet(ref)) {
2002      // Already marked.
2003    } else {
2004      // Newly marked.
2005      if (kUseBakerReadBarrier) {
2006        DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::GrayPtr());
2007      }
2008      PushOntoMarkStack(ref);
2009    }
2010  } else {
2011    // Use the mark bitmap.
2012    accounting::ContinuousSpaceBitmap* mark_bitmap =
2013        heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
2014    accounting::LargeObjectBitmap* los_bitmap =
2015        heap_mark_bitmap_->GetLargeObjectBitmap(ref);
2016    CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
2017    bool is_los = mark_bitmap == nullptr;
2018    if (!is_los && mark_bitmap->Test(ref)) {
2019      // Already marked.
2020      if (kUseBakerReadBarrier) {
2021        DCHECK(ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
2022               ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
2023      }
2024    } else if (is_los && los_bitmap->Test(ref)) {
2025      // Already marked in LOS.
2026      if (kUseBakerReadBarrier) {
2027        DCHECK(ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
2028               ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
2029      }
2030    } else {
2031      // Not marked.
2032      if (IsOnAllocStack(ref)) {
2033        // If it's on the allocation stack, it's considered marked. Keep it white.
2034        // Objects on the allocation stack need not be marked.
2035        if (!is_los) {
2036          DCHECK(!mark_bitmap->Test(ref));
2037        } else {
2038          DCHECK(!los_bitmap->Test(ref));
2039        }
2040        if (kUseBakerReadBarrier) {
2041          DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr());
2042        }
2043      } else {
2044        // Not marked or on the allocation stack. Try to mark it.
2045        // This may or may not succeed, which is ok.
2046        if (kUseBakerReadBarrier) {
2047          ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
2048        }
2049        if (!is_los && mark_bitmap->AtomicTestAndSet(ref)) {
2050          // Already marked.
2051        } else if (is_los && los_bitmap->AtomicTestAndSet(ref)) {
2052          // Already marked in LOS.
2053        } else {
2054          // Newly marked.
2055          if (kUseBakerReadBarrier) {
2056            DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::GrayPtr());
2057          }
2058          PushOntoMarkStack(ref);
2059        }
2060      }
2061    }
2062  }
2063  return ref;
2064}
2065
2066void ConcurrentCopying::FinishPhase() {
2067  {
2068    MutexLock mu(Thread::Current(), mark_stack_lock_);
2069    CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2070  }
2071  region_space_ = nullptr;
2072  {
2073    MutexLock mu(Thread::Current(), skipped_blocks_lock_);
2074    skipped_blocks_map_.clear();
2075  }
2076  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2077  heap_->ClearMarkedObjects();
2078}
2079
2080bool ConcurrentCopying::IsMarkedHeapReference(mirror::HeapReference<mirror::Object>* field) {
2081  mirror::Object* from_ref = field->AsMirrorPtr();
2082  mirror::Object* to_ref = IsMarked(from_ref);
2083  if (to_ref == nullptr) {
2084    return false;
2085  }
2086  if (from_ref != to_ref) {
2087    QuasiAtomic::ThreadFenceRelease();
2088    field->Assign(to_ref);
2089    QuasiAtomic::ThreadFenceSequentiallyConsistent();
2090  }
2091  return true;
2092}
2093
2094mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
2095  return Mark(from_ref);
2096}
2097
2098void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
2099  heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
2100}
2101
2102void ConcurrentCopying::ProcessReferences(Thread* self) {
2103  TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
2104  // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
2105  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2106  GetHeap()->GetReferenceProcessor()->ProcessReferences(
2107      true /*concurrent*/, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(), this);
2108}
2109
2110void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
2111  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
2112  region_space_->RevokeAllThreadLocalBuffers();
2113}
2114
2115}  // namespace collector
2116}  // namespace gc
2117}  // namespace art
2118