mark_sweep.cc revision 2775ee4f82dff260663ca16adddc0b15327aaa42
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap.h"
31#include "gc/accounting/space_bitmap-inl.h"
32#include "gc/heap.h"
33#include "gc/space/image_space.h"
34#include "gc/space/large_object_space.h"
35#include "gc/space/space-inl.h"
36#include "indirect_reference_table.h"
37#include "intern_table.h"
38#include "jni_internal.h"
39#include "monitor.h"
40#include "mark_sweep-inl.h"
41#include "mirror/art_field.h"
42#include "mirror/art_field-inl.h"
43#include "mirror/class-inl.h"
44#include "mirror/class_loader.h"
45#include "mirror/dex_cache.h"
46#include "mirror/object-inl.h"
47#include "mirror/object_array.h"
48#include "mirror/object_array-inl.h"
49#include "runtime.h"
50#include "thread-inl.h"
51#include "thread_list.h"
52#include "verifier/method_verifier.h"
53
54using ::art::mirror::ArtField;
55using ::art::mirror::Class;
56using ::art::mirror::Object;
57using ::art::mirror::ObjectArray;
58
59namespace art {
60namespace gc {
61namespace collector {
62
63// Performance options.
64constexpr bool kUseRecursiveMark = false;
65constexpr bool kUseMarkStackPrefetch = true;
66constexpr size_t kSweepArrayChunkFreeSize = 1024;
67
68// Parallelism options.
69constexpr bool kParallelCardScan = true;
70constexpr bool kParallelRecursiveMark = true;
71// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
72// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
73// having this can add overhead in ProcessReferences since we may end up doing many calls of
74// ProcessMarkStack with very small mark stacks.
75constexpr size_t kMinimumParallelMarkStackSize = 128;
76constexpr bool kParallelProcessMarkStack = true;
77
78// Profiling and information flags.
79constexpr bool kCountClassesMarked = false;
80constexpr bool kProfileLargeObjects = false;
81constexpr bool kMeasureOverhead = false;
82constexpr bool kCountTasks = false;
83constexpr bool kCountJavaLangRefs = false;
84
85// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
86constexpr bool kCheckLocks = kDebugLocking;
87
88void MarkSweep::ImmuneSpace(space::ContinuousSpace* space) {
89  // Bind live to mark bitmap if necessary.
90  if (space->GetLiveBitmap() != space->GetMarkBitmap()) {
91    BindLiveToMarkBitmap(space);
92  }
93
94  // Add the space to the immune region.
95  if (immune_begin_ == NULL) {
96    DCHECK(immune_end_ == NULL);
97    SetImmuneRange(reinterpret_cast<Object*>(space->Begin()),
98                   reinterpret_cast<Object*>(space->End()));
99  } else {
100    const space::ContinuousSpace* prev_space = nullptr;
101    // Find out if the previous space is immune.
102    for (space::ContinuousSpace* cur_space : GetHeap()->GetContinuousSpaces()) {
103      if (cur_space == space) {
104        break;
105      }
106      prev_space = cur_space;
107    }
108    // If previous space was immune, then extend the immune region. Relies on continuous spaces
109    // being sorted by Heap::AddContinuousSpace.
110    if (prev_space != NULL &&
111        immune_begin_ <= reinterpret_cast<Object*>(prev_space->Begin()) &&
112        immune_end_ >= reinterpret_cast<Object*>(prev_space->End())) {
113      immune_begin_ = std::min(reinterpret_cast<Object*>(space->Begin()), immune_begin_);
114      immune_end_ = std::max(reinterpret_cast<Object*>(space->End()), immune_end_);
115    }
116  }
117}
118
119void MarkSweep::BindBitmaps() {
120  timings_.StartSplit("BindBitmaps");
121  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
122  // Mark all of the spaces we never collect as immune.
123  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
124    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
125      ImmuneSpace(space);
126    }
127  }
128  timings_.EndSplit();
129}
130
131MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
132    : GarbageCollector(heap,
133                       name_prefix + (name_prefix.empty() ? "" : " ") +
134                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
135      current_mark_bitmap_(NULL),
136      java_lang_Class_(NULL),
137      mark_stack_(NULL),
138      immune_begin_(NULL),
139      immune_end_(NULL),
140      soft_reference_list_(NULL),
141      weak_reference_list_(NULL),
142      finalizer_reference_list_(NULL),
143      phantom_reference_list_(NULL),
144      cleared_reference_list_(NULL),
145      gc_barrier_(new Barrier(0)),
146      large_object_lock_("mark sweep large object lock", kMarkSweepLargeObjectLock),
147      mark_stack_expand_lock_("mark sweep mark stack expand lock"),
148      is_concurrent_(is_concurrent),
149      clear_soft_references_(false) {
150}
151
152void MarkSweep::InitializePhase() {
153  timings_.Reset();
154  base::TimingLogger::ScopedSplit split("InitializePhase", &timings_);
155  mark_stack_ = heap_->mark_stack_.get();
156  DCHECK(mark_stack_ != nullptr);
157  SetImmuneRange(nullptr, nullptr);
158  soft_reference_list_ = nullptr;
159  weak_reference_list_ = nullptr;
160  finalizer_reference_list_ = nullptr;
161  phantom_reference_list_ = nullptr;
162  cleared_reference_list_ = nullptr;
163  freed_bytes_ = 0;
164  freed_large_object_bytes_ = 0;
165  freed_objects_ = 0;
166  freed_large_objects_ = 0;
167  class_count_ = 0;
168  array_count_ = 0;
169  other_count_ = 0;
170  large_object_test_ = 0;
171  large_object_mark_ = 0;
172  classes_marked_ = 0;
173  overhead_time_ = 0;
174  work_chunks_created_ = 0;
175  work_chunks_deleted_ = 0;
176  reference_count_ = 0;
177  java_lang_Class_ = Class::GetJavaLangClass();
178  CHECK(java_lang_Class_ != nullptr);
179
180  FindDefaultMarkBitmap();
181
182  // Do any pre GC verification.
183  timings_.NewSplit("PreGcVerification");
184  heap_->PreGcVerification(this);
185}
186
187void MarkSweep::ProcessReferences(Thread* self) {
188  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
189  ProcessReferences(&soft_reference_list_, clear_soft_references_, &weak_reference_list_,
190                    &finalizer_reference_list_, &phantom_reference_list_);
191}
192
193bool MarkSweep::HandleDirtyObjectsPhase() {
194  base::TimingLogger::ScopedSplit split("HandleDirtyObjectsPhase", &timings_);
195  Thread* self = Thread::Current();
196  Locks::mutator_lock_->AssertExclusiveHeld(self);
197
198  {
199    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
200
201    // Re-mark root set.
202    ReMarkRoots();
203
204    // Scan dirty objects, this is only required if we are not doing concurrent GC.
205    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
206  }
207
208  ProcessReferences(self);
209
210  // Only need to do this if we have the card mark verification on, and only during concurrent GC.
211  if (GetHeap()->verify_missing_card_marks_) {
212    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
213    // This second sweep makes sure that we don't have any objects in the live stack which point to
214    // freed objects. These cause problems since their references may be previously freed objects.
215    SweepArray(GetHeap()->allocation_stack_.get(), false);
216  }
217  return true;
218}
219
220bool MarkSweep::IsConcurrent() const {
221  return is_concurrent_;
222}
223
224void MarkSweep::MarkingPhase() {
225  base::TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
226  Heap* heap = GetHeap();
227  Thread* self = Thread::Current();
228
229  BindBitmaps();
230  FindDefaultMarkBitmap();
231
232  // Process dirty cards and add dirty cards to mod union tables.
233  heap->ProcessCards(timings_);
234
235  // Need to do this before the checkpoint since we don't want any threads to add references to
236  // the live stack during the recursive mark.
237  timings_.NewSplit("SwapStacks");
238  heap->SwapStacks();
239
240  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
241  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
242    // If we exclusively hold the mutator lock, all threads must be suspended.
243    MarkRoots();
244  } else {
245    MarkThreadRoots(self);
246    MarkNonThreadRoots();
247  }
248  MarkConcurrentRoots();
249
250  heap->UpdateAndMarkModUnion(this, timings_, GetGcType());
251  MarkReachableObjects();
252}
253
254void MarkSweep::MarkThreadRoots(Thread* self) {
255  MarkRootsCheckpoint(self);
256}
257
258void MarkSweep::MarkReachableObjects() {
259  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
260  // knowing that new allocations won't be marked as live.
261  timings_.StartSplit("MarkStackAsLive");
262  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
263  heap_->MarkAllocStack(heap_->alloc_space_->GetLiveBitmap(),
264                        heap_->large_object_space_->GetLiveObjects(), live_stack);
265  live_stack->Reset();
266  timings_.EndSplit();
267  // Recursively mark all the non-image bits set in the mark bitmap.
268  RecursiveMark();
269}
270
271void MarkSweep::ReclaimPhase() {
272  base::TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
273  Thread* self = Thread::Current();
274
275  if (!IsConcurrent()) {
276    base::TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
277    ProcessReferences(self);
278  } else {
279    base::TimingLogger::ScopedSplit split("UnMarkAllocStack", &timings_);
280    accounting::ObjectStack* allocation_stack = GetHeap()->allocation_stack_.get();
281    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
282    // The allocation stack contains things allocated since the start of the GC. These may have been
283    // marked during this GC meaning they won't be eligible for reclaiming in the next sticky GC.
284    // Remove these objects from the mark bitmaps so that they will be eligible for sticky
285    // collection.
286    // There is a race here which is safely handled. Another thread such as the hprof could
287    // have flushed the alloc stack after we resumed the threads. This is safe however, since
288    // reseting the allocation stack zeros it out with madvise. This means that we will either
289    // read NULLs or attempt to unmark a newly allocated object which will not be marked in the
290    // first place.
291    mirror::Object** end = allocation_stack->End();
292    for (mirror::Object** it = allocation_stack->Begin(); it != end; ++it) {
293      const Object* obj = *it;
294      if (obj != NULL) {
295        UnMarkObjectNonNull(obj);
296      }
297    }
298  }
299
300  // Before freeing anything, lets verify the heap.
301  if (kIsDebugBuild) {
302    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
303    VerifyImageRoots();
304  }
305  timings_.StartSplit("PreSweepingGcVerification");
306  heap_->PreSweepingGcVerification(this);
307  timings_.EndSplit();
308
309  {
310    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
311
312    // Reclaim unmarked objects.
313    Sweep(false);
314
315    // Swap the live and mark bitmaps for each space which we modified space. This is an
316    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
317    // bitmaps.
318    timings_.StartSplit("SwapBitmaps");
319    SwapBitmaps();
320    timings_.EndSplit();
321
322    // Unbind the live and mark bitmaps.
323    UnBindBitmaps();
324  }
325}
326
327void MarkSweep::SetImmuneRange(Object* begin, Object* end) {
328  immune_begin_ = begin;
329  immune_end_ = end;
330}
331
332void MarkSweep::FindDefaultMarkBitmap() {
333  base::TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
334  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
335    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
336      current_mark_bitmap_ = space->GetMarkBitmap();
337      CHECK(current_mark_bitmap_ != NULL);
338      return;
339    }
340  }
341  GetHeap()->DumpSpaces();
342  LOG(FATAL) << "Could not find a default mark bitmap";
343}
344
345void MarkSweep::ExpandMarkStack() {
346  // Rare case, no need to have Thread::Current be a parameter.
347  MutexLock mu(Thread::Current(), mark_stack_expand_lock_);
348  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
349    // Someone else acquired the lock and expanded the mark stack before us.
350    return;
351  }
352  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
353  mark_stack_->Resize(mark_stack_->Capacity() * 2);
354  for (const auto& obj : temp) {
355    mark_stack_->PushBack(obj);
356  }
357}
358
359inline void MarkSweep::MarkObjectNonNullParallel(const Object* obj) {
360  DCHECK(obj != NULL);
361  if (MarkObjectParallel(obj)) {
362    while (UNLIKELY(!mark_stack_->AtomicPushBack(const_cast<Object*>(obj)))) {
363      // Only reason a push can fail is that the mark stack is full.
364      ExpandMarkStack();
365    }
366  }
367}
368
369inline void MarkSweep::UnMarkObjectNonNull(const Object* obj) {
370  DCHECK(!IsImmune(obj));
371  // Try to take advantage of locality of references within a space, failing this find the space
372  // the hard way.
373  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
374  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
375    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
376    if (LIKELY(new_bitmap != NULL)) {
377      object_bitmap = new_bitmap;
378    } else {
379      MarkLargeObject(obj, false);
380      return;
381    }
382  }
383
384  DCHECK(object_bitmap->HasAddress(obj));
385  object_bitmap->Clear(obj);
386}
387
388inline void MarkSweep::MarkObjectNonNull(const Object* obj) {
389  DCHECK(obj != NULL);
390
391  if (IsImmune(obj)) {
392    DCHECK(IsMarked(obj));
393    return;
394  }
395
396  // Try to take advantage of locality of references within a space, failing this find the space
397  // the hard way.
398  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
399  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
400    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
401    if (LIKELY(new_bitmap != NULL)) {
402      object_bitmap = new_bitmap;
403    } else {
404      MarkLargeObject(obj, true);
405      return;
406    }
407  }
408
409  // This object was not previously marked.
410  if (!object_bitmap->Test(obj)) {
411    object_bitmap->Set(obj);
412    // Do we need to expand the mark stack?
413    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
414      ExpandMarkStack();
415    }
416    // The object must be pushed on to the mark stack.
417    mark_stack_->PushBack(const_cast<Object*>(obj));
418  }
419}
420
421// Rare case, probably not worth inlining since it will increase instruction cache miss rate.
422bool MarkSweep::MarkLargeObject(const Object* obj, bool set) {
423  // TODO: support >1 discontinuous space.
424  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
425  accounting::SpaceSetMap* large_objects = large_object_space->GetMarkObjects();
426  if (kProfileLargeObjects) {
427    ++large_object_test_;
428  }
429  if (UNLIKELY(!large_objects->Test(obj))) {
430    if (!large_object_space->Contains(obj)) {
431      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
432      LOG(ERROR) << "Attempting see if it's a bad root";
433      VerifyRoots();
434      LOG(FATAL) << "Can't mark bad root";
435    }
436    if (kProfileLargeObjects) {
437      ++large_object_mark_;
438    }
439    if (set) {
440      large_objects->Set(obj);
441    } else {
442      large_objects->Clear(obj);
443    }
444    return true;
445  }
446  return false;
447}
448
449inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
450  DCHECK(obj != NULL);
451
452  if (IsImmune(obj)) {
453    DCHECK(IsMarked(obj));
454    return false;
455  }
456
457  // Try to take advantage of locality of references within a space, failing this find the space
458  // the hard way.
459  accounting::SpaceBitmap* object_bitmap = current_mark_bitmap_;
460  if (UNLIKELY(!object_bitmap->HasAddress(obj))) {
461    accounting::SpaceBitmap* new_bitmap = heap_->GetMarkBitmap()->GetContinuousSpaceBitmap(obj);
462    if (new_bitmap != NULL) {
463      object_bitmap = new_bitmap;
464    } else {
465      // TODO: Remove the Thread::Current here?
466      // TODO: Convert this to some kind of atomic marking?
467      MutexLock mu(Thread::Current(), large_object_lock_);
468      return MarkLargeObject(obj, true);
469    }
470  }
471
472  // Return true if the object was not previously marked.
473  return !object_bitmap->AtomicTestAndSet(obj);
474}
475
476// Used to mark objects when recursing.  Recursion is done by moving
477// the finger across the bitmaps in address order and marking child
478// objects.  Any newly-marked objects whose addresses are lower than
479// the finger won't be visited by the bitmap scan, so those objects
480// need to be added to the mark stack.
481inline void MarkSweep::MarkObject(const Object* obj) {
482  if (obj != NULL) {
483    MarkObjectNonNull(obj);
484  }
485}
486
487void MarkSweep::MarkRoot(const Object* obj) {
488  if (obj != NULL) {
489    MarkObjectNonNull(obj);
490  }
491}
492
493void MarkSweep::MarkRootParallelCallback(const Object* root, void* arg) {
494  DCHECK(root != NULL);
495  DCHECK(arg != NULL);
496  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
497  mark_sweep->MarkObjectNonNullParallel(root);
498}
499
500void MarkSweep::MarkObjectCallback(const Object* root, void* arg) {
501  DCHECK(root != NULL);
502  DCHECK(arg != NULL);
503  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
504  mark_sweep->MarkObjectNonNull(root);
505}
506
507void MarkSweep::ReMarkObjectVisitor(const Object* root, void* arg) {
508  DCHECK(root != NULL);
509  DCHECK(arg != NULL);
510  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
511  mark_sweep->MarkObjectNonNull(root);
512}
513
514void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
515                                   const StackVisitor* visitor) {
516  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor);
517}
518
519void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor) {
520  // See if the root is on any space bitmap.
521  if (GetHeap()->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == NULL) {
522    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
523    if (!large_object_space->Contains(root)) {
524      LOG(ERROR) << "Found invalid root: " << root;
525      if (visitor != NULL) {
526        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
527      }
528    }
529  }
530}
531
532void MarkSweep::VerifyRoots() {
533  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
534}
535
536// Marks all objects in the root set.
537void MarkSweep::MarkRoots() {
538  timings_.StartSplit("MarkRoots");
539  Runtime::Current()->VisitNonConcurrentRoots(MarkObjectCallback, this);
540  timings_.EndSplit();
541}
542
543void MarkSweep::MarkNonThreadRoots() {
544  timings_.StartSplit("MarkNonThreadRoots");
545  Runtime::Current()->VisitNonThreadRoots(MarkObjectCallback, this);
546  timings_.EndSplit();
547}
548
549void MarkSweep::MarkConcurrentRoots() {
550  timings_.StartSplit("MarkConcurrentRoots");
551  // Visit all runtime roots and clear dirty flags.
552  Runtime::Current()->VisitConcurrentRoots(MarkObjectCallback, this, false, true);
553  timings_.EndSplit();
554}
555
556void MarkSweep::CheckObject(const Object* obj) {
557  DCHECK(obj != NULL);
558  VisitObjectReferences(obj, [this](const Object* obj, const Object* ref, MemberOffset offset,
559      bool is_static) NO_THREAD_SAFETY_ANALYSIS {
560    Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
561    CheckReference(obj, ref, offset, is_static);
562  });
563}
564
565void MarkSweep::VerifyImageRootVisitor(Object* root, void* arg) {
566  DCHECK(root != NULL);
567  DCHECK(arg != NULL);
568  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
569  DCHECK(mark_sweep->heap_->GetMarkBitmap()->Test(root));
570  mark_sweep->CheckObject(root);
571}
572
573void MarkSweep::BindLiveToMarkBitmap(space::ContinuousSpace* space) {
574  CHECK(space->IsDlMallocSpace());
575  space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
576  accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
577  accounting::SpaceBitmap* mark_bitmap = alloc_space->mark_bitmap_.release();
578  GetHeap()->GetMarkBitmap()->ReplaceBitmap(mark_bitmap, live_bitmap);
579  alloc_space->temp_bitmap_.reset(mark_bitmap);
580  alloc_space->mark_bitmap_.reset(live_bitmap);
581}
582
583class ScanObjectVisitor {
584 public:
585  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
586      : mark_sweep_(mark_sweep) {}
587
588  // TODO: Fixme when anotatalysis works with visitors.
589  void operator()(const Object* obj) const ALWAYS_INLINE NO_THREAD_SAFETY_ANALYSIS {
590    if (kCheckLocks) {
591      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
592      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
593    }
594    mark_sweep_->ScanObject(obj);
595  }
596
597 private:
598  MarkSweep* const mark_sweep_;
599};
600
601template <bool kUseFinger = false>
602class MarkStackTask : public Task {
603 public:
604  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
605                const Object** mark_stack)
606      : mark_sweep_(mark_sweep),
607        thread_pool_(thread_pool),
608        mark_stack_pos_(mark_stack_size) {
609    // We may have to copy part of an existing mark stack when another mark stack overflows.
610    if (mark_stack_size != 0) {
611      DCHECK(mark_stack != NULL);
612      // TODO: Check performance?
613      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
614    }
615    if (kCountTasks) {
616      ++mark_sweep_->work_chunks_created_;
617    }
618  }
619
620  static const size_t kMaxSize = 1 * KB;
621
622 protected:
623  class ScanObjectParallelVisitor {
624   public:
625    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
626        : chunk_task_(chunk_task) {}
627
628    void operator()(const Object* obj) const {
629      MarkSweep* mark_sweep = chunk_task_->mark_sweep_;
630      mark_sweep->ScanObjectVisit(obj,
631          [mark_sweep, this](const Object* /* obj */, const Object* ref,
632              const MemberOffset& /* offset */, bool /* is_static */) ALWAYS_INLINE {
633        if (ref != nullptr && mark_sweep->MarkObjectParallel(ref)) {
634          if (kUseFinger) {
635            android_memory_barrier();
636            if (reinterpret_cast<uintptr_t>(ref) >=
637                static_cast<uintptr_t>(mark_sweep->atomic_finger_)) {
638              return;
639            }
640          }
641          chunk_task_->MarkStackPush(ref);
642        }
643      });
644    }
645
646   private:
647    MarkStackTask<kUseFinger>* const chunk_task_;
648  };
649
650  virtual ~MarkStackTask() {
651    // Make sure that we have cleared our mark stack.
652    DCHECK_EQ(mark_stack_pos_, 0U);
653    if (kCountTasks) {
654      ++mark_sweep_->work_chunks_deleted_;
655    }
656  }
657
658  MarkSweep* const mark_sweep_;
659  ThreadPool* const thread_pool_;
660  // Thread local mark stack for this task.
661  const Object* mark_stack_[kMaxSize];
662  // Mark stack position.
663  size_t mark_stack_pos_;
664
665  void MarkStackPush(const Object* obj) ALWAYS_INLINE {
666    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
667      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
668      mark_stack_pos_ /= 2;
669      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
670                                     mark_stack_ + mark_stack_pos_);
671      thread_pool_->AddTask(Thread::Current(), task);
672    }
673    DCHECK(obj != nullptr);
674    DCHECK(mark_stack_pos_ < kMaxSize);
675    mark_stack_[mark_stack_pos_++] = obj;
676  }
677
678  virtual void Finalize() {
679    delete this;
680  }
681
682  // Scans all of the objects
683  virtual void Run(Thread* self) {
684    ScanObjectParallelVisitor visitor(this);
685    // TODO: Tune this.
686    static const size_t kFifoSize = 4;
687    BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
688    for (;;) {
689      const Object* obj = NULL;
690      if (kUseMarkStackPrefetch) {
691        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
692          const Object* obj = mark_stack_[--mark_stack_pos_];
693          DCHECK(obj != NULL);
694          __builtin_prefetch(obj);
695          prefetch_fifo.push_back(obj);
696        }
697        if (UNLIKELY(prefetch_fifo.empty())) {
698          break;
699        }
700        obj = prefetch_fifo.front();
701        prefetch_fifo.pop_front();
702      } else {
703        if (UNLIKELY(mark_stack_pos_ == 0)) {
704          break;
705        }
706        obj = mark_stack_[--mark_stack_pos_];
707      }
708      DCHECK(obj != NULL);
709      visitor(obj);
710    }
711  }
712};
713
714class CardScanTask : public MarkStackTask<false> {
715 public:
716  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, accounting::SpaceBitmap* bitmap,
717               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
718               const Object** mark_stack_obj)
719      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
720        bitmap_(bitmap),
721        begin_(begin),
722        end_(end),
723        minimum_age_(minimum_age) {
724  }
725
726 protected:
727  accounting::SpaceBitmap* const bitmap_;
728  byte* const begin_;
729  byte* const end_;
730  const byte minimum_age_;
731
732  virtual void Finalize() {
733    delete this;
734  }
735
736  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
737    ScanObjectParallelVisitor visitor(this);
738    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
739    card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
740    // Finish by emptying our local mark stack.
741    MarkStackTask::Run(self);
742  }
743};
744
745size_t MarkSweep::GetThreadCount(bool paused) const {
746  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
747    return 0;
748  }
749  if (paused) {
750    return heap_->GetParallelGCThreadCount() + 1;
751  } else {
752    return heap_->GetConcGCThreadCount() + 1;
753  }
754}
755
756void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
757  accounting::CardTable* card_table = GetHeap()->GetCardTable();
758  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
759  size_t thread_count = GetThreadCount(paused);
760  // The parallel version with only one thread is faster for card scanning, TODO: fix.
761  if (kParallelCardScan && thread_count > 0) {
762    Thread* self = Thread::Current();
763    // Can't have a different split for each space since multiple spaces can have their cards being
764    // scanned at the same time.
765    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
766    // Try to take some of the mark stack since we can pass this off to the worker tasks.
767    const Object** mark_stack_begin = const_cast<const Object**>(mark_stack_->Begin());
768    const Object** mark_stack_end = const_cast<const Object**>(mark_stack_->End());
769    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
770    // Estimated number of work tasks we will create.
771    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
772    DCHECK_NE(mark_stack_tasks, 0U);
773    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
774                                             mark_stack_size / mark_stack_tasks + 1);
775    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
776      byte* card_begin = space->Begin();
777      byte* card_end = space->End();
778      // Calculate how many bytes of heap we will scan,
779      const size_t address_range = card_end - card_begin;
780      // Calculate how much address range each task gets.
781      const size_t card_delta = RoundUp(address_range / thread_count + 1,
782                                        accounting::CardTable::kCardSize);
783      // Create the worker tasks for this space.
784      while (card_begin != card_end) {
785        // Add a range of cards.
786        size_t addr_remaining = card_end - card_begin;
787        size_t card_increment = std::min(card_delta, addr_remaining);
788        // Take from the back of the mark stack.
789        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
790        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
791        mark_stack_end -= mark_stack_increment;
792        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
793        DCHECK_EQ(mark_stack_end, mark_stack_->End());
794        // Add the new task to the thread pool.
795        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
796                                      card_begin + card_increment, minimum_age,
797                                      mark_stack_increment, mark_stack_end);
798        thread_pool->AddTask(self, task);
799        card_begin += card_increment;
800      }
801    }
802    thread_pool->SetMaxActiveWorkers(thread_count - 1);
803    thread_pool->StartWorkers(self);
804    thread_pool->Wait(self, true, true);
805    thread_pool->StopWorkers(self);
806    timings_.EndSplit();
807  } else {
808    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
809      // Image spaces are handled properly since live == marked for them.
810      switch (space->GetGcRetentionPolicy()) {
811        case space::kGcRetentionPolicyNeverCollect:
812          timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
813              "ScanGrayImageSpaceObjects");
814          break;
815        case space::kGcRetentionPolicyFullCollect:
816          timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
817              "ScanGrayZygoteSpaceObjects");
818          break;
819        case space::kGcRetentionPolicyAlwaysCollect:
820          timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
821              "ScanGrayAllocSpaceObjects");
822          break;
823        }
824      ScanObjectVisitor visitor(this);
825      card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
826      timings_.EndSplit();
827    }
828  }
829}
830
831void MarkSweep::VerifyImageRoots() {
832  // Verify roots ensures that all the references inside the image space point
833  // objects which are either in the image space or marked objects in the alloc
834  // space
835  timings_.StartSplit("VerifyImageRoots");
836  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
837    if (space->IsImageSpace()) {
838      space::ImageSpace* image_space = space->AsImageSpace();
839      uintptr_t begin = reinterpret_cast<uintptr_t>(image_space->Begin());
840      uintptr_t end = reinterpret_cast<uintptr_t>(image_space->End());
841      accounting::SpaceBitmap* live_bitmap = image_space->GetLiveBitmap();
842      DCHECK(live_bitmap != NULL);
843      live_bitmap->VisitMarkedRange(begin, end, [this](const Object* obj) {
844        if (kCheckLocks) {
845          Locks::heap_bitmap_lock_->AssertSharedHeld(Thread::Current());
846        }
847        DCHECK(obj != NULL);
848        CheckObject(obj);
849      });
850    }
851  }
852  timings_.EndSplit();
853}
854
855class RecursiveMarkTask : public MarkStackTask<false> {
856 public:
857  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
858                    accounting::SpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
859      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
860        bitmap_(bitmap),
861        begin_(begin),
862        end_(end) {
863  }
864
865 protected:
866  accounting::SpaceBitmap* const bitmap_;
867  const uintptr_t begin_;
868  const uintptr_t end_;
869
870  virtual void Finalize() {
871    delete this;
872  }
873
874  // Scans all of the objects
875  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
876    ScanObjectParallelVisitor visitor(this);
877    bitmap_->VisitMarkedRange(begin_, end_, visitor);
878    // Finish by emptying our local mark stack.
879    MarkStackTask::Run(self);
880  }
881};
882
883// Populates the mark stack based on the set of marked objects and
884// recursively marks until the mark stack is emptied.
885void MarkSweep::RecursiveMark() {
886  base::TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
887  // RecursiveMark will build the lists of known instances of the Reference classes.
888  // See DelayReferenceReferent for details.
889  CHECK(soft_reference_list_ == NULL);
890  CHECK(weak_reference_list_ == NULL);
891  CHECK(finalizer_reference_list_ == NULL);
892  CHECK(phantom_reference_list_ == NULL);
893  CHECK(cleared_reference_list_ == NULL);
894
895  if (kUseRecursiveMark) {
896    const bool partial = GetGcType() == kGcTypePartial;
897    ScanObjectVisitor scan_visitor(this);
898    auto* self = Thread::Current();
899    ThreadPool* thread_pool = heap_->GetThreadPool();
900    size_t thread_count = GetThreadCount(false);
901    const bool parallel = kParallelRecursiveMark && thread_count > 1;
902    mark_stack_->Reset();
903    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
904      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
905          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
906        current_mark_bitmap_ = space->GetMarkBitmap();
907        if (current_mark_bitmap_ == NULL) {
908          GetHeap()->DumpSpaces();
909          LOG(FATAL) << "invalid bitmap";
910        }
911        if (parallel) {
912          // We will use the mark stack the future.
913          // CHECK(mark_stack_->IsEmpty());
914          // This function does not handle heap end increasing, so we must use the space end.
915          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
916          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
917          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
918
919          // Create a few worker tasks.
920          const size_t n = thread_count * 2;
921          while (begin != end) {
922            uintptr_t start = begin;
923            uintptr_t delta = (end - begin) / n;
924            delta = RoundUp(delta, KB);
925            if (delta < 16 * KB) delta = end - begin;
926            begin += delta;
927            auto* task = new RecursiveMarkTask(thread_pool, this, current_mark_bitmap_, start,
928                                               begin);
929            thread_pool->AddTask(self, task);
930          }
931          thread_pool->SetMaxActiveWorkers(thread_count - 1);
932          thread_pool->StartWorkers(self);
933          thread_pool->Wait(self, true, true);
934          thread_pool->StopWorkers(self);
935        } else {
936          // This function does not handle heap end increasing, so we must use the space end.
937          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
938          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
939          current_mark_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
940        }
941      }
942    }
943  }
944  ProcessMarkStack(false);
945}
946
947bool MarkSweep::IsMarkedCallback(const Object* object, void* arg) {
948  return
949      reinterpret_cast<MarkSweep*>(arg)->IsMarked(object) ||
950      !reinterpret_cast<MarkSweep*>(arg)->GetHeap()->GetLiveBitmap()->Test(object);
951}
952
953void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
954  ScanGrayObjects(paused, minimum_age);
955  ProcessMarkStack(paused);
956}
957
958void MarkSweep::ReMarkRoots() {
959  timings_.StartSplit("ReMarkRoots");
960  Runtime::Current()->VisitRoots(ReMarkObjectVisitor, this, true, true);
961  timings_.EndSplit();
962}
963
964void MarkSweep::SweepJniWeakGlobals(IsMarkedTester is_marked, void* arg) {
965  JavaVMExt* vm = Runtime::Current()->GetJavaVM();
966  MutexLock mu(Thread::Current(), vm->weak_globals_lock);
967  for (const Object** entry : vm->weak_globals) {
968    if (!is_marked(*entry, arg)) {
969      *entry = kClearedJniWeakGlobal;
970    }
971  }
972}
973
974struct ArrayMarkedCheck {
975  accounting::ObjectStack* live_stack;
976  MarkSweep* mark_sweep;
977};
978
979// Either marked or not live.
980bool MarkSweep::IsMarkedArrayCallback(const Object* object, void* arg) {
981  ArrayMarkedCheck* array_check = reinterpret_cast<ArrayMarkedCheck*>(arg);
982  if (array_check->mark_sweep->IsMarked(object)) {
983    return true;
984  }
985  accounting::ObjectStack* live_stack = array_check->live_stack;
986  return std::find(live_stack->Begin(), live_stack->End(), object) == live_stack->End();
987}
988
989void MarkSweep::SweepSystemWeaksArray(accounting::ObjectStack* allocations) {
990  Runtime* runtime = Runtime::Current();
991  // The callbacks check
992  // !is_marked where is_marked is the callback but we want
993  // !IsMarked && IsLive
994  // So compute !(!IsMarked && IsLive) which is equal to (IsMarked || !IsLive).
995  // Or for swapped (IsLive || !IsMarked).
996
997  timings_.StartSplit("SweepSystemWeaksArray");
998  ArrayMarkedCheck visitor;
999  visitor.live_stack = allocations;
1000  visitor.mark_sweep = this;
1001  runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedArrayCallback, &visitor);
1002  runtime->GetMonitorList()->SweepMonitorList(IsMarkedArrayCallback, &visitor);
1003  SweepJniWeakGlobals(IsMarkedArrayCallback, &visitor);
1004  timings_.EndSplit();
1005}
1006
1007void MarkSweep::SweepSystemWeaks() {
1008  Runtime* runtime = Runtime::Current();
1009  // The callbacks check
1010  // !is_marked where is_marked is the callback but we want
1011  // !IsMarked && IsLive
1012  // So compute !(!IsMarked && IsLive) which is equal to (IsMarked || !IsLive).
1013  // Or for swapped (IsLive || !IsMarked).
1014  timings_.StartSplit("SweepSystemWeaks");
1015  runtime->GetInternTable()->SweepInternTableWeaks(IsMarkedCallback, this);
1016  runtime->GetMonitorList()->SweepMonitorList(IsMarkedCallback, this);
1017  SweepJniWeakGlobals(IsMarkedCallback, this);
1018  timings_.EndSplit();
1019}
1020
1021bool MarkSweep::VerifyIsLiveCallback(const Object* obj, void* arg) {
1022  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
1023  // We don't actually want to sweep the object, so lets return "marked"
1024  return true;
1025}
1026
1027void MarkSweep::VerifyIsLive(const Object* obj) {
1028  Heap* heap = GetHeap();
1029  if (!heap->GetLiveBitmap()->Test(obj)) {
1030    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1031    if (!large_object_space->GetLiveObjects()->Test(obj)) {
1032      if (std::find(heap->allocation_stack_->Begin(), heap->allocation_stack_->End(), obj) ==
1033          heap->allocation_stack_->End()) {
1034        // Object not found!
1035        heap->DumpSpaces();
1036        LOG(FATAL) << "Found dead object " << obj;
1037      }
1038    }
1039  }
1040}
1041
1042void MarkSweep::VerifySystemWeaks() {
1043  Runtime* runtime = Runtime::Current();
1044  // Verify system weaks, uses a special IsMarked callback which always returns true.
1045  runtime->GetInternTable()->SweepInternTableWeaks(VerifyIsLiveCallback, this);
1046  runtime->GetMonitorList()->SweepMonitorList(VerifyIsLiveCallback, this);
1047
1048  JavaVMExt* vm = runtime->GetJavaVM();
1049  MutexLock mu(Thread::Current(), vm->weak_globals_lock);
1050  for (const Object** entry : vm->weak_globals) {
1051    VerifyIsLive(*entry);
1052  }
1053}
1054
1055struct SweepCallbackContext {
1056  MarkSweep* mark_sweep;
1057  space::AllocSpace* space;
1058  Thread* self;
1059};
1060
1061class CheckpointMarkThreadRoots : public Closure {
1062 public:
1063  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {}
1064
1065  virtual void Run(Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1066    // Note: self is not necessarily equal to thread since thread may be suspended.
1067    Thread* self = Thread::Current();
1068    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
1069        << thread->GetState() << " thread " << thread << " self " << self;
1070    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
1071    mark_sweep_->GetBarrier().Pass(self);
1072  }
1073
1074 private:
1075  MarkSweep* mark_sweep_;
1076};
1077
1078void MarkSweep::MarkRootsCheckpoint(Thread* self) {
1079  CheckpointMarkThreadRoots check_point(this);
1080  timings_.StartSplit("MarkRootsCheckpoint");
1081  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1082  // Request the check point is run on all threads returning a count of the threads that must
1083  // run through the barrier including self.
1084  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1085  // Release locks then wait for all mutator threads to pass the barrier.
1086  // TODO: optimize to not release locks when there are no threads to wait for.
1087  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1088  Locks::mutator_lock_->SharedUnlock(self);
1089  ThreadState old_state = self->SetState(kWaitingForCheckPointsToRun);
1090  CHECK_EQ(old_state, kWaitingPerformingGc);
1091  gc_barrier_->Increment(self, barrier_count);
1092  self->SetState(kWaitingPerformingGc);
1093  Locks::mutator_lock_->SharedLock(self);
1094  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1095  timings_.EndSplit();
1096}
1097
1098void MarkSweep::SweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
1099  SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
1100  MarkSweep* mark_sweep = context->mark_sweep;
1101  Heap* heap = mark_sweep->GetHeap();
1102  space::AllocSpace* space = context->space;
1103  Thread* self = context->self;
1104  Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
1105  // Use a bulk free, that merges consecutive objects before freeing or free per object?
1106  // Documentation suggests better free performance with merging, but this may be at the expensive
1107  // of allocation.
1108  size_t freed_objects = num_ptrs;
1109  // AllocSpace::FreeList clears the value in ptrs, so perform after clearing the live bit
1110  size_t freed_bytes = space->FreeList(self, num_ptrs, ptrs);
1111  heap->RecordFree(freed_objects, freed_bytes);
1112  mark_sweep->freed_objects_.fetch_add(freed_objects);
1113  mark_sweep->freed_bytes_.fetch_add(freed_bytes);
1114}
1115
1116void MarkSweep::ZygoteSweepCallback(size_t num_ptrs, Object** ptrs, void* arg) {
1117  SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
1118  Locks::heap_bitmap_lock_->AssertExclusiveHeld(context->self);
1119  Heap* heap = context->mark_sweep->GetHeap();
1120  // We don't free any actual memory to avoid dirtying the shared zygote pages.
1121  for (size_t i = 0; i < num_ptrs; ++i) {
1122    Object* obj = static_cast<Object*>(ptrs[i]);
1123    heap->GetLiveBitmap()->Clear(obj);
1124    heap->GetCardTable()->MarkCard(obj);
1125  }
1126}
1127
1128void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1129  space::DlMallocSpace* space = heap_->GetAllocSpace();
1130
1131  // If we don't swap bitmaps then newly allocated Weaks go into the live bitmap but not mark
1132  // bitmap, resulting in occasional frees of Weaks which are still in use.
1133  SweepSystemWeaksArray(allocations);
1134
1135  timings_.StartSplit("SweepArray");
1136  // Newly allocated objects MUST be in the alloc space and those are the only objects which we are
1137  // going to free.
1138  accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1139  accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1140  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1141  accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
1142  accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
1143  if (swap_bitmaps) {
1144    std::swap(live_bitmap, mark_bitmap);
1145    std::swap(large_live_objects, large_mark_objects);
1146  }
1147
1148  size_t freed_bytes = 0;
1149  size_t freed_large_object_bytes = 0;
1150  size_t freed_objects = 0;
1151  size_t freed_large_objects = 0;
1152  size_t count = allocations->Size();
1153  Object** objects = const_cast<Object**>(allocations->Begin());
1154  Object** out = objects;
1155  Object** objects_to_chunk_free = out;
1156
1157  // Empty the allocation stack.
1158  Thread* self = Thread::Current();
1159  for (size_t i = 0; i < count; ++i) {
1160    Object* obj = objects[i];
1161    // There should only be objects in the AllocSpace/LargeObjectSpace in the allocation stack.
1162    if (LIKELY(mark_bitmap->HasAddress(obj))) {
1163      if (!mark_bitmap->Test(obj)) {
1164        // Don't bother un-marking since we clear the mark bitmap anyways.
1165        *(out++) = obj;
1166        // Free objects in chunks.
1167        DCHECK_GE(out, objects_to_chunk_free);
1168        DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize);
1169        if (static_cast<size_t>(out - objects_to_chunk_free) == kSweepArrayChunkFreeSize) {
1170          timings_.StartSplit("FreeList");
1171          size_t chunk_freed_objects = out - objects_to_chunk_free;
1172          freed_objects += chunk_freed_objects;
1173          freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free);
1174          objects_to_chunk_free = out;
1175          timings_.EndSplit();
1176        }
1177      }
1178    } else if (!large_mark_objects->Test(obj)) {
1179      ++freed_large_objects;
1180      freed_large_object_bytes += large_object_space->Free(self, obj);
1181    }
1182  }
1183  // Free the remaining objects in chunks.
1184  DCHECK_GE(out, objects_to_chunk_free);
1185  DCHECK_LE(static_cast<size_t>(out - objects_to_chunk_free), kSweepArrayChunkFreeSize);
1186  if (out - objects_to_chunk_free > 0) {
1187    timings_.StartSplit("FreeList");
1188    size_t chunk_freed_objects = out - objects_to_chunk_free;
1189    freed_objects += chunk_freed_objects;
1190    freed_bytes += space->FreeList(self, chunk_freed_objects, objects_to_chunk_free);
1191    timings_.EndSplit();
1192  }
1193  CHECK_EQ(count, allocations->Size());
1194  timings_.EndSplit();
1195
1196  timings_.StartSplit("RecordFree");
1197  VLOG(heap) << "Freed " << freed_objects << "/" << count
1198             << " objects with size " << PrettySize(freed_bytes);
1199  heap_->RecordFree(freed_objects + freed_large_objects, freed_bytes + freed_large_object_bytes);
1200  freed_objects_.fetch_add(freed_objects);
1201  freed_large_objects_.fetch_add(freed_large_objects);
1202  freed_bytes_.fetch_add(freed_bytes);
1203  freed_large_object_bytes_.fetch_add(freed_large_object_bytes);
1204  timings_.EndSplit();
1205
1206  timings_.StartSplit("ResetStack");
1207  allocations->Reset();
1208  timings_.EndSplit();
1209}
1210
1211void MarkSweep::Sweep(bool swap_bitmaps) {
1212  DCHECK(mark_stack_->IsEmpty());
1213  base::TimingLogger::ScopedSplit("Sweep", &timings_);
1214
1215  // If we don't swap bitmaps then newly allocated Weaks go into the live bitmap but not mark
1216  // bitmap, resulting in occasional frees of Weaks which are still in use.
1217  SweepSystemWeaks();
1218
1219  const bool partial = (GetGcType() == kGcTypePartial);
1220  SweepCallbackContext scc;
1221  scc.mark_sweep = this;
1222  scc.self = Thread::Current();
1223  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1224    // We always sweep always collect spaces.
1225    bool sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect);
1226    if (!partial && !sweep_space) {
1227      // We sweep full collect spaces when the GC isn't a partial GC (ie its full).
1228      sweep_space = (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect);
1229    }
1230    if (sweep_space) {
1231      uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
1232      uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
1233      scc.space = space->AsDlMallocSpace();
1234      accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1235      accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1236      if (swap_bitmaps) {
1237        std::swap(live_bitmap, mark_bitmap);
1238      }
1239      if (!space->IsZygoteSpace()) {
1240        base::TimingLogger::ScopedSplit split("SweepAllocSpace", &timings_);
1241        // Bitmaps are pre-swapped for optimization which enables sweeping with the heap unlocked.
1242        accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
1243                                           &SweepCallback, reinterpret_cast<void*>(&scc));
1244      } else {
1245        base::TimingLogger::ScopedSplit split("SweepZygote", &timings_);
1246        // Zygote sweep takes care of dirtying cards and clearing live bits, does not free actual
1247        // memory.
1248        accounting::SpaceBitmap::SweepWalk(*live_bitmap, *mark_bitmap, begin, end,
1249                                           &ZygoteSweepCallback, reinterpret_cast<void*>(&scc));
1250      }
1251    }
1252  }
1253
1254  SweepLargeObjects(swap_bitmaps);
1255}
1256
1257void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1258  base::TimingLogger::ScopedSplit("SweepLargeObjects", &timings_);
1259  // Sweep large objects
1260  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1261  accounting::SpaceSetMap* large_live_objects = large_object_space->GetLiveObjects();
1262  accounting::SpaceSetMap* large_mark_objects = large_object_space->GetMarkObjects();
1263  if (swap_bitmaps) {
1264    std::swap(large_live_objects, large_mark_objects);
1265  }
1266  // O(n*log(n)) but hopefully there are not too many large objects.
1267  size_t freed_objects = 0;
1268  size_t freed_bytes = 0;
1269  Thread* self = Thread::Current();
1270  for (const Object* obj : large_live_objects->GetObjects()) {
1271    if (!large_mark_objects->Test(obj)) {
1272      freed_bytes += large_object_space->Free(self, const_cast<Object*>(obj));
1273      ++freed_objects;
1274    }
1275  }
1276  freed_large_objects_.fetch_add(freed_objects);
1277  freed_large_object_bytes_.fetch_add(freed_bytes);
1278  GetHeap()->RecordFree(freed_objects, freed_bytes);
1279}
1280
1281void MarkSweep::CheckReference(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) {
1282  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1283    if (space->IsDlMallocSpace() && space->Contains(ref)) {
1284      DCHECK(IsMarked(obj));
1285
1286      bool is_marked = IsMarked(ref);
1287      if (!is_marked) {
1288        LOG(INFO) << *space;
1289        LOG(WARNING) << (is_static ? "Static ref'" : "Instance ref'") << PrettyTypeOf(ref)
1290                     << "' (" << reinterpret_cast<const void*>(ref) << ") in '" << PrettyTypeOf(obj)
1291                     << "' (" << reinterpret_cast<const void*>(obj) << ") at offset "
1292                     << reinterpret_cast<void*>(offset.Int32Value()) << " wasn't marked";
1293
1294        const Class* klass = is_static ? obj->AsClass() : obj->GetClass();
1295        DCHECK(klass != NULL);
1296        const ObjectArray<ArtField>* fields = is_static ? klass->GetSFields() : klass->GetIFields();
1297        DCHECK(fields != NULL);
1298        bool found = false;
1299        for (int32_t i = 0; i < fields->GetLength(); ++i) {
1300          const ArtField* cur = fields->Get(i);
1301          if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
1302            LOG(WARNING) << "Field referencing the alloc space was " << PrettyField(cur);
1303            found = true;
1304            break;
1305          }
1306        }
1307        if (!found) {
1308          LOG(WARNING) << "Could not find field in object alloc space with offset " << offset.Int32Value();
1309        }
1310
1311        bool obj_marked = heap_->GetCardTable()->IsDirty(obj);
1312        if (!obj_marked) {
1313          LOG(WARNING) << "Object '" << PrettyTypeOf(obj) << "' "
1314                       << "(" << reinterpret_cast<const void*>(obj) << ") contains references to "
1315                       << "the alloc space, but wasn't card marked";
1316        }
1317      }
1318    }
1319    break;
1320  }
1321}
1322
1323// Process the "referent" field in a java.lang.ref.Reference.  If the
1324// referent has not yet been marked, put it on the appropriate list in
1325// the heap for later processing.
1326void MarkSweep::DelayReferenceReferent(mirror::Class* klass, Object* obj) {
1327  DCHECK(klass != nullptr);
1328  DCHECK(klass->IsReferenceClass());
1329  DCHECK(obj != NULL);
1330  Object* referent = heap_->GetReferenceReferent(obj);
1331  if (referent != NULL && !IsMarked(referent)) {
1332    if (kCountJavaLangRefs) {
1333      ++reference_count_;
1334    }
1335    Thread* self = Thread::Current();
1336    // TODO: Remove these locks, and use atomic stacks for storing references?
1337    if (klass->IsSoftReferenceClass()) {
1338      MutexLock mu(self, *heap_->GetSoftRefQueueLock());
1339      heap_->EnqueuePendingReference(obj, &soft_reference_list_);
1340    } else if (klass->IsWeakReferenceClass()) {
1341      MutexLock mu(self, *heap_->GetWeakRefQueueLock());
1342      heap_->EnqueuePendingReference(obj, &weak_reference_list_);
1343    } else if (klass->IsFinalizerReferenceClass()) {
1344      MutexLock mu(self, *heap_->GetFinalizerRefQueueLock());
1345      heap_->EnqueuePendingReference(obj, &finalizer_reference_list_);
1346    } else if (klass->IsPhantomReferenceClass()) {
1347      MutexLock mu(self, *heap_->GetPhantomRefQueueLock());
1348      heap_->EnqueuePendingReference(obj, &phantom_reference_list_);
1349    } else {
1350      LOG(FATAL) << "Invalid reference type " << PrettyClass(klass)
1351                 << " " << std::hex << klass->GetAccessFlags();
1352    }
1353  }
1354}
1355
1356void MarkSweep::ScanRoot(const Object* obj) {
1357  ScanObject(obj);
1358}
1359
1360class MarkObjectVisitor {
1361 public:
1362  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {}
1363
1364  // TODO: Fixme when anotatalysis works with visitors.
1365  void operator()(const Object* /* obj */, const Object* ref, const MemberOffset& /* offset */,
1366                  bool /* is_static */) const ALWAYS_INLINE
1367      NO_THREAD_SAFETY_ANALYSIS {
1368    if (kCheckLocks) {
1369      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1370      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1371    }
1372    mark_sweep_->MarkObject(ref);
1373  }
1374
1375 private:
1376  MarkSweep* const mark_sweep_;
1377};
1378
1379// Scans an object reference.  Determines the type of the reference
1380// and dispatches to a specialized scanning routine.
1381void MarkSweep::ScanObject(const Object* obj) {
1382  MarkObjectVisitor visitor(this);
1383  ScanObjectVisit(obj, visitor);
1384}
1385
1386void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1387  Thread* self = Thread::Current();
1388  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1389  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1390                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1391  CHECK_GT(chunk_size, 0U);
1392  // Split the current mark stack up into work tasks.
1393  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1394    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1395    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta,
1396                                                        const_cast<const mirror::Object**>(it)));
1397    it += delta;
1398  }
1399  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1400  thread_pool->StartWorkers(self);
1401  thread_pool->Wait(self, true, true);
1402  thread_pool->StopWorkers(self);
1403  mark_stack_->Reset();
1404  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1405}
1406
1407// Scan anything that's on the mark stack.
1408void MarkSweep::ProcessMarkStack(bool paused) {
1409  timings_.StartSplit("ProcessMarkStack");
1410  size_t thread_count = GetThreadCount(paused);
1411  if (kParallelProcessMarkStack && thread_count > 1 &&
1412      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1413    ProcessMarkStackParallel(thread_count);
1414  } else {
1415    // TODO: Tune this.
1416    static const size_t kFifoSize = 4;
1417    BoundedFifoPowerOfTwo<const Object*, kFifoSize> prefetch_fifo;
1418    for (;;) {
1419      const Object* obj = NULL;
1420      if (kUseMarkStackPrefetch) {
1421        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1422          const Object* obj = mark_stack_->PopBack();
1423          DCHECK(obj != NULL);
1424          __builtin_prefetch(obj);
1425          prefetch_fifo.push_back(obj);
1426        }
1427        if (prefetch_fifo.empty()) {
1428          break;
1429        }
1430        obj = prefetch_fifo.front();
1431        prefetch_fifo.pop_front();
1432      } else {
1433        if (mark_stack_->IsEmpty()) {
1434          break;
1435        }
1436        obj = mark_stack_->PopBack();
1437      }
1438      DCHECK(obj != NULL);
1439      ScanObject(obj);
1440    }
1441  }
1442  timings_.EndSplit();
1443}
1444
1445// Walks the reference list marking any references subject to the
1446// reference clearing policy.  References with a black referent are
1447// removed from the list.  References with white referents biased
1448// toward saving are blackened and also removed from the list.
1449void MarkSweep::PreserveSomeSoftReferences(Object** list) {
1450  DCHECK(list != NULL);
1451  Object* clear = NULL;
1452  size_t counter = 0;
1453
1454  DCHECK(mark_stack_->IsEmpty());
1455
1456  timings_.StartSplit("PreserveSomeSoftReferences");
1457  while (*list != NULL) {
1458    Object* ref = heap_->DequeuePendingReference(list);
1459    Object* referent = heap_->GetReferenceReferent(ref);
1460    if (referent == NULL) {
1461      // Referent was cleared by the user during marking.
1462      continue;
1463    }
1464    bool is_marked = IsMarked(referent);
1465    if (!is_marked && ((++counter) & 1)) {
1466      // Referent is white and biased toward saving, mark it.
1467      MarkObject(referent);
1468      is_marked = true;
1469    }
1470    if (!is_marked) {
1471      // Referent is white, queue it for clearing.
1472      heap_->EnqueuePendingReference(ref, &clear);
1473    }
1474  }
1475  *list = clear;
1476  timings_.EndSplit();
1477
1478  // Restart the mark with the newly black references added to the root set.
1479  ProcessMarkStack(true);
1480}
1481
1482inline bool MarkSweep::IsMarked(const Object* object) const
1483    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1484  if (IsImmune(object)) {
1485    return true;
1486  }
1487  DCHECK(current_mark_bitmap_ != NULL);
1488  if (current_mark_bitmap_->HasAddress(object)) {
1489    return current_mark_bitmap_->Test(object);
1490  }
1491  return heap_->GetMarkBitmap()->Test(object);
1492}
1493
1494
1495// Unlink the reference list clearing references objects with white
1496// referents.  Cleared references registered to a reference queue are
1497// scheduled for appending by the heap worker thread.
1498void MarkSweep::ClearWhiteReferences(Object** list) {
1499  DCHECK(list != NULL);
1500  while (*list != NULL) {
1501    Object* ref = heap_->DequeuePendingReference(list);
1502    Object* referent = heap_->GetReferenceReferent(ref);
1503    if (referent != NULL && !IsMarked(referent)) {
1504      // Referent is white, clear it.
1505      heap_->ClearReferenceReferent(ref);
1506      if (heap_->IsEnqueuable(ref)) {
1507        heap_->EnqueueReference(ref, &cleared_reference_list_);
1508      }
1509    }
1510  }
1511  DCHECK(*list == NULL);
1512}
1513
1514// Enqueues finalizer references with white referents.  White
1515// referents are blackened, moved to the zombie field, and the
1516// referent field is cleared.
1517void MarkSweep::EnqueueFinalizerReferences(Object** list) {
1518  DCHECK(list != NULL);
1519  timings_.StartSplit("EnqueueFinalizerReferences");
1520  MemberOffset zombie_offset = heap_->GetFinalizerReferenceZombieOffset();
1521  bool has_enqueued = false;
1522  while (*list != NULL) {
1523    Object* ref = heap_->DequeuePendingReference(list);
1524    Object* referent = heap_->GetReferenceReferent(ref);
1525    if (referent != NULL && !IsMarked(referent)) {
1526      MarkObject(referent);
1527      // If the referent is non-null the reference must queuable.
1528      DCHECK(heap_->IsEnqueuable(ref));
1529      ref->SetFieldObject(zombie_offset, referent, false);
1530      heap_->ClearReferenceReferent(ref);
1531      heap_->EnqueueReference(ref, &cleared_reference_list_);
1532      has_enqueued = true;
1533    }
1534  }
1535  timings_.EndSplit();
1536  if (has_enqueued) {
1537    ProcessMarkStack(true);
1538  }
1539  DCHECK(*list == NULL);
1540}
1541
1542// Process reference class instances and schedule finalizations.
1543void MarkSweep::ProcessReferences(Object** soft_references, bool clear_soft,
1544                                  Object** weak_references,
1545                                  Object** finalizer_references,
1546                                  Object** phantom_references) {
1547  DCHECK(soft_references != NULL);
1548  DCHECK(weak_references != NULL);
1549  DCHECK(finalizer_references != NULL);
1550  DCHECK(phantom_references != NULL);
1551
1552  // Unless we are in the zygote or required to clear soft references
1553  // with white references, preserve some white referents.
1554  if (!clear_soft && !Runtime::Current()->IsZygote()) {
1555    PreserveSomeSoftReferences(soft_references);
1556  }
1557
1558  timings_.StartSplit("ProcessReferences");
1559  // Clear all remaining soft and weak references with white
1560  // referents.
1561  ClearWhiteReferences(soft_references);
1562  ClearWhiteReferences(weak_references);
1563  timings_.EndSplit();
1564
1565  // Preserve all white objects with finalize methods and schedule
1566  // them for finalization.
1567  EnqueueFinalizerReferences(finalizer_references);
1568
1569  timings_.StartSplit("ProcessReferences");
1570  // Clear all f-reachable soft and weak references with white
1571  // referents.
1572  ClearWhiteReferences(soft_references);
1573  ClearWhiteReferences(weak_references);
1574
1575  // Clear all phantom references with white referents.
1576  ClearWhiteReferences(phantom_references);
1577
1578  // At this point all reference lists should be empty.
1579  DCHECK(*soft_references == NULL);
1580  DCHECK(*weak_references == NULL);
1581  DCHECK(*finalizer_references == NULL);
1582  DCHECK(*phantom_references == NULL);
1583  timings_.EndSplit();
1584}
1585
1586void MarkSweep::UnBindBitmaps() {
1587  base::TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
1588  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1589    if (space->IsDlMallocSpace()) {
1590      space::DlMallocSpace* alloc_space = space->AsDlMallocSpace();
1591      if (alloc_space->temp_bitmap_.get() != NULL) {
1592        // At this point, the temp_bitmap holds our old mark bitmap.
1593        accounting::SpaceBitmap* new_bitmap = alloc_space->temp_bitmap_.release();
1594        GetHeap()->GetMarkBitmap()->ReplaceBitmap(alloc_space->mark_bitmap_.get(), new_bitmap);
1595        CHECK_EQ(alloc_space->mark_bitmap_.release(), alloc_space->live_bitmap_.get());
1596        alloc_space->mark_bitmap_.reset(new_bitmap);
1597        DCHECK(alloc_space->temp_bitmap_.get() == NULL);
1598      }
1599    }
1600  }
1601}
1602
1603void MarkSweep::FinishPhase() {
1604  base::TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1605  // Can't enqueue references if we hold the mutator lock.
1606  Object* cleared_references = GetClearedReferences();
1607  Heap* heap = GetHeap();
1608  timings_.NewSplit("EnqueueClearedReferences");
1609  heap->EnqueueClearedReferences(&cleared_references);
1610
1611  timings_.NewSplit("PostGcVerification");
1612  heap->PostGcVerification(this);
1613
1614  timings_.NewSplit("GrowForUtilization");
1615  heap->GrowForUtilization(GetGcType(), GetDurationNs());
1616
1617  timings_.NewSplit("RequestHeapTrim");
1618  heap->RequestHeapTrim();
1619
1620  // Update the cumulative statistics
1621  total_time_ns_ += GetDurationNs();
1622  total_paused_time_ns_ += std::accumulate(GetPauseTimes().begin(), GetPauseTimes().end(), 0,
1623                                           std::plus<uint64_t>());
1624  total_freed_objects_ += GetFreedObjects() + GetFreedLargeObjects();
1625  total_freed_bytes_ += GetFreedBytes() + GetFreedLargeObjectBytes();
1626
1627  // Ensure that the mark stack is empty.
1628  CHECK(mark_stack_->IsEmpty());
1629
1630  if (kCountScannedTypes) {
1631    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1632             << " other=" << other_count_;
1633  }
1634
1635  if (kCountTasks) {
1636    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1637  }
1638
1639  if (kMeasureOverhead) {
1640    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1641  }
1642
1643  if (kProfileLargeObjects) {
1644    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1645  }
1646
1647  if (kCountClassesMarked) {
1648    VLOG(gc) << "Classes marked " << classes_marked_;
1649  }
1650
1651  if (kCountJavaLangRefs) {
1652    VLOG(gc) << "References scanned " << reference_count_;
1653  }
1654
1655  // Update the cumulative loggers.
1656  cumulative_timings_.Start();
1657  cumulative_timings_.AddLogger(timings_);
1658  cumulative_timings_.End();
1659
1660  // Clear all of the spaces' mark bitmaps.
1661  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1662    if (space->GetGcRetentionPolicy() != space::kGcRetentionPolicyNeverCollect) {
1663      space->GetMarkBitmap()->Clear();
1664    }
1665  }
1666  mark_stack_->Reset();
1667
1668  // Reset the marked large objects.
1669  space::LargeObjectSpace* large_objects = GetHeap()->GetLargeObjectsSpace();
1670  large_objects->GetMarkObjects()->Clear();
1671}
1672
1673}  // namespace collector
1674}  // namespace gc
1675}  // namespace art
1676