mark_sweep.cc revision 4460a84be92b5a94ecfb5c650aef4945ab849c93
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#define ATRACE_TAG ATRACE_TAG_DALVIK
25#include "cutils/trace.h"
26
27#include "base/bounded_fifo.h"
28#include "base/logging.h"
29#include "base/macros.h"
30#include "base/mutex-inl.h"
31#include "base/timing_logger.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/space_bitmap-inl.h"
36#include "gc/heap.h"
37#include "gc/reference_processor.h"
38#include "gc/space/image_space.h"
39#include "gc/space/large_object_space.h"
40#include "gc/space/space-inl.h"
41#include "mark_sweep-inl.h"
42#include "mirror/art_field-inl.h"
43#include "mirror/object-inl.h"
44#include "runtime.h"
45#include "scoped_thread_state_change.h"
46#include "thread-inl.h"
47#include "thread_list.h"
48
49using ::art::mirror::Object;
50
51namespace art {
52namespace gc {
53namespace collector {
54
55// Performance options.
56static constexpr bool kUseRecursiveMark = false;
57static constexpr bool kUseMarkStackPrefetch = true;
58static constexpr size_t kSweepArrayChunkFreeSize = 1024;
59static constexpr bool kPreCleanCards = true;
60
61// Parallelism options.
62static constexpr bool kParallelCardScan = true;
63static constexpr bool kParallelRecursiveMark = true;
64// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
65// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
66// having this can add overhead in ProcessReferences since we may end up doing many calls of
67// ProcessMarkStack with very small mark stacks.
68static constexpr size_t kMinimumParallelMarkStackSize = 128;
69static constexpr bool kParallelProcessMarkStack = true;
70
71// Profiling and information flags.
72static constexpr bool kProfileLargeObjects = false;
73static constexpr bool kMeasureOverhead = false;
74static constexpr bool kCountTasks = false;
75static constexpr bool kCountJavaLangRefs = false;
76static constexpr bool kCountMarkedObjects = false;
77
78// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
79static constexpr bool kCheckLocks = kDebugLocking;
80static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
81
82// If true, revoke the rosalloc thread-local buffers at the
83// checkpoint, as opposed to during the pause.
84static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
85
86void MarkSweep::BindBitmaps() {
87  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
88  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
89  // Mark all of the spaces we never collect as immune.
90  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
91    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
92      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
93    }
94  }
95}
96
97MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
98    : GarbageCollector(heap,
99                       name_prefix +
100                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
101      current_space_bitmap_(nullptr), mark_bitmap_(nullptr), mark_stack_(nullptr),
102      gc_barrier_(new Barrier(0)),
103      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
104      is_concurrent_(is_concurrent), live_stack_freeze_size_(0) {
105  std::string error_msg;
106  MemMap* mem_map = MemMap::MapAnonymous(
107      "mark sweep sweep array free buffer", nullptr,
108      RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
109      PROT_READ | PROT_WRITE, false, false, &error_msg);
110  CHECK(mem_map != nullptr) << "Couldn't allocate sweep array free buffer: " << error_msg;
111  sweep_array_free_buffer_mem_map_.reset(mem_map);
112}
113
114void MarkSweep::InitializePhase() {
115  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
116  mark_stack_ = heap_->GetMarkStack();
117  DCHECK(mark_stack_ != nullptr);
118  immune_region_.Reset();
119  class_count_.StoreRelaxed(0);
120  array_count_.StoreRelaxed(0);
121  other_count_.StoreRelaxed(0);
122  large_object_test_.StoreRelaxed(0);
123  large_object_mark_.StoreRelaxed(0);
124  overhead_time_ .StoreRelaxed(0);
125  work_chunks_created_.StoreRelaxed(0);
126  work_chunks_deleted_.StoreRelaxed(0);
127  reference_count_.StoreRelaxed(0);
128  mark_null_count_.StoreRelaxed(0);
129  mark_immune_count_.StoreRelaxed(0);
130  mark_fastpath_count_.StoreRelaxed(0);
131  mark_slowpath_count_.StoreRelaxed(0);
132  {
133    // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
134    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
135    mark_bitmap_ = heap_->GetMarkBitmap();
136  }
137  if (!GetCurrentIteration()->GetClearSoftReferences()) {
138    // Always clear soft references if a non-sticky collection.
139    GetCurrentIteration()->SetClearSoftReferences(GetGcType() != collector::kGcTypeSticky);
140  }
141}
142
143void MarkSweep::RunPhases() {
144  Thread* self = Thread::Current();
145  InitializePhase();
146  Locks::mutator_lock_->AssertNotHeld(self);
147  if (IsConcurrent()) {
148    GetHeap()->PreGcVerification(this);
149    {
150      ReaderMutexLock mu(self, *Locks::mutator_lock_);
151      MarkingPhase();
152    }
153    ScopedPause pause(this);
154    GetHeap()->PrePauseRosAllocVerification(this);
155    PausePhase();
156    RevokeAllThreadLocalBuffers();
157  } else {
158    ScopedPause pause(this);
159    GetHeap()->PreGcVerificationPaused(this);
160    MarkingPhase();
161    GetHeap()->PrePauseRosAllocVerification(this);
162    PausePhase();
163    RevokeAllThreadLocalBuffers();
164  }
165  {
166    // Sweeping always done concurrently, even for non concurrent mark sweep.
167    ReaderMutexLock mu(self, *Locks::mutator_lock_);
168    ReclaimPhase();
169  }
170  GetHeap()->PostGcVerification(this);
171  FinishPhase();
172}
173
174void MarkSweep::ProcessReferences(Thread* self) {
175  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
176  GetHeap()->GetReferenceProcessor()->ProcessReferences(
177      true, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
178      &HeapReferenceMarkedCallback, &MarkObjectCallback, &ProcessMarkStackCallback, this);
179}
180
181void MarkSweep::PausePhase() {
182  TimingLogger::ScopedTiming t("(Paused)PausePhase", GetTimings());
183  Thread* self = Thread::Current();
184  Locks::mutator_lock_->AssertExclusiveHeld(self);
185  if (IsConcurrent()) {
186    // Handle the dirty objects if we are a concurrent GC.
187    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
188    // Re-mark root set.
189    ReMarkRoots();
190    // Scan dirty objects, this is only required if we are not doing concurrent GC.
191    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
192  }
193  {
194    TimingLogger::ScopedTiming t2("SwapStacks", GetTimings());
195    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
196    heap_->SwapStacks(self);
197    live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
198    // Need to revoke all the thread local allocation stacks since we just swapped the allocation
199    // stacks and don't want anybody to allocate into the live stack.
200    RevokeAllThreadLocalAllocationStacks(self);
201  }
202  heap_->PreSweepingGcVerification(this);
203  // Disallow new system weaks to prevent a race which occurs when someone adds a new system
204  // weak before we sweep them. Since this new system weak may not be marked, the GC may
205  // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
206  // reference to a string that is about to be swept.
207  Runtime::Current()->DisallowNewSystemWeaks();
208  // Enable the reference processing slow path, needs to be done with mutators paused since there
209  // is no lock in the GetReferent fast path.
210  GetHeap()->GetReferenceProcessor()->EnableSlowPath();
211}
212
213void MarkSweep::PreCleanCards() {
214  // Don't do this for non concurrent GCs since they don't have any dirty cards.
215  if (kPreCleanCards && IsConcurrent()) {
216    TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
217    Thread* self = Thread::Current();
218    CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
219    // Process dirty cards and add dirty cards to mod union tables, also ages cards.
220    heap_->ProcessCards(GetTimings(), false, true, false);
221    // The checkpoint root marking is required to avoid a race condition which occurs if the
222    // following happens during a reference write:
223    // 1. mutator dirties the card (write barrier)
224    // 2. GC ages the card (the above ProcessCards call)
225    // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
226    // 4. mutator writes the value (corresponding to the write barrier in 1.)
227    // This causes the GC to age the card but not necessarily mark the reference which the mutator
228    // wrote into the object stored in the card.
229    // Having the checkpoint fixes this issue since it ensures that the card mark and the
230    // reference write are visible to the GC before the card is scanned (this is due to locks being
231    // acquired / released in the checkpoint code).
232    // The other roots are also marked to help reduce the pause.
233    MarkRootsCheckpoint(self, false);
234    MarkNonThreadRoots();
235    MarkConcurrentRoots(
236        static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
237    // Process the newly aged cards.
238    RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
239    // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
240    // in the next GC.
241  }
242}
243
244void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
245  if (kUseThreadLocalAllocationStack) {
246    TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
247    Locks::mutator_lock_->AssertExclusiveHeld(self);
248    heap_->RevokeAllThreadLocalAllocationStacks(self);
249  }
250}
251
252void MarkSweep::MarkingPhase() {
253  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
254  Thread* self = Thread::Current();
255  BindBitmaps();
256  FindDefaultSpaceBitmap();
257  // Process dirty cards and add dirty cards to mod union tables.
258  // If the GC type is non sticky, then we just clear the cards instead of ageing them.
259  heap_->ProcessCards(GetTimings(), false, true, GetGcType() != kGcTypeSticky);
260  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
261  MarkRoots(self);
262  MarkReachableObjects();
263  // Pre-clean dirtied cards to reduce pauses.
264  PreCleanCards();
265}
266
267void MarkSweep::UpdateAndMarkModUnion() {
268  for (const auto& space : heap_->GetContinuousSpaces()) {
269    if (immune_region_.ContainsSpace(space)) {
270      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
271          "UpdateAndMarkImageModUnionTable";
272      TimingLogger::ScopedTiming t(name, GetTimings());
273      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
274      CHECK(mod_union_table != nullptr);
275      mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
276    }
277  }
278}
279
280void MarkSweep::MarkReachableObjects() {
281  UpdateAndMarkModUnion();
282  // Recursively mark all the non-image bits set in the mark bitmap.
283  RecursiveMark();
284}
285
286void MarkSweep::ReclaimPhase() {
287  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
288  Thread* self = Thread::Current();
289  // Process the references concurrently.
290  ProcessReferences(self);
291  SweepSystemWeaks(self);
292  Runtime::Current()->AllowNewSystemWeaks();
293  {
294    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
295    GetHeap()->RecordFreeRevoke();
296    // Reclaim unmarked objects.
297    Sweep(false);
298    // Swap the live and mark bitmaps for each space which we modified space. This is an
299    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
300    // bitmaps.
301    SwapBitmaps();
302    // Unbind the live and mark bitmaps.
303    GetHeap()->UnBindBitmaps();
304  }
305}
306
307void MarkSweep::FindDefaultSpaceBitmap() {
308  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
309  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
310    accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
311    // We want to have the main space instead of non moving if possible.
312    if (bitmap != nullptr &&
313        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
314      current_space_bitmap_ = bitmap;
315      // If we are not the non moving space exit the loop early since this will be good enough.
316      if (space != heap_->GetNonMovingSpace()) {
317        break;
318      }
319    }
320  }
321  CHECK(current_space_bitmap_ != nullptr) << "Could not find a default mark bitmap\n"
322      << heap_->DumpSpaces();
323}
324
325void MarkSweep::ExpandMarkStack() {
326  ResizeMarkStack(mark_stack_->Capacity() * 2);
327}
328
329void MarkSweep::ResizeMarkStack(size_t new_size) {
330  // Rare case, no need to have Thread::Current be a parameter.
331  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
332    // Someone else acquired the lock and expanded the mark stack before us.
333    return;
334  }
335  std::vector<StackReference<Object>> temp(mark_stack_->Begin(), mark_stack_->End());
336  CHECK_LE(mark_stack_->Size(), new_size);
337  mark_stack_->Resize(new_size);
338  for (auto& obj : temp) {
339    mark_stack_->PushBack(obj.AsMirrorPtr());
340  }
341}
342
343inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) {
344  DCHECK(obj != nullptr);
345  if (MarkObjectParallel(obj)) {
346    MutexLock mu(Thread::Current(), mark_stack_lock_);
347    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
348      ExpandMarkStack();
349    }
350    // The object must be pushed on to the mark stack.
351    mark_stack_->PushBack(obj);
352  }
353}
354
355mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
356  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
357  mark_sweep->MarkObject(obj);
358  return obj;
359}
360
361void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
362  reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr());
363}
364
365bool MarkSweep::HeapReferenceMarkedCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
366  return reinterpret_cast<MarkSweep*>(arg)->IsMarked(ref->AsMirrorPtr());
367}
368
369class MarkSweepMarkObjectSlowPath {
370 public:
371  explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {
372  }
373
374  void operator()(const Object* obj) const ALWAYS_INLINE {
375    if (kProfileLargeObjects) {
376      // TODO: Differentiate between marking and testing somehow.
377      ++mark_sweep_->large_object_test_;
378      ++mark_sweep_->large_object_mark_;
379    }
380    space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
381    if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
382                 (kIsDebugBuild && large_object_space != nullptr &&
383                     !large_object_space->Contains(obj)))) {
384      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
385      LOG(ERROR) << "Attempting see if it's a bad root";
386      mark_sweep_->VerifyRoots();
387      LOG(FATAL) << "Can't mark invalid object";
388    }
389  }
390
391 private:
392  MarkSweep* const mark_sweep_;
393};
394
395inline void MarkSweep::MarkObjectNonNull(Object* obj) {
396  DCHECK(obj != nullptr);
397  if (kUseBakerOrBrooksReadBarrier) {
398    // Verify all the objects have the correct pointer installed.
399    obj->AssertReadBarrierPointer();
400  }
401  if (immune_region_.ContainsObject(obj)) {
402    if (kCountMarkedObjects) {
403      ++mark_immune_count_;
404    }
405    DCHECK(mark_bitmap_->Test(obj));
406  } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
407    if (kCountMarkedObjects) {
408      ++mark_fastpath_count_;
409    }
410    if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
411      PushOnMarkStack(obj);  // This object was not previously marked.
412    }
413  } else {
414    if (kCountMarkedObjects) {
415      ++mark_slowpath_count_;
416    }
417    MarkSweepMarkObjectSlowPath visitor(this);
418    // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
419    // will check again.
420    if (!mark_bitmap_->Set(obj, visitor)) {
421      PushOnMarkStack(obj);  // Was not already marked, push.
422    }
423  }
424}
425
426inline void MarkSweep::PushOnMarkStack(Object* obj) {
427  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
428    // Lock is not needed but is here anyways to please annotalysis.
429    MutexLock mu(Thread::Current(), mark_stack_lock_);
430    ExpandMarkStack();
431  }
432  // The object must be pushed on to the mark stack.
433  mark_stack_->PushBack(obj);
434}
435
436inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
437  DCHECK(obj != nullptr);
438  if (kUseBakerOrBrooksReadBarrier) {
439    // Verify all the objects have the correct pointer installed.
440    obj->AssertReadBarrierPointer();
441  }
442  if (immune_region_.ContainsObject(obj)) {
443    DCHECK(IsMarked(obj));
444    return false;
445  }
446  // Try to take advantage of locality of references within a space, failing this find the space
447  // the hard way.
448  accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
449  if (LIKELY(object_bitmap->HasAddress(obj))) {
450    return !object_bitmap->AtomicTestAndSet(obj);
451  }
452  MarkSweepMarkObjectSlowPath visitor(this);
453  return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
454}
455
456// Used to mark objects when processing the mark stack. If an object is null, it is not marked.
457inline void MarkSweep::MarkObject(Object* obj) {
458  if (obj != nullptr) {
459    MarkObjectNonNull(obj);
460  } else if (kCountMarkedObjects) {
461    ++mark_null_count_;
462  }
463}
464
465void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, const RootInfo& /*root_info*/) {
466  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
467}
468
469void MarkSweep::VerifyRootMarked(Object** root, void* arg, const RootInfo& /*root_info*/) {
470  CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root));
471}
472
473void MarkSweep::MarkRootCallback(Object** root, void* arg, const RootInfo& /*root_info*/) {
474  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
475}
476
477void MarkSweep::VerifyRootCallback(Object** root, void* arg, const RootInfo& root_info) {
478  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(*root, root_info);
479}
480
481void MarkSweep::VerifyRoot(const Object* root, const RootInfo& root_info) {
482  // See if the root is on any space bitmap.
483  if (heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
484    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
485    if (large_object_space != nullptr && !large_object_space->Contains(root)) {
486      LOG(ERROR) << "Found invalid root: " << root << " ";
487      root_info.Describe(LOG(ERROR));
488    }
489  }
490}
491
492void MarkSweep::VerifyRoots() {
493  Runtime::Current()->GetThreadList()->VisitRoots(VerifyRootCallback, this);
494}
495
496void MarkSweep::MarkRoots(Thread* self) {
497  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
498  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
499    // If we exclusively hold the mutator lock, all threads must be suspended.
500    Runtime::Current()->VisitRoots(MarkRootCallback, this);
501    RevokeAllThreadLocalAllocationStacks(self);
502  } else {
503    MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
504    // At this point the live stack should no longer have any mutators which push into it.
505    MarkNonThreadRoots();
506    MarkConcurrentRoots(
507        static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
508  }
509}
510
511void MarkSweep::MarkNonThreadRoots() {
512  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
513  Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
514}
515
516void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
517  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
518  // Visit all runtime roots and clear dirty flags.
519  Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags);
520}
521
522class ScanObjectVisitor {
523 public:
524  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
525      : mark_sweep_(mark_sweep) {}
526
527  void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
528      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
529    if (kCheckLocks) {
530      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
531      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
532    }
533    mark_sweep_->ScanObject(obj);
534  }
535
536 private:
537  MarkSweep* const mark_sweep_;
538};
539
540class DelayReferenceReferentVisitor {
541 public:
542  explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {
543  }
544
545  void operator()(mirror::Class* klass, mirror::Reference* ref) const
546      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
547      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
548    collector_->DelayReferenceReferent(klass, ref);
549  }
550
551 private:
552  MarkSweep* const collector_;
553};
554
555template <bool kUseFinger = false>
556class MarkStackTask : public Task {
557 public:
558  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
559                StackReference<Object>* mark_stack)
560      : mark_sweep_(mark_sweep),
561        thread_pool_(thread_pool),
562        mark_stack_pos_(mark_stack_size) {
563    // We may have to copy part of an existing mark stack when another mark stack overflows.
564    if (mark_stack_size != 0) {
565      DCHECK(mark_stack != NULL);
566      // TODO: Check performance?
567      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
568    }
569    if (kCountTasks) {
570      ++mark_sweep_->work_chunks_created_;
571    }
572  }
573
574  static const size_t kMaxSize = 1 * KB;
575
576 protected:
577  class MarkObjectParallelVisitor {
578   public:
579    explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
580                                       MarkSweep* mark_sweep) ALWAYS_INLINE
581            : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
582
583    void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE
584        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
585      mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
586      if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
587        if (kUseFinger) {
588          android_memory_barrier();
589          if (reinterpret_cast<uintptr_t>(ref) >=
590              static_cast<uintptr_t>(mark_sweep_->atomic_finger_.LoadRelaxed())) {
591            return;
592          }
593        }
594        chunk_task_->MarkStackPush(ref);
595      }
596    }
597
598   private:
599    MarkStackTask<kUseFinger>* const chunk_task_;
600    MarkSweep* const mark_sweep_;
601  };
602
603  class ScanObjectParallelVisitor {
604   public:
605    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
606        : chunk_task_(chunk_task) {}
607
608    // No thread safety analysis since multiple threads will use this visitor.
609    void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
610        EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
611      MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
612      MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
613      DelayReferenceReferentVisitor ref_visitor(mark_sweep);
614      mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
615    }
616
617   private:
618    MarkStackTask<kUseFinger>* const chunk_task_;
619  };
620
621  virtual ~MarkStackTask() {
622    // Make sure that we have cleared our mark stack.
623    DCHECK_EQ(mark_stack_pos_, 0U);
624    if (kCountTasks) {
625      ++mark_sweep_->work_chunks_deleted_;
626    }
627  }
628
629  MarkSweep* const mark_sweep_;
630  ThreadPool* const thread_pool_;
631  // Thread local mark stack for this task.
632  StackReference<Object> mark_stack_[kMaxSize];
633  // Mark stack position.
634  size_t mark_stack_pos_;
635
636  ALWAYS_INLINE void MarkStackPush(Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
637    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
638      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
639      mark_stack_pos_ /= 2;
640      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
641                                     mark_stack_ + mark_stack_pos_);
642      thread_pool_->AddTask(Thread::Current(), task);
643    }
644    DCHECK(obj != nullptr);
645    DCHECK_LT(mark_stack_pos_, kMaxSize);
646    mark_stack_[mark_stack_pos_++].Assign(obj);
647  }
648
649  virtual void Finalize() {
650    delete this;
651  }
652
653  // Scans all of the objects
654  virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
655      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
656    UNUSED(self);
657    ScanObjectParallelVisitor visitor(this);
658    // TODO: Tune this.
659    static const size_t kFifoSize = 4;
660    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
661    for (;;) {
662      Object* obj = nullptr;
663      if (kUseMarkStackPrefetch) {
664        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
665          Object* const mark_stack_obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
666          DCHECK(mark_stack_obj != nullptr);
667          __builtin_prefetch(mark_stack_obj);
668          prefetch_fifo.push_back(mark_stack_obj);
669        }
670        if (UNLIKELY(prefetch_fifo.empty())) {
671          break;
672        }
673        obj = prefetch_fifo.front();
674        prefetch_fifo.pop_front();
675      } else {
676        if (UNLIKELY(mark_stack_pos_ == 0)) {
677          break;
678        }
679        obj = mark_stack_[--mark_stack_pos_].AsMirrorPtr();
680      }
681      DCHECK(obj != nullptr);
682      visitor(obj);
683    }
684  }
685};
686
687class CardScanTask : public MarkStackTask<false> {
688 public:
689  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
690               accounting::ContinuousSpaceBitmap* bitmap,
691               uint8_t* begin, uint8_t* end, uint8_t minimum_age, size_t mark_stack_size,
692               StackReference<Object>* mark_stack_obj, bool clear_card)
693      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
694        bitmap_(bitmap),
695        begin_(begin),
696        end_(end),
697        minimum_age_(minimum_age), clear_card_(clear_card) {
698  }
699
700 protected:
701  accounting::ContinuousSpaceBitmap* const bitmap_;
702  uint8_t* const begin_;
703  uint8_t* const end_;
704  const uint8_t minimum_age_;
705  const bool clear_card_;
706
707  virtual void Finalize() {
708    delete this;
709  }
710
711  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
712    ScanObjectParallelVisitor visitor(this);
713    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
714    size_t cards_scanned = clear_card_ ?
715                           card_table->Scan<true>(bitmap_, begin_, end_, visitor, minimum_age_) :
716                           card_table->Scan<false>(bitmap_, begin_, end_, visitor, minimum_age_);
717    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
718        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
719    // Finish by emptying our local mark stack.
720    MarkStackTask::Run(self);
721  }
722};
723
724size_t MarkSweep::GetThreadCount(bool paused) const {
725  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
726    return 1;
727  }
728  if (paused) {
729    return heap_->GetParallelGCThreadCount() + 1;
730  } else {
731    return heap_->GetConcGCThreadCount() + 1;
732  }
733}
734
735void MarkSweep::ScanGrayObjects(bool paused, uint8_t minimum_age) {
736  accounting::CardTable* card_table = GetHeap()->GetCardTable();
737  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
738  size_t thread_count = GetThreadCount(paused);
739  // The parallel version with only one thread is faster for card scanning, TODO: fix.
740  if (kParallelCardScan && thread_count > 1) {
741    Thread* self = Thread::Current();
742    // Can't have a different split for each space since multiple spaces can have their cards being
743    // scanned at the same time.
744    TimingLogger::ScopedTiming t(paused ? "(Paused)ScanGrayObjects" : __FUNCTION__,
745        GetTimings());
746    // Try to take some of the mark stack since we can pass this off to the worker tasks.
747    StackReference<Object>* mark_stack_begin = mark_stack_->Begin();
748    StackReference<Object>* mark_stack_end = mark_stack_->End();
749    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
750    // Estimated number of work tasks we will create.
751    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
752    DCHECK_NE(mark_stack_tasks, 0U);
753    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
754                                             mark_stack_size / mark_stack_tasks + 1);
755    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
756      if (space->GetMarkBitmap() == nullptr) {
757        continue;
758      }
759      uint8_t* card_begin = space->Begin();
760      uint8_t* card_end = space->End();
761      // Align up the end address. For example, the image space's end
762      // may not be card-size-aligned.
763      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
764      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
765      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
766      // Calculate how many bytes of heap we will scan,
767      const size_t address_range = card_end - card_begin;
768      // Calculate how much address range each task gets.
769      const size_t card_delta = RoundUp(address_range / thread_count + 1,
770                                        accounting::CardTable::kCardSize);
771      // If paused and the space is neither zygote nor image space, we could clear the dirty
772      // cards to avoid accumulating them to increase card scanning load in the following GC
773      // cycles. We need to keep dirty cards of image space and zygote space in order to track
774      // references to the other spaces.
775      bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
776      // Create the worker tasks for this space.
777      while (card_begin != card_end) {
778        // Add a range of cards.
779        size_t addr_remaining = card_end - card_begin;
780        size_t card_increment = std::min(card_delta, addr_remaining);
781        // Take from the back of the mark stack.
782        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
783        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
784        mark_stack_end -= mark_stack_increment;
785        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
786        DCHECK_EQ(mark_stack_end, mark_stack_->End());
787        // Add the new task to the thread pool.
788        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
789                                      card_begin + card_increment, minimum_age,
790                                      mark_stack_increment, mark_stack_end, clear_card);
791        thread_pool->AddTask(self, task);
792        card_begin += card_increment;
793      }
794    }
795
796    // Note: the card scan below may dirty new cards (and scan them)
797    // as a side effect when a Reference object is encountered and
798    // queued during the marking. See b/11465268.
799    thread_pool->SetMaxActiveWorkers(thread_count - 1);
800    thread_pool->StartWorkers(self);
801    thread_pool->Wait(self, true, true);
802    thread_pool->StopWorkers(self);
803  } else {
804    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
805      if (space->GetMarkBitmap() != nullptr) {
806        // Image spaces are handled properly since live == marked for them.
807        const char* name = nullptr;
808        switch (space->GetGcRetentionPolicy()) {
809        case space::kGcRetentionPolicyNeverCollect:
810          name = paused ? "(Paused)ScanGrayImageSpaceObjects" : "ScanGrayImageSpaceObjects";
811          break;
812        case space::kGcRetentionPolicyFullCollect:
813          name = paused ? "(Paused)ScanGrayZygoteSpaceObjects" : "ScanGrayZygoteSpaceObjects";
814          break;
815        case space::kGcRetentionPolicyAlwaysCollect:
816          name = paused ? "(Paused)ScanGrayAllocSpaceObjects" : "ScanGrayAllocSpaceObjects";
817          break;
818        default:
819          LOG(FATAL) << "Unreachable";
820          UNREACHABLE();
821        }
822        TimingLogger::ScopedTiming t(name, GetTimings());
823        ScanObjectVisitor visitor(this);
824        bool clear_card = paused && !space->IsZygoteSpace() && !space->IsImageSpace();
825        if (clear_card) {
826          card_table->Scan<true>(space->GetMarkBitmap(), space->Begin(), space->End(), visitor,
827                                 minimum_age);
828        } else {
829          card_table->Scan<false>(space->GetMarkBitmap(), space->Begin(), space->End(), visitor,
830                                  minimum_age);
831        }
832      }
833    }
834  }
835}
836
837class RecursiveMarkTask : public MarkStackTask<false> {
838 public:
839  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
840                    accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
841      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL), bitmap_(bitmap), begin_(begin),
842        end_(end) {
843  }
844
845 protected:
846  accounting::ContinuousSpaceBitmap* const bitmap_;
847  const uintptr_t begin_;
848  const uintptr_t end_;
849
850  virtual void Finalize() {
851    delete this;
852  }
853
854  // Scans all of the objects
855  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
856    ScanObjectParallelVisitor visitor(this);
857    bitmap_->VisitMarkedRange(begin_, end_, visitor);
858    // Finish by emptying our local mark stack.
859    MarkStackTask::Run(self);
860  }
861};
862
863// Populates the mark stack based on the set of marked objects and
864// recursively marks until the mark stack is emptied.
865void MarkSweep::RecursiveMark() {
866  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
867  // RecursiveMark will build the lists of known instances of the Reference classes. See
868  // DelayReferenceReferent for details.
869  if (kUseRecursiveMark) {
870    const bool partial = GetGcType() == kGcTypePartial;
871    ScanObjectVisitor scan_visitor(this);
872    auto* self = Thread::Current();
873    ThreadPool* thread_pool = heap_->GetThreadPool();
874    size_t thread_count = GetThreadCount(false);
875    const bool parallel = kParallelRecursiveMark && thread_count > 1;
876    mark_stack_->Reset();
877    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
878      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
879          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
880        current_space_bitmap_ = space->GetMarkBitmap();
881        if (current_space_bitmap_ == nullptr) {
882          continue;
883        }
884        if (parallel) {
885          // We will use the mark stack the future.
886          // CHECK(mark_stack_->IsEmpty());
887          // This function does not handle heap end increasing, so we must use the space end.
888          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
889          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
890          atomic_finger_.StoreRelaxed(AtomicInteger::MaxValue());
891
892          // Create a few worker tasks.
893          const size_t n = thread_count * 2;
894          while (begin != end) {
895            uintptr_t start = begin;
896            uintptr_t delta = (end - begin) / n;
897            delta = RoundUp(delta, KB);
898            if (delta < 16 * KB) delta = end - begin;
899            begin += delta;
900            auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start,
901                                               begin);
902            thread_pool->AddTask(self, task);
903          }
904          thread_pool->SetMaxActiveWorkers(thread_count - 1);
905          thread_pool->StartWorkers(self);
906          thread_pool->Wait(self, true, true);
907          thread_pool->StopWorkers(self);
908        } else {
909          // This function does not handle heap end increasing, so we must use the space end.
910          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
911          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
912          current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
913        }
914      }
915    }
916  }
917  ProcessMarkStack(false);
918}
919
920mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
921  if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
922    return object;
923  }
924  return nullptr;
925}
926
927void MarkSweep::RecursiveMarkDirtyObjects(bool paused, uint8_t minimum_age) {
928  ScanGrayObjects(paused, minimum_age);
929  ProcessMarkStack(paused);
930}
931
932void MarkSweep::ReMarkRoots() {
933  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
934  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
935  Runtime::Current()->VisitRoots(
936      MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots |
937                                                          kVisitRootFlagStopLoggingNewRoots |
938                                                          kVisitRootFlagClearRootLog));
939  if (kVerifyRootsMarked) {
940    TimingLogger::ScopedTiming t2("(Paused)VerifyRoots", GetTimings());
941    Runtime::Current()->VisitRoots(VerifyRootMarked, this);
942  }
943}
944
945void MarkSweep::SweepSystemWeaks(Thread* self) {
946  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
947  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
948  Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
949}
950
951mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
952  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
953  // We don't actually want to sweep the object, so lets return "marked"
954  return obj;
955}
956
957void MarkSweep::VerifyIsLive(const Object* obj) {
958  if (!heap_->GetLiveBitmap()->Test(obj)) {
959    // TODO: Consider live stack? Has this code bitrotted?
960    CHECK(!heap_->allocation_stack_->Contains(obj))
961        << "Found dead object " << obj << "\n" << heap_->DumpSpaces();
962  }
963}
964
965void MarkSweep::VerifySystemWeaks() {
966  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
967  // Verify system weaks, uses a special object visitor which returns the input object.
968  Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
969}
970
971class CheckpointMarkThreadRoots : public Closure {
972 public:
973  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
974                                     bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
975      : mark_sweep_(mark_sweep),
976        revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
977            revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
978  }
979
980  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
981    ATRACE_BEGIN("Marking thread roots");
982    // Note: self is not necessarily equal to thread since thread may be suspended.
983    Thread* self = Thread::Current();
984    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
985        << thread->GetState() << " thread " << thread << " self " << self;
986    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
987    ATRACE_END();
988    if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
989      ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers");
990      mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
991      ATRACE_END();
992    }
993    // If thread is a running mutator, then act on behalf of the garbage collector.
994    // See the code in ThreadList::RunCheckpoint.
995    if (thread->GetState() == kRunnable) {
996      mark_sweep_->GetBarrier().Pass(self);
997    }
998  }
999
1000 private:
1001  MarkSweep* const mark_sweep_;
1002  const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
1003};
1004
1005void MarkSweep::MarkRootsCheckpoint(Thread* self,
1006                                    bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1007  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1008  CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
1009  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1010  // Request the check point is run on all threads returning a count of the threads that must
1011  // run through the barrier including self.
1012  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1013  // Release locks then wait for all mutator threads to pass the barrier.
1014  // If there are no threads to wait which implys that all the checkpoint functions are finished,
1015  // then no need to release locks.
1016  if (barrier_count == 0) {
1017    return;
1018  }
1019  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1020  Locks::mutator_lock_->SharedUnlock(self);
1021  {
1022    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1023    gc_barrier_->Increment(self, barrier_count);
1024  }
1025  Locks::mutator_lock_->SharedLock(self);
1026  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1027}
1028
1029void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1030  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1031  Thread* self = Thread::Current();
1032  mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
1033      sweep_array_free_buffer_mem_map_->BaseBegin());
1034  size_t chunk_free_pos = 0;
1035  ObjectBytePair freed;
1036  ObjectBytePair freed_los;
1037  // How many objects are left in the array, modified after each space is swept.
1038  StackReference<Object>* objects = allocations->Begin();
1039  size_t count = allocations->Size();
1040  // Change the order to ensure that the non-moving space last swept as an optimization.
1041  std::vector<space::ContinuousSpace*> sweep_spaces;
1042  space::ContinuousSpace* non_moving_space = nullptr;
1043  for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1044    if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
1045        space->GetLiveBitmap() != nullptr) {
1046      if (space == heap_->GetNonMovingSpace()) {
1047        non_moving_space = space;
1048      } else {
1049        sweep_spaces.push_back(space);
1050      }
1051    }
1052  }
1053  // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1054  // the other alloc spaces as an optimization.
1055  if (non_moving_space != nullptr) {
1056    sweep_spaces.push_back(non_moving_space);
1057  }
1058  // Start by sweeping the continuous spaces.
1059  for (space::ContinuousSpace* space : sweep_spaces) {
1060    space::AllocSpace* alloc_space = space->AsAllocSpace();
1061    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1062    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1063    if (swap_bitmaps) {
1064      std::swap(live_bitmap, mark_bitmap);
1065    }
1066    StackReference<Object>* out = objects;
1067    for (size_t i = 0; i < count; ++i) {
1068      Object* const obj = objects[i].AsMirrorPtr();
1069      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1070        continue;
1071      }
1072      if (space->HasAddress(obj)) {
1073        // This object is in the space, remove it from the array and add it to the sweep buffer
1074        // if needed.
1075        if (!mark_bitmap->Test(obj)) {
1076          if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1077            TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1078            freed.objects += chunk_free_pos;
1079            freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1080            chunk_free_pos = 0;
1081          }
1082          chunk_free_buffer[chunk_free_pos++] = obj;
1083        }
1084      } else {
1085        (out++)->Assign(obj);
1086      }
1087    }
1088    if (chunk_free_pos > 0) {
1089      TimingLogger::ScopedTiming t2("FreeList", GetTimings());
1090      freed.objects += chunk_free_pos;
1091      freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1092      chunk_free_pos = 0;
1093    }
1094    // All of the references which space contained are no longer in the allocation stack, update
1095    // the count.
1096    count = out - objects;
1097  }
1098  // Handle the large object space.
1099  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1100  if (large_object_space != nullptr) {
1101    accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
1102    accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
1103    if (swap_bitmaps) {
1104      std::swap(large_live_objects, large_mark_objects);
1105    }
1106    for (size_t i = 0; i < count; ++i) {
1107      Object* const obj = objects[i].AsMirrorPtr();
1108      // Handle large objects.
1109      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1110        continue;
1111      }
1112      if (!large_mark_objects->Test(obj)) {
1113        ++freed_los.objects;
1114        freed_los.bytes += large_object_space->Free(self, obj);
1115      }
1116    }
1117  }
1118  {
1119    TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
1120    RecordFree(freed);
1121    RecordFreeLOS(freed_los);
1122    t2.NewTiming("ResetStack");
1123    allocations->Reset();
1124  }
1125  sweep_array_free_buffer_mem_map_->MadviseDontNeedAndZero();
1126}
1127
1128void MarkSweep::Sweep(bool swap_bitmaps) {
1129  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1130  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1131  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1132  {
1133    TimingLogger::ScopedTiming t2("MarkAllocStackAsLive", GetTimings());
1134    // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1135    // knowing that new allocations won't be marked as live.
1136    accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1137    heap_->MarkAllocStackAsLive(live_stack);
1138    live_stack->Reset();
1139    DCHECK(mark_stack_->IsEmpty());
1140  }
1141  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1142    if (space->IsContinuousMemMapAllocSpace()) {
1143      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1144      TimingLogger::ScopedTiming split(
1145          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", GetTimings());
1146      RecordFree(alloc_space->Sweep(swap_bitmaps));
1147    }
1148  }
1149  SweepLargeObjects(swap_bitmaps);
1150}
1151
1152void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1153  space::LargeObjectSpace* los = heap_->GetLargeObjectsSpace();
1154  if (los != nullptr) {
1155    TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
1156    RecordFreeLOS(los->Sweep(swap_bitmaps));
1157  }
1158}
1159
1160// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
1161// marked, put it on the appropriate list in the heap for later processing.
1162void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1163  if (kCountJavaLangRefs) {
1164    ++reference_count_;
1165  }
1166  heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, &HeapReferenceMarkedCallback,
1167                                                         this);
1168}
1169
1170class MarkObjectVisitor {
1171 public:
1172  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {
1173  }
1174
1175  void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
1176      ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1177      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1178    if (kCheckLocks) {
1179      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1180      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1181    }
1182    mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset));
1183  }
1184
1185 private:
1186  MarkSweep* const mark_sweep_;
1187};
1188
1189// Scans an object reference.  Determines the type of the reference
1190// and dispatches to a specialized scanning routine.
1191void MarkSweep::ScanObject(Object* obj) {
1192  MarkObjectVisitor mark_visitor(this);
1193  DelayReferenceReferentVisitor ref_visitor(this);
1194  ScanObjectVisit(obj, mark_visitor, ref_visitor);
1195}
1196
1197void MarkSweep::ProcessMarkStackCallback(void* arg) {
1198  reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(false);
1199}
1200
1201void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1202  Thread* self = Thread::Current();
1203  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1204  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1205                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1206  CHECK_GT(chunk_size, 0U);
1207  // Split the current mark stack up into work tasks.
1208  for (auto* it = mark_stack_->Begin(), *end = mark_stack_->End(); it < end; ) {
1209    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1210    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1211    it += delta;
1212  }
1213  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1214  thread_pool->StartWorkers(self);
1215  thread_pool->Wait(self, true, true);
1216  thread_pool->StopWorkers(self);
1217  mark_stack_->Reset();
1218  CHECK_EQ(work_chunks_created_.LoadSequentiallyConsistent(),
1219           work_chunks_deleted_.LoadSequentiallyConsistent())
1220      << " some of the work chunks were leaked";
1221}
1222
1223// Scan anything that's on the mark stack.
1224void MarkSweep::ProcessMarkStack(bool paused) {
1225  TimingLogger::ScopedTiming t(paused ? "(Paused)ProcessMarkStack" : __FUNCTION__, GetTimings());
1226  size_t thread_count = GetThreadCount(paused);
1227  if (kParallelProcessMarkStack && thread_count > 1 &&
1228      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1229    ProcessMarkStackParallel(thread_count);
1230  } else {
1231    // TODO: Tune this.
1232    static const size_t kFifoSize = 4;
1233    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1234    for (;;) {
1235      Object* obj = NULL;
1236      if (kUseMarkStackPrefetch) {
1237        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1238          Object* mark_stack_obj = mark_stack_->PopBack();
1239          DCHECK(mark_stack_obj != NULL);
1240          __builtin_prefetch(mark_stack_obj);
1241          prefetch_fifo.push_back(mark_stack_obj);
1242        }
1243        if (prefetch_fifo.empty()) {
1244          break;
1245        }
1246        obj = prefetch_fifo.front();
1247        prefetch_fifo.pop_front();
1248      } else {
1249        if (mark_stack_->IsEmpty()) {
1250          break;
1251        }
1252        obj = mark_stack_->PopBack();
1253      }
1254      DCHECK(obj != nullptr);
1255      ScanObject(obj);
1256    }
1257  }
1258}
1259
1260inline bool MarkSweep::IsMarked(const Object* object) const {
1261  if (immune_region_.ContainsObject(object)) {
1262    return true;
1263  }
1264  if (current_space_bitmap_->HasAddress(object)) {
1265    return current_space_bitmap_->Test(object);
1266  }
1267  return mark_bitmap_->Test(object);
1268}
1269
1270void MarkSweep::FinishPhase() {
1271  TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1272  if (kCountScannedTypes) {
1273    VLOG(gc) << "MarkSweep scanned classes=" << class_count_.LoadRelaxed()
1274        << " arrays=" << array_count_.LoadRelaxed() << " other=" << other_count_.LoadRelaxed();
1275  }
1276  if (kCountTasks) {
1277    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_.LoadRelaxed();
1278  }
1279  if (kMeasureOverhead) {
1280    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_.LoadRelaxed());
1281  }
1282  if (kProfileLargeObjects) {
1283    VLOG(gc) << "Large objects tested " << large_object_test_.LoadRelaxed()
1284        << " marked " << large_object_mark_.LoadRelaxed();
1285  }
1286  if (kCountJavaLangRefs) {
1287    VLOG(gc) << "References scanned " << reference_count_.LoadRelaxed();
1288  }
1289  if (kCountMarkedObjects) {
1290    VLOG(gc) << "Marked: null=" << mark_null_count_.LoadRelaxed()
1291        << " immune=" <<  mark_immune_count_.LoadRelaxed()
1292        << " fastpath=" << mark_fastpath_count_.LoadRelaxed()
1293        << " slowpath=" << mark_slowpath_count_.LoadRelaxed();
1294  }
1295  CHECK(mark_stack_->IsEmpty());  // Ensure that the mark stack is empty.
1296  mark_stack_->Reset();
1297  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1298  heap_->ClearMarkedObjects();
1299}
1300
1301void MarkSweep::RevokeAllThreadLocalBuffers() {
1302  if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1303    // If concurrent, rosalloc thread-local buffers are revoked at the
1304    // thread checkpoint. Bump pointer space thread-local buffers must
1305    // not be in use.
1306    GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1307  } else {
1308    TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1309    GetHeap()->RevokeAllThreadLocalBuffers();
1310  }
1311}
1312
1313}  // namespace collector
1314}  // namespace gc
1315}  // namespace art
1316