mark_sweep.cc revision eb8167a4f4d27fce0530f6724ab8032610cd146b
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mark_sweep.h"
18
19#include <functional>
20#include <numeric>
21#include <climits>
22#include <vector>
23
24#include "base/bounded_fifo.h"
25#include "base/logging.h"
26#include "base/macros.h"
27#include "base/mutex-inl.h"
28#include "base/timing_logger.h"
29#include "gc/accounting/card_table-inl.h"
30#include "gc/accounting/heap_bitmap-inl.h"
31#include "gc/accounting/mod_union_table.h"
32#include "gc/accounting/space_bitmap-inl.h"
33#include "gc/heap.h"
34#include "gc/reference_processor.h"
35#include "gc/space/image_space.h"
36#include "gc/space/large_object_space.h"
37#include "gc/space/space-inl.h"
38#include "mark_sweep-inl.h"
39#include "mirror/art_field-inl.h"
40#include "mirror/object-inl.h"
41#include "runtime.h"
42#include "scoped_thread_state_change.h"
43#include "thread-inl.h"
44#include "thread_list.h"
45
46using ::art::mirror::ArtField;
47using ::art::mirror::Class;
48using ::art::mirror::Object;
49using ::art::mirror::ObjectArray;
50
51namespace art {
52namespace gc {
53namespace collector {
54
55// Performance options.
56static constexpr bool kUseRecursiveMark = false;
57static constexpr bool kUseMarkStackPrefetch = true;
58static constexpr size_t kSweepArrayChunkFreeSize = 1024;
59static constexpr bool kPreCleanCards = true;
60
61// Parallelism options.
62static constexpr bool kParallelCardScan = true;
63static constexpr bool kParallelRecursiveMark = true;
64// Don't attempt to parallelize mark stack processing unless the mark stack is at least n
65// elements. This is temporary until we reduce the overhead caused by allocating tasks, etc.. Not
66// having this can add overhead in ProcessReferences since we may end up doing many calls of
67// ProcessMarkStack with very small mark stacks.
68static constexpr size_t kMinimumParallelMarkStackSize = 128;
69static constexpr bool kParallelProcessMarkStack = true;
70
71// Profiling and information flags.
72static constexpr bool kProfileLargeObjects = false;
73static constexpr bool kMeasureOverhead = false;
74static constexpr bool kCountTasks = false;
75static constexpr bool kCountJavaLangRefs = false;
76static constexpr bool kCountMarkedObjects = false;
77
78// Turn off kCheckLocks when profiling the GC since it slows the GC down by up to 40%.
79static constexpr bool kCheckLocks = kDebugLocking;
80static constexpr bool kVerifyRootsMarked = kIsDebugBuild;
81
82// If true, revoke the rosalloc thread-local buffers at the
83// checkpoint, as opposed to during the pause.
84static constexpr bool kRevokeRosAllocThreadLocalBuffersAtCheckpoint = true;
85
86void MarkSweep::BindBitmaps() {
87  timings_.StartSplit("BindBitmaps");
88  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
89  // Mark all of the spaces we never collect as immune.
90  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
91    if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect) {
92      CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
93    }
94  }
95  timings_.EndSplit();
96}
97
98MarkSweep::MarkSweep(Heap* heap, bool is_concurrent, const std::string& name_prefix)
99    : GarbageCollector(heap,
100                       name_prefix +
101                       (is_concurrent ? "concurrent mark sweep": "mark sweep")),
102      gc_barrier_(new Barrier(0)),
103      mark_stack_lock_("mark sweep mark stack lock", kMarkSweepMarkStackLock),
104      is_concurrent_(is_concurrent) {
105}
106
107void MarkSweep::InitializePhase() {
108  TimingLogger::ScopedSplit split("InitializePhase", &timings_);
109  mark_stack_ = heap_->GetMarkStack();
110  DCHECK(mark_stack_ != nullptr);
111  immune_region_.Reset();
112  class_count_ = 0;
113  array_count_ = 0;
114  other_count_ = 0;
115  large_object_test_ = 0;
116  large_object_mark_ = 0;
117  overhead_time_ = 0;
118  work_chunks_created_ = 0;
119  work_chunks_deleted_ = 0;
120  reference_count_ = 0;
121  mark_null_count_ = 0;
122  mark_immune_count_ = 0;
123  mark_fastpath_count_ = 0;
124  mark_slowpath_count_ = 0;
125  {
126    // TODO: I don't think we should need heap bitmap lock to Get the mark bitmap.
127    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
128    mark_bitmap_ = heap_->GetMarkBitmap();
129  }
130  if (!clear_soft_references_) {
131    // Always clear soft references if a non-sticky collection.
132    clear_soft_references_ = GetGcType() != collector::kGcTypeSticky;
133  }
134}
135
136void MarkSweep::RunPhases() {
137  Thread* self = Thread::Current();
138  InitializePhase();
139  Locks::mutator_lock_->AssertNotHeld(self);
140  if (IsConcurrent()) {
141    GetHeap()->PreGcVerification(this);
142    {
143      ReaderMutexLock mu(self, *Locks::mutator_lock_);
144      MarkingPhase();
145    }
146    ScopedPause pause(this);
147    GetHeap()->PrePauseRosAllocVerification(this);
148    PausePhase();
149    RevokeAllThreadLocalBuffers();
150  } else {
151    ScopedPause pause(this);
152    GetHeap()->PreGcVerificationPaused(this);
153    MarkingPhase();
154    GetHeap()->PrePauseRosAllocVerification(this);
155    PausePhase();
156    RevokeAllThreadLocalBuffers();
157  }
158  {
159    // Sweeping always done concurrently, even for non concurrent mark sweep.
160    ReaderMutexLock mu(self, *Locks::mutator_lock_);
161    ReclaimPhase();
162  }
163  GetHeap()->PostGcVerification(this);
164  FinishPhase();
165}
166
167void MarkSweep::ProcessReferences(Thread* self) {
168  TimingLogger::ScopedSplit split("ProcessReferences", &timings_);
169  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
170  GetHeap()->GetReferenceProcessor()->ProcessReferences(
171      true, &timings_, clear_soft_references_, &IsMarkedCallback, &MarkObjectCallback,
172      &ProcessMarkStackCallback, this);
173}
174
175void MarkSweep::PausePhase() {
176  TimingLogger::ScopedSplit split("(Paused)PausePhase", &timings_);
177  Thread* self = Thread::Current();
178  Locks::mutator_lock_->AssertExclusiveHeld(self);
179  if (IsConcurrent()) {
180    // Handle the dirty objects if we are a concurrent GC.
181    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
182    // Re-mark root set.
183    ReMarkRoots();
184    // Scan dirty objects, this is only required if we are not doing concurrent GC.
185    RecursiveMarkDirtyObjects(true, accounting::CardTable::kCardDirty);
186  }
187  {
188    TimingLogger::ScopedSplit split("SwapStacks", &timings_);
189    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
190    heap_->SwapStacks(self);
191    live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
192    // Need to revoke all the thread local allocation stacks since we just swapped the allocation
193    // stacks and don't want anybody to allocate into the live stack.
194    RevokeAllThreadLocalAllocationStacks(self);
195  }
196  timings_.StartSplit("PreSweepingGcVerification");
197  heap_->PreSweepingGcVerification(this);
198  timings_.EndSplit();
199  // Disallow new system weaks to prevent a race which occurs when someone adds a new system
200  // weak before we sweep them. Since this new system weak may not be marked, the GC may
201  // incorrectly sweep it. This also fixes a race where interning may attempt to return a strong
202  // reference to a string that is about to be swept.
203  Runtime::Current()->DisallowNewSystemWeaks();
204  // Enable the reference processing slow path, needs to be done with mutators paused since there
205  // is no lock in the GetReferent fast path.
206  GetHeap()->GetReferenceProcessor()->EnableSlowPath();
207}
208
209void MarkSweep::PreCleanCards() {
210  // Don't do this for non concurrent GCs since they don't have any dirty cards.
211  if (kPreCleanCards && IsConcurrent()) {
212    Thread* self = Thread::Current();
213    CHECK(!Locks::mutator_lock_->IsExclusiveHeld(self));
214    // Process dirty cards and add dirty cards to mod union tables, also ages cards.
215    heap_->ProcessCards(timings_, false);
216    // The checkpoint root marking is required to avoid a race condition which occurs if the
217    // following happens during a reference write:
218    // 1. mutator dirties the card (write barrier)
219    // 2. GC ages the card (the above ProcessCards call)
220    // 3. GC scans the object (the RecursiveMarkDirtyObjects call below)
221    // 4. mutator writes the value (corresponding to the write barrier in 1.)
222    // This causes the GC to age the card but not necessarily mark the reference which the mutator
223    // wrote into the object stored in the card.
224    // Having the checkpoint fixes this issue since it ensures that the card mark and the
225    // reference write are visible to the GC before the card is scanned (this is due to locks being
226    // acquired / released in the checkpoint code).
227    // The other roots are also marked to help reduce the pause.
228    MarkRootsCheckpoint(self, false);
229    MarkNonThreadRoots();
230    MarkConcurrentRoots(
231        static_cast<VisitRootFlags>(kVisitRootFlagClearRootLog | kVisitRootFlagNewRoots));
232    // Process the newly aged cards.
233    RecursiveMarkDirtyObjects(false, accounting::CardTable::kCardDirty - 1);
234    // TODO: Empty allocation stack to reduce the number of objects we need to test / mark as live
235    // in the next GC.
236  }
237}
238
239void MarkSweep::RevokeAllThreadLocalAllocationStacks(Thread* self) {
240  if (kUseThreadLocalAllocationStack) {
241    timings_.NewSplit("RevokeAllThreadLocalAllocationStacks");
242    Locks::mutator_lock_->AssertExclusiveHeld(self);
243    heap_->RevokeAllThreadLocalAllocationStacks(self);
244  }
245}
246
247void MarkSweep::MarkingPhase() {
248  TimingLogger::ScopedSplit split("MarkingPhase", &timings_);
249  Thread* self = Thread::Current();
250
251  BindBitmaps();
252  FindDefaultSpaceBitmap();
253
254  // Process dirty cards and add dirty cards to mod union tables.
255  heap_->ProcessCards(timings_, false);
256
257  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
258  MarkRoots(self);
259  MarkReachableObjects();
260  // Pre-clean dirtied cards to reduce pauses.
261  PreCleanCards();
262}
263
264void MarkSweep::UpdateAndMarkModUnion() {
265  for (const auto& space : heap_->GetContinuousSpaces()) {
266    if (immune_region_.ContainsSpace(space)) {
267      const char* name = space->IsZygoteSpace() ? "UpdateAndMarkZygoteModUnionTable" :
268          "UpdateAndMarkImageModUnionTable";
269      TimingLogger::ScopedSplit split(name, &timings_);
270      accounting::ModUnionTable* mod_union_table = heap_->FindModUnionTableFromSpace(space);
271      CHECK(mod_union_table != nullptr);
272      mod_union_table->UpdateAndMarkReferences(MarkHeapReferenceCallback, this);
273    }
274  }
275}
276
277void MarkSweep::MarkReachableObjects() {
278  UpdateAndMarkModUnion();
279  // Recursively mark all the non-image bits set in the mark bitmap.
280  RecursiveMark();
281}
282
283void MarkSweep::ReclaimPhase() {
284  TimingLogger::ScopedSplit split("ReclaimPhase", &timings_);
285  Thread* self = Thread::Current();
286  // Process the references concurrently.
287  ProcessReferences(self);
288  SweepSystemWeaks(self);
289  Runtime::Current()->AllowNewSystemWeaks();
290  {
291    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
292
293    // Reclaim unmarked objects.
294    Sweep(false);
295
296    // Swap the live and mark bitmaps for each space which we modified space. This is an
297    // optimization that enables us to not clear live bits inside of the sweep. Only swaps unbound
298    // bitmaps.
299    timings_.StartSplit("SwapBitmaps");
300    SwapBitmaps();
301    timings_.EndSplit();
302
303    // Unbind the live and mark bitmaps.
304    TimingLogger::ScopedSplit split("UnBindBitmaps", &timings_);
305    GetHeap()->UnBindBitmaps();
306  }
307}
308
309void MarkSweep::FindDefaultSpaceBitmap() {
310  TimingLogger::ScopedSplit split("FindDefaultMarkBitmap", &timings_);
311  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
312    accounting::ContinuousSpaceBitmap* bitmap = space->GetMarkBitmap();
313    // We want to have the main space instead of non moving if possible.
314    if (bitmap != nullptr &&
315        space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) {
316      current_space_bitmap_ = bitmap;
317      // If we are not the non moving space exit the loop early since this will be good enough.
318      if (space != heap_->GetNonMovingSpace()) {
319        break;
320      }
321    }
322  }
323  if (current_space_bitmap_ == nullptr) {
324    heap_->DumpSpaces();
325    LOG(FATAL) << "Could not find a default mark bitmap";
326  }
327}
328
329void MarkSweep::ExpandMarkStack() {
330  ResizeMarkStack(mark_stack_->Capacity() * 2);
331}
332
333void MarkSweep::ResizeMarkStack(size_t new_size) {
334  // Rare case, no need to have Thread::Current be a parameter.
335  if (UNLIKELY(mark_stack_->Size() < mark_stack_->Capacity())) {
336    // Someone else acquired the lock and expanded the mark stack before us.
337    return;
338  }
339  std::vector<Object*> temp(mark_stack_->Begin(), mark_stack_->End());
340  CHECK_LE(mark_stack_->Size(), new_size);
341  mark_stack_->Resize(new_size);
342  for (const auto& obj : temp) {
343    mark_stack_->PushBack(obj);
344  }
345}
346
347inline void MarkSweep::MarkObjectNonNullParallel(Object* obj) {
348  DCHECK(obj != nullptr);
349  if (MarkObjectParallel(obj)) {
350    MutexLock mu(Thread::Current(), mark_stack_lock_);
351    if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
352      ExpandMarkStack();
353    }
354    // The object must be pushed on to the mark stack.
355    mark_stack_->PushBack(obj);
356  }
357}
358
359mirror::Object* MarkSweep::MarkObjectCallback(mirror::Object* obj, void* arg) {
360  MarkSweep* mark_sweep = reinterpret_cast<MarkSweep*>(arg);
361  mark_sweep->MarkObject(obj);
362  return obj;
363}
364
365void MarkSweep::MarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>* ref, void* arg) {
366  reinterpret_cast<MarkSweep*>(arg)->MarkObject(ref->AsMirrorPtr());
367}
368
369class MarkSweepMarkObjectSlowPath {
370 public:
371  explicit MarkSweepMarkObjectSlowPath(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) {
372  }
373
374  void operator()(const Object* obj) const ALWAYS_INLINE {
375    if (kProfileLargeObjects) {
376      // TODO: Differentiate between marking and testing somehow.
377      ++mark_sweep_->large_object_test_;
378      ++mark_sweep_->large_object_mark_;
379    }
380    space::LargeObjectSpace* large_object_space = mark_sweep_->GetHeap()->GetLargeObjectsSpace();
381    if (UNLIKELY(obj == nullptr || !IsAligned<kPageSize>(obj) ||
382                 (kIsDebugBuild && !large_object_space->Contains(obj)))) {
383      LOG(ERROR) << "Tried to mark " << obj << " not contained by any spaces";
384      LOG(ERROR) << "Attempting see if it's a bad root";
385      mark_sweep_->VerifyRoots();
386      LOG(FATAL) << "Can't mark invalid object";
387    }
388  }
389
390 private:
391  MarkSweep* const mark_sweep_;
392};
393
394inline void MarkSweep::MarkObjectNonNull(Object* obj) {
395  DCHECK(obj != nullptr);
396  if (kUseBakerOrBrooksReadBarrier) {
397    // Verify all the objects have the correct pointer installed.
398    obj->AssertReadBarrierPointer();
399  }
400  if (immune_region_.ContainsObject(obj)) {
401    if (kCountMarkedObjects) {
402      ++mark_immune_count_;
403    }
404    DCHECK(mark_bitmap_->Test(obj));
405  } else if (LIKELY(current_space_bitmap_->HasAddress(obj))) {
406    if (kCountMarkedObjects) {
407      ++mark_fastpath_count_;
408    }
409    if (UNLIKELY(!current_space_bitmap_->Set(obj))) {
410      PushOnMarkStack(obj);  // This object was not previously marked.
411    }
412  } else {
413    if (kCountMarkedObjects) {
414      ++mark_slowpath_count_;
415    }
416    MarkSweepMarkObjectSlowPath visitor(this);
417    // TODO: We already know that the object is not in the current_space_bitmap_ but MarkBitmap::Set
418    // will check again.
419    if (!mark_bitmap_->Set(obj, visitor)) {
420      PushOnMarkStack(obj);  // Was not already marked, push.
421    }
422  }
423}
424
425inline void MarkSweep::PushOnMarkStack(Object* obj) {
426  if (UNLIKELY(mark_stack_->Size() >= mark_stack_->Capacity())) {
427    // Lock is not needed but is here anyways to please annotalysis.
428    MutexLock mu(Thread::Current(), mark_stack_lock_);
429    ExpandMarkStack();
430  }
431  // The object must be pushed on to the mark stack.
432  mark_stack_->PushBack(obj);
433}
434
435inline bool MarkSweep::MarkObjectParallel(const Object* obj) {
436  DCHECK(obj != nullptr);
437  if (kUseBakerOrBrooksReadBarrier) {
438    // Verify all the objects have the correct pointer installed.
439    obj->AssertReadBarrierPointer();
440  }
441  if (immune_region_.ContainsObject(obj)) {
442    DCHECK(IsMarked(obj));
443    return false;
444  }
445  // Try to take advantage of locality of references within a space, failing this find the space
446  // the hard way.
447  accounting::ContinuousSpaceBitmap* object_bitmap = current_space_bitmap_;
448  if (LIKELY(object_bitmap->HasAddress(obj))) {
449    return !object_bitmap->AtomicTestAndSet(obj);
450  }
451  MarkSweepMarkObjectSlowPath visitor(this);
452  return !mark_bitmap_->AtomicTestAndSet(obj, visitor);
453}
454
455// Used to mark objects when processing the mark stack. If an object is null, it is not marked.
456inline void MarkSweep::MarkObject(Object* obj) {
457  if (obj != nullptr) {
458    MarkObjectNonNull(obj);
459  } else if (kCountMarkedObjects) {
460    ++mark_null_count_;
461  }
462}
463
464void MarkSweep::MarkRootParallelCallback(Object** root, void* arg, uint32_t /*thread_id*/,
465                                         RootType /*root_type*/) {
466  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNullParallel(*root);
467}
468
469void MarkSweep::VerifyRootMarked(Object** root, void* arg, uint32_t /*thread_id*/,
470                                 RootType /*root_type*/) {
471  CHECK(reinterpret_cast<MarkSweep*>(arg)->IsMarked(*root));
472}
473
474void MarkSweep::MarkRootCallback(Object** root, void* arg, uint32_t /*thread_id*/,
475                                 RootType /*root_type*/) {
476  reinterpret_cast<MarkSweep*>(arg)->MarkObjectNonNull(*root);
477}
478
479void MarkSweep::VerifyRootCallback(const Object* root, void* arg, size_t vreg,
480                                   const StackVisitor* visitor, RootType root_type) {
481  reinterpret_cast<MarkSweep*>(arg)->VerifyRoot(root, vreg, visitor, root_type);
482}
483
484void MarkSweep::VerifyRoot(const Object* root, size_t vreg, const StackVisitor* visitor,
485                           RootType root_type) {
486  // See if the root is on any space bitmap.
487  if (heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(root) == nullptr) {
488    space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
489    if (!large_object_space->Contains(root)) {
490      LOG(ERROR) << "Found invalid root: " << root << " with type " << root_type;
491      if (visitor != NULL) {
492        LOG(ERROR) << visitor->DescribeLocation() << " in VReg: " << vreg;
493      }
494    }
495  }
496}
497
498void MarkSweep::VerifyRoots() {
499  Runtime::Current()->GetThreadList()->VerifyRoots(VerifyRootCallback, this);
500}
501
502void MarkSweep::MarkRoots(Thread* self) {
503  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
504    // If we exclusively hold the mutator lock, all threads must be suspended.
505    timings_.StartSplit("MarkRoots");
506    Runtime::Current()->VisitRoots(MarkRootCallback, this);
507    timings_.EndSplit();
508    RevokeAllThreadLocalAllocationStacks(self);
509  } else {
510    MarkRootsCheckpoint(self, kRevokeRosAllocThreadLocalBuffersAtCheckpoint);
511    // At this point the live stack should no longer have any mutators which push into it.
512    MarkNonThreadRoots();
513    MarkConcurrentRoots(
514        static_cast<VisitRootFlags>(kVisitRootFlagAllRoots | kVisitRootFlagStartLoggingNewRoots));
515  }
516}
517
518void MarkSweep::MarkNonThreadRoots() {
519  timings_.StartSplit("MarkNonThreadRoots");
520  Runtime::Current()->VisitNonThreadRoots(MarkRootCallback, this);
521  timings_.EndSplit();
522}
523
524void MarkSweep::MarkConcurrentRoots(VisitRootFlags flags) {
525  timings_.StartSplit("MarkConcurrentRoots");
526  // Visit all runtime roots and clear dirty flags.
527  Runtime::Current()->VisitConcurrentRoots(MarkRootCallback, this, flags);
528  timings_.EndSplit();
529}
530
531class ScanObjectVisitor {
532 public:
533  explicit ScanObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE
534      : mark_sweep_(mark_sweep) {}
535
536  void operator()(Object* obj) const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
537      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
538    if (kCheckLocks) {
539      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
540      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
541    }
542    mark_sweep_->ScanObject(obj);
543  }
544
545 private:
546  MarkSweep* const mark_sweep_;
547};
548
549class DelayReferenceReferentVisitor {
550 public:
551  explicit DelayReferenceReferentVisitor(MarkSweep* collector) : collector_(collector) {
552  }
553
554  void operator()(mirror::Class* klass, mirror::Reference* ref) const
555      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
556      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
557    collector_->DelayReferenceReferent(klass, ref);
558  }
559
560 private:
561  MarkSweep* const collector_;
562};
563
564template <bool kUseFinger = false>
565class MarkStackTask : public Task {
566 public:
567  MarkStackTask(ThreadPool* thread_pool, MarkSweep* mark_sweep, size_t mark_stack_size,
568                Object** mark_stack)
569      : mark_sweep_(mark_sweep),
570        thread_pool_(thread_pool),
571        mark_stack_pos_(mark_stack_size) {
572    // We may have to copy part of an existing mark stack when another mark stack overflows.
573    if (mark_stack_size != 0) {
574      DCHECK(mark_stack != NULL);
575      // TODO: Check performance?
576      std::copy(mark_stack, mark_stack + mark_stack_size, mark_stack_);
577    }
578    if (kCountTasks) {
579      ++mark_sweep_->work_chunks_created_;
580    }
581  }
582
583  static const size_t kMaxSize = 1 * KB;
584
585 protected:
586  class MarkObjectParallelVisitor {
587   public:
588    explicit MarkObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task,
589                                       MarkSweep* mark_sweep) ALWAYS_INLINE
590            : chunk_task_(chunk_task), mark_sweep_(mark_sweep) {}
591
592    void operator()(Object* obj, MemberOffset offset, bool /* static */) const ALWAYS_INLINE
593        SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
594      mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
595      if (ref != nullptr && mark_sweep_->MarkObjectParallel(ref)) {
596        if (kUseFinger) {
597          android_memory_barrier();
598          if (reinterpret_cast<uintptr_t>(ref) >=
599              static_cast<uintptr_t>(mark_sweep_->atomic_finger_)) {
600            return;
601          }
602        }
603        chunk_task_->MarkStackPush(ref);
604      }
605    }
606
607   private:
608    MarkStackTask<kUseFinger>* const chunk_task_;
609    MarkSweep* const mark_sweep_;
610  };
611
612  class ScanObjectParallelVisitor {
613   public:
614    explicit ScanObjectParallelVisitor(MarkStackTask<kUseFinger>* chunk_task) ALWAYS_INLINE
615        : chunk_task_(chunk_task) {}
616
617    // No thread safety analysis since multiple threads will use this visitor.
618    void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
619        EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
620      MarkSweep* const mark_sweep = chunk_task_->mark_sweep_;
621      MarkObjectParallelVisitor mark_visitor(chunk_task_, mark_sweep);
622      DelayReferenceReferentVisitor ref_visitor(mark_sweep);
623      mark_sweep->ScanObjectVisit(obj, mark_visitor, ref_visitor);
624    }
625
626   private:
627    MarkStackTask<kUseFinger>* const chunk_task_;
628  };
629
630  virtual ~MarkStackTask() {
631    // Make sure that we have cleared our mark stack.
632    DCHECK_EQ(mark_stack_pos_, 0U);
633    if (kCountTasks) {
634      ++mark_sweep_->work_chunks_deleted_;
635    }
636  }
637
638  MarkSweep* const mark_sweep_;
639  ThreadPool* const thread_pool_;
640  // Thread local mark stack for this task.
641  Object* mark_stack_[kMaxSize];
642  // Mark stack position.
643  size_t mark_stack_pos_;
644
645  void MarkStackPush(Object* obj) ALWAYS_INLINE {
646    if (UNLIKELY(mark_stack_pos_ == kMaxSize)) {
647      // Mark stack overflow, give 1/2 the stack to the thread pool as a new work task.
648      mark_stack_pos_ /= 2;
649      auto* task = new MarkStackTask(thread_pool_, mark_sweep_, kMaxSize - mark_stack_pos_,
650                                     mark_stack_ + mark_stack_pos_);
651      thread_pool_->AddTask(Thread::Current(), task);
652    }
653    DCHECK(obj != nullptr);
654    DCHECK_LT(mark_stack_pos_, kMaxSize);
655    mark_stack_[mark_stack_pos_++] = obj;
656  }
657
658  virtual void Finalize() {
659    delete this;
660  }
661
662  // Scans all of the objects
663  virtual void Run(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
664      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
665    ScanObjectParallelVisitor visitor(this);
666    // TODO: Tune this.
667    static const size_t kFifoSize = 4;
668    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
669    for (;;) {
670      Object* obj = nullptr;
671      if (kUseMarkStackPrefetch) {
672        while (mark_stack_pos_ != 0 && prefetch_fifo.size() < kFifoSize) {
673          Object* obj = mark_stack_[--mark_stack_pos_];
674          DCHECK(obj != nullptr);
675          __builtin_prefetch(obj);
676          prefetch_fifo.push_back(obj);
677        }
678        if (UNLIKELY(prefetch_fifo.empty())) {
679          break;
680        }
681        obj = prefetch_fifo.front();
682        prefetch_fifo.pop_front();
683      } else {
684        if (UNLIKELY(mark_stack_pos_ == 0)) {
685          break;
686        }
687        obj = mark_stack_[--mark_stack_pos_];
688      }
689      DCHECK(obj != nullptr);
690      visitor(obj);
691    }
692  }
693};
694
695class CardScanTask : public MarkStackTask<false> {
696 public:
697  CardScanTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
698               accounting::ContinuousSpaceBitmap* bitmap,
699               byte* begin, byte* end, byte minimum_age, size_t mark_stack_size,
700               Object** mark_stack_obj)
701      : MarkStackTask<false>(thread_pool, mark_sweep, mark_stack_size, mark_stack_obj),
702        bitmap_(bitmap),
703        begin_(begin),
704        end_(end),
705        minimum_age_(minimum_age) {
706  }
707
708 protected:
709  accounting::ContinuousSpaceBitmap* const bitmap_;
710  byte* const begin_;
711  byte* const end_;
712  const byte minimum_age_;
713
714  virtual void Finalize() {
715    delete this;
716  }
717
718  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
719    ScanObjectParallelVisitor visitor(this);
720    accounting::CardTable* card_table = mark_sweep_->GetHeap()->GetCardTable();
721    size_t cards_scanned = card_table->Scan(bitmap_, begin_, end_, visitor, minimum_age_);
722    VLOG(heap) << "Parallel scanning cards " << reinterpret_cast<void*>(begin_) << " - "
723        << reinterpret_cast<void*>(end_) << " = " << cards_scanned;
724    // Finish by emptying our local mark stack.
725    MarkStackTask::Run(self);
726  }
727};
728
729size_t MarkSweep::GetThreadCount(bool paused) const {
730  if (heap_->GetThreadPool() == nullptr || !heap_->CareAboutPauseTimes()) {
731    return 1;
732  }
733  if (paused) {
734    return heap_->GetParallelGCThreadCount() + 1;
735  } else {
736    return heap_->GetConcGCThreadCount() + 1;
737  }
738}
739
740void MarkSweep::ScanGrayObjects(bool paused, byte minimum_age) {
741  accounting::CardTable* card_table = GetHeap()->GetCardTable();
742  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
743  size_t thread_count = GetThreadCount(paused);
744  // The parallel version with only one thread is faster for card scanning, TODO: fix.
745  if (kParallelCardScan && thread_count > 1) {
746    Thread* self = Thread::Current();
747    // Can't have a different split for each space since multiple spaces can have their cards being
748    // scanned at the same time.
749    timings_.StartSplit(paused ? "(Paused)ScanGrayObjects" : "ScanGrayObjects");
750    // Try to take some of the mark stack since we can pass this off to the worker tasks.
751    Object** mark_stack_begin = mark_stack_->Begin();
752    Object** mark_stack_end = mark_stack_->End();
753    const size_t mark_stack_size = mark_stack_end - mark_stack_begin;
754    // Estimated number of work tasks we will create.
755    const size_t mark_stack_tasks = GetHeap()->GetContinuousSpaces().size() * thread_count;
756    DCHECK_NE(mark_stack_tasks, 0U);
757    const size_t mark_stack_delta = std::min(CardScanTask::kMaxSize / 2,
758                                             mark_stack_size / mark_stack_tasks + 1);
759    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
760      if (space->GetMarkBitmap() == nullptr) {
761        continue;
762      }
763      byte* card_begin = space->Begin();
764      byte* card_end = space->End();
765      // Align up the end address. For example, the image space's end
766      // may not be card-size-aligned.
767      card_end = AlignUp(card_end, accounting::CardTable::kCardSize);
768      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_begin));
769      DCHECK(IsAligned<accounting::CardTable::kCardSize>(card_end));
770      // Calculate how many bytes of heap we will scan,
771      const size_t address_range = card_end - card_begin;
772      // Calculate how much address range each task gets.
773      const size_t card_delta = RoundUp(address_range / thread_count + 1,
774                                        accounting::CardTable::kCardSize);
775      // Create the worker tasks for this space.
776      while (card_begin != card_end) {
777        // Add a range of cards.
778        size_t addr_remaining = card_end - card_begin;
779        size_t card_increment = std::min(card_delta, addr_remaining);
780        // Take from the back of the mark stack.
781        size_t mark_stack_remaining = mark_stack_end - mark_stack_begin;
782        size_t mark_stack_increment = std::min(mark_stack_delta, mark_stack_remaining);
783        mark_stack_end -= mark_stack_increment;
784        mark_stack_->PopBackCount(static_cast<int32_t>(mark_stack_increment));
785        DCHECK_EQ(mark_stack_end, mark_stack_->End());
786        // Add the new task to the thread pool.
787        auto* task = new CardScanTask(thread_pool, this, space->GetMarkBitmap(), card_begin,
788                                      card_begin + card_increment, minimum_age,
789                                      mark_stack_increment, mark_stack_end);
790        thread_pool->AddTask(self, task);
791        card_begin += card_increment;
792      }
793    }
794
795    // Note: the card scan below may dirty new cards (and scan them)
796    // as a side effect when a Reference object is encountered and
797    // queued during the marking. See b/11465268.
798    thread_pool->SetMaxActiveWorkers(thread_count - 1);
799    thread_pool->StartWorkers(self);
800    thread_pool->Wait(self, true, true);
801    thread_pool->StopWorkers(self);
802    timings_.EndSplit();
803  } else {
804    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
805      if (space->GetMarkBitmap() != nullptr) {
806        // Image spaces are handled properly since live == marked for them.
807        switch (space->GetGcRetentionPolicy()) {
808          case space::kGcRetentionPolicyNeverCollect:
809            timings_.StartSplit(paused ? "(Paused)ScanGrayImageSpaceObjects" :
810                "ScanGrayImageSpaceObjects");
811            break;
812          case space::kGcRetentionPolicyFullCollect:
813            timings_.StartSplit(paused ? "(Paused)ScanGrayZygoteSpaceObjects" :
814                "ScanGrayZygoteSpaceObjects");
815            break;
816          case space::kGcRetentionPolicyAlwaysCollect:
817            timings_.StartSplit(paused ? "(Paused)ScanGrayAllocSpaceObjects" :
818                "ScanGrayAllocSpaceObjects");
819            break;
820          }
821        ScanObjectVisitor visitor(this);
822        card_table->Scan(space->GetMarkBitmap(), space->Begin(), space->End(), visitor, minimum_age);
823        timings_.EndSplit();
824      }
825    }
826  }
827}
828
829class RecursiveMarkTask : public MarkStackTask<false> {
830 public:
831  RecursiveMarkTask(ThreadPool* thread_pool, MarkSweep* mark_sweep,
832                    accounting::ContinuousSpaceBitmap* bitmap, uintptr_t begin, uintptr_t end)
833      : MarkStackTask<false>(thread_pool, mark_sweep, 0, NULL),
834        bitmap_(bitmap),
835        begin_(begin),
836        end_(end) {
837  }
838
839 protected:
840  accounting::ContinuousSpaceBitmap* const bitmap_;
841  const uintptr_t begin_;
842  const uintptr_t end_;
843
844  virtual void Finalize() {
845    delete this;
846  }
847
848  // Scans all of the objects
849  virtual void Run(Thread* self) NO_THREAD_SAFETY_ANALYSIS {
850    ScanObjectParallelVisitor visitor(this);
851    bitmap_->VisitMarkedRange(begin_, end_, visitor);
852    // Finish by emptying our local mark stack.
853    MarkStackTask::Run(self);
854  }
855};
856
857// Populates the mark stack based on the set of marked objects and
858// recursively marks until the mark stack is emptied.
859void MarkSweep::RecursiveMark() {
860  TimingLogger::ScopedSplit split("RecursiveMark", &timings_);
861  // RecursiveMark will build the lists of known instances of the Reference classes. See
862  // DelayReferenceReferent for details.
863  if (kUseRecursiveMark) {
864    const bool partial = GetGcType() == kGcTypePartial;
865    ScanObjectVisitor scan_visitor(this);
866    auto* self = Thread::Current();
867    ThreadPool* thread_pool = heap_->GetThreadPool();
868    size_t thread_count = GetThreadCount(false);
869    const bool parallel = kParallelRecursiveMark && thread_count > 1;
870    mark_stack_->Reset();
871    for (const auto& space : GetHeap()->GetContinuousSpaces()) {
872      if ((space->GetGcRetentionPolicy() == space::kGcRetentionPolicyAlwaysCollect) ||
873          (!partial && space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect)) {
874        current_space_bitmap_ = space->GetMarkBitmap();
875        if (current_space_bitmap_ == nullptr) {
876          continue;
877        }
878        if (parallel) {
879          // We will use the mark stack the future.
880          // CHECK(mark_stack_->IsEmpty());
881          // This function does not handle heap end increasing, so we must use the space end.
882          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
883          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
884          atomic_finger_ = static_cast<int32_t>(0xFFFFFFFF);
885
886          // Create a few worker tasks.
887          const size_t n = thread_count * 2;
888          while (begin != end) {
889            uintptr_t start = begin;
890            uintptr_t delta = (end - begin) / n;
891            delta = RoundUp(delta, KB);
892            if (delta < 16 * KB) delta = end - begin;
893            begin += delta;
894            auto* task = new RecursiveMarkTask(thread_pool, this, current_space_bitmap_, start,
895                                               begin);
896            thread_pool->AddTask(self, task);
897          }
898          thread_pool->SetMaxActiveWorkers(thread_count - 1);
899          thread_pool->StartWorkers(self);
900          thread_pool->Wait(self, true, true);
901          thread_pool->StopWorkers(self);
902        } else {
903          // This function does not handle heap end increasing, so we must use the space end.
904          uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
905          uintptr_t end = reinterpret_cast<uintptr_t>(space->End());
906          current_space_bitmap_->VisitMarkedRange(begin, end, scan_visitor);
907        }
908      }
909    }
910  }
911  ProcessMarkStack(false);
912}
913
914mirror::Object* MarkSweep::IsMarkedCallback(mirror::Object* object, void* arg) {
915  if (reinterpret_cast<MarkSweep*>(arg)->IsMarked(object)) {
916    return object;
917  }
918  return nullptr;
919}
920
921void MarkSweep::RecursiveMarkDirtyObjects(bool paused, byte minimum_age) {
922  ScanGrayObjects(paused, minimum_age);
923  ProcessMarkStack(paused);
924}
925
926void MarkSweep::ReMarkRoots() {
927  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
928  timings_.StartSplit("(Paused)ReMarkRoots");
929  Runtime::Current()->VisitRoots(
930      MarkRootCallback, this, static_cast<VisitRootFlags>(kVisitRootFlagNewRoots |
931                                                          kVisitRootFlagStopLoggingNewRoots |
932                                                          kVisitRootFlagClearRootLog));
933  timings_.EndSplit();
934  if (kVerifyRootsMarked) {
935    timings_.StartSplit("(Paused)VerifyRoots");
936    Runtime::Current()->VisitRoots(VerifyRootMarked, this);
937    timings_.EndSplit();
938  }
939}
940
941void MarkSweep::SweepSystemWeaks(Thread* self) {
942  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
943  timings_.StartSplit("SweepSystemWeaks");
944  Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
945  timings_.EndSplit();
946}
947
948mirror::Object* MarkSweep::VerifySystemWeakIsLiveCallback(Object* obj, void* arg) {
949  reinterpret_cast<MarkSweep*>(arg)->VerifyIsLive(obj);
950  // We don't actually want to sweep the object, so lets return "marked"
951  return obj;
952}
953
954void MarkSweep::VerifyIsLive(const Object* obj) {
955  if (!heap_->GetLiveBitmap()->Test(obj)) {
956    if (std::find(heap_->allocation_stack_->Begin(), heap_->allocation_stack_->End(), obj) ==
957        heap_->allocation_stack_->End()) {
958      // Object not found!
959      heap_->DumpSpaces();
960      LOG(FATAL) << "Found dead object " << obj;
961    }
962  }
963}
964
965void MarkSweep::VerifySystemWeaks() {
966  // Verify system weaks, uses a special object visitor which returns the input object.
967  Runtime::Current()->SweepSystemWeaks(VerifySystemWeakIsLiveCallback, this);
968}
969
970class CheckpointMarkThreadRoots : public Closure {
971 public:
972  explicit CheckpointMarkThreadRoots(MarkSweep* mark_sweep,
973                                     bool revoke_ros_alloc_thread_local_buffers_at_checkpoint)
974      : mark_sweep_(mark_sweep),
975        revoke_ros_alloc_thread_local_buffers_at_checkpoint_(
976            revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
977  }
978
979  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
980    ATRACE_BEGIN("Marking thread roots");
981    // Note: self is not necessarily equal to thread since thread may be suspended.
982    Thread* self = Thread::Current();
983    CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
984        << thread->GetState() << " thread " << thread << " self " << self;
985    thread->VisitRoots(MarkSweep::MarkRootParallelCallback, mark_sweep_);
986    ATRACE_END();
987    if (revoke_ros_alloc_thread_local_buffers_at_checkpoint_) {
988      ATRACE_BEGIN("RevokeRosAllocThreadLocalBuffers");
989      mark_sweep_->GetHeap()->RevokeRosAllocThreadLocalBuffers(thread);
990      ATRACE_END();
991    }
992    mark_sweep_->GetBarrier().Pass(self);
993  }
994
995 private:
996  MarkSweep* const mark_sweep_;
997  const bool revoke_ros_alloc_thread_local_buffers_at_checkpoint_;
998};
999
1000void MarkSweep::MarkRootsCheckpoint(Thread* self,
1001                                    bool revoke_ros_alloc_thread_local_buffers_at_checkpoint) {
1002  CheckpointMarkThreadRoots check_point(this, revoke_ros_alloc_thread_local_buffers_at_checkpoint);
1003  timings_.StartSplit("MarkRootsCheckpoint");
1004  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1005  // Request the check point is run on all threads returning a count of the threads that must
1006  // run through the barrier including self.
1007  size_t barrier_count = thread_list->RunCheckpoint(&check_point);
1008  // Release locks then wait for all mutator threads to pass the barrier.
1009  // TODO: optimize to not release locks when there are no threads to wait for.
1010  Locks::heap_bitmap_lock_->ExclusiveUnlock(self);
1011  Locks::mutator_lock_->SharedUnlock(self);
1012  {
1013    ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1014    gc_barrier_->Increment(self, barrier_count);
1015  }
1016  Locks::mutator_lock_->SharedLock(self);
1017  Locks::heap_bitmap_lock_->ExclusiveLock(self);
1018  timings_.EndSplit();
1019}
1020
1021void MarkSweep::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
1022  timings_.StartSplit("SweepArray");
1023  Thread* self = Thread::Current();
1024  mirror::Object* chunk_free_buffer[kSweepArrayChunkFreeSize];
1025  size_t chunk_free_pos = 0;
1026  size_t freed_bytes = 0;
1027  size_t freed_large_object_bytes = 0;
1028  size_t freed_objects = 0;
1029  size_t freed_large_objects = 0;
1030  // How many objects are left in the array, modified after each space is swept.
1031  Object** objects = allocations->Begin();
1032  size_t count = allocations->Size();
1033  // Change the order to ensure that the non-moving space last swept as an optimization.
1034  std::vector<space::ContinuousSpace*> sweep_spaces;
1035  space::ContinuousSpace* non_moving_space = nullptr;
1036  for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
1037    if (space->IsAllocSpace() && !immune_region_.ContainsSpace(space) &&
1038        space->GetLiveBitmap() != nullptr) {
1039      if (space == heap_->GetNonMovingSpace()) {
1040        non_moving_space = space;
1041      } else {
1042        sweep_spaces.push_back(space);
1043      }
1044    }
1045  }
1046  // Unlikely to sweep a significant amount of non_movable objects, so we do these after the after
1047  // the other alloc spaces as an optimization.
1048  if (non_moving_space != nullptr) {
1049    sweep_spaces.push_back(non_moving_space);
1050  }
1051  // Start by sweeping the continuous spaces.
1052  for (space::ContinuousSpace* space : sweep_spaces) {
1053    space::AllocSpace* alloc_space = space->AsAllocSpace();
1054    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1055    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1056    if (swap_bitmaps) {
1057      std::swap(live_bitmap, mark_bitmap);
1058    }
1059    Object** out = objects;
1060    for (size_t i = 0; i < count; ++i) {
1061      Object* obj = objects[i];
1062      if (kUseThreadLocalAllocationStack && obj == nullptr) {
1063        continue;
1064      }
1065      if (space->HasAddress(obj)) {
1066        // This object is in the space, remove it from the array and add it to the sweep buffer
1067        // if needed.
1068        if (!mark_bitmap->Test(obj)) {
1069          if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
1070            timings_.StartSplit("FreeList");
1071            freed_objects += chunk_free_pos;
1072            freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1073            timings_.EndSplit();
1074            chunk_free_pos = 0;
1075          }
1076          chunk_free_buffer[chunk_free_pos++] = obj;
1077        }
1078      } else {
1079        *(out++) = obj;
1080      }
1081    }
1082    if (chunk_free_pos > 0) {
1083      timings_.StartSplit("FreeList");
1084      freed_objects += chunk_free_pos;
1085      freed_bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
1086      timings_.EndSplit();
1087      chunk_free_pos = 0;
1088    }
1089    // All of the references which space contained are no longer in the allocation stack, update
1090    // the count.
1091    count = out - objects;
1092  }
1093  // Handle the large object space.
1094  space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
1095  accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
1096  accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
1097  if (swap_bitmaps) {
1098    std::swap(large_live_objects, large_mark_objects);
1099  }
1100  for (size_t i = 0; i < count; ++i) {
1101    Object* obj = objects[i];
1102    // Handle large objects.
1103    if (kUseThreadLocalAllocationStack && obj == nullptr) {
1104      continue;
1105    }
1106    if (!large_mark_objects->Test(obj)) {
1107      ++freed_large_objects;
1108      freed_large_object_bytes += large_object_space->Free(self, obj);
1109    }
1110  }
1111  timings_.EndSplit();
1112
1113  timings_.StartSplit("RecordFree");
1114  VLOG(heap) << "Freed " << freed_objects << "/" << count << " objects with size "
1115             << PrettySize(freed_bytes);
1116  RecordFree(freed_objects, freed_bytes);
1117  RecordFreeLargeObjects(freed_large_objects, freed_large_object_bytes);
1118  timings_.EndSplit();
1119
1120  timings_.StartSplit("ResetStack");
1121  allocations->Reset();
1122  timings_.EndSplit();
1123}
1124
1125void MarkSweep::Sweep(bool swap_bitmaps) {
1126  // Ensure that nobody inserted items in the live stack after we swapped the stacks.
1127  CHECK_GE(live_stack_freeze_size_, GetHeap()->GetLiveStack()->Size());
1128  // Mark everything allocated since the last as GC live so that we can sweep concurrently,
1129  // knowing that new allocations won't be marked as live.
1130  timings_.StartSplit("MarkStackAsLive");
1131  accounting::ObjectStack* live_stack = heap_->GetLiveStack();
1132  heap_->MarkAllocStackAsLive(live_stack);
1133  live_stack->Reset();
1134  timings_.EndSplit();
1135
1136  DCHECK(mark_stack_->IsEmpty());
1137  for (const auto& space : GetHeap()->GetContinuousSpaces()) {
1138    if (space->IsContinuousMemMapAllocSpace()) {
1139      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1140      TimingLogger::ScopedSplit split(
1141          alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepMallocSpace", &timings_);
1142      size_t freed_objects = 0;
1143      size_t freed_bytes = 0;
1144      alloc_space->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1145      RecordFree(freed_objects, freed_bytes);
1146    }
1147  }
1148  SweepLargeObjects(swap_bitmaps);
1149}
1150
1151void MarkSweep::SweepLargeObjects(bool swap_bitmaps) {
1152  TimingLogger::ScopedSplit split("SweepLargeObjects", &timings_);
1153  size_t freed_objects = 0;
1154  size_t freed_bytes = 0;
1155  heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps, &freed_objects, &freed_bytes);
1156  RecordFreeLargeObjects(freed_objects, freed_bytes);
1157}
1158
1159// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
1160// marked, put it on the appropriate list in the heap for later processing.
1161void MarkSweep::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref) {
1162  DCHECK(klass != nullptr);
1163  if (kCountJavaLangRefs) {
1164    ++reference_count_;
1165  }
1166  heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, ref, IsMarkedCallback, this);
1167}
1168
1169class MarkObjectVisitor {
1170 public:
1171  explicit MarkObjectVisitor(MarkSweep* const mark_sweep) ALWAYS_INLINE : mark_sweep_(mark_sweep) {
1172  }
1173
1174  void operator()(Object* obj, MemberOffset offset, bool /* is_static */) const
1175      ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1176      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1177    if (kCheckLocks) {
1178      Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1179      Locks::heap_bitmap_lock_->AssertExclusiveHeld(Thread::Current());
1180    }
1181    mark_sweep_->MarkObject(obj->GetFieldObject<mirror::Object>(offset));
1182  }
1183
1184 private:
1185  MarkSweep* const mark_sweep_;
1186};
1187
1188// Scans an object reference.  Determines the type of the reference
1189// and dispatches to a specialized scanning routine.
1190void MarkSweep::ScanObject(Object* obj) {
1191  MarkObjectVisitor mark_visitor(this);
1192  DelayReferenceReferentVisitor ref_visitor(this);
1193  ScanObjectVisit(obj, mark_visitor, ref_visitor);
1194}
1195
1196void MarkSweep::ProcessMarkStackCallback(void* arg) {
1197  reinterpret_cast<MarkSweep*>(arg)->ProcessMarkStack(false);
1198}
1199
1200void MarkSweep::ProcessMarkStackParallel(size_t thread_count) {
1201  Thread* self = Thread::Current();
1202  ThreadPool* thread_pool = GetHeap()->GetThreadPool();
1203  const size_t chunk_size = std::min(mark_stack_->Size() / thread_count + 1,
1204                                     static_cast<size_t>(MarkStackTask<false>::kMaxSize));
1205  CHECK_GT(chunk_size, 0U);
1206  // Split the current mark stack up into work tasks.
1207  for (mirror::Object **it = mark_stack_->Begin(), **end = mark_stack_->End(); it < end; ) {
1208    const size_t delta = std::min(static_cast<size_t>(end - it), chunk_size);
1209    thread_pool->AddTask(self, new MarkStackTask<false>(thread_pool, this, delta, it));
1210    it += delta;
1211  }
1212  thread_pool->SetMaxActiveWorkers(thread_count - 1);
1213  thread_pool->StartWorkers(self);
1214  thread_pool->Wait(self, true, true);
1215  thread_pool->StopWorkers(self);
1216  mark_stack_->Reset();
1217  CHECK_EQ(work_chunks_created_, work_chunks_deleted_) << " some of the work chunks were leaked";
1218}
1219
1220// Scan anything that's on the mark stack.
1221void MarkSweep::ProcessMarkStack(bool paused) {
1222  timings_.StartSplit(paused ? "(Paused)ProcessMarkStack" : "ProcessMarkStack");
1223  size_t thread_count = GetThreadCount(paused);
1224  if (kParallelProcessMarkStack && thread_count > 1 &&
1225      mark_stack_->Size() >= kMinimumParallelMarkStackSize) {
1226    ProcessMarkStackParallel(thread_count);
1227  } else {
1228    // TODO: Tune this.
1229    static const size_t kFifoSize = 4;
1230    BoundedFifoPowerOfTwo<Object*, kFifoSize> prefetch_fifo;
1231    for (;;) {
1232      Object* obj = NULL;
1233      if (kUseMarkStackPrefetch) {
1234        while (!mark_stack_->IsEmpty() && prefetch_fifo.size() < kFifoSize) {
1235          Object* obj = mark_stack_->PopBack();
1236          DCHECK(obj != NULL);
1237          __builtin_prefetch(obj);
1238          prefetch_fifo.push_back(obj);
1239        }
1240        if (prefetch_fifo.empty()) {
1241          break;
1242        }
1243        obj = prefetch_fifo.front();
1244        prefetch_fifo.pop_front();
1245      } else {
1246        if (mark_stack_->IsEmpty()) {
1247          break;
1248        }
1249        obj = mark_stack_->PopBack();
1250      }
1251      DCHECK(obj != nullptr);
1252      ScanObject(obj);
1253    }
1254  }
1255  timings_.EndSplit();
1256}
1257
1258inline bool MarkSweep::IsMarked(const Object* object) const
1259    SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1260  if (immune_region_.ContainsObject(object)) {
1261    return true;
1262  }
1263  if (current_space_bitmap_->HasAddress(object)) {
1264    return current_space_bitmap_->Test(object);
1265  }
1266  return mark_bitmap_->Test(object);
1267}
1268
1269void MarkSweep::FinishPhase() {
1270  TimingLogger::ScopedSplit split("FinishPhase", &timings_);
1271  if (kCountScannedTypes) {
1272    VLOG(gc) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_
1273             << " other=" << other_count_;
1274  }
1275  if (kCountTasks) {
1276    VLOG(gc) << "Total number of work chunks allocated: " << work_chunks_created_;
1277  }
1278  if (kMeasureOverhead) {
1279    VLOG(gc) << "Overhead time " << PrettyDuration(overhead_time_);
1280  }
1281  if (kProfileLargeObjects) {
1282    VLOG(gc) << "Large objects tested " << large_object_test_ << " marked " << large_object_mark_;
1283  }
1284  if (kCountJavaLangRefs) {
1285    VLOG(gc) << "References scanned " << reference_count_;
1286  }
1287  if (kCountMarkedObjects) {
1288    VLOG(gc) << "Marked: null=" << mark_null_count_ << " immune=" <<  mark_immune_count_
1289        << " fastpath=" << mark_fastpath_count_ << " slowpath=" << mark_slowpath_count_;
1290  }
1291  CHECK(mark_stack_->IsEmpty());  // Ensure that the mark stack is empty.
1292  mark_stack_->Reset();
1293  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1294  heap_->ClearMarkedObjects();
1295}
1296
1297void MarkSweep::RevokeAllThreadLocalBuffers() {
1298  if (kRevokeRosAllocThreadLocalBuffersAtCheckpoint && IsConcurrent()) {
1299    // If concurrent, rosalloc thread-local buffers are revoked at the
1300    // thread checkpoint. Bump pointer space thread-local buffers must
1301    // not be in use.
1302    GetHeap()->AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked();
1303  } else {
1304    timings_.StartSplit("(Paused)RevokeAllThreadLocalBuffers");
1305    GetHeap()->RevokeAllThreadLocalBuffers();
1306    timings_.EndSplit();
1307  }
1308}
1309
1310}  // namespace collector
1311}  // namespace gc
1312}  // namespace art
1313