space_test.h revision 28b1cf779b8c438b01b28a4adfeb22a4a8ebdb12
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
18#define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
19
20#include <stdint.h>
21#include <memory>
22
23#include "common_runtime_test.h"
24#include "globals.h"
25#include "mirror/array-inl.h"
26#include "mirror/class-inl.h"
27#include "mirror/class_loader.h"
28#include "mirror/object-inl.h"
29#include "scoped_thread_state_change.h"
30#include "zygote_space.h"
31
32namespace art {
33namespace gc {
34namespace space {
35
36template <class Super>
37class SpaceTest : public Super {
38 public:
39  jobject byte_array_class_ = nullptr;
40
41  void AddSpace(ContinuousSpace* space, bool revoke = true) {
42    Heap* heap = Runtime::Current()->GetHeap();
43    if (revoke) {
44      heap->RevokeAllThreadLocalBuffers();
45    }
46    heap->AddSpace(space);
47    heap->SetSpaceAsDefault(space);
48  }
49
50  mirror::Class* GetByteArrayClass(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_) {
51    StackHandleScope<1> hs(self);
52    auto null_loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
53    if (byte_array_class_ == nullptr) {
54      mirror::Class* byte_array_class =
55          Runtime::Current()->GetClassLinker()->FindClass(self, "[B", null_loader);
56      EXPECT_TRUE(byte_array_class != nullptr);
57      byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class);
58      EXPECT_TRUE(byte_array_class_ != nullptr);
59    }
60    return reinterpret_cast<mirror::Class*>(self->DecodeJObject(byte_array_class_));
61  }
62
63  mirror::Object* Alloc(space::MallocSpace* alloc_space,
64                        Thread* self,
65                        size_t bytes,
66                        size_t* bytes_allocated,
67                        size_t* usable_size,
68                        size_t* bytes_tl_bulk_allocated)
69      SHARED_REQUIRES(Locks::mutator_lock_) {
70    StackHandleScope<1> hs(self);
71    Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
72    mirror::Object* obj = alloc_space->Alloc(self,
73                                             bytes,
74                                             bytes_allocated,
75                                             usable_size,
76                                             bytes_tl_bulk_allocated);
77    if (obj != nullptr) {
78      InstallClass(obj, byte_array_class.Get(), bytes);
79    }
80    return obj;
81  }
82
83  mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space,
84                                  Thread* self,
85                                  size_t bytes,
86                                  size_t* bytes_allocated,
87                                  size_t* usable_size,
88                                  size_t* bytes_tl_bulk_allocated)
89      SHARED_REQUIRES(Locks::mutator_lock_) {
90    StackHandleScope<1> hs(self);
91    Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
92    mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size,
93                                                       bytes_tl_bulk_allocated);
94    if (obj != nullptr) {
95      InstallClass(obj, byte_array_class.Get(), bytes);
96    }
97    return obj;
98  }
99
100  void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
101      SHARED_REQUIRES(Locks::mutator_lock_) {
102    // Note the minimum size, which is the size of a zero-length byte array.
103    EXPECT_GE(size, SizeOfZeroLengthByteArray());
104    EXPECT_TRUE(byte_array_class != nullptr);
105    o->SetClass(byte_array_class);
106    if (kUseBakerOrBrooksReadBarrier) {
107      // Like the proper heap object allocation, install and verify
108      // the correct read barrier pointer.
109      if (kUseBrooksReadBarrier) {
110        o->SetReadBarrierPointer(o);
111      }
112      o->AssertReadBarrierPointer();
113    }
114    mirror::Array* arr = o->AsArray<kVerifyNone>();
115    size_t header_size = SizeOfZeroLengthByteArray();
116    int32_t length = size - header_size;
117    arr->SetLength(length);
118    EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
119  }
120
121  static size_t SizeOfZeroLengthByteArray() {
122    return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
123  }
124
125  typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
126                                        size_t capacity, uint8_t* requested_begin);
127
128  void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
129                                           int round, size_t growth_limit);
130  void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
131};
132
133static inline size_t test_rand(size_t* seed) {
134  *seed = *seed * 1103515245 + 12345;
135  return *seed;
136}
137
138template <class Super>
139void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space,
140                                                           intptr_t object_size,
141                                                           int round,
142                                                           size_t growth_limit) {
143  if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
144      ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
145    // No allocation can succeed
146    return;
147  }
148
149  // The space's footprint equals amount of resources requested from system
150  size_t footprint = space->GetFootprint();
151
152  // The space must at least have its book keeping allocated
153  EXPECT_GT(footprint, 0u);
154
155  // But it shouldn't exceed the initial size
156  EXPECT_LE(footprint, growth_limit);
157
158  // space's size shouldn't exceed the initial size
159  EXPECT_LE(space->Size(), growth_limit);
160
161  // this invariant should always hold or else the space has grown to be larger than what the
162  // space believes its size is (which will break invariants)
163  EXPECT_GE(space->Size(), footprint);
164
165  // Fill the space with lots of small objects up to the growth limit
166  size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
167  std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
168  size_t last_object = 0;  // last object for which allocation succeeded
169  size_t amount_allocated = 0;  // amount of space allocated
170  Thread* self = Thread::Current();
171  ScopedObjectAccess soa(self);
172  size_t rand_seed = 123456789;
173  for (size_t i = 0; i < max_objects; i++) {
174    size_t alloc_fails = 0;  // number of failed allocations
175    size_t max_fails = 30;  // number of times we fail allocation before giving up
176    for (; alloc_fails < max_fails; alloc_fails++) {
177      size_t alloc_size;
178      if (object_size > 0) {
179        alloc_size = object_size;
180      } else {
181        alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
182        // Note the minimum size, which is the size of a zero-length byte array.
183        size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
184        if (alloc_size < size_of_zero_length_byte_array) {
185          alloc_size = size_of_zero_length_byte_array;
186        }
187      }
188      StackHandleScope<1> hs(soa.Self());
189      auto object(hs.NewHandle<mirror::Object>(nullptr));
190      size_t bytes_allocated = 0;
191      size_t bytes_tl_bulk_allocated;
192      if (round <= 1) {
193        object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr,
194                            &bytes_tl_bulk_allocated));
195      } else {
196        object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr,
197                                      &bytes_tl_bulk_allocated));
198      }
199      footprint = space->GetFootprint();
200      EXPECT_GE(space->Size(), footprint);  // invariant
201      if (object.Get() != nullptr) {  // allocation succeeded
202        lots_of_objects[i] = object.Get();
203        size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
204        EXPECT_EQ(bytes_allocated, allocation_size);
205        if (object_size > 0) {
206          EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
207        } else {
208          EXPECT_GE(allocation_size, 8u);
209        }
210        EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
211                    bytes_tl_bulk_allocated >= allocation_size);
212        amount_allocated += allocation_size;
213        break;
214      }
215    }
216    if (alloc_fails == max_fails) {
217      last_object = i;
218      break;
219    }
220  }
221  CHECK_NE(last_object, 0u);  // we should have filled the space
222  EXPECT_GT(amount_allocated, 0u);
223
224  // We shouldn't have gone past the growth_limit
225  EXPECT_LE(amount_allocated, growth_limit);
226  EXPECT_LE(footprint, growth_limit);
227  EXPECT_LE(space->Size(), growth_limit);
228
229  // footprint and size should agree with amount allocated
230  EXPECT_GE(footprint, amount_allocated);
231  EXPECT_GE(space->Size(), amount_allocated);
232
233  // Release storage in a semi-adhoc manner
234  size_t free_increment = 96;
235  while (true) {
236    {
237      ScopedThreadStateChange tsc(self, kNative);
238      // Give the space a haircut.
239      space->Trim();
240    }
241
242    // Bounds sanity
243    footprint = space->GetFootprint();
244    EXPECT_LE(amount_allocated, growth_limit);
245    EXPECT_GE(footprint, amount_allocated);
246    EXPECT_LE(footprint, growth_limit);
247    EXPECT_GE(space->Size(), amount_allocated);
248    EXPECT_LE(space->Size(), growth_limit);
249
250    if (free_increment == 0) {
251      break;
252    }
253
254    // Free some objects
255    for (size_t i = 0; i < last_object; i += free_increment) {
256      mirror::Object* object = lots_of_objects.get()[i];
257      if (object == nullptr) {
258        continue;
259      }
260      size_t allocation_size = space->AllocationSize(object, nullptr);
261      if (object_size > 0) {
262        EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
263      } else {
264        EXPECT_GE(allocation_size, 8u);
265      }
266      space->Free(self, object);
267      lots_of_objects.get()[i] = nullptr;
268      amount_allocated -= allocation_size;
269      footprint = space->GetFootprint();
270      EXPECT_GE(space->Size(), footprint);  // invariant
271    }
272
273    free_increment >>= 1;
274  }
275
276  // The space has become empty here before allocating a large object
277  // below. For RosAlloc, revoke thread-local runs, which are kept
278  // even when empty for a performance reason, so that they won't
279  // cause the following large object allocation to fail due to
280  // potential fragmentation. Note they are normally revoked at each
281  // GC (but no GC here.)
282  space->RevokeAllThreadLocalBuffers();
283
284  // All memory was released, try a large allocation to check freed memory is being coalesced
285  StackHandleScope<1> hs(soa.Self());
286  auto large_object(hs.NewHandle<mirror::Object>(nullptr));
287  size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
288  size_t bytes_allocated = 0;
289  size_t bytes_tl_bulk_allocated;
290  if (round <= 1) {
291    large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr,
292                              &bytes_tl_bulk_allocated));
293  } else {
294    large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
295                                        nullptr, &bytes_tl_bulk_allocated));
296  }
297  EXPECT_TRUE(large_object.Get() != nullptr);
298
299  // Sanity check footprint
300  footprint = space->GetFootprint();
301  EXPECT_LE(footprint, growth_limit);
302  EXPECT_GE(space->Size(), footprint);
303  EXPECT_LE(space->Size(), growth_limit);
304
305  // Clean up
306  space->Free(self, large_object.Assign(nullptr));
307
308  // Sanity check footprint
309  footprint = space->GetFootprint();
310  EXPECT_LE(footprint, growth_limit);
311  EXPECT_GE(space->Size(), footprint);
312  EXPECT_LE(space->Size(), growth_limit);
313}
314
315template <class Super>
316void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,
317                                                             CreateSpaceFn create_space) {
318  if (object_size < SizeOfZeroLengthByteArray()) {
319    // Too small for the object layout/model.
320    return;
321  }
322  size_t initial_size = 4 * MB;
323  size_t growth_limit = 8 * MB;
324  size_t capacity = 16 * MB;
325  MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr));
326  ASSERT_TRUE(space != nullptr);
327
328  // Basic sanity
329  EXPECT_EQ(space->Capacity(), growth_limit);
330  EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
331
332  // Make space findable to the heap, will also delete space when runtime is cleaned up
333  AddSpace(space);
334
335  // In this round we don't allocate with growth and therefore can't grow past the initial size.
336  // This effectively makes the growth_limit the initial_size, so assert this.
337  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
338  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
339  // Remove growth limit
340  space->ClearGrowthLimit();
341  EXPECT_EQ(space->Capacity(), capacity);
342  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
343}
344
345#define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
346  TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
347    SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
348  }
349
350#define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
351  TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
352    SizeFootPrintGrowthLimitAndTrimDriver(-size, spaceFn); \
353  }
354
355#define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
356  class spaceName##StaticTest : public SpaceTest<CommonRuntimeTest> { \
357  }; \
358  \
359  TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
360  TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
361  TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
362  TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
363  TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
364  TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
365  TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
366  TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
367  TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
368  TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
369  TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
370
371#define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
372  class spaceName##RandomTest : public SpaceTest<CommonRuntimeTest> { \
373  }; \
374  \
375  TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
376  TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
377  TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
378  TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
379  TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
380  TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
381  TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
382  TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
383  TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
384  TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
385
386}  // namespace space
387}  // namespace gc
388}  // namespace art
389
390#endif  // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
391