space_test.h revision 5a4b8a236030460651a3136397d23ca6744e7eb7
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
18#define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
19
20#include <stdint.h>
21#include <memory>
22
23#include "common_runtime_test.h"
24#include "globals.h"
25#include "mirror/array-inl.h"
26#include "mirror/object-inl.h"
27#include "scoped_thread_state_change.h"
28#include "zygote_space.h"
29
30namespace art {
31namespace gc {
32namespace space {
33
34class SpaceTest : public CommonRuntimeTest {
35 public:
36  jobject byte_array_class_;
37
38  SpaceTest() : byte_array_class_(nullptr) {
39  }
40
41  void AddSpace(ContinuousSpace* space, bool revoke = true) {
42    Heap* heap = Runtime::Current()->GetHeap();
43    if (revoke) {
44      heap->RevokeAllThreadLocalBuffers();
45    }
46    heap->AddSpace(space);
47    heap->SetSpaceAsDefault(space);
48  }
49
50  mirror::Class* GetByteArrayClass(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
51    StackHandleScope<1> hs(self);
52    auto null_loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
53    if (byte_array_class_ == nullptr) {
54      mirror::Class* byte_array_class =
55          Runtime::Current()->GetClassLinker()->FindClass(self, "[B", null_loader);
56      EXPECT_TRUE(byte_array_class != nullptr);
57      byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class);
58      EXPECT_TRUE(byte_array_class_ != nullptr);
59    }
60    return reinterpret_cast<mirror::Class*>(self->DecodeJObject(byte_array_class_));
61  }
62
63  mirror::Object* Alloc(space::MallocSpace* alloc_space, Thread* self, size_t bytes,
64                        size_t* bytes_allocated, size_t* usable_size)
65      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
66    StackHandleScope<1> hs(self);
67    Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
68    mirror::Object* obj = alloc_space->Alloc(self, bytes, bytes_allocated, usable_size);
69    if (obj != nullptr) {
70      InstallClass(obj, byte_array_class.Get(), bytes);
71    }
72    return obj;
73  }
74
75  mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space, Thread* self, size_t bytes,
76                                  size_t* bytes_allocated, size_t* usable_size)
77      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
78    StackHandleScope<1> hs(self);
79    Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
80    mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size);
81    if (obj != nullptr) {
82      InstallClass(obj, byte_array_class.Get(), bytes);
83    }
84    return obj;
85  }
86
87  void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
88      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
89    // Note the minimum size, which is the size of a zero-length byte array.
90    EXPECT_GE(size, SizeOfZeroLengthByteArray());
91    EXPECT_TRUE(byte_array_class != nullptr);
92    o->SetClass(byte_array_class);
93    if (kUseBakerOrBrooksReadBarrier) {
94      // Like the proper heap object allocation, install and verify
95      // the correct read barrier pointer.
96      if (kUseBrooksReadBarrier) {
97        o->SetReadBarrierPointer(o);
98      }
99      o->AssertReadBarrierPointer();
100    }
101    mirror::Array* arr = o->AsArray<kVerifyNone>();
102    size_t header_size = SizeOfZeroLengthByteArray();
103    int32_t length = size - header_size;
104    arr->SetLength(length);
105    EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
106  }
107
108  static size_t SizeOfZeroLengthByteArray() {
109    return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
110  }
111
112  typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
113                                        size_t capacity, byte* requested_begin);
114  void InitTestBody(CreateSpaceFn create_space);
115  void ZygoteSpaceTestBody(CreateSpaceFn create_space);
116  void AllocAndFreeTestBody(CreateSpaceFn create_space);
117  void AllocAndFreeListTestBody(CreateSpaceFn create_space);
118
119  void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
120                                           int round, size_t growth_limit);
121  void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
122};
123
124static inline size_t test_rand(size_t* seed) {
125  *seed = *seed * 1103515245 + 12345;
126  return *seed;
127}
128
129void SpaceTest::InitTestBody(CreateSpaceFn create_space) {
130  {
131    // Init < max == growth
132    std::unique_ptr<Space> space(create_space("test", 16 * MB, 32 * MB, 32 * MB, nullptr));
133    EXPECT_TRUE(space.get() != nullptr);
134  }
135  {
136    // Init == max == growth
137    std::unique_ptr<Space> space(create_space("test", 16 * MB, 16 * MB, 16 * MB, nullptr));
138    EXPECT_TRUE(space.get() != nullptr);
139  }
140  {
141    // Init > max == growth
142    std::unique_ptr<Space> space(create_space("test", 32 * MB, 16 * MB, 16 * MB, nullptr));
143    EXPECT_TRUE(space.get() == nullptr);
144  }
145  {
146    // Growth == init < max
147    std::unique_ptr<Space> space(create_space("test", 16 * MB, 16 * MB, 32 * MB, nullptr));
148    EXPECT_TRUE(space.get() != nullptr);
149  }
150  {
151    // Growth < init < max
152    std::unique_ptr<Space> space(create_space("test", 16 * MB, 8 * MB, 32 * MB, nullptr));
153    EXPECT_TRUE(space.get() == nullptr);
154  }
155  {
156    // Init < growth < max
157    std::unique_ptr<Space> space(create_space("test", 8 * MB, 16 * MB, 32 * MB, nullptr));
158    EXPECT_TRUE(space.get() != nullptr);
159  }
160  {
161    // Init < max < growth
162    std::unique_ptr<Space> space(create_space("test", 8 * MB, 32 * MB, 16 * MB, nullptr));
163    EXPECT_TRUE(space.get() == nullptr);
164  }
165}
166
167// TODO: This test is not very good, we should improve it.
168// The test should do more allocations before the creation of the ZygoteSpace, and then do
169// allocations after the ZygoteSpace is created. The test should also do some GCs to ensure that
170// the GC works with the ZygoteSpace.
171void SpaceTest::ZygoteSpaceTestBody(CreateSpaceFn create_space) {
172  size_t dummy;
173  MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
174  ASSERT_TRUE(space != nullptr);
175
176  // Make space findable to the heap, will also delete space when runtime is cleaned up
177  AddSpace(space);
178  Thread* self = Thread::Current();
179  ScopedObjectAccess soa(self);
180
181  // Succeeds, fits without adjusting the footprint limit.
182  size_t ptr1_bytes_allocated, ptr1_usable_size;
183  StackHandleScope<3> hs(soa.Self());
184  MutableHandle<mirror::Object> ptr1(
185      hs.NewHandle(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size)));
186  EXPECT_TRUE(ptr1.Get() != nullptr);
187  EXPECT_LE(1U * MB, ptr1_bytes_allocated);
188  EXPECT_LE(1U * MB, ptr1_usable_size);
189  EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
190
191  // Fails, requires a higher footprint limit.
192  mirror::Object* ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr);
193  EXPECT_TRUE(ptr2 == nullptr);
194
195  // Succeeds, adjusts the footprint.
196  size_t ptr3_bytes_allocated, ptr3_usable_size;
197  MutableHandle<mirror::Object> ptr3(
198      hs.NewHandle(AllocWithGrowth(space, self, 8 * MB, &ptr3_bytes_allocated, &ptr3_usable_size)));
199  EXPECT_TRUE(ptr3.Get() != nullptr);
200  EXPECT_LE(8U * MB, ptr3_bytes_allocated);
201  EXPECT_LE(8U * MB, ptr3_usable_size);
202  EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
203
204  // Fails, requires a higher footprint limit.
205  mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy, nullptr);
206  EXPECT_TRUE(ptr4 == nullptr);
207
208  // Also fails, requires a higher allowed footprint.
209  mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy, nullptr);
210  EXPECT_TRUE(ptr5 == nullptr);
211
212  // Release some memory.
213  size_t free3 = space->AllocationSize(ptr3.Get(), nullptr);
214  EXPECT_EQ(free3, ptr3_bytes_allocated);
215  EXPECT_EQ(free3, space->Free(self, ptr3.Assign(nullptr)));
216  EXPECT_LE(8U * MB, free3);
217
218  // Succeeds, now that memory has been freed.
219  size_t ptr6_bytes_allocated, ptr6_usable_size;
220  Handle<mirror::Object> ptr6(
221      hs.NewHandle(AllocWithGrowth(space, self, 9 * MB, &ptr6_bytes_allocated, &ptr6_usable_size)));
222  EXPECT_TRUE(ptr6.Get() != nullptr);
223  EXPECT_LE(9U * MB, ptr6_bytes_allocated);
224  EXPECT_LE(9U * MB, ptr6_usable_size);
225  EXPECT_LE(ptr6_usable_size, ptr6_bytes_allocated);
226
227  // Final clean up.
228  size_t free1 = space->AllocationSize(ptr1.Get(), nullptr);
229  space->Free(self, ptr1.Assign(nullptr));
230  EXPECT_LE(1U * MB, free1);
231
232  // Make sure that the zygote space isn't directly at the start of the space.
233  EXPECT_TRUE(space->Alloc(self, 1U * MB, &dummy, nullptr) != nullptr);
234
235  gc::Heap* heap = Runtime::Current()->GetHeap();
236  space::Space* old_space = space;
237  heap->RemoveSpace(old_space);
238  heap->RevokeAllThreadLocalBuffers();
239  space::ZygoteSpace* zygote_space = space->CreateZygoteSpace("alloc space",
240                                                              heap->IsLowMemoryMode(),
241                                                              &space);
242  delete old_space;
243  // Add the zygote space.
244  AddSpace(zygote_space, false);
245
246  // Make space findable to the heap, will also delete space when runtime is cleaned up
247  AddSpace(space, false);
248
249  // Succeeds, fits without adjusting the footprint limit.
250  ptr1.Assign(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size));
251  EXPECT_TRUE(ptr1.Get() != nullptr);
252  EXPECT_LE(1U * MB, ptr1_bytes_allocated);
253  EXPECT_LE(1U * MB, ptr1_usable_size);
254  EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
255
256  // Fails, requires a higher footprint limit.
257  ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr);
258  EXPECT_TRUE(ptr2 == nullptr);
259
260  // Succeeds, adjusts the footprint.
261  ptr3.Assign(AllocWithGrowth(space, self, 2 * MB, &ptr3_bytes_allocated, &ptr3_usable_size));
262  EXPECT_TRUE(ptr3.Get() != nullptr);
263  EXPECT_LE(2U * MB, ptr3_bytes_allocated);
264  EXPECT_LE(2U * MB, ptr3_usable_size);
265  EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
266  space->Free(self, ptr3.Assign(nullptr));
267
268  // Final clean up.
269  free1 = space->AllocationSize(ptr1.Get(), nullptr);
270  space->Free(self, ptr1.Assign(nullptr));
271  EXPECT_LE(1U * MB, free1);
272}
273
274void SpaceTest::AllocAndFreeTestBody(CreateSpaceFn create_space) {
275  size_t dummy = 0;
276  MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
277  ASSERT_TRUE(space != nullptr);
278  Thread* self = Thread::Current();
279  ScopedObjectAccess soa(self);
280
281  // Make space findable to the heap, will also delete space when runtime is cleaned up
282  AddSpace(space);
283
284  // Succeeds, fits without adjusting the footprint limit.
285  size_t ptr1_bytes_allocated, ptr1_usable_size;
286  StackHandleScope<3> hs(soa.Self());
287  MutableHandle<mirror::Object> ptr1(
288      hs.NewHandle(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size)));
289  EXPECT_TRUE(ptr1.Get() != nullptr);
290  EXPECT_LE(1U * MB, ptr1_bytes_allocated);
291  EXPECT_LE(1U * MB, ptr1_usable_size);
292  EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
293
294  // Fails, requires a higher footprint limit.
295  mirror::Object* ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr);
296  EXPECT_TRUE(ptr2 == nullptr);
297
298  // Succeeds, adjusts the footprint.
299  size_t ptr3_bytes_allocated, ptr3_usable_size;
300  MutableHandle<mirror::Object> ptr3(
301      hs.NewHandle(AllocWithGrowth(space, self, 8 * MB, &ptr3_bytes_allocated, &ptr3_usable_size)));
302  EXPECT_TRUE(ptr3.Get() != nullptr);
303  EXPECT_LE(8U * MB, ptr3_bytes_allocated);
304  EXPECT_LE(8U * MB, ptr3_usable_size);
305  EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
306
307  // Fails, requires a higher footprint limit.
308  mirror::Object* ptr4 = Alloc(space, self, 8 * MB, &dummy, nullptr);
309  EXPECT_TRUE(ptr4 == nullptr);
310
311  // Also fails, requires a higher allowed footprint.
312  mirror::Object* ptr5 = AllocWithGrowth(space, self, 8 * MB, &dummy, nullptr);
313  EXPECT_TRUE(ptr5 == nullptr);
314
315  // Release some memory.
316  size_t free3 = space->AllocationSize(ptr3.Get(), nullptr);
317  EXPECT_EQ(free3, ptr3_bytes_allocated);
318  space->Free(self, ptr3.Assign(nullptr));
319  EXPECT_LE(8U * MB, free3);
320
321  // Succeeds, now that memory has been freed.
322  size_t ptr6_bytes_allocated, ptr6_usable_size;
323  Handle<mirror::Object> ptr6(
324      hs.NewHandle(AllocWithGrowth(space, self, 9 * MB, &ptr6_bytes_allocated, &ptr6_usable_size)));
325  EXPECT_TRUE(ptr6.Get() != nullptr);
326  EXPECT_LE(9U * MB, ptr6_bytes_allocated);
327  EXPECT_LE(9U * MB, ptr6_usable_size);
328  EXPECT_LE(ptr6_usable_size, ptr6_bytes_allocated);
329
330  // Final clean up.
331  size_t free1 = space->AllocationSize(ptr1.Get(), nullptr);
332  space->Free(self, ptr1.Assign(nullptr));
333  EXPECT_LE(1U * MB, free1);
334}
335
336void SpaceTest::AllocAndFreeListTestBody(CreateSpaceFn create_space) {
337  MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
338  ASSERT_TRUE(space != nullptr);
339
340  // Make space findable to the heap, will also delete space when runtime is cleaned up
341  AddSpace(space);
342  Thread* self = Thread::Current();
343  ScopedObjectAccess soa(self);
344
345  // Succeeds, fits without adjusting the max allowed footprint.
346  mirror::Object* lots_of_objects[1024];
347  for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
348    size_t allocation_size, usable_size;
349    size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
350    lots_of_objects[i] = Alloc(space, self, size_of_zero_length_byte_array, &allocation_size,
351                               &usable_size);
352    EXPECT_TRUE(lots_of_objects[i] != nullptr);
353    size_t computed_usable_size;
354    EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i], &computed_usable_size));
355    EXPECT_EQ(usable_size, computed_usable_size);
356  }
357
358  // Release memory.
359  space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
360
361  // Succeeds, fits by adjusting the max allowed footprint.
362  for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
363    size_t allocation_size, usable_size;
364    lots_of_objects[i] = AllocWithGrowth(space, self, 1024, &allocation_size, &usable_size);
365    EXPECT_TRUE(lots_of_objects[i] != nullptr);
366    size_t computed_usable_size;
367    EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i], &computed_usable_size));
368    EXPECT_EQ(usable_size, computed_usable_size);
369  }
370
371  // Release memory.
372  space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
373}
374
375void SpaceTest::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
376                                                    int round, size_t growth_limit) {
377  if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
378      ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
379    // No allocation can succeed
380    return;
381  }
382
383  // The space's footprint equals amount of resources requested from system
384  size_t footprint = space->GetFootprint();
385
386  // The space must at least have its book keeping allocated
387  EXPECT_GT(footprint, 0u);
388
389  // But it shouldn't exceed the initial size
390  EXPECT_LE(footprint, growth_limit);
391
392  // space's size shouldn't exceed the initial size
393  EXPECT_LE(space->Size(), growth_limit);
394
395  // this invariant should always hold or else the space has grown to be larger than what the
396  // space believes its size is (which will break invariants)
397  EXPECT_GE(space->Size(), footprint);
398
399  // Fill the space with lots of small objects up to the growth limit
400  size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
401  std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
402  size_t last_object = 0;  // last object for which allocation succeeded
403  size_t amount_allocated = 0;  // amount of space allocated
404  Thread* self = Thread::Current();
405  ScopedObjectAccess soa(self);
406  size_t rand_seed = 123456789;
407  for (size_t i = 0; i < max_objects; i++) {
408    size_t alloc_fails = 0;  // number of failed allocations
409    size_t max_fails = 30;  // number of times we fail allocation before giving up
410    for (; alloc_fails < max_fails; alloc_fails++) {
411      size_t alloc_size;
412      if (object_size > 0) {
413        alloc_size = object_size;
414      } else {
415        alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
416        // Note the minimum size, which is the size of a zero-length byte array.
417        size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
418        if (alloc_size < size_of_zero_length_byte_array) {
419          alloc_size = size_of_zero_length_byte_array;
420        }
421      }
422      StackHandleScope<1> hs(soa.Self());
423      auto object(hs.NewHandle<mirror::Object>(nullptr));
424      size_t bytes_allocated = 0;
425      if (round <= 1) {
426        object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr));
427      } else {
428        object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr));
429      }
430      footprint = space->GetFootprint();
431      EXPECT_GE(space->Size(), footprint);  // invariant
432      if (object.Get() != nullptr) {  // allocation succeeded
433        lots_of_objects[i] = object.Get();
434        size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
435        EXPECT_EQ(bytes_allocated, allocation_size);
436        if (object_size > 0) {
437          EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
438        } else {
439          EXPECT_GE(allocation_size, 8u);
440        }
441        amount_allocated += allocation_size;
442        break;
443      }
444    }
445    if (alloc_fails == max_fails) {
446      last_object = i;
447      break;
448    }
449  }
450  CHECK_NE(last_object, 0u);  // we should have filled the space
451  EXPECT_GT(amount_allocated, 0u);
452
453  // We shouldn't have gone past the growth_limit
454  EXPECT_LE(amount_allocated, growth_limit);
455  EXPECT_LE(footprint, growth_limit);
456  EXPECT_LE(space->Size(), growth_limit);
457
458  // footprint and size should agree with amount allocated
459  EXPECT_GE(footprint, amount_allocated);
460  EXPECT_GE(space->Size(), amount_allocated);
461
462  // Release storage in a semi-adhoc manner
463  size_t free_increment = 96;
464  while (true) {
465    {
466      ScopedThreadStateChange tsc(self, kNative);
467      // Give the space a haircut.
468      space->Trim();
469    }
470
471    // Bounds sanity
472    footprint = space->GetFootprint();
473    EXPECT_LE(amount_allocated, growth_limit);
474    EXPECT_GE(footprint, amount_allocated);
475    EXPECT_LE(footprint, growth_limit);
476    EXPECT_GE(space->Size(), amount_allocated);
477    EXPECT_LE(space->Size(), growth_limit);
478
479    if (free_increment == 0) {
480      break;
481    }
482
483    // Free some objects
484    for (size_t i = 0; i < last_object; i += free_increment) {
485      mirror::Object* object = lots_of_objects.get()[i];
486      if (object == nullptr) {
487        continue;
488      }
489      size_t allocation_size = space->AllocationSize(object, nullptr);
490      if (object_size > 0) {
491        EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
492      } else {
493        EXPECT_GE(allocation_size, 8u);
494      }
495      space->Free(self, object);
496      lots_of_objects.get()[i] = nullptr;
497      amount_allocated -= allocation_size;
498      footprint = space->GetFootprint();
499      EXPECT_GE(space->Size(), footprint);  // invariant
500    }
501
502    free_increment >>= 1;
503  }
504
505  // The space has become empty here before allocating a large object
506  // below. For RosAlloc, revoke thread-local runs, which are kept
507  // even when empty for a performance reason, so that they won't
508  // cause the following large object allocation to fail due to
509  // potential fragmentation. Note they are normally revoked at each
510  // GC (but no GC here.)
511  space->RevokeAllThreadLocalBuffers();
512
513  // All memory was released, try a large allocation to check freed memory is being coalesced
514  StackHandleScope<1> hs(soa.Self());
515  auto large_object(hs.NewHandle<mirror::Object>(nullptr));
516  size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
517  size_t bytes_allocated = 0;
518  if (round <= 1) {
519    large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr));
520  } else {
521    large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
522                                        nullptr));
523  }
524  EXPECT_TRUE(large_object.Get() != nullptr);
525
526  // Sanity check footprint
527  footprint = space->GetFootprint();
528  EXPECT_LE(footprint, growth_limit);
529  EXPECT_GE(space->Size(), footprint);
530  EXPECT_LE(space->Size(), growth_limit);
531
532  // Clean up
533  space->Free(self, large_object.Assign(nullptr));
534
535  // Sanity check footprint
536  footprint = space->GetFootprint();
537  EXPECT_LE(footprint, growth_limit);
538  EXPECT_GE(space->Size(), footprint);
539  EXPECT_LE(space->Size(), growth_limit);
540}
541
542void SpaceTest::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space) {
543  if (object_size < SizeOfZeroLengthByteArray()) {
544    // Too small for the object layout/model.
545    return;
546  }
547  size_t initial_size = 4 * MB;
548  size_t growth_limit = 8 * MB;
549  size_t capacity = 16 * MB;
550  MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr));
551  ASSERT_TRUE(space != nullptr);
552
553  // Basic sanity
554  EXPECT_EQ(space->Capacity(), growth_limit);
555  EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
556
557  // Make space findable to the heap, will also delete space when runtime is cleaned up
558  AddSpace(space);
559
560  // In this round we don't allocate with growth and therefore can't grow past the initial size.
561  // This effectively makes the growth_limit the initial_size, so assert this.
562  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
563  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
564  // Remove growth limit
565  space->ClearGrowthLimit();
566  EXPECT_EQ(space->Capacity(), capacity);
567  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
568}
569
570#define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
571  TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
572    SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
573  }
574
575#define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
576  TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
577    SizeFootPrintGrowthLimitAndTrimDriver(-size, spaceFn); \
578  }
579
580#define TEST_SPACE_CREATE_FN_BASE(spaceName, spaceFn) \
581  class spaceName##BaseTest : public SpaceTest { \
582  }; \
583  \
584  TEST_F(spaceName##BaseTest, Init) { \
585    InitTestBody(spaceFn); \
586  } \
587  TEST_F(spaceName##BaseTest, ZygoteSpace) { \
588    ZygoteSpaceTestBody(spaceFn); \
589  } \
590  TEST_F(spaceName##BaseTest, AllocAndFree) { \
591    AllocAndFreeTestBody(spaceFn); \
592  } \
593  TEST_F(spaceName##BaseTest, AllocAndFreeList) { \
594    AllocAndFreeListTestBody(spaceFn); \
595  }
596
597#define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
598  class spaceName##StaticTest : public SpaceTest { \
599  }; \
600  \
601  TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
602  TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
603  TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
604  TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
605  TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
606  TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
607  TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
608  TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
609  TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
610  TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
611  TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
612
613#define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
614  class spaceName##RandomTest : public SpaceTest { \
615  }; \
616  \
617  TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
618  TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
619  TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
620  TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
621  TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
622  TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
623  TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
624  TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
625  TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
626  TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
627
628}  // namespace space
629}  // namespace gc
630}  // namespace art
631
632#endif  // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
633