space_test.h revision a7433515114ae725c3427cd510f76b84107170a1
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
18#define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
19
20#include "zygote_space.h"
21
22#include "common_test.h"
23#include "globals.h"
24#include "UniquePtr.h"
25#include "mirror/array-inl.h"
26#include "mirror/object-inl.h"
27
28#include <stdint.h>
29
30namespace art {
31namespace gc {
32namespace space {
33
34class SpaceTest : public CommonTest {
35 public:
36  void AddSpace(ContinuousSpace* space) {
37    // For RosAlloc, revoke the thread local runs before moving onto a
38    // new alloc space.
39    Runtime::Current()->GetHeap()->RevokeAllThreadLocalBuffers();
40    Runtime::Current()->GetHeap()->AddSpace(space);
41  }
42  void InstallClass(SirtRef<mirror::Object>& o, size_t size)
43      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
44    // Note the minimum size, which is the size of a zero-length byte array.
45    EXPECT_GE(size, SizeOfZeroLengthByteArray());
46    SirtRef<mirror::ClassLoader> null_loader(Thread::Current(), nullptr);
47    mirror::Class* byte_array_class = Runtime::Current()->GetClassLinker()->FindClass("[B",
48                                                                                      null_loader);
49    EXPECT_TRUE(byte_array_class != nullptr);
50    o->SetClass(byte_array_class);
51    mirror::Array* arr = o->AsArray<kVerifyNone>();
52    size_t header_size = SizeOfZeroLengthByteArray();
53    int32_t length = size - header_size;
54    arr->SetLength(length);
55    EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
56  }
57
58  static size_t SizeOfZeroLengthByteArray() {
59    return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
60  }
61
62  typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
63                                        size_t capacity, byte* requested_begin);
64  void InitTestBody(CreateSpaceFn create_space);
65  void ZygoteSpaceTestBody(CreateSpaceFn create_space);
66  void AllocAndFreeTestBody(CreateSpaceFn create_space);
67  void AllocAndFreeListTestBody(CreateSpaceFn create_space);
68
69  void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
70                                           int round, size_t growth_limit);
71  void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
72};
73
74static size_t test_rand(size_t* seed) {
75  *seed = *seed * 1103515245 + 12345;
76  return *seed;
77}
78
79void SpaceTest::InitTestBody(CreateSpaceFn create_space) {
80  {
81    // Init < max == growth
82    UniquePtr<Space> space(create_space("test", 16 * MB, 32 * MB, 32 * MB, nullptr));
83    EXPECT_TRUE(space.get() != nullptr);
84  }
85  {
86    // Init == max == growth
87    UniquePtr<Space> space(create_space("test", 16 * MB, 16 * MB, 16 * MB, nullptr));
88    EXPECT_TRUE(space.get() != nullptr);
89  }
90  {
91    // Init > max == growth
92    UniquePtr<Space> space(create_space("test", 32 * MB, 16 * MB, 16 * MB, nullptr));
93    EXPECT_TRUE(space.get() == nullptr);
94  }
95  {
96    // Growth == init < max
97    UniquePtr<Space> space(create_space("test", 16 * MB, 16 * MB, 32 * MB, nullptr));
98    EXPECT_TRUE(space.get() != nullptr);
99  }
100  {
101    // Growth < init < max
102    UniquePtr<Space> space(create_space("test", 16 * MB, 8 * MB, 32 * MB, nullptr));
103    EXPECT_TRUE(space.get() == nullptr);
104  }
105  {
106    // Init < growth < max
107    UniquePtr<Space> space(create_space("test", 8 * MB, 16 * MB, 32 * MB, nullptr));
108    EXPECT_TRUE(space.get() != nullptr);
109  }
110  {
111    // Init < max < growth
112    UniquePtr<Space> space(create_space("test", 8 * MB, 32 * MB, 16 * MB, nullptr));
113    EXPECT_TRUE(space.get() == nullptr);
114  }
115}
116
117// TODO: This test is not very good, we should improve it.
118// The test should do more allocations before the creation of the ZygoteSpace, and then do
119// allocations after the ZygoteSpace is created. The test should also do some GCs to ensure that
120// the GC works with the ZygoteSpace.
121void SpaceTest::ZygoteSpaceTestBody(CreateSpaceFn create_space) {
122  size_t dummy = 0;
123  MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
124  ASSERT_TRUE(space != nullptr);
125
126  // Make space findable to the heap, will also delete space when runtime is cleaned up
127  AddSpace(space);
128  Thread* self = Thread::Current();
129  ScopedObjectAccess soa(self);
130
131  // Succeeds, fits without adjusting the footprint limit.
132  SirtRef<mirror::Object> ptr1(self, space->Alloc(self, 1 * MB, &dummy));
133  EXPECT_TRUE(ptr1.get() != nullptr);
134  InstallClass(ptr1, 1 * MB);
135
136  // Fails, requires a higher footprint limit.
137  mirror::Object* ptr2 = space->Alloc(self, 8 * MB, &dummy);
138  EXPECT_TRUE(ptr2 == nullptr);
139
140  // Succeeds, adjusts the footprint.
141  size_t ptr3_bytes_allocated;
142  SirtRef<mirror::Object> ptr3(self, space->AllocWithGrowth(self, 8 * MB, &ptr3_bytes_allocated));
143  EXPECT_TRUE(ptr3.get() != nullptr);
144  EXPECT_LE(8U * MB, ptr3_bytes_allocated);
145  InstallClass(ptr3, 8 * MB);
146
147  // Fails, requires a higher footprint limit.
148  mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy);
149  EXPECT_TRUE(ptr4 == nullptr);
150
151  // Also fails, requires a higher allowed footprint.
152  mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy);
153  EXPECT_TRUE(ptr5 == nullptr);
154
155  // Release some memory.
156  size_t free3 = space->AllocationSize(ptr3.get());
157  EXPECT_EQ(free3, ptr3_bytes_allocated);
158  EXPECT_EQ(free3, space->Free(self, ptr3.reset(nullptr)));
159  EXPECT_LE(8U * MB, free3);
160
161  // Succeeds, now that memory has been freed.
162  SirtRef<mirror::Object> ptr6(self, space->AllocWithGrowth(self, 9 * MB, &dummy));
163  EXPECT_TRUE(ptr6.get() != nullptr);
164  InstallClass(ptr6, 9 * MB);
165
166  // Final clean up.
167  size_t free1 = space->AllocationSize(ptr1.get());
168  space->Free(self, ptr1.reset(nullptr));
169  EXPECT_LE(1U * MB, free1);
170
171  // Make sure that the zygote space isn't directly at the start of the space.
172  space->Alloc(self, 1U * MB, &dummy);
173
174  gc::Heap* heap = Runtime::Current()->GetHeap();
175  space::Space* old_space = space;
176  heap->RemoveSpace(old_space);
177  space::ZygoteSpace* zygote_space = space->CreateZygoteSpace("alloc space",
178                                                              heap->IsLowMemoryMode(),
179                                                              &space);
180  delete old_space;
181  // Add the zygote space.
182  AddSpace(zygote_space);
183
184  // Make space findable to the heap, will also delete space when runtime is cleaned up
185  AddSpace(space);
186
187  // Succeeds, fits without adjusting the footprint limit.
188  ptr1.reset(space->Alloc(self, 1 * MB, &dummy));
189  EXPECT_TRUE(ptr1.get() != nullptr);
190  InstallClass(ptr1, 1 * MB);
191
192  // Fails, requires a higher footprint limit.
193  ptr2 = space->Alloc(self, 8 * MB, &dummy);
194  EXPECT_TRUE(ptr2 == nullptr);
195
196  // Succeeds, adjusts the footprint.
197  ptr3.reset(space->AllocWithGrowth(self, 2 * MB, &dummy));
198  EXPECT_TRUE(ptr3.get() != nullptr);
199  InstallClass(ptr3, 2 * MB);
200  space->Free(self, ptr3.reset(nullptr));
201
202  // Final clean up.
203  free1 = space->AllocationSize(ptr1.get());
204  space->Free(self, ptr1.reset(nullptr));
205  EXPECT_LE(1U * MB, free1);
206}
207
208void SpaceTest::AllocAndFreeTestBody(CreateSpaceFn create_space) {
209  size_t dummy = 0;
210  MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
211  ASSERT_TRUE(space != nullptr);
212  Thread* self = Thread::Current();
213  ScopedObjectAccess soa(self);
214
215  // Make space findable to the heap, will also delete space when runtime is cleaned up
216  AddSpace(space);
217
218  // Succeeds, fits without adjusting the footprint limit.
219  SirtRef<mirror::Object> ptr1(self, space->Alloc(self, 1 * MB, &dummy));
220  EXPECT_TRUE(ptr1.get() != nullptr);
221  InstallClass(ptr1, 1 * MB);
222
223  // Fails, requires a higher footprint limit.
224  mirror::Object* ptr2 = space->Alloc(self, 8 * MB, &dummy);
225  EXPECT_TRUE(ptr2 == nullptr);
226
227  // Succeeds, adjusts the footprint.
228  size_t ptr3_bytes_allocated;
229  SirtRef<mirror::Object> ptr3(self, space->AllocWithGrowth(self, 8 * MB, &ptr3_bytes_allocated));
230  EXPECT_TRUE(ptr3.get() != nullptr);
231  EXPECT_LE(8U * MB, ptr3_bytes_allocated);
232  InstallClass(ptr3, 8 * MB);
233
234  // Fails, requires a higher footprint limit.
235  mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy);
236  EXPECT_TRUE(ptr4 == nullptr);
237
238  // Also fails, requires a higher allowed footprint.
239  mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy);
240  EXPECT_TRUE(ptr5 == nullptr);
241
242  // Release some memory.
243  size_t free3 = space->AllocationSize(ptr3.get());
244  EXPECT_EQ(free3, ptr3_bytes_allocated);
245  space->Free(self, ptr3.reset(nullptr));
246  EXPECT_LE(8U * MB, free3);
247
248  // Succeeds, now that memory has been freed.
249  SirtRef<mirror::Object> ptr6(self, space->AllocWithGrowth(self, 9 * MB, &dummy));
250  EXPECT_TRUE(ptr6.get() != nullptr);
251  InstallClass(ptr6, 9 * MB);
252
253  // Final clean up.
254  size_t free1 = space->AllocationSize(ptr1.get());
255  space->Free(self, ptr1.reset(nullptr));
256  EXPECT_LE(1U * MB, free1);
257}
258
259void SpaceTest::AllocAndFreeListTestBody(CreateSpaceFn create_space) {
260  MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
261  ASSERT_TRUE(space != nullptr);
262
263  // Make space findable to the heap, will also delete space when runtime is cleaned up
264  AddSpace(space);
265  Thread* self = Thread::Current();
266  ScopedObjectAccess soa(self);
267
268  // Succeeds, fits without adjusting the max allowed footprint.
269  mirror::Object* lots_of_objects[1024];
270  for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
271    size_t allocation_size = 0;
272    size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
273    lots_of_objects[i] = space->Alloc(self, size_of_zero_length_byte_array, &allocation_size);
274    EXPECT_TRUE(lots_of_objects[i] != nullptr);
275    SirtRef<mirror::Object> obj(self, lots_of_objects[i]);
276    InstallClass(obj, size_of_zero_length_byte_array);
277    lots_of_objects[i] = obj.get();
278    EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i]));
279  }
280
281  // Release memory and check pointers are nullptr.
282  space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
283  for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
284    EXPECT_TRUE(lots_of_objects[i] == nullptr);
285  }
286
287  // Succeeds, fits by adjusting the max allowed footprint.
288  for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
289    size_t allocation_size = 0;
290    lots_of_objects[i] = space->AllocWithGrowth(self, 1024, &allocation_size);
291    EXPECT_TRUE(lots_of_objects[i] != nullptr);
292    SirtRef<mirror::Object> obj(self, lots_of_objects[i]);
293    InstallClass(obj, 1024);
294    lots_of_objects[i] = obj.get();
295    EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i]));
296  }
297
298  // Release memory and check pointers are nullptr
299  // TODO: This isn't compaction safe, fix.
300  space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
301  for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
302    EXPECT_TRUE(lots_of_objects[i] == nullptr);
303  }
304}
305
306void SpaceTest::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
307                                                    int round, size_t growth_limit) {
308  if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
309      ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
310    // No allocation can succeed
311    return;
312  }
313
314  // The space's footprint equals amount of resources requested from system
315  size_t footprint = space->GetFootprint();
316
317  // The space must at least have its book keeping allocated
318  EXPECT_GT(footprint, 0u);
319
320  // But it shouldn't exceed the initial size
321  EXPECT_LE(footprint, growth_limit);
322
323  // space's size shouldn't exceed the initial size
324  EXPECT_LE(space->Size(), growth_limit);
325
326  // this invariant should always hold or else the space has grown to be larger than what the
327  // space believes its size is (which will break invariants)
328  EXPECT_GE(space->Size(), footprint);
329
330  // Fill the space with lots of small objects up to the growth limit
331  size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
332  UniquePtr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
333  size_t last_object = 0;  // last object for which allocation succeeded
334  size_t amount_allocated = 0;  // amount of space allocated
335  Thread* self = Thread::Current();
336  ScopedObjectAccess soa(self);
337  size_t rand_seed = 123456789;
338  for (size_t i = 0; i < max_objects; i++) {
339    size_t alloc_fails = 0;  // number of failed allocations
340    size_t max_fails = 30;  // number of times we fail allocation before giving up
341    for (; alloc_fails < max_fails; alloc_fails++) {
342      size_t alloc_size;
343      if (object_size > 0) {
344        alloc_size = object_size;
345      } else {
346        alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
347        // Note the minimum size, which is the size of a zero-length byte array.
348        size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
349        if (alloc_size < size_of_zero_length_byte_array) {
350          alloc_size = size_of_zero_length_byte_array;
351        }
352      }
353      SirtRef<mirror::Object> object(self, nullptr);
354      size_t bytes_allocated = 0;
355      if (round <= 1) {
356        object.reset(space->Alloc(self, alloc_size, &bytes_allocated));
357      } else {
358        object.reset(space->AllocWithGrowth(self, alloc_size, &bytes_allocated));
359      }
360      footprint = space->GetFootprint();
361      EXPECT_GE(space->Size(), footprint);  // invariant
362      if (object.get() != nullptr) {  // allocation succeeded
363        InstallClass(object, alloc_size);
364        lots_of_objects[i] = object.get();
365        size_t allocation_size = space->AllocationSize(object.get());
366        EXPECT_EQ(bytes_allocated, allocation_size);
367        if (object_size > 0) {
368          EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
369        } else {
370          EXPECT_GE(allocation_size, 8u);
371        }
372        amount_allocated += allocation_size;
373        break;
374      }
375    }
376    if (alloc_fails == max_fails) {
377      last_object = i;
378      break;
379    }
380  }
381  CHECK_NE(last_object, 0u);  // we should have filled the space
382  EXPECT_GT(amount_allocated, 0u);
383
384  // We shouldn't have gone past the growth_limit
385  EXPECT_LE(amount_allocated, growth_limit);
386  EXPECT_LE(footprint, growth_limit);
387  EXPECT_LE(space->Size(), growth_limit);
388
389  // footprint and size should agree with amount allocated
390  EXPECT_GE(footprint, amount_allocated);
391  EXPECT_GE(space->Size(), amount_allocated);
392
393  // Release storage in a semi-adhoc manner
394  size_t free_increment = 96;
395  while (true) {
396    {
397      ScopedThreadStateChange tsc(self, kNative);
398      // Give the space a haircut.
399      space->Trim();
400    }
401
402    // Bounds sanity
403    footprint = space->GetFootprint();
404    EXPECT_LE(amount_allocated, growth_limit);
405    EXPECT_GE(footprint, amount_allocated);
406    EXPECT_LE(footprint, growth_limit);
407    EXPECT_GE(space->Size(), amount_allocated);
408    EXPECT_LE(space->Size(), growth_limit);
409
410    if (free_increment == 0) {
411      break;
412    }
413
414    // Free some objects
415    for (size_t i = 0; i < last_object; i += free_increment) {
416      mirror::Object* object = lots_of_objects.get()[i];
417      if (object == nullptr) {
418        continue;
419      }
420      size_t allocation_size = space->AllocationSize(object);
421      if (object_size > 0) {
422        EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
423      } else {
424        EXPECT_GE(allocation_size, 8u);
425      }
426      space->Free(self, object);
427      lots_of_objects.get()[i] = nullptr;
428      amount_allocated -= allocation_size;
429      footprint = space->GetFootprint();
430      EXPECT_GE(space->Size(), footprint);  // invariant
431    }
432
433    free_increment >>= 1;
434  }
435
436  // The space has become empty here before allocating a large object
437  // below. For RosAlloc, revoke thread-local runs, which are kept
438  // even when empty for a performance reason, so that they won't
439  // cause the following large object allocation to fail due to
440  // potential fragmentation. Note they are normally revoked at each
441  // GC (but no GC here.)
442  space->RevokeAllThreadLocalBuffers();
443
444  // All memory was released, try a large allocation to check freed memory is being coalesced
445  SirtRef<mirror::Object> large_object(self, nullptr);
446  size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
447  size_t bytes_allocated = 0;
448  if (round <= 1) {
449    large_object.reset(space->Alloc(self, three_quarters_space, &bytes_allocated));
450  } else {
451    large_object.reset(space->AllocWithGrowth(self, three_quarters_space, &bytes_allocated));
452  }
453  EXPECT_TRUE(large_object.get() != nullptr);
454  InstallClass(large_object, three_quarters_space);
455
456  // Sanity check footprint
457  footprint = space->GetFootprint();
458  EXPECT_LE(footprint, growth_limit);
459  EXPECT_GE(space->Size(), footprint);
460  EXPECT_LE(space->Size(), growth_limit);
461
462  // Clean up
463  space->Free(self, large_object.reset(nullptr));
464
465  // Sanity check footprint
466  footprint = space->GetFootprint();
467  EXPECT_LE(footprint, growth_limit);
468  EXPECT_GE(space->Size(), footprint);
469  EXPECT_LE(space->Size(), growth_limit);
470}
471
472void SpaceTest::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space) {
473  if (object_size < SizeOfZeroLengthByteArray()) {
474    // Too small for the object layout/model.
475    return;
476  }
477  size_t initial_size = 4 * MB;
478  size_t growth_limit = 8 * MB;
479  size_t capacity = 16 * MB;
480  MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr));
481  ASSERT_TRUE(space != nullptr);
482
483  // Basic sanity
484  EXPECT_EQ(space->Capacity(), growth_limit);
485  EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
486
487  // Make space findable to the heap, will also delete space when runtime is cleaned up
488  AddSpace(space);
489
490  // In this round we don't allocate with growth and therefore can't grow past the initial size.
491  // This effectively makes the growth_limit the initial_size, so assert this.
492  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
493  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
494  // Remove growth limit
495  space->ClearGrowthLimit();
496  EXPECT_EQ(space->Capacity(), capacity);
497  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
498}
499
500#define TEST_SizeFootPrintGrowthLimitAndTrim(name, spaceName, spaceFn, size) \
501  TEST_F(spaceName##Test, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
502    SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
503  } \
504  TEST_F(spaceName##Test, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
505    SizeFootPrintGrowthLimitAndTrimDriver(-size, spaceFn); \
506  }
507
508#define TEST_SPACE_CREATE_FN(spaceName, spaceFn) \
509  class spaceName##Test : public SpaceTest { \
510  }; \
511  \
512  TEST_F(spaceName##Test, Init) { \
513    InitTestBody(spaceFn); \
514  } \
515  TEST_F(spaceName##Test, ZygoteSpace) { \
516    ZygoteSpaceTestBody(spaceFn); \
517  } \
518  TEST_F(spaceName##Test, AllocAndFree) { \
519    AllocAndFreeTestBody(spaceFn); \
520  } \
521  TEST_F(spaceName##Test, AllocAndFreeList) { \
522    AllocAndFreeListTestBody(spaceFn); \
523  } \
524  TEST_F(spaceName##Test, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_12B) { \
525    SizeFootPrintGrowthLimitAndTrimDriver(12, spaceFn); \
526  } \
527  TEST_SizeFootPrintGrowthLimitAndTrim(16B, spaceName, spaceFn, 16) \
528  TEST_SizeFootPrintGrowthLimitAndTrim(24B, spaceName, spaceFn, 24) \
529  TEST_SizeFootPrintGrowthLimitAndTrim(32B, spaceName, spaceFn, 32) \
530  TEST_SizeFootPrintGrowthLimitAndTrim(64B, spaceName, spaceFn, 64) \
531  TEST_SizeFootPrintGrowthLimitAndTrim(128B, spaceName, spaceFn, 128) \
532  TEST_SizeFootPrintGrowthLimitAndTrim(1KB, spaceName, spaceFn, 1 * KB) \
533  TEST_SizeFootPrintGrowthLimitAndTrim(4KB, spaceName, spaceFn, 4 * KB) \
534  TEST_SizeFootPrintGrowthLimitAndTrim(1MB, spaceName, spaceFn, 1 * MB) \
535  TEST_SizeFootPrintGrowthLimitAndTrim(4MB, spaceName, spaceFn, 4 * MB) \
536  TEST_SizeFootPrintGrowthLimitAndTrim(8MB, spaceName, spaceFn, 8 * MB)
537
538}  // namespace space
539}  // namespace gc
540}  // namespace art
541
542#endif  // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
543