space_test.h revision a9d82fe8bc6960b565245b920e99107a824ca515
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
18#define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
19
20#include <stdint.h>
21#include <memory>
22
23#include "common_runtime_test.h"
24#include "globals.h"
25#include "mirror/array-inl.h"
26#include "mirror/class-inl.h"
27#include "mirror/class_loader.h"
28#include "mirror/object-inl.h"
29#include "scoped_thread_state_change.h"
30#include "thread_list.h"
31#include "zygote_space.h"
32
33namespace art {
34namespace gc {
35namespace space {
36
37template <class Super>
38class SpaceTest : public Super {
39 public:
40  jobject byte_array_class_ = nullptr;
41
42  void AddSpace(ContinuousSpace* space, bool revoke = true) {
43    Heap* heap = Runtime::Current()->GetHeap();
44    if (revoke) {
45      heap->RevokeAllThreadLocalBuffers();
46    }
47    {
48      ScopedThreadStateChange sts(Thread::Current(), kSuspended);
49      ScopedSuspendAll ssa("Add image space");
50      heap->AddSpace(space);
51    }
52    heap->SetSpaceAsDefault(space);
53  }
54
55  mirror::Class* GetByteArrayClass(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_) {
56    StackHandleScope<1> hs(self);
57    auto null_loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
58    if (byte_array_class_ == nullptr) {
59      mirror::Class* byte_array_class =
60          Runtime::Current()->GetClassLinker()->FindClass(self, "[B", null_loader);
61      EXPECT_TRUE(byte_array_class != nullptr);
62      byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class);
63      EXPECT_TRUE(byte_array_class_ != nullptr);
64    }
65    return reinterpret_cast<mirror::Class*>(self->DecodeJObject(byte_array_class_));
66  }
67
68  mirror::Object* Alloc(space::MallocSpace* alloc_space,
69                        Thread* self,
70                        size_t bytes,
71                        size_t* bytes_allocated,
72                        size_t* usable_size,
73                        size_t* bytes_tl_bulk_allocated)
74      SHARED_REQUIRES(Locks::mutator_lock_) {
75    StackHandleScope<1> hs(self);
76    Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
77    mirror::Object* obj = alloc_space->Alloc(self,
78                                             bytes,
79                                             bytes_allocated,
80                                             usable_size,
81                                             bytes_tl_bulk_allocated);
82    if (obj != nullptr) {
83      InstallClass(obj, byte_array_class.Get(), bytes);
84    }
85    return obj;
86  }
87
88  mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space,
89                                  Thread* self,
90                                  size_t bytes,
91                                  size_t* bytes_allocated,
92                                  size_t* usable_size,
93                                  size_t* bytes_tl_bulk_allocated)
94      SHARED_REQUIRES(Locks::mutator_lock_) {
95    StackHandleScope<1> hs(self);
96    Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
97    mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size,
98                                                       bytes_tl_bulk_allocated);
99    if (obj != nullptr) {
100      InstallClass(obj, byte_array_class.Get(), bytes);
101    }
102    return obj;
103  }
104
105  void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
106      SHARED_REQUIRES(Locks::mutator_lock_) {
107    // Note the minimum size, which is the size of a zero-length byte array.
108    EXPECT_GE(size, SizeOfZeroLengthByteArray());
109    EXPECT_TRUE(byte_array_class != nullptr);
110    o->SetClass(byte_array_class);
111    if (kUseBakerOrBrooksReadBarrier) {
112      // Like the proper heap object allocation, install and verify
113      // the correct read barrier pointer.
114      if (kUseBrooksReadBarrier) {
115        o->SetReadBarrierPointer(o);
116      }
117      o->AssertReadBarrierPointer();
118    }
119    mirror::Array* arr = o->AsArray<kVerifyNone>();
120    size_t header_size = SizeOfZeroLengthByteArray();
121    int32_t length = size - header_size;
122    arr->SetLength(length);
123    EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
124  }
125
126  static size_t SizeOfZeroLengthByteArray() {
127    return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
128  }
129
130  typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
131                                        size_t capacity, uint8_t* requested_begin);
132
133  void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
134                                           int round, size_t growth_limit);
135  void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
136};
137
138static inline size_t test_rand(size_t* seed) {
139  *seed = *seed * 1103515245 + 12345;
140  return *seed;
141}
142
143template <class Super>
144void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space,
145                                                           intptr_t object_size,
146                                                           int round,
147                                                           size_t growth_limit) {
148  if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
149      ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
150    // No allocation can succeed
151    return;
152  }
153
154  // The space's footprint equals amount of resources requested from system
155  size_t footprint = space->GetFootprint();
156
157  // The space must at least have its book keeping allocated
158  EXPECT_GT(footprint, 0u);
159
160  // But it shouldn't exceed the initial size
161  EXPECT_LE(footprint, growth_limit);
162
163  // space's size shouldn't exceed the initial size
164  EXPECT_LE(space->Size(), growth_limit);
165
166  // this invariant should always hold or else the space has grown to be larger than what the
167  // space believes its size is (which will break invariants)
168  EXPECT_GE(space->Size(), footprint);
169
170  // Fill the space with lots of small objects up to the growth limit
171  size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
172  std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
173  size_t last_object = 0;  // last object for which allocation succeeded
174  size_t amount_allocated = 0;  // amount of space allocated
175  Thread* self = Thread::Current();
176  ScopedObjectAccess soa(self);
177  size_t rand_seed = 123456789;
178  for (size_t i = 0; i < max_objects; i++) {
179    size_t alloc_fails = 0;  // number of failed allocations
180    size_t max_fails = 30;  // number of times we fail allocation before giving up
181    for (; alloc_fails < max_fails; alloc_fails++) {
182      size_t alloc_size;
183      if (object_size > 0) {
184        alloc_size = object_size;
185      } else {
186        alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
187        // Note the minimum size, which is the size of a zero-length byte array.
188        size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
189        if (alloc_size < size_of_zero_length_byte_array) {
190          alloc_size = size_of_zero_length_byte_array;
191        }
192      }
193      StackHandleScope<1> hs(soa.Self());
194      auto object(hs.NewHandle<mirror::Object>(nullptr));
195      size_t bytes_allocated = 0;
196      size_t bytes_tl_bulk_allocated;
197      if (round <= 1) {
198        object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr,
199                            &bytes_tl_bulk_allocated));
200      } else {
201        object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr,
202                                      &bytes_tl_bulk_allocated));
203      }
204      footprint = space->GetFootprint();
205      EXPECT_GE(space->Size(), footprint);  // invariant
206      if (object.Get() != nullptr) {  // allocation succeeded
207        lots_of_objects[i] = object.Get();
208        size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
209        EXPECT_EQ(bytes_allocated, allocation_size);
210        if (object_size > 0) {
211          EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
212        } else {
213          EXPECT_GE(allocation_size, 8u);
214        }
215        EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
216                    bytes_tl_bulk_allocated >= allocation_size);
217        amount_allocated += allocation_size;
218        break;
219      }
220    }
221    if (alloc_fails == max_fails) {
222      last_object = i;
223      break;
224    }
225  }
226  CHECK_NE(last_object, 0u);  // we should have filled the space
227  EXPECT_GT(amount_allocated, 0u);
228
229  // We shouldn't have gone past the growth_limit
230  EXPECT_LE(amount_allocated, growth_limit);
231  EXPECT_LE(footprint, growth_limit);
232  EXPECT_LE(space->Size(), growth_limit);
233
234  // footprint and size should agree with amount allocated
235  EXPECT_GE(footprint, amount_allocated);
236  EXPECT_GE(space->Size(), amount_allocated);
237
238  // Release storage in a semi-adhoc manner
239  size_t free_increment = 96;
240  while (true) {
241    {
242      ScopedThreadStateChange tsc(self, kNative);
243      // Give the space a haircut.
244      space->Trim();
245    }
246
247    // Bounds sanity
248    footprint = space->GetFootprint();
249    EXPECT_LE(amount_allocated, growth_limit);
250    EXPECT_GE(footprint, amount_allocated);
251    EXPECT_LE(footprint, growth_limit);
252    EXPECT_GE(space->Size(), amount_allocated);
253    EXPECT_LE(space->Size(), growth_limit);
254
255    if (free_increment == 0) {
256      break;
257    }
258
259    // Free some objects
260    for (size_t i = 0; i < last_object; i += free_increment) {
261      mirror::Object* object = lots_of_objects.get()[i];
262      if (object == nullptr) {
263        continue;
264      }
265      size_t allocation_size = space->AllocationSize(object, nullptr);
266      if (object_size > 0) {
267        EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
268      } else {
269        EXPECT_GE(allocation_size, 8u);
270      }
271      space->Free(self, object);
272      lots_of_objects.get()[i] = nullptr;
273      amount_allocated -= allocation_size;
274      footprint = space->GetFootprint();
275      EXPECT_GE(space->Size(), footprint);  // invariant
276    }
277
278    free_increment >>= 1;
279  }
280
281  // The space has become empty here before allocating a large object
282  // below. For RosAlloc, revoke thread-local runs, which are kept
283  // even when empty for a performance reason, so that they won't
284  // cause the following large object allocation to fail due to
285  // potential fragmentation. Note they are normally revoked at each
286  // GC (but no GC here.)
287  space->RevokeAllThreadLocalBuffers();
288
289  // All memory was released, try a large allocation to check freed memory is being coalesced
290  StackHandleScope<1> hs(soa.Self());
291  auto large_object(hs.NewHandle<mirror::Object>(nullptr));
292  size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
293  size_t bytes_allocated = 0;
294  size_t bytes_tl_bulk_allocated;
295  if (round <= 1) {
296    large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr,
297                              &bytes_tl_bulk_allocated));
298  } else {
299    large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
300                                        nullptr, &bytes_tl_bulk_allocated));
301  }
302  EXPECT_TRUE(large_object.Get() != nullptr);
303
304  // Sanity check footprint
305  footprint = space->GetFootprint();
306  EXPECT_LE(footprint, growth_limit);
307  EXPECT_GE(space->Size(), footprint);
308  EXPECT_LE(space->Size(), growth_limit);
309
310  // Clean up
311  space->Free(self, large_object.Assign(nullptr));
312
313  // Sanity check footprint
314  footprint = space->GetFootprint();
315  EXPECT_LE(footprint, growth_limit);
316  EXPECT_GE(space->Size(), footprint);
317  EXPECT_LE(space->Size(), growth_limit);
318}
319
320template <class Super>
321void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,
322                                                             CreateSpaceFn create_space) {
323  if (object_size < SizeOfZeroLengthByteArray()) {
324    // Too small for the object layout/model.
325    return;
326  }
327  size_t initial_size = 4 * MB;
328  size_t growth_limit = 8 * MB;
329  size_t capacity = 16 * MB;
330  MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr));
331  ASSERT_TRUE(space != nullptr);
332
333  // Basic sanity
334  EXPECT_EQ(space->Capacity(), growth_limit);
335  EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
336
337  // Make space findable to the heap, will also delete space when runtime is cleaned up
338  AddSpace(space);
339
340  // In this round we don't allocate with growth and therefore can't grow past the initial size.
341  // This effectively makes the growth_limit the initial_size, so assert this.
342  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
343  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
344  // Remove growth limit
345  space->ClearGrowthLimit();
346  EXPECT_EQ(space->Capacity(), capacity);
347  SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
348}
349
350#define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
351  TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
352    SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
353  }
354
355#define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
356  TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
357    SizeFootPrintGrowthLimitAndTrimDriver(-size, spaceFn); \
358  }
359
360#define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
361  class spaceName##StaticTest : public SpaceTest<CommonRuntimeTest> { \
362  }; \
363  \
364  TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
365  TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
366  TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
367  TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
368  TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
369  TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
370  TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
371  TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
372  TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
373  TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
374  TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
375
376#define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
377  class spaceName##RandomTest : public SpaceTest<CommonRuntimeTest> { \
378  }; \
379  \
380  TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
381  TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
382  TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
383  TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
384  TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
385  TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
386  TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
387  TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
388  TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
389  TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
390
391}  // namespace space
392}  // namespace gc
393}  // namespace art
394
395#endif  // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
396