pthread_key.cpp revision 0f020d18b138e24b1fe34074808e07ac412f35a4
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *  * Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *    the documentation and/or other materials provided with the
13 *    distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include <pthread.h>
30
31#include "bionic_tls.h"
32#include "pthread_internal.h"
33
34/* A technical note regarding our thread-local-storage (TLS) implementation:
35 *
36 * There can be up to BIONIC_TLS_SLOTS independent TLS keys in a given process,
37 * The keys below TLS_SLOT_FIRST_USER_SLOT are reserved for Bionic to hold
38 * special thread-specific variables like errno or a pointer to
39 * the current thread's descriptor. These entries cannot be accessed through
40 * pthread_getspecific() / pthread_setspecific() or pthread_key_delete()
41 *
42 * The 'tls_map_t' type defined below implements a shared global map of
43 * currently created/allocated TLS keys and the destructors associated
44 * with them.
45 *
46 * The global TLS map simply contains a bitmap of allocated keys, and
47 * an array of destructors.
48 *
49 * Each thread has a TLS area that is a simple array of BIONIC_TLS_SLOTS void*
50 * pointers. the TLS area of the main thread is stack-allocated in
51 * __libc_init_common, while the TLS area of other threads is placed at
52 * the top of their stack in pthread_create.
53 *
54 * When pthread_key_delete() is called it will erase the key's bitmap bit
55 * and its destructor, and will also clear the key data in the TLS area of
56 * all created threads. As mandated by Posix, it is the responsibility of
57 * the caller of pthread_key_delete() to properly reclaim the objects that
58 * were pointed to by these data fields (either before or after the call).
59 */
60
61#define TLSMAP_BITS       32
62#define TLSMAP_WORDS      ((BIONIC_TLS_SLOTS+TLSMAP_BITS-1)/TLSMAP_BITS)
63#define TLSMAP_WORD(m,k)  (m).map[(k)/TLSMAP_BITS]
64#define TLSMAP_MASK(k)    (1U << ((k)&(TLSMAP_BITS-1)))
65
66static inline bool IsValidUserKey(pthread_key_t key) {
67  return (key >= TLS_SLOT_FIRST_USER_SLOT && key < BIONIC_TLS_SLOTS);
68}
69
70typedef void (*key_destructor_t)(void*);
71
72struct tls_map_t {
73  bool is_initialized;
74
75  /* bitmap of allocated keys */
76  uint32_t map[TLSMAP_WORDS];
77
78  key_destructor_t key_destructors[BIONIC_TLS_SLOTS];
79};
80
81class ScopedTlsMapAccess {
82 public:
83  ScopedTlsMapAccess() {
84    Lock();
85
86    // If this is the first time the TLS map has been accessed,
87    // mark the slots belonging to well-known keys as being in use.
88    // This isn't currently necessary because the well-known keys
89    // can only be accessed directly by bionic itself, do not have
90    // destructors, and all the functions that touch the TLS map
91    // start after the maximum well-known slot.
92    if (!s_tls_map_.is_initialized) {
93      for (pthread_key_t key = 0; key < TLS_SLOT_FIRST_USER_SLOT; ++key) {
94        SetInUse(key, NULL);
95      }
96      s_tls_map_.is_initialized = true;
97    }
98  }
99
100  ~ScopedTlsMapAccess() {
101    Unlock();
102  }
103
104  int CreateKey(pthread_key_t* result, void (*key_destructor)(void*)) {
105    // Take the first unallocated key.
106    for (int key = 0; key < BIONIC_TLS_SLOTS; ++key) {
107      if (!IsInUse(key)) {
108        SetInUse(key, key_destructor);
109        *result = key;
110        return 0;
111      }
112    }
113
114    // We hit PTHREAD_KEYS_MAX. POSIX says EAGAIN for this case.
115    return EAGAIN;
116  }
117
118  void DeleteKey(pthread_key_t key) {
119    TLSMAP_WORD(s_tls_map_, key) &= ~TLSMAP_MASK(key);
120    s_tls_map_.key_destructors[key] = NULL;
121  }
122
123  bool IsInUse(pthread_key_t key) {
124    return (TLSMAP_WORD(s_tls_map_, key) & TLSMAP_MASK(key)) != 0;
125  }
126
127  void SetInUse(pthread_key_t key, void (*key_destructor)(void*)) {
128    TLSMAP_WORD(s_tls_map_, key) |= TLSMAP_MASK(key);
129    s_tls_map_.key_destructors[key] = key_destructor;
130  }
131
132  // Called from pthread_exit() to remove all TLS key data
133  // from this thread's TLS area. This must call the destructor of all keys
134  // that have a non-NULL data value and a non-NULL destructor.
135  void CleanAll() {
136    void** tls = (void**)__get_tls();
137
138    // Because destructors can do funky things like deleting/creating other
139    // keys, we need to implement this in a loop.
140    for (int rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; --rounds) {
141      size_t called_destructor_count = 0;
142      for (int key = 0; key < BIONIC_TLS_SLOTS; ++key) {
143        if (IsInUse(key)) {
144          void* data = tls[key];
145          void (*key_destructor)(void*) = s_tls_map_.key_destructors[key];
146
147          if (data != NULL && key_destructor != NULL) {
148            // we need to clear the key data now, this will prevent the
149            // destructor (or a later one) from seeing the old value if
150            // it calls pthread_getspecific() for some odd reason
151
152            // we do not do this if 'key_destructor == NULL' just in case another
153            // destructor function might be responsible for manually
154            // releasing the corresponding data.
155            tls[key] = NULL;
156
157            // because the destructor is free to call pthread_key_create
158            // and/or pthread_key_delete, we need to temporarily unlock
159            // the TLS map
160            Unlock();
161            (*key_destructor)(data);
162            Lock();
163            ++called_destructor_count;
164          }
165        }
166      }
167
168      // If we didn't call any destructors, there is no need to check the TLS data again.
169      if (called_destructor_count == 0) {
170        break;
171      }
172    }
173  }
174
175 private:
176  static tls_map_t s_tls_map_;
177  static pthread_mutex_t s_tls_map_lock_;
178
179  void Lock() {
180    pthread_mutex_lock(&s_tls_map_lock_);
181  }
182
183  void Unlock() {
184    pthread_mutex_unlock(&s_tls_map_lock_);
185  }
186};
187
188__LIBC_HIDDEN__ tls_map_t ScopedTlsMapAccess::s_tls_map_;
189__LIBC_HIDDEN__ pthread_mutex_t ScopedTlsMapAccess::s_tls_map_lock_;
190
191__LIBC_HIDDEN__ void pthread_key_clean_all() {
192  ScopedTlsMapAccess tls_map;
193  tls_map.CleanAll();
194}
195
196int pthread_key_create(pthread_key_t* key, void (*key_destructor)(void*)) {
197  ScopedTlsMapAccess tls_map;
198  return tls_map.CreateKey(key, key_destructor);
199}
200
201// Deletes a pthread_key_t. note that the standard mandates that this does
202// not call the destructors for non-NULL key values. Instead, it is the
203// responsibility of the caller to properly dispose of the corresponding data
204// and resources, using any means it finds suitable.
205int pthread_key_delete(pthread_key_t key) {
206  ScopedTlsMapAccess tls_map;
207
208  if (!IsValidUserKey(key) || !tls_map.IsInUse(key)) {
209    return EINVAL;
210  }
211
212  // Clear value in all threads.
213  pthread_mutex_lock(&gThreadListLock);
214  for (pthread_internal_t*  t = gThreadList; t != NULL; t = t->next) {
215    // Skip zombie threads. They don't have a valid TLS area any more.
216    // Similarly, it is possible to have t->tls == NULL for threads that
217    // were just recently created through pthread_create() but whose
218    // startup trampoline (__thread_entry) hasn't been run yet by the
219    // scheduler. t->tls will also be NULL after a thread's stack has been
220    // unmapped but before the ongoing pthread_join() is finished.
221    if ((t->attr.flags & PTHREAD_ATTR_FLAG_ZOMBIE) || t->tls == NULL) {
222      continue;
223    }
224
225    t->tls[key] = NULL;
226  }
227  tls_map.DeleteKey(key);
228
229  pthread_mutex_unlock(&gThreadListLock);
230  return 0;
231}
232
233void* pthread_getspecific(pthread_key_t key) {
234  if (!IsValidUserKey(key)) {
235    return NULL;
236  }
237
238  // For performance reasons, we do not lock/unlock the global TLS map
239  // to check that the key is properly allocated. If the key was not
240  // allocated, the value read from the TLS should always be NULL
241  // due to pthread_key_delete() clearing the values for all threads.
242  return (void *)(((unsigned *)__get_tls())[key]);
243}
244
245int pthread_setspecific(pthread_key_t key, const void* ptr) {
246  ScopedTlsMapAccess tls_map;
247
248  if (!IsValidUserKey(key) || !tls_map.IsInUse(key)) {
249    return EINVAL;
250  }
251
252  ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
253  return 0;
254}
255