pthread_test.cpp revision 76144aaa6397fe9e16893882cf59c5c9c0684a66
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <gtest/gtest.h>
18
19#include <errno.h>
20#include <inttypes.h>
21#include <limits.h>
22#include <malloc.h>
23#include <pthread.h>
24#include <signal.h>
25#include <stdio.h>
26#include <sys/mman.h>
27#include <sys/syscall.h>
28#include <time.h>
29#include <unistd.h>
30#include <unwind.h>
31
32#include <atomic>
33#include <vector>
34
35#include "private/bionic_macros.h"
36#include "private/ScopeGuard.h"
37#include "BionicDeathTest.h"
38#include "ScopedSignalHandler.h"
39
40#include "utils.h"
41
42TEST(pthread, pthread_key_create) {
43  pthread_key_t key;
44  ASSERT_EQ(0, pthread_key_create(&key, NULL));
45  ASSERT_EQ(0, pthread_key_delete(key));
46  // Can't delete a key that's already been deleted.
47  ASSERT_EQ(EINVAL, pthread_key_delete(key));
48}
49
50TEST(pthread, pthread_keys_max) {
51  // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
52  ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
53}
54
55TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
56  int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
57  ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
58}
59
60TEST(pthread, pthread_key_many_distinct) {
61  // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
62  // pthread keys, but We should be able to allocate at least this many keys.
63  int nkeys = PTHREAD_KEYS_MAX / 2;
64  std::vector<pthread_key_t> keys;
65
66  auto scope_guard = make_scope_guard([&keys]{
67    for (const auto& key : keys) {
68      EXPECT_EQ(0, pthread_key_delete(key));
69    }
70  });
71
72  for (int i = 0; i < nkeys; ++i) {
73    pthread_key_t key;
74    // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
75    ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
76    keys.push_back(key);
77    ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
78  }
79
80  for (int i = keys.size() - 1; i >= 0; --i) {
81    ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
82    pthread_key_t key = keys.back();
83    keys.pop_back();
84    ASSERT_EQ(0, pthread_key_delete(key));
85  }
86}
87
88TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
89  std::vector<pthread_key_t> keys;
90  int rv = 0;
91
92  // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
93  // be more than we are allowed to allocate now.
94  for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
95    pthread_key_t key;
96    rv = pthread_key_create(&key, NULL);
97    if (rv == EAGAIN) {
98      break;
99    }
100    EXPECT_EQ(0, rv);
101    keys.push_back(key);
102  }
103
104  // Don't leak keys.
105  for (const auto& key : keys) {
106    EXPECT_EQ(0, pthread_key_delete(key));
107  }
108  keys.clear();
109
110  // We should have eventually reached the maximum number of keys and received
111  // EAGAIN.
112  ASSERT_EQ(EAGAIN, rv);
113}
114
115TEST(pthread, pthread_key_delete) {
116  void* expected = reinterpret_cast<void*>(1234);
117  pthread_key_t key;
118  ASSERT_EQ(0, pthread_key_create(&key, NULL));
119  ASSERT_EQ(0, pthread_setspecific(key, expected));
120  ASSERT_EQ(expected, pthread_getspecific(key));
121  ASSERT_EQ(0, pthread_key_delete(key));
122  // After deletion, pthread_getspecific returns NULL.
123  ASSERT_EQ(NULL, pthread_getspecific(key));
124  // And you can't use pthread_setspecific with the deleted key.
125  ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
126}
127
128TEST(pthread, pthread_key_fork) {
129  void* expected = reinterpret_cast<void*>(1234);
130  pthread_key_t key;
131  ASSERT_EQ(0, pthread_key_create(&key, NULL));
132  ASSERT_EQ(0, pthread_setspecific(key, expected));
133  ASSERT_EQ(expected, pthread_getspecific(key));
134
135  pid_t pid = fork();
136  ASSERT_NE(-1, pid) << strerror(errno);
137
138  if (pid == 0) {
139    // The surviving thread inherits all the forking thread's TLS values...
140    ASSERT_EQ(expected, pthread_getspecific(key));
141    _exit(99);
142  }
143
144  int status;
145  ASSERT_EQ(pid, waitpid(pid, &status, 0));
146  ASSERT_TRUE(WIFEXITED(status));
147  ASSERT_EQ(99, WEXITSTATUS(status));
148
149  ASSERT_EQ(expected, pthread_getspecific(key));
150  ASSERT_EQ(0, pthread_key_delete(key));
151}
152
153static void* DirtyKeyFn(void* key) {
154  return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
155}
156
157TEST(pthread, pthread_key_dirty) {
158  pthread_key_t key;
159  ASSERT_EQ(0, pthread_key_create(&key, NULL));
160
161  size_t stack_size = 128 * 1024;
162  void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
163  ASSERT_NE(MAP_FAILED, stack);
164  memset(stack, 0xff, stack_size);
165
166  pthread_attr_t attr;
167  ASSERT_EQ(0, pthread_attr_init(&attr));
168  ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
169
170  pthread_t t;
171  ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
172
173  void* result;
174  ASSERT_EQ(0, pthread_join(t, &result));
175  ASSERT_EQ(nullptr, result); // Not ~0!
176
177  ASSERT_EQ(0, munmap(stack, stack_size));
178  ASSERT_EQ(0, pthread_key_delete(key));
179}
180
181TEST(pthread, static_pthread_key_used_before_creation) {
182#if defined(__BIONIC__)
183  // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
184  // So here tests if the static/global default value 0 can be detected as invalid key.
185  static pthread_key_t key;
186  ASSERT_EQ(nullptr, pthread_getspecific(key));
187  ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
188  ASSERT_EQ(EINVAL, pthread_key_delete(key));
189#else
190  GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n";
191#endif
192}
193
194static void* IdFn(void* arg) {
195  return arg;
196}
197
198class SpinFunctionHelper {
199 public:
200  SpinFunctionHelper() {
201    SpinFunctionHelper::spin_flag_ = true;
202  }
203  ~SpinFunctionHelper() {
204    UnSpin();
205  }
206  auto GetFunction() -> void* (*)(void*) {
207    return SpinFunctionHelper::SpinFn;
208  }
209
210  void UnSpin() {
211    SpinFunctionHelper::spin_flag_ = false;
212  }
213
214 private:
215  static void* SpinFn(void*) {
216    while (spin_flag_) {}
217    return NULL;
218  }
219  static volatile bool spin_flag_;
220};
221
222// It doesn't matter if spin_flag_ is used in several tests,
223// because it is always set to false after each test. Each thread
224// loops on spin_flag_ can find it becomes false at some time.
225volatile bool SpinFunctionHelper::spin_flag_ = false;
226
227static void* JoinFn(void* arg) {
228  return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
229}
230
231static void AssertDetached(pthread_t t, bool is_detached) {
232  pthread_attr_t attr;
233  ASSERT_EQ(0, pthread_getattr_np(t, &attr));
234  int detach_state;
235  ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
236  pthread_attr_destroy(&attr);
237  ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
238}
239
240static void MakeDeadThread(pthread_t& t) {
241  ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
242  ASSERT_EQ(0, pthread_join(t, NULL));
243}
244
245TEST(pthread, pthread_create) {
246  void* expected_result = reinterpret_cast<void*>(123);
247  // Can we create a thread?
248  pthread_t t;
249  ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
250  // If we join, do we get the expected value back?
251  void* result;
252  ASSERT_EQ(0, pthread_join(t, &result));
253  ASSERT_EQ(expected_result, result);
254}
255
256TEST(pthread, pthread_create_EAGAIN) {
257  pthread_attr_t attributes;
258  ASSERT_EQ(0, pthread_attr_init(&attributes));
259  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
260
261  pthread_t t;
262  ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
263}
264
265TEST(pthread, pthread_no_join_after_detach) {
266  SpinFunctionHelper spinhelper;
267
268  pthread_t t1;
269  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
270
271  // After a pthread_detach...
272  ASSERT_EQ(0, pthread_detach(t1));
273  AssertDetached(t1, true);
274
275  // ...pthread_join should fail.
276  ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
277}
278
279TEST(pthread, pthread_no_op_detach_after_join) {
280  SpinFunctionHelper spinhelper;
281
282  pthread_t t1;
283  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
284
285  // If thread 2 is already waiting to join thread 1...
286  pthread_t t2;
287  ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
288
289  sleep(1); // (Give t2 a chance to call pthread_join.)
290
291#if defined(__BIONIC__)
292  ASSERT_EQ(EINVAL, pthread_detach(t1));
293#else
294  ASSERT_EQ(0, pthread_detach(t1));
295#endif
296  AssertDetached(t1, false);
297
298  spinhelper.UnSpin();
299
300  // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
301  void* join_result;
302  ASSERT_EQ(0, pthread_join(t2, &join_result));
303  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
304}
305
306TEST(pthread, pthread_join_self) {
307  ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
308}
309
310struct TestBug37410 {
311  pthread_t main_thread;
312  pthread_mutex_t mutex;
313
314  static void main() {
315    TestBug37410 data;
316    data.main_thread = pthread_self();
317    ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
318    ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
319
320    pthread_t t;
321    ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
322
323    // Wait for the thread to be running...
324    ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
325    ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
326
327    // ...and exit.
328    pthread_exit(NULL);
329  }
330
331 private:
332  static void* thread_fn(void* arg) {
333    TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
334
335    // Let the main thread know we're running.
336    pthread_mutex_unlock(&data->mutex);
337
338    // And wait for the main thread to exit.
339    pthread_join(data->main_thread, NULL);
340
341    return NULL;
342  }
343};
344
345// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
346// run this test (which exits normally) in its own process.
347
348class pthread_DeathTest : public BionicDeathTest {};
349
350TEST_F(pthread_DeathTest, pthread_bug_37410) {
351  // http://code.google.com/p/android/issues/detail?id=37410
352  ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
353}
354
355static void* SignalHandlerFn(void* arg) {
356  sigset_t wait_set;
357  sigfillset(&wait_set);
358  return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
359}
360
361TEST(pthread, pthread_sigmask) {
362  // Check that SIGUSR1 isn't blocked.
363  sigset_t original_set;
364  sigemptyset(&original_set);
365  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
366  ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
367
368  // Block SIGUSR1.
369  sigset_t set;
370  sigemptyset(&set);
371  sigaddset(&set, SIGUSR1);
372  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
373
374  // Check that SIGUSR1 is blocked.
375  sigset_t final_set;
376  sigemptyset(&final_set);
377  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
378  ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
379  // ...and that sigprocmask agrees with pthread_sigmask.
380  sigemptyset(&final_set);
381  ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
382  ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
383
384  // Spawn a thread that calls sigwait and tells us what it received.
385  pthread_t signal_thread;
386  int received_signal = -1;
387  ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
388
389  // Send that thread SIGUSR1.
390  pthread_kill(signal_thread, SIGUSR1);
391
392  // See what it got.
393  void* join_result;
394  ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
395  ASSERT_EQ(SIGUSR1, received_signal);
396  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
397
398  // Restore the original signal mask.
399  ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
400}
401
402TEST(pthread, pthread_setname_np__too_long) {
403  // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
404  ASSERT_EQ(0, pthread_setname_np(pthread_self(), "123456789012345"));
405  ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "1234567890123456"));
406}
407
408TEST(pthread, pthread_setname_np__self) {
409  ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1"));
410}
411
412TEST(pthread, pthread_setname_np__other) {
413  SpinFunctionHelper spinhelper;
414
415  pthread_t t1;
416  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
417  ASSERT_EQ(0, pthread_setname_np(t1, "short 2"));
418}
419
420TEST(pthread, pthread_setname_np__no_such_thread) {
421  pthread_t dead_thread;
422  MakeDeadThread(dead_thread);
423
424  // Call pthread_setname_np after thread has already exited.
425  ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3"));
426}
427
428TEST(pthread, pthread_kill__0) {
429  // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
430  ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
431}
432
433TEST(pthread, pthread_kill__invalid_signal) {
434  ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
435}
436
437static void pthread_kill__in_signal_handler_helper(int signal_number) {
438  static int count = 0;
439  ASSERT_EQ(SIGALRM, signal_number);
440  if (++count == 1) {
441    // Can we call pthread_kill from a signal handler?
442    ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
443  }
444}
445
446TEST(pthread, pthread_kill__in_signal_handler) {
447  ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
448  ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
449}
450
451TEST(pthread, pthread_detach__no_such_thread) {
452  pthread_t dead_thread;
453  MakeDeadThread(dead_thread);
454
455  ASSERT_EQ(ESRCH, pthread_detach(dead_thread));
456}
457
458TEST(pthread, pthread_getcpuclockid__clock_gettime) {
459  SpinFunctionHelper spinhelper;
460
461  pthread_t t;
462  ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL));
463
464  clockid_t c;
465  ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
466  timespec ts;
467  ASSERT_EQ(0, clock_gettime(c, &ts));
468}
469
470TEST(pthread, pthread_getcpuclockid__no_such_thread) {
471  pthread_t dead_thread;
472  MakeDeadThread(dead_thread);
473
474  clockid_t c;
475  ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c));
476}
477
478TEST(pthread, pthread_getschedparam__no_such_thread) {
479  pthread_t dead_thread;
480  MakeDeadThread(dead_thread);
481
482  int policy;
483  sched_param param;
484  ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, &param));
485}
486
487TEST(pthread, pthread_setschedparam__no_such_thread) {
488  pthread_t dead_thread;
489  MakeDeadThread(dead_thread);
490
491  int policy = 0;
492  sched_param param;
493  ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, &param));
494}
495
496TEST(pthread, pthread_join__no_such_thread) {
497  pthread_t dead_thread;
498  MakeDeadThread(dead_thread);
499
500  ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL));
501}
502
503TEST(pthread, pthread_kill__no_such_thread) {
504  pthread_t dead_thread;
505  MakeDeadThread(dead_thread);
506
507  ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0));
508}
509
510TEST(pthread, pthread_join__multijoin) {
511  SpinFunctionHelper spinhelper;
512
513  pthread_t t1;
514  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
515
516  pthread_t t2;
517  ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
518
519  sleep(1); // (Give t2 a chance to call pthread_join.)
520
521  // Multiple joins to the same thread should fail.
522  ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
523
524  spinhelper.UnSpin();
525
526  // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
527  void* join_result;
528  ASSERT_EQ(0, pthread_join(t2, &join_result));
529  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
530}
531
532TEST(pthread, pthread_join__race) {
533  // http://b/11693195 --- pthread_join could return before the thread had actually exited.
534  // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
535  for (size_t i = 0; i < 1024; ++i) {
536    size_t stack_size = 64*1024;
537    void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
538
539    pthread_attr_t a;
540    pthread_attr_init(&a);
541    pthread_attr_setstack(&a, stack, stack_size);
542
543    pthread_t t;
544    ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
545    ASSERT_EQ(0, pthread_join(t, NULL));
546    ASSERT_EQ(0, munmap(stack, stack_size));
547  }
548}
549
550static void* GetActualGuardSizeFn(void* arg) {
551  pthread_attr_t attributes;
552  pthread_getattr_np(pthread_self(), &attributes);
553  pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
554  return NULL;
555}
556
557static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
558  size_t result;
559  pthread_t t;
560  pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
561  pthread_join(t, NULL);
562  return result;
563}
564
565static void* GetActualStackSizeFn(void* arg) {
566  pthread_attr_t attributes;
567  pthread_getattr_np(pthread_self(), &attributes);
568  pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
569  return NULL;
570}
571
572static size_t GetActualStackSize(const pthread_attr_t& attributes) {
573  size_t result;
574  pthread_t t;
575  pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
576  pthread_join(t, NULL);
577  return result;
578}
579
580TEST(pthread, pthread_attr_setguardsize) {
581  pthread_attr_t attributes;
582  ASSERT_EQ(0, pthread_attr_init(&attributes));
583
584  // Get the default guard size.
585  size_t default_guard_size;
586  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
587
588  // No such thing as too small: will be rounded up to one page by pthread_create.
589  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
590  size_t guard_size;
591  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
592  ASSERT_EQ(128U, guard_size);
593  ASSERT_EQ(4096U, GetActualGuardSize(attributes));
594
595  // Large enough and a multiple of the page size.
596  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
597  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
598  ASSERT_EQ(32*1024U, guard_size);
599
600  // Large enough but not a multiple of the page size; will be rounded up by pthread_create.
601  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
602  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
603  ASSERT_EQ(32*1024U + 1, guard_size);
604}
605
606TEST(pthread, pthread_attr_setstacksize) {
607  pthread_attr_t attributes;
608  ASSERT_EQ(0, pthread_attr_init(&attributes));
609
610  // Get the default stack size.
611  size_t default_stack_size;
612  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
613
614  // Too small.
615  ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
616  size_t stack_size;
617  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
618  ASSERT_EQ(default_stack_size, stack_size);
619  ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
620
621  // Large enough and a multiple of the page size; may be rounded up by pthread_create.
622  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
623  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
624  ASSERT_EQ(32*1024U, stack_size);
625  ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
626
627  // Large enough but not aligned; will be rounded up by pthread_create.
628  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
629  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
630  ASSERT_EQ(32*1024U + 1, stack_size);
631#if defined(__BIONIC__)
632  ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
633#else // __BIONIC__
634  // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
635  ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
636#endif // __BIONIC__
637}
638
639TEST(pthread, pthread_rwlockattr_smoke) {
640  pthread_rwlockattr_t attr;
641  ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
642
643  int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
644  for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
645    ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
646    int pshared;
647    ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
648    ASSERT_EQ(pshared_value_array[i], pshared);
649  }
650
651  int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
652                      PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
653  for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
654    ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
655    int kind;
656    ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
657    ASSERT_EQ(kind_array[i], kind);
658  }
659
660  ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
661}
662
663TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
664  pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
665  pthread_rwlock_t lock2;
666  ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL));
667  ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
668}
669
670TEST(pthread, pthread_rwlock_smoke) {
671  pthread_rwlock_t l;
672  ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
673
674  // Single read lock
675  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
676  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
677
678  // Multiple read lock
679  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
680  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
681  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
682  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
683
684  // Write lock
685  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
686  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
687
688  // Try writer lock
689  ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
690  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
691  ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
692  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
693
694  // Try reader lock
695  ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
696  ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
697  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
698  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
699  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
700
701  // Try writer lock after unlock
702  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
703  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
704
705  // EDEADLK in "read after write"
706  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
707  ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
708  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
709
710  // EDEADLK in "write after write"
711  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
712  ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
713  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
714
715  ASSERT_EQ(0, pthread_rwlock_destroy(&l));
716}
717
718struct RwlockWakeupHelperArg {
719  pthread_rwlock_t lock;
720  enum Progress {
721    LOCK_INITIALIZED,
722    LOCK_WAITING,
723    LOCK_RELEASED,
724    LOCK_ACCESSED
725  };
726  std::atomic<Progress> progress;
727  std::atomic<pid_t> tid;
728};
729
730static void pthread_rwlock_reader_wakeup_writer_helper(RwlockWakeupHelperArg* arg) {
731  arg->tid = gettid();
732  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
733  arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
734
735  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&arg->lock));
736  ASSERT_EQ(0, pthread_rwlock_wrlock(&arg->lock));
737  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
738  ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
739
740  arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
741}
742
743TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
744  RwlockWakeupHelperArg wakeup_arg;
745  ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
746  ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
747  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
748  wakeup_arg.tid = 0;
749
750  pthread_t thread;
751  ASSERT_EQ(0, pthread_create(&thread, NULL,
752    reinterpret_cast<void* (*)(void*)>(pthread_rwlock_reader_wakeup_writer_helper), &wakeup_arg));
753  WaitUntilThreadSleep(wakeup_arg.tid);
754  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
755
756  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
757  ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
758
759  ASSERT_EQ(0, pthread_join(thread, NULL));
760  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
761  ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
762}
763
764static void pthread_rwlock_writer_wakeup_reader_helper(RwlockWakeupHelperArg* arg) {
765  arg->tid = gettid();
766  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
767  arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
768
769  ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&arg->lock));
770  ASSERT_EQ(0, pthread_rwlock_rdlock(&arg->lock));
771  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
772  ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
773
774  arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
775}
776
777TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
778  RwlockWakeupHelperArg wakeup_arg;
779  ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
780  ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
781  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
782  wakeup_arg.tid = 0;
783
784  pthread_t thread;
785  ASSERT_EQ(0, pthread_create(&thread, NULL,
786    reinterpret_cast<void* (*)(void*)>(pthread_rwlock_writer_wakeup_reader_helper), &wakeup_arg));
787  WaitUntilThreadSleep(wakeup_arg.tid);
788  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
789
790  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
791  ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
792
793  ASSERT_EQ(0, pthread_join(thread, NULL));
794  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
795  ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
796}
797
798class RwlockKindTestHelper {
799 private:
800  struct ThreadArg {
801    RwlockKindTestHelper* helper;
802    std::atomic<pid_t>& tid;
803
804    ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
805      : helper(helper), tid(tid) { }
806  };
807
808 public:
809  pthread_rwlock_t lock;
810
811 public:
812  RwlockKindTestHelper(int kind_type) {
813    InitRwlock(kind_type);
814  }
815
816  ~RwlockKindTestHelper() {
817    DestroyRwlock();
818  }
819
820  void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
821    tid = 0;
822    ThreadArg* arg = new ThreadArg(this, tid);
823    ASSERT_EQ(0, pthread_create(&thread, NULL,
824                                reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
825  }
826
827  void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
828    tid = 0;
829    ThreadArg* arg = new ThreadArg(this, tid);
830    ASSERT_EQ(0, pthread_create(&thread, NULL,
831                                reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
832  }
833
834 private:
835  void InitRwlock(int kind_type) {
836    pthread_rwlockattr_t attr;
837    ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
838    ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
839    ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
840    ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
841  }
842
843  void DestroyRwlock() {
844    ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
845  }
846
847  static void WriterThreadFn(ThreadArg* arg) {
848    arg->tid = gettid();
849
850    RwlockKindTestHelper* helper = arg->helper;
851    ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
852    ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
853    delete arg;
854  }
855
856  static void ReaderThreadFn(ThreadArg* arg) {
857    arg->tid = gettid();
858
859    RwlockKindTestHelper* helper = arg->helper;
860    ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
861    ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
862    delete arg;
863  }
864};
865
866TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
867  RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
868  ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
869
870  pthread_t writer_thread;
871  std::atomic<pid_t> writer_tid;
872  helper.CreateWriterThread(writer_thread, writer_tid);
873  WaitUntilThreadSleep(writer_tid);
874
875  pthread_t reader_thread;
876  std::atomic<pid_t> reader_tid;
877  helper.CreateReaderThread(reader_thread, reader_tid);
878  ASSERT_EQ(0, pthread_join(reader_thread, NULL));
879
880  ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
881  ASSERT_EQ(0, pthread_join(writer_thread, NULL));
882}
883
884TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
885  RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
886  ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
887
888  pthread_t writer_thread;
889  std::atomic<pid_t> writer_tid;
890  helper.CreateWriterThread(writer_thread, writer_tid);
891  WaitUntilThreadSleep(writer_tid);
892
893  pthread_t reader_thread;
894  std::atomic<pid_t> reader_tid;
895  helper.CreateReaderThread(reader_thread, reader_tid);
896  WaitUntilThreadSleep(reader_tid);
897
898  ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
899  ASSERT_EQ(0, pthread_join(writer_thread, NULL));
900  ASSERT_EQ(0, pthread_join(reader_thread, NULL));
901}
902
903static int g_once_fn_call_count = 0;
904static void OnceFn() {
905  ++g_once_fn_call_count;
906}
907
908TEST(pthread, pthread_once_smoke) {
909  pthread_once_t once_control = PTHREAD_ONCE_INIT;
910  ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
911  ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
912  ASSERT_EQ(1, g_once_fn_call_count);
913}
914
915static std::string pthread_once_1934122_result = "";
916
917static void Routine2() {
918  pthread_once_1934122_result += "2";
919}
920
921static void Routine1() {
922  pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
923  pthread_once_1934122_result += "1";
924  pthread_once(&once_control_2, &Routine2);
925}
926
927TEST(pthread, pthread_once_1934122) {
928  // Very old versions of Android couldn't call pthread_once from a
929  // pthread_once init routine. http://b/1934122.
930  pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
931  ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
932  ASSERT_EQ("12", pthread_once_1934122_result);
933}
934
935static int g_atfork_prepare_calls = 0;
936static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
937static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
938static int g_atfork_parent_calls = 0;
939static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
940static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
941static int g_atfork_child_calls = 0;
942static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
943static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
944
945TEST(pthread, pthread_atfork_smoke) {
946  ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
947  ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
948
949  int pid = fork();
950  ASSERT_NE(-1, pid) << strerror(errno);
951
952  // Child and parent calls are made in the order they were registered.
953  if (pid == 0) {
954    ASSERT_EQ(12, g_atfork_child_calls);
955    _exit(0);
956  }
957  ASSERT_EQ(12, g_atfork_parent_calls);
958
959  // Prepare calls are made in the reverse order.
960  ASSERT_EQ(21, g_atfork_prepare_calls);
961  int status;
962  ASSERT_EQ(pid, waitpid(pid, &status, 0));
963}
964
965TEST(pthread, pthread_attr_getscope) {
966  pthread_attr_t attr;
967  ASSERT_EQ(0, pthread_attr_init(&attr));
968
969  int scope;
970  ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
971  ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
972}
973
974TEST(pthread, pthread_condattr_init) {
975  pthread_condattr_t attr;
976  pthread_condattr_init(&attr);
977
978  clockid_t clock;
979  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
980  ASSERT_EQ(CLOCK_REALTIME, clock);
981
982  int pshared;
983  ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
984  ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
985}
986
987TEST(pthread, pthread_condattr_setclock) {
988  pthread_condattr_t attr;
989  pthread_condattr_init(&attr);
990
991  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
992  clockid_t clock;
993  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
994  ASSERT_EQ(CLOCK_REALTIME, clock);
995
996  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
997  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
998  ASSERT_EQ(CLOCK_MONOTONIC, clock);
999
1000  ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1001}
1002
1003TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1004#if defined(__BIONIC__)
1005  pthread_condattr_t attr;
1006  pthread_condattr_init(&attr);
1007
1008  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1009  ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1010
1011  pthread_cond_t cond_var;
1012  ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1013
1014  ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1015  ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1016
1017  attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1018  clockid_t clock;
1019  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1020  ASSERT_EQ(CLOCK_MONOTONIC, clock);
1021  int pshared;
1022  ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1023  ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1024#else  // !defined(__BIONIC__)
1025  GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
1026#endif  // !defined(__BIONIC__)
1027}
1028
1029class pthread_CondWakeupTest : public ::testing::Test {
1030 protected:
1031  pthread_mutex_t mutex;
1032  pthread_cond_t cond;
1033
1034  enum Progress {
1035    INITIALIZED,
1036    WAITING,
1037    SIGNALED,
1038    FINISHED,
1039  };
1040  std::atomic<Progress> progress;
1041  pthread_t thread;
1042
1043 protected:
1044  virtual void SetUp() {
1045    ASSERT_EQ(0, pthread_mutex_init(&mutex, NULL));
1046    ASSERT_EQ(0, pthread_cond_init(&cond, NULL));
1047    progress = INITIALIZED;
1048    ASSERT_EQ(0,
1049      pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
1050  }
1051
1052  virtual void TearDown() {
1053    ASSERT_EQ(0, pthread_join(thread, NULL));
1054    ASSERT_EQ(FINISHED, progress);
1055    ASSERT_EQ(0, pthread_cond_destroy(&cond));
1056    ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1057  }
1058
1059  void SleepUntilProgress(Progress expected_progress) {
1060    while (progress != expected_progress) {
1061      usleep(5000);
1062    }
1063    usleep(5000);
1064  }
1065
1066 private:
1067  static void WaitThreadFn(pthread_CondWakeupTest* test) {
1068    ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1069    test->progress = WAITING;
1070    while (test->progress == WAITING) {
1071      ASSERT_EQ(0, pthread_cond_wait(&test->cond, &test->mutex));
1072    }
1073    ASSERT_EQ(SIGNALED, test->progress);
1074    test->progress = FINISHED;
1075    ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1076  }
1077};
1078
1079TEST_F(pthread_CondWakeupTest, signal) {
1080  SleepUntilProgress(WAITING);
1081  progress = SIGNALED;
1082  pthread_cond_signal(&cond);
1083}
1084
1085TEST_F(pthread_CondWakeupTest, broadcast) {
1086  SleepUntilProgress(WAITING);
1087  progress = SIGNALED;
1088  pthread_cond_broadcast(&cond);
1089}
1090
1091TEST(pthread, pthread_mutex_timedlock) {
1092  pthread_mutex_t m;
1093  ASSERT_EQ(0, pthread_mutex_init(&m, NULL));
1094
1095  // If the mutex is already locked, pthread_mutex_timedlock should time out.
1096  ASSERT_EQ(0, pthread_mutex_lock(&m));
1097
1098  timespec ts;
1099  ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1100  ts.tv_nsec += 1;
1101  ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1102
1103  // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
1104  ASSERT_EQ(0, pthread_mutex_unlock(&m));
1105
1106  ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1107  ts.tv_nsec += 1;
1108  ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
1109
1110  ASSERT_EQ(0, pthread_mutex_unlock(&m));
1111  ASSERT_EQ(0, pthread_mutex_destroy(&m));
1112}
1113
1114TEST(pthread, pthread_attr_getstack__main_thread) {
1115  // This test is only meaningful for the main thread, so make sure we're running on it!
1116  ASSERT_EQ(getpid(), syscall(__NR_gettid));
1117
1118  // Get the main thread's attributes.
1119  pthread_attr_t attributes;
1120  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1121
1122  // Check that we correctly report that the main thread has no guard page.
1123  size_t guard_size;
1124  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1125  ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1126
1127  // Get the stack base and the stack size (both ways).
1128  void* stack_base;
1129  size_t stack_size;
1130  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1131  size_t stack_size2;
1132  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1133
1134  // The two methods of asking for the stack size should agree.
1135  EXPECT_EQ(stack_size, stack_size2);
1136
1137#if defined(__BIONIC__)
1138  // What does /proc/self/maps' [stack] line say?
1139  void* maps_stack_hi = NULL;
1140  std::vector<map_record> maps;
1141  ASSERT_TRUE(Maps::parse_maps(&maps));
1142  for (const auto& map : maps) {
1143    if (map.pathname == "[stack]") {
1144      maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
1145      break;
1146    }
1147  }
1148
1149  // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
1150  // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1151  // region isn't very interesting.
1152  EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1153
1154  // The stack size should correspond to RLIMIT_STACK.
1155  rlimit rl;
1156  ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1157  uint64_t original_rlim_cur = rl.rlim_cur;
1158  if (rl.rlim_cur == RLIM_INFINITY) {
1159    rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1160  }
1161  EXPECT_EQ(rl.rlim_cur, stack_size);
1162
1163  auto guard = make_scope_guard([&rl, original_rlim_cur]() {
1164    rl.rlim_cur = original_rlim_cur;
1165    ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1166  });
1167
1168  //
1169  // What if RLIMIT_STACK is smaller than the stack's current extent?
1170  //
1171  rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1172  rl.rlim_max = RLIM_INFINITY;
1173  ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1174
1175  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1176  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1177  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1178
1179  EXPECT_EQ(stack_size, stack_size2);
1180  ASSERT_EQ(1024U, stack_size);
1181
1182  //
1183  // What if RLIMIT_STACK isn't a whole number of pages?
1184  //
1185  rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1186  rl.rlim_max = RLIM_INFINITY;
1187  ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1188
1189  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1190  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1191  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1192
1193  EXPECT_EQ(stack_size, stack_size2);
1194  ASSERT_EQ(6666U, stack_size);
1195#endif
1196}
1197
1198struct GetStackSignalHandlerArg {
1199  volatile bool done;
1200  void* signal_handler_sp;
1201  void* main_stack_base;
1202  size_t main_stack_size;
1203};
1204
1205static GetStackSignalHandlerArg getstack_signal_handler_arg;
1206
1207static void getstack_signal_handler(int sig) {
1208  ASSERT_EQ(SIGUSR1, sig);
1209  // Use sleep() to make current thread be switched out by the kernel to provoke the error.
1210  sleep(1);
1211  pthread_attr_t attr;
1212  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1213  void* stack_base;
1214  size_t stack_size;
1215  ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
1216  getstack_signal_handler_arg.signal_handler_sp = &attr;
1217  getstack_signal_handler_arg.main_stack_base = stack_base;
1218  getstack_signal_handler_arg.main_stack_size = stack_size;
1219  getstack_signal_handler_arg.done = true;
1220}
1221
1222// The previous code obtained the main thread's stack by reading the entry in
1223// /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
1224// relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
1225// switches a process while the main thread is in an alternate stack, then the kernel will label
1226// the wrong map with [stack]. This test verifies that when the above situation happens, the main
1227// thread's stack is found correctly.
1228TEST(pthread, pthread_attr_getstack_in_signal_handler) {
1229  const size_t sig_stack_size = 16 * 1024;
1230  void* sig_stack = mmap(NULL, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
1231                         -1, 0);
1232  ASSERT_NE(MAP_FAILED, sig_stack);
1233  stack_t ss;
1234  ss.ss_sp = sig_stack;
1235  ss.ss_size = sig_stack_size;
1236  ss.ss_flags = 0;
1237  stack_t oss;
1238  ASSERT_EQ(0, sigaltstack(&ss, &oss));
1239
1240  ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
1241  getstack_signal_handler_arg.done = false;
1242  kill(getpid(), SIGUSR1);
1243  ASSERT_EQ(true, getstack_signal_handler_arg.done);
1244
1245  // Verify if the stack used by the signal handler is the alternate stack just registered.
1246  ASSERT_LE(sig_stack, getstack_signal_handler_arg.signal_handler_sp);
1247  ASSERT_GE(reinterpret_cast<char*>(sig_stack) + sig_stack_size,
1248            getstack_signal_handler_arg.signal_handler_sp);
1249
1250  // Verify if the main thread's stack got in the signal handler is correct.
1251  ASSERT_LE(getstack_signal_handler_arg.main_stack_base, &ss);
1252  ASSERT_GE(reinterpret_cast<char*>(getstack_signal_handler_arg.main_stack_base) +
1253            getstack_signal_handler_arg.main_stack_size, reinterpret_cast<void*>(&ss));
1254
1255  ASSERT_EQ(0, sigaltstack(&oss, nullptr));
1256  ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
1257}
1258
1259static void pthread_attr_getstack_18908062_helper(void*) {
1260  char local_variable;
1261  pthread_attr_t attributes;
1262  pthread_getattr_np(pthread_self(), &attributes);
1263  void* stack_base;
1264  size_t stack_size;
1265  pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1266
1267  // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1268  ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1269  ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
1270}
1271
1272// Check whether something on stack is in the range of
1273// [stack_base, stack_base + stack_size). see b/18908062.
1274TEST(pthread, pthread_attr_getstack_18908062) {
1275  pthread_t t;
1276  ASSERT_EQ(0, pthread_create(&t, NULL,
1277            reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1278            NULL));
1279  pthread_join(t, NULL);
1280}
1281
1282#if defined(__BIONIC__)
1283static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
1284
1285static void* pthread_gettid_np_helper(void* arg) {
1286  *reinterpret_cast<pid_t*>(arg) = gettid();
1287
1288  // Wait for our parent to call pthread_gettid_np on us before exiting.
1289  pthread_mutex_lock(&pthread_gettid_np_mutex);
1290  pthread_mutex_unlock(&pthread_gettid_np_mutex);
1291  return NULL;
1292}
1293#endif
1294
1295TEST(pthread, pthread_gettid_np) {
1296#if defined(__BIONIC__)
1297  ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1298
1299  // Ensure the other thread doesn't exit until after we've called
1300  // pthread_gettid_np on it.
1301  pthread_mutex_lock(&pthread_gettid_np_mutex);
1302
1303  pid_t t_gettid_result;
1304  pthread_t t;
1305  pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
1306
1307  pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
1308
1309  // Release the other thread and wait for it to exit.
1310  pthread_mutex_unlock(&pthread_gettid_np_mutex);
1311  pthread_join(t, NULL);
1312
1313  ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
1314#else
1315  GTEST_LOG_(INFO) << "This test does nothing.\n";
1316#endif
1317}
1318
1319static size_t cleanup_counter = 0;
1320
1321static void AbortCleanupRoutine(void*) {
1322  abort();
1323}
1324
1325static void CountCleanupRoutine(void*) {
1326  ++cleanup_counter;
1327}
1328
1329static void PthreadCleanupTester() {
1330  pthread_cleanup_push(CountCleanupRoutine, NULL);
1331  pthread_cleanup_push(CountCleanupRoutine, NULL);
1332  pthread_cleanup_push(AbortCleanupRoutine, NULL);
1333
1334  pthread_cleanup_pop(0); // Pop the abort without executing it.
1335  pthread_cleanup_pop(1); // Pop one count while executing it.
1336  ASSERT_EQ(1U, cleanup_counter);
1337  // Exit while the other count is still on the cleanup stack.
1338  pthread_exit(NULL);
1339
1340  // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
1341  pthread_cleanup_pop(0);
1342}
1343
1344static void* PthreadCleanupStartRoutine(void*) {
1345  PthreadCleanupTester();
1346  return NULL;
1347}
1348
1349TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
1350  pthread_t t;
1351  ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
1352  pthread_join(t, NULL);
1353  ASSERT_EQ(2U, cleanup_counter);
1354}
1355
1356TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1357  ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1358}
1359
1360TEST(pthread, pthread_mutexattr_gettype) {
1361  pthread_mutexattr_t attr;
1362  ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1363
1364  int attr_type;
1365
1366  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1367  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1368  ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1369
1370  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1371  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1372  ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1373
1374  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1375  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1376  ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1377
1378  ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1379}
1380
1381struct PthreadMutex {
1382  pthread_mutex_t lock;
1383
1384  PthreadMutex(int mutex_type) {
1385    init(mutex_type);
1386  }
1387
1388  ~PthreadMutex() {
1389    destroy();
1390  }
1391
1392 private:
1393  void init(int mutex_type) {
1394    pthread_mutexattr_t attr;
1395    ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1396    ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
1397    ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1398    ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1399  }
1400
1401  void destroy() {
1402    ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1403  }
1404
1405  DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
1406};
1407
1408TEST(pthread, pthread_mutex_lock_NORMAL) {
1409  PthreadMutex m(PTHREAD_MUTEX_NORMAL);
1410
1411  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1412  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1413}
1414
1415TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
1416  PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK);
1417
1418  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1419  ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
1420  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1421  ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1422  ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1423  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1424  ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1425}
1426
1427TEST(pthread, pthread_mutex_lock_RECURSIVE) {
1428  PthreadMutex m(PTHREAD_MUTEX_RECURSIVE);
1429
1430  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1431  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1432  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1433  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1434  ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1435  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1436  ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1437}
1438
1439TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
1440  pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
1441  PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
1442  ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
1443  pthread_mutex_destroy(&lock_normal);
1444
1445  pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
1446  PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
1447  ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
1448  pthread_mutex_destroy(&lock_errorcheck);
1449
1450  pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
1451  PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
1452  ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
1453  ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
1454}
1455class MutexWakeupHelper {
1456 private:
1457  PthreadMutex m;
1458  enum Progress {
1459    LOCK_INITIALIZED,
1460    LOCK_WAITING,
1461    LOCK_RELEASED,
1462    LOCK_ACCESSED
1463  };
1464  std::atomic<Progress> progress;
1465  std::atomic<pid_t> tid;
1466
1467  static void thread_fn(MutexWakeupHelper* helper) {
1468    helper->tid = gettid();
1469    ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
1470    helper->progress = LOCK_WAITING;
1471
1472    ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
1473    ASSERT_EQ(LOCK_RELEASED, helper->progress);
1474    ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
1475
1476    helper->progress = LOCK_ACCESSED;
1477  }
1478
1479 public:
1480  MutexWakeupHelper(int mutex_type) : m(mutex_type) {
1481  }
1482
1483  void test() {
1484    ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1485    progress = LOCK_INITIALIZED;
1486    tid = 0;
1487
1488    pthread_t thread;
1489    ASSERT_EQ(0, pthread_create(&thread, NULL,
1490      reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
1491
1492    WaitUntilThreadSleep(tid);
1493    ASSERT_EQ(LOCK_WAITING, progress);
1494
1495    progress = LOCK_RELEASED;
1496    ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1497
1498    ASSERT_EQ(0, pthread_join(thread, NULL));
1499    ASSERT_EQ(LOCK_ACCESSED, progress);
1500  }
1501};
1502
1503TEST(pthread, pthread_mutex_NORMAL_wakeup) {
1504  MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
1505  helper.test();
1506}
1507
1508TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
1509  MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
1510  helper.test();
1511}
1512
1513TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
1514  MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
1515  helper.test();
1516}
1517
1518TEST(pthread, pthread_mutex_owner_tid_limit) {
1519#if defined(__BIONIC__) && !defined(__LP64__)
1520  FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
1521  ASSERT_TRUE(fp != NULL);
1522  long pid_max;
1523  ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
1524  fclose(fp);
1525  // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
1526  ASSERT_LE(pid_max, 65536);
1527#else
1528  GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
1529#endif
1530}
1531
1532class StrictAlignmentAllocator {
1533 public:
1534  void* allocate(size_t size, size_t alignment) {
1535    char* p = new char[size + alignment * 2];
1536    allocated_array.push_back(p);
1537    while (!is_strict_aligned(p, alignment)) {
1538      ++p;
1539    }
1540    return p;
1541  }
1542
1543  ~StrictAlignmentAllocator() {
1544    for (const auto& p : allocated_array) {
1545      delete[] p;
1546    }
1547  }
1548
1549 private:
1550  bool is_strict_aligned(char* p, size_t alignment) {
1551    return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
1552  }
1553
1554  std::vector<char*> allocated_array;
1555};
1556
1557TEST(pthread, pthread_types_allow_four_bytes_alignment) {
1558#if defined(__BIONIC__)
1559  // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
1560  StrictAlignmentAllocator allocator;
1561  pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
1562                             allocator.allocate(sizeof(pthread_mutex_t), 4));
1563  ASSERT_EQ(0, pthread_mutex_init(mutex, NULL));
1564  ASSERT_EQ(0, pthread_mutex_lock(mutex));
1565  ASSERT_EQ(0, pthread_mutex_unlock(mutex));
1566  ASSERT_EQ(0, pthread_mutex_destroy(mutex));
1567
1568  pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
1569                           allocator.allocate(sizeof(pthread_cond_t), 4));
1570  ASSERT_EQ(0, pthread_cond_init(cond, NULL));
1571  ASSERT_EQ(0, pthread_cond_signal(cond));
1572  ASSERT_EQ(0, pthread_cond_broadcast(cond));
1573  ASSERT_EQ(0, pthread_cond_destroy(cond));
1574
1575  pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
1576                               allocator.allocate(sizeof(pthread_rwlock_t), 4));
1577  ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL));
1578  ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
1579  ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1580  ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
1581  ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1582  ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
1583
1584#else
1585  GTEST_LOG_(INFO) << "This test tests bionic implementation details.";
1586#endif
1587}
1588
1589TEST(pthread, pthread_mutex_lock_null_32) {
1590#if defined(__BIONIC__) && !defined(__LP64__)
1591  ASSERT_EQ(EINVAL, pthread_mutex_lock(NULL));
1592#else
1593  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1594#endif
1595}
1596
1597TEST(pthread, pthread_mutex_unlock_null_32) {
1598#if defined(__BIONIC__) && !defined(__LP64__)
1599  ASSERT_EQ(EINVAL, pthread_mutex_unlock(NULL));
1600#else
1601  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1602#endif
1603}
1604
1605TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
1606#if defined(__BIONIC__) && defined(__LP64__)
1607  pthread_mutex_t* null_value = nullptr;
1608  ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
1609#else
1610  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1611#endif
1612}
1613
1614TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
1615#if defined(__BIONIC__) && defined(__LP64__)
1616  pthread_mutex_t* null_value = nullptr;
1617  ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
1618#else
1619  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1620#endif
1621}
1622
1623extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
1624
1625static volatile bool signal_handler_on_altstack_done;
1626
1627static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
1628  ASSERT_EQ(SIGUSR1, signo);
1629  // Check if we have enough stack space for unwinding.
1630  int count = 0;
1631  _Unwind_Backtrace(FrameCounter, &count);
1632  ASSERT_GT(count, 0);
1633  // Check if we have enough stack space for logging.
1634  std::string s(2048, '*');
1635  GTEST_LOG_(INFO) << s;
1636  signal_handler_on_altstack_done = true;
1637}
1638
1639TEST(pthread, big_enough_signal_stack_for_64bit_arch) {
1640  signal_handler_on_altstack_done = false;
1641  ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
1642  kill(getpid(), SIGUSR1);
1643  ASSERT_TRUE(signal_handler_on_altstack_done);
1644}
1645
1646TEST(pthread, pthread_barrierattr_smoke) {
1647  pthread_barrierattr_t attr;
1648  ASSERT_EQ(0, pthread_barrierattr_init(&attr));
1649  int pshared;
1650  ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
1651  ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1652  ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1653  ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
1654  ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1655  ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
1656}
1657
1658struct BarrierTestHelperArg {
1659  std::atomic<pid_t> tid;
1660  pthread_barrier_t* barrier;
1661  size_t iteration_count;
1662};
1663
1664static void BarrierTestHelper(BarrierTestHelperArg* arg) {
1665  arg->tid = gettid();
1666  for (size_t i = 0; i < arg->iteration_count; ++i) {
1667    ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
1668  }
1669}
1670
1671TEST(pthread, pthread_barrier_smoke) {
1672  const size_t BARRIER_ITERATION_COUNT = 10;
1673  const size_t BARRIER_THREAD_COUNT = 10;
1674  pthread_barrier_t barrier;
1675  ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, BARRIER_THREAD_COUNT + 1));
1676  std::vector<pthread_t> threads(BARRIER_THREAD_COUNT);
1677  std::vector<BarrierTestHelperArg> args(threads.size());
1678  for (size_t i = 0; i < threads.size(); ++i) {
1679    args[i].tid = 0;
1680    args[i].barrier = &barrier;
1681    args[i].iteration_count = BARRIER_ITERATION_COUNT;
1682    ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
1683                                reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
1684  }
1685  for (size_t iteration = 0; iteration < BARRIER_ITERATION_COUNT; ++iteration) {
1686    for (size_t i = 0; i < threads.size(); ++i) {
1687      WaitUntilThreadSleep(args[i].tid);
1688    }
1689    ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
1690  }
1691  for (size_t i = 0; i < threads.size(); ++i) {
1692    ASSERT_EQ(0, pthread_join(threads[i], nullptr));
1693  }
1694  ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
1695}
1696
1697TEST(pthread, pthread_barrier_destroy) {
1698  pthread_barrier_t barrier;
1699  ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
1700  pthread_t thread;
1701  BarrierTestHelperArg arg;
1702  arg.tid = 0;
1703  arg.barrier = &barrier;
1704  arg.iteration_count = 1;
1705  ASSERT_EQ(0, pthread_create(&thread, nullptr,
1706                              reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &arg));
1707  WaitUntilThreadSleep(arg.tid);
1708  ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
1709  ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
1710  // Verify if the barrier can be destroyed directly after pthread_barrier_wait().
1711  ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
1712  ASSERT_EQ(0, pthread_join(thread, nullptr));
1713#if defined(__BIONIC__)
1714  ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
1715#endif
1716}
1717
1718struct BarrierOrderingTestHelperArg {
1719  pthread_barrier_t* barrier;
1720  size_t* array;
1721  size_t array_length;
1722  size_t id;
1723};
1724
1725void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
1726  const size_t ITERATION_COUNT = 10000;
1727  for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
1728    arg->array[arg->id] = i;
1729    int ret = pthread_barrier_wait(arg->barrier);
1730    ASSERT_TRUE(ret == 0 || ret == PTHREAD_BARRIER_SERIAL_THREAD);
1731    for (size_t j = 0; j < arg->array_length; ++j) {
1732      ASSERT_EQ(i, arg->array[j]);
1733    }
1734    ret = pthread_barrier_wait(arg->barrier);
1735    ASSERT_TRUE(ret == 0 || ret == PTHREAD_BARRIER_SERIAL_THREAD);
1736  }
1737}
1738
1739TEST(pthread, pthread_barrier_check_ordering) {
1740  const size_t THREAD_COUNT = 4;
1741  pthread_barrier_t barrier;
1742  ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
1743  size_t array[THREAD_COUNT];
1744  std::vector<pthread_t> threads(THREAD_COUNT);
1745  std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
1746  for (size_t i = 0; i < THREAD_COUNT; ++i) {
1747    args[i].barrier = &barrier;
1748    args[i].array = array;
1749    args[i].array_length = THREAD_COUNT;
1750    args[i].id = i;
1751    ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
1752                                reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
1753                                &args[i]));
1754  }
1755  for (size_t i = 0; i < THREAD_COUNT; ++i) {
1756    ASSERT_EQ(0, pthread_join(threads[i], nullptr));
1757  }
1758}
1759
1760TEST(pthread, pthread_spinlock_smoke) {
1761  pthread_spinlock_t lock;
1762  ASSERT_EQ(0, pthread_spin_init(&lock, 0));
1763  ASSERT_EQ(0, pthread_spin_trylock(&lock));
1764  ASSERT_EQ(0, pthread_spin_unlock(&lock));
1765  ASSERT_EQ(0, pthread_spin_lock(&lock));
1766  ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock));
1767  ASSERT_EQ(0, pthread_spin_unlock(&lock));
1768  ASSERT_EQ(0, pthread_spin_destroy(&lock));
1769}
1770