pthread_test.cpp revision a36158a77d904aa65f50d5950b7608ef8fa3210f
1e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck/*
2e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck * Copyright (C) 2012 The Android Open Source Project
3e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck *
4e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck * Licensed under the Apache License, Version 2.0 (the "License");
5e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck * you may not use this file except in compliance with the License.
6e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck * You may obtain a copy of the License at
7e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck *
8e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck *      http://www.apache.org/licenses/LICENSE-2.0
9e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck *
10e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck * Unless required by applicable law or agreed to in writing, software
11e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck * distributed under the License is distributed on an "AS IS" BASIS,
12e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck * See the License for the specific language governing permissions and
14e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck * limitations under the License.
15e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck */
16e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
17e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <gtest/gtest.h>
18e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
19e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <errno.h>
20e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <inttypes.h>
21e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <limits.h>
22e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <malloc.h>
23e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <pthread.h>
24e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <signal.h>
25e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <stdio.h>
26e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <sys/mman.h>
27e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <sys/syscall.h>
28e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <time.h>
29e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <unistd.h>
30e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <unwind.h>
31e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
32e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <atomic>
33e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <regex>
34e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <vector>
35e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
36e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <base/file.h>
37e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include <base/stringprintf.h>
38e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
39e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include "private/bionic_macros.h"
40e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include "private/ScopeGuard.h"
41e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include "BionicDeathTest.h"
42e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include "ScopedSignalHandler.h"
43e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
44e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#include "utils.h"
45e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
46e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reckextern "C" pid_t gettid();
47e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
48e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn ReckTEST(pthread, pthread_key_create) {
49e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  pthread_key_t key;
50e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_key_create(&key, NULL));
51e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_key_delete(key));
52e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  // Can't delete a key that's already been deleted.
53e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(EINVAL, pthread_key_delete(key));
54e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck}
55e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
56e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn ReckTEST(pthread, pthread_keys_max) {
57e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
58e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
59e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck}
60e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
61e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn ReckTEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
62e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
63e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
64e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck}
65e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
66e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn ReckTEST(pthread, pthread_key_many_distinct) {
67e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
68e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  // pthread keys, but We should be able to allocate at least this many keys.
69e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  int nkeys = PTHREAD_KEYS_MAX / 2;
70e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  std::vector<pthread_key_t> keys;
71e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
72e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  auto scope_guard = make_scope_guard([&keys]{
73e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    for (const auto& key : keys) {
74e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck      EXPECT_EQ(0, pthread_key_delete(key));
75e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    }
76e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  });
77e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
78e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  for (int i = 0; i < nkeys; ++i) {
79e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    pthread_key_t key;
80e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
81e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
82e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    keys.push_back(key);
83e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
84e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  }
85e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
86e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  for (int i = keys.size() - 1; i >= 0; --i) {
87e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
88e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    pthread_key_t key = keys.back();
89e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    keys.pop_back();
90e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    ASSERT_EQ(0, pthread_key_delete(key));
91e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  }
92e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck}
93e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
94e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn ReckTEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
95e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  std::vector<pthread_key_t> keys;
96e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  int rv = 0;
97e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
98e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
99e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  // be more than we are allowed to allocate now.
100e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
101e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    pthread_key_t key;
102e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    rv = pthread_key_create(&key, NULL);
103e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    if (rv == EAGAIN) {
104e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck      break;
105e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    }
106e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    EXPECT_EQ(0, rv);
107e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    keys.push_back(key);
108e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  }
109e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
110e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  // Don't leak keys.
111e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  for (const auto& key : keys) {
112e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    EXPECT_EQ(0, pthread_key_delete(key));
113e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  }
114e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  keys.clear();
115e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
116e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  // We should have eventually reached the maximum number of keys and received
117e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  // EAGAIN.
118e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(EAGAIN, rv);
119e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck}
120e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
121e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn ReckTEST(pthread, pthread_key_delete) {
122e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  void* expected = reinterpret_cast<void*>(1234);
123e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  pthread_key_t key;
124e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_key_create(&key, NULL));
125e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_setspecific(key, expected));
126e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(expected, pthread_getspecific(key));
127e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_key_delete(key));
128e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  // After deletion, pthread_getspecific returns NULL.
129e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(NULL, pthread_getspecific(key));
130e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  // And you can't use pthread_setspecific with the deleted key.
131e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
132e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck}
133e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
134e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn ReckTEST(pthread, pthread_key_fork) {
135e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  void* expected = reinterpret_cast<void*>(1234);
136e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  pthread_key_t key;
137e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_key_create(&key, NULL));
138e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_setspecific(key, expected));
139e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(expected, pthread_getspecific(key));
140e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
141e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  pid_t pid = fork();
142e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_NE(-1, pid) << strerror(errno);
143e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
144e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  if (pid == 0) {
145e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    // The surviving thread inherits all the forking thread's TLS values...
146e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    ASSERT_EQ(expected, pthread_getspecific(key));
147e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    _exit(99);
148e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  }
149e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
150e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  int status;
151e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(pid, waitpid(pid, &status, 0));
152e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_TRUE(WIFEXITED(status));
153e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(99, WEXITSTATUS(status));
154e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
155e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(expected, pthread_getspecific(key));
156e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_key_delete(key));
157e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck}
158e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
159e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reckstatic void* DirtyKeyFn(void* key) {
160e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
161e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck}
162e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
163e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn ReckTEST(pthread, pthread_key_dirty) {
164e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  pthread_key_t key;
165e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_key_create(&key, NULL));
166e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
167e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  size_t stack_size = 640 * 1024;
168e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
169e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_NE(MAP_FAILED, stack);
170e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  memset(stack, 0xff, stack_size);
171e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
172e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  pthread_attr_t attr;
173e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_attr_init(&attr));
174e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
175e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
176e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  pthread_t t;
177e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
178e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
179e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  void* result;
180e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_join(t, &result));
181e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(nullptr, result); // Not ~0!
182e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
183e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, munmap(stack, stack_size));
184e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_key_delete(key));
185e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck}
186e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
187e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn ReckTEST(pthread, static_pthread_key_used_before_creation) {
188e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#if defined(__BIONIC__)
189e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
190e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  // So here tests if the static/global default value 0 can be detected as invalid key.
191e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  static pthread_key_t key;
192e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(nullptr, pthread_getspecific(key));
193e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
194e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(EINVAL, pthread_key_delete(key));
195e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#else
196e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n";
197e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck#endif
198e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck}
199e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
200e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reckstatic void* IdFn(void* arg) {
201e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  return arg;
202e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck}
203e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
204e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reckclass SpinFunctionHelper {
205e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck public:
206e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  SpinFunctionHelper() {
207e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    SpinFunctionHelper::spin_flag_ = true;
208e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  }
209e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ~SpinFunctionHelper() {
210e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    UnSpin();
211e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  }
212e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  auto GetFunction() -> void* (*)(void*) {
213e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    return SpinFunctionHelper::SpinFn;
214e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  }
215e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
216e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  void UnSpin() {
217e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    SpinFunctionHelper::spin_flag_ = false;
218e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  }
219e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
220e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck private:
221e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  static void* SpinFn(void*) {
222e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    while (spin_flag_) {}
223e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck    return NULL;
224e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  }
225e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  static std::atomic<bool> spin_flag_;
226e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck};
227e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
228e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck// It doesn't matter if spin_flag_ is used in several tests,
229e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck// because it is always set to false after each test. Each thread
230e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck// loops on spin_flag_ can find it becomes false at some time.
231e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reckstd::atomic<bool> SpinFunctionHelper::spin_flag_;
232e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
233e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reckstatic void* JoinFn(void* arg) {
234e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
235e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck}
236e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck
237e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reckstatic void AssertDetached(pthread_t t, bool is_detached) {
238e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  pthread_attr_t attr;
239e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  ASSERT_EQ(0, pthread_getattr_np(t, &attr));
240e45b1fd03b524d2b57cc6c222d89076a31a08beaJohn Reck  int detach_state;
241  ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
242  pthread_attr_destroy(&attr);
243  ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
244}
245
246static void MakeDeadThread(pthread_t& t) {
247  ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
248  ASSERT_EQ(0, pthread_join(t, NULL));
249}
250
251TEST(pthread, pthread_create) {
252  void* expected_result = reinterpret_cast<void*>(123);
253  // Can we create a thread?
254  pthread_t t;
255  ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
256  // If we join, do we get the expected value back?
257  void* result;
258  ASSERT_EQ(0, pthread_join(t, &result));
259  ASSERT_EQ(expected_result, result);
260}
261
262TEST(pthread, pthread_create_EAGAIN) {
263  pthread_attr_t attributes;
264  ASSERT_EQ(0, pthread_attr_init(&attributes));
265  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
266
267  pthread_t t;
268  ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
269}
270
271TEST(pthread, pthread_no_join_after_detach) {
272  SpinFunctionHelper spinhelper;
273
274  pthread_t t1;
275  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
276
277  // After a pthread_detach...
278  ASSERT_EQ(0, pthread_detach(t1));
279  AssertDetached(t1, true);
280
281  // ...pthread_join should fail.
282  ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
283}
284
285TEST(pthread, pthread_no_op_detach_after_join) {
286  SpinFunctionHelper spinhelper;
287
288  pthread_t t1;
289  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
290
291  // If thread 2 is already waiting to join thread 1...
292  pthread_t t2;
293  ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
294
295  sleep(1); // (Give t2 a chance to call pthread_join.)
296
297#if defined(__BIONIC__)
298  ASSERT_EQ(EINVAL, pthread_detach(t1));
299#else
300  ASSERT_EQ(0, pthread_detach(t1));
301#endif
302  AssertDetached(t1, false);
303
304  spinhelper.UnSpin();
305
306  // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
307  void* join_result;
308  ASSERT_EQ(0, pthread_join(t2, &join_result));
309  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
310}
311
312TEST(pthread, pthread_join_self) {
313  ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
314}
315
316struct TestBug37410 {
317  pthread_t main_thread;
318  pthread_mutex_t mutex;
319
320  static void main() {
321    TestBug37410 data;
322    data.main_thread = pthread_self();
323    ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
324    ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
325
326    pthread_t t;
327    ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
328
329    // Wait for the thread to be running...
330    ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
331    ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
332
333    // ...and exit.
334    pthread_exit(NULL);
335  }
336
337 private:
338  static void* thread_fn(void* arg) {
339    TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
340
341    // Let the main thread know we're running.
342    pthread_mutex_unlock(&data->mutex);
343
344    // And wait for the main thread to exit.
345    pthread_join(data->main_thread, NULL);
346
347    return NULL;
348  }
349};
350
351// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
352// run this test (which exits normally) in its own process.
353
354class pthread_DeathTest : public BionicDeathTest {};
355
356TEST_F(pthread_DeathTest, pthread_bug_37410) {
357  // http://code.google.com/p/android/issues/detail?id=37410
358  ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
359}
360
361static void* SignalHandlerFn(void* arg) {
362  sigset_t wait_set;
363  sigfillset(&wait_set);
364  return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
365}
366
367TEST(pthread, pthread_sigmask) {
368  // Check that SIGUSR1 isn't blocked.
369  sigset_t original_set;
370  sigemptyset(&original_set);
371  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
372  ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
373
374  // Block SIGUSR1.
375  sigset_t set;
376  sigemptyset(&set);
377  sigaddset(&set, SIGUSR1);
378  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
379
380  // Check that SIGUSR1 is blocked.
381  sigset_t final_set;
382  sigemptyset(&final_set);
383  ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
384  ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
385  // ...and that sigprocmask agrees with pthread_sigmask.
386  sigemptyset(&final_set);
387  ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
388  ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
389
390  // Spawn a thread that calls sigwait and tells us what it received.
391  pthread_t signal_thread;
392  int received_signal = -1;
393  ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
394
395  // Send that thread SIGUSR1.
396  pthread_kill(signal_thread, SIGUSR1);
397
398  // See what it got.
399  void* join_result;
400  ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
401  ASSERT_EQ(SIGUSR1, received_signal);
402  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
403
404  // Restore the original signal mask.
405  ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
406}
407
408TEST(pthread, pthread_setname_np__too_long) {
409  // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
410  ASSERT_EQ(0, pthread_setname_np(pthread_self(), "123456789012345"));
411  ASSERT_EQ(ERANGE, pthread_setname_np(pthread_self(), "1234567890123456"));
412}
413
414TEST(pthread, pthread_setname_np__self) {
415  ASSERT_EQ(0, pthread_setname_np(pthread_self(), "short 1"));
416}
417
418TEST(pthread, pthread_setname_np__other) {
419  SpinFunctionHelper spinhelper;
420
421  pthread_t t1;
422  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
423  ASSERT_EQ(0, pthread_setname_np(t1, "short 2"));
424  spinhelper.UnSpin();
425  ASSERT_EQ(0, pthread_join(t1, nullptr));
426}
427
428TEST(pthread, pthread_setname_np__no_such_thread) {
429  pthread_t dead_thread;
430  MakeDeadThread(dead_thread);
431
432  // Call pthread_setname_np after thread has already exited.
433  ASSERT_EQ(ENOENT, pthread_setname_np(dead_thread, "short 3"));
434}
435
436TEST(pthread, pthread_kill__0) {
437  // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
438  ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
439}
440
441TEST(pthread, pthread_kill__invalid_signal) {
442  ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
443}
444
445static void pthread_kill__in_signal_handler_helper(int signal_number) {
446  static int count = 0;
447  ASSERT_EQ(SIGALRM, signal_number);
448  if (++count == 1) {
449    // Can we call pthread_kill from a signal handler?
450    ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
451  }
452}
453
454TEST(pthread, pthread_kill__in_signal_handler) {
455  ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
456  ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
457}
458
459TEST(pthread, pthread_detach__no_such_thread) {
460  pthread_t dead_thread;
461  MakeDeadThread(dead_thread);
462
463  ASSERT_EQ(ESRCH, pthread_detach(dead_thread));
464}
465
466TEST(pthread, pthread_getcpuclockid__clock_gettime) {
467  SpinFunctionHelper spinhelper;
468
469  pthread_t t;
470  ASSERT_EQ(0, pthread_create(&t, NULL, spinhelper.GetFunction(), NULL));
471
472  clockid_t c;
473  ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
474  timespec ts;
475  ASSERT_EQ(0, clock_gettime(c, &ts));
476  spinhelper.UnSpin();
477  ASSERT_EQ(0, pthread_join(t, nullptr));
478}
479
480TEST(pthread, pthread_getcpuclockid__no_such_thread) {
481  pthread_t dead_thread;
482  MakeDeadThread(dead_thread);
483
484  clockid_t c;
485  ASSERT_EQ(ESRCH, pthread_getcpuclockid(dead_thread, &c));
486}
487
488TEST(pthread, pthread_getschedparam__no_such_thread) {
489  pthread_t dead_thread;
490  MakeDeadThread(dead_thread);
491
492  int policy;
493  sched_param param;
494  ASSERT_EQ(ESRCH, pthread_getschedparam(dead_thread, &policy, &param));
495}
496
497TEST(pthread, pthread_setschedparam__no_such_thread) {
498  pthread_t dead_thread;
499  MakeDeadThread(dead_thread);
500
501  int policy = 0;
502  sched_param param;
503  ASSERT_EQ(ESRCH, pthread_setschedparam(dead_thread, policy, &param));
504}
505
506TEST(pthread, pthread_join__no_such_thread) {
507  pthread_t dead_thread;
508  MakeDeadThread(dead_thread);
509
510  ASSERT_EQ(ESRCH, pthread_join(dead_thread, NULL));
511}
512
513TEST(pthread, pthread_kill__no_such_thread) {
514  pthread_t dead_thread;
515  MakeDeadThread(dead_thread);
516
517  ASSERT_EQ(ESRCH, pthread_kill(dead_thread, 0));
518}
519
520TEST(pthread, pthread_join__multijoin) {
521  SpinFunctionHelper spinhelper;
522
523  pthread_t t1;
524  ASSERT_EQ(0, pthread_create(&t1, NULL, spinhelper.GetFunction(), NULL));
525
526  pthread_t t2;
527  ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
528
529  sleep(1); // (Give t2 a chance to call pthread_join.)
530
531  // Multiple joins to the same thread should fail.
532  ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
533
534  spinhelper.UnSpin();
535
536  // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
537  void* join_result;
538  ASSERT_EQ(0, pthread_join(t2, &join_result));
539  ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
540}
541
542TEST(pthread, pthread_join__race) {
543  // http://b/11693195 --- pthread_join could return before the thread had actually exited.
544  // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
545  for (size_t i = 0; i < 1024; ++i) {
546    size_t stack_size = 640*1024;
547    void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
548
549    pthread_attr_t a;
550    pthread_attr_init(&a);
551    pthread_attr_setstack(&a, stack, stack_size);
552
553    pthread_t t;
554    ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
555    ASSERT_EQ(0, pthread_join(t, NULL));
556    ASSERT_EQ(0, munmap(stack, stack_size));
557  }
558}
559
560static void* GetActualGuardSizeFn(void* arg) {
561  pthread_attr_t attributes;
562  pthread_getattr_np(pthread_self(), &attributes);
563  pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
564  return NULL;
565}
566
567static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
568  size_t result;
569  pthread_t t;
570  pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
571  pthread_join(t, NULL);
572  return result;
573}
574
575static void* GetActualStackSizeFn(void* arg) {
576  pthread_attr_t attributes;
577  pthread_getattr_np(pthread_self(), &attributes);
578  pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
579  return NULL;
580}
581
582static size_t GetActualStackSize(const pthread_attr_t& attributes) {
583  size_t result;
584  pthread_t t;
585  pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
586  pthread_join(t, NULL);
587  return result;
588}
589
590TEST(pthread, pthread_attr_setguardsize) {
591  pthread_attr_t attributes;
592  ASSERT_EQ(0, pthread_attr_init(&attributes));
593
594  // Get the default guard size.
595  size_t default_guard_size;
596  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
597
598  // No such thing as too small: will be rounded up to one page by pthread_create.
599  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
600  size_t guard_size;
601  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
602  ASSERT_EQ(128U, guard_size);
603  ASSERT_EQ(4096U, GetActualGuardSize(attributes));
604
605  // Large enough and a multiple of the page size.
606  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
607  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
608  ASSERT_EQ(32*1024U, guard_size);
609
610  // Large enough but not a multiple of the page size; will be rounded up by pthread_create.
611  ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
612  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
613  ASSERT_EQ(32*1024U + 1, guard_size);
614}
615
616TEST(pthread, pthread_attr_setstacksize) {
617  pthread_attr_t attributes;
618  ASSERT_EQ(0, pthread_attr_init(&attributes));
619
620  // Get the default stack size.
621  size_t default_stack_size;
622  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
623
624  // Too small.
625  ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
626  size_t stack_size;
627  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
628  ASSERT_EQ(default_stack_size, stack_size);
629  ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
630
631  // Large enough and a multiple of the page size; may be rounded up by pthread_create.
632  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
633  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
634  ASSERT_EQ(32*1024U, stack_size);
635  ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
636
637  // Large enough but not aligned; will be rounded up by pthread_create.
638  ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
639  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
640  ASSERT_EQ(32*1024U + 1, stack_size);
641#if defined(__BIONIC__)
642  ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
643#else // __BIONIC__
644  // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
645  ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
646#endif // __BIONIC__
647}
648
649TEST(pthread, pthread_rwlockattr_smoke) {
650  pthread_rwlockattr_t attr;
651  ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
652
653  int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
654  for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
655    ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
656    int pshared;
657    ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
658    ASSERT_EQ(pshared_value_array[i], pshared);
659  }
660
661  int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
662                      PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
663  for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
664    ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
665    int kind;
666    ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
667    ASSERT_EQ(kind_array[i], kind);
668  }
669
670  ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
671}
672
673TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
674  pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
675  pthread_rwlock_t lock2;
676  ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL));
677  ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
678}
679
680TEST(pthread, pthread_rwlock_smoke) {
681  pthread_rwlock_t l;
682  ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
683
684  // Single read lock
685  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
686  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
687
688  // Multiple read lock
689  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
690  ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
691  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
692  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
693
694  // Write lock
695  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
696  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
697
698  // Try writer lock
699  ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
700  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
701  ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
702  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
703
704  // Try reader lock
705  ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
706  ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
707  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
708  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
709  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
710
711  // Try writer lock after unlock
712  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
713  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
714
715  // EDEADLK in "read after write"
716  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
717  ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
718  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
719
720  // EDEADLK in "write after write"
721  ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
722  ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
723  ASSERT_EQ(0, pthread_rwlock_unlock(&l));
724
725  ASSERT_EQ(0, pthread_rwlock_destroy(&l));
726}
727
728static void WaitUntilThreadSleep(std::atomic<pid_t>& tid) {
729  while (tid == 0) {
730    usleep(1000);
731  }
732  std::string filename = android::base::StringPrintf("/proc/%d/stat", tid.load());
733  std::regex regex {R"(\s+S\s+)"};
734
735  while (true) {
736    std::string content;
737    ASSERT_TRUE(android::base::ReadFileToString(filename, &content));
738    if (std::regex_search(content, regex)) {
739      break;
740    }
741    usleep(1000);
742  }
743}
744
745struct RwlockWakeupHelperArg {
746  pthread_rwlock_t lock;
747  enum Progress {
748    LOCK_INITIALIZED,
749    LOCK_WAITING,
750    LOCK_RELEASED,
751    LOCK_ACCESSED
752  };
753  std::atomic<Progress> progress;
754  std::atomic<pid_t> tid;
755};
756
757static void pthread_rwlock_reader_wakeup_writer_helper(RwlockWakeupHelperArg* arg) {
758  arg->tid = gettid();
759  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
760  arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
761
762  ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&arg->lock));
763  ASSERT_EQ(0, pthread_rwlock_wrlock(&arg->lock));
764  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
765  ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
766
767  arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
768}
769
770TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
771  RwlockWakeupHelperArg wakeup_arg;
772  ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
773  ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
774  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
775  wakeup_arg.tid = 0;
776
777  pthread_t thread;
778  ASSERT_EQ(0, pthread_create(&thread, NULL,
779    reinterpret_cast<void* (*)(void*)>(pthread_rwlock_reader_wakeup_writer_helper), &wakeup_arg));
780  WaitUntilThreadSleep(wakeup_arg.tid);
781  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
782
783  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
784  ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
785
786  ASSERT_EQ(0, pthread_join(thread, NULL));
787  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
788  ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
789}
790
791static void pthread_rwlock_writer_wakeup_reader_helper(RwlockWakeupHelperArg* arg) {
792  arg->tid = gettid();
793  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
794  arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
795
796  ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&arg->lock));
797  ASSERT_EQ(0, pthread_rwlock_rdlock(&arg->lock));
798  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
799  ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
800
801  arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
802}
803
804TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
805  RwlockWakeupHelperArg wakeup_arg;
806  ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
807  ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
808  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
809  wakeup_arg.tid = 0;
810
811  pthread_t thread;
812  ASSERT_EQ(0, pthread_create(&thread, NULL,
813    reinterpret_cast<void* (*)(void*)>(pthread_rwlock_writer_wakeup_reader_helper), &wakeup_arg));
814  WaitUntilThreadSleep(wakeup_arg.tid);
815  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
816
817  wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
818  ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
819
820  ASSERT_EQ(0, pthread_join(thread, NULL));
821  ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
822  ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
823}
824
825class RwlockKindTestHelper {
826 private:
827  struct ThreadArg {
828    RwlockKindTestHelper* helper;
829    std::atomic<pid_t>& tid;
830
831    ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
832      : helper(helper), tid(tid) { }
833  };
834
835 public:
836  pthread_rwlock_t lock;
837
838 public:
839  RwlockKindTestHelper(int kind_type) {
840    InitRwlock(kind_type);
841  }
842
843  ~RwlockKindTestHelper() {
844    DestroyRwlock();
845  }
846
847  void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
848    tid = 0;
849    ThreadArg* arg = new ThreadArg(this, tid);
850    ASSERT_EQ(0, pthread_create(&thread, NULL,
851                                reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
852  }
853
854  void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
855    tid = 0;
856    ThreadArg* arg = new ThreadArg(this, tid);
857    ASSERT_EQ(0, pthread_create(&thread, NULL,
858                                reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
859  }
860
861 private:
862  void InitRwlock(int kind_type) {
863    pthread_rwlockattr_t attr;
864    ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
865    ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
866    ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
867    ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
868  }
869
870  void DestroyRwlock() {
871    ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
872  }
873
874  static void WriterThreadFn(ThreadArg* arg) {
875    arg->tid = gettid();
876
877    RwlockKindTestHelper* helper = arg->helper;
878    ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
879    ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
880    delete arg;
881  }
882
883  static void ReaderThreadFn(ThreadArg* arg) {
884    arg->tid = gettid();
885
886    RwlockKindTestHelper* helper = arg->helper;
887    ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
888    ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
889    delete arg;
890  }
891};
892
893TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
894  RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
895  ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
896
897  pthread_t writer_thread;
898  std::atomic<pid_t> writer_tid;
899  helper.CreateWriterThread(writer_thread, writer_tid);
900  WaitUntilThreadSleep(writer_tid);
901
902  pthread_t reader_thread;
903  std::atomic<pid_t> reader_tid;
904  helper.CreateReaderThread(reader_thread, reader_tid);
905  ASSERT_EQ(0, pthread_join(reader_thread, NULL));
906
907  ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
908  ASSERT_EQ(0, pthread_join(writer_thread, NULL));
909}
910
911TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
912  RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
913  ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
914
915  pthread_t writer_thread;
916  std::atomic<pid_t> writer_tid;
917  helper.CreateWriterThread(writer_thread, writer_tid);
918  WaitUntilThreadSleep(writer_tid);
919
920  pthread_t reader_thread;
921  std::atomic<pid_t> reader_tid;
922  helper.CreateReaderThread(reader_thread, reader_tid);
923  WaitUntilThreadSleep(reader_tid);
924
925  ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
926  ASSERT_EQ(0, pthread_join(writer_thread, NULL));
927  ASSERT_EQ(0, pthread_join(reader_thread, NULL));
928}
929
930static int g_once_fn_call_count = 0;
931static void OnceFn() {
932  ++g_once_fn_call_count;
933}
934
935TEST(pthread, pthread_once_smoke) {
936  pthread_once_t once_control = PTHREAD_ONCE_INIT;
937  ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
938  ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
939  ASSERT_EQ(1, g_once_fn_call_count);
940}
941
942static std::string pthread_once_1934122_result = "";
943
944static void Routine2() {
945  pthread_once_1934122_result += "2";
946}
947
948static void Routine1() {
949  pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
950  pthread_once_1934122_result += "1";
951  pthread_once(&once_control_2, &Routine2);
952}
953
954TEST(pthread, pthread_once_1934122) {
955  // Very old versions of Android couldn't call pthread_once from a
956  // pthread_once init routine. http://b/1934122.
957  pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
958  ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
959  ASSERT_EQ("12", pthread_once_1934122_result);
960}
961
962static int g_atfork_prepare_calls = 0;
963static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
964static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
965static int g_atfork_parent_calls = 0;
966static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
967static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
968static int g_atfork_child_calls = 0;
969static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
970static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
971
972TEST(pthread, pthread_atfork_smoke) {
973  ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
974  ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
975
976  int pid = fork();
977  ASSERT_NE(-1, pid) << strerror(errno);
978
979  // Child and parent calls are made in the order they were registered.
980  if (pid == 0) {
981    ASSERT_EQ(12, g_atfork_child_calls);
982    _exit(0);
983  }
984  ASSERT_EQ(12, g_atfork_parent_calls);
985
986  // Prepare calls are made in the reverse order.
987  ASSERT_EQ(21, g_atfork_prepare_calls);
988  int status;
989  ASSERT_EQ(pid, waitpid(pid, &status, 0));
990}
991
992TEST(pthread, pthread_attr_getscope) {
993  pthread_attr_t attr;
994  ASSERT_EQ(0, pthread_attr_init(&attr));
995
996  int scope;
997  ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
998  ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
999}
1000
1001TEST(pthread, pthread_condattr_init) {
1002  pthread_condattr_t attr;
1003  pthread_condattr_init(&attr);
1004
1005  clockid_t clock;
1006  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1007  ASSERT_EQ(CLOCK_REALTIME, clock);
1008
1009  int pshared;
1010  ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1011  ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1012}
1013
1014TEST(pthread, pthread_condattr_setclock) {
1015  pthread_condattr_t attr;
1016  pthread_condattr_init(&attr);
1017
1018  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
1019  clockid_t clock;
1020  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1021  ASSERT_EQ(CLOCK_REALTIME, clock);
1022
1023  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1024  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1025  ASSERT_EQ(CLOCK_MONOTONIC, clock);
1026
1027  ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1028}
1029
1030TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1031#if defined(__BIONIC__)
1032  pthread_condattr_t attr;
1033  pthread_condattr_init(&attr);
1034
1035  ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1036  ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1037
1038  pthread_cond_t cond_var;
1039  ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1040
1041  ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1042  ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1043
1044  attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1045  clockid_t clock;
1046  ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1047  ASSERT_EQ(CLOCK_MONOTONIC, clock);
1048  int pshared;
1049  ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1050  ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1051#else  // !defined(__BIONIC__)
1052  GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
1053#endif  // !defined(__BIONIC__)
1054}
1055
1056class pthread_CondWakeupTest : public ::testing::Test {
1057 protected:
1058  pthread_mutex_t mutex;
1059  pthread_cond_t cond;
1060
1061  enum Progress {
1062    INITIALIZED,
1063    WAITING,
1064    SIGNALED,
1065    FINISHED,
1066  };
1067  std::atomic<Progress> progress;
1068  pthread_t thread;
1069
1070 protected:
1071  virtual void SetUp() {
1072    ASSERT_EQ(0, pthread_mutex_init(&mutex, NULL));
1073    ASSERT_EQ(0, pthread_cond_init(&cond, NULL));
1074    progress = INITIALIZED;
1075    ASSERT_EQ(0,
1076      pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
1077  }
1078
1079  virtual void TearDown() {
1080    ASSERT_EQ(0, pthread_join(thread, NULL));
1081    ASSERT_EQ(FINISHED, progress);
1082    ASSERT_EQ(0, pthread_cond_destroy(&cond));
1083    ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1084  }
1085
1086  void SleepUntilProgress(Progress expected_progress) {
1087    while (progress != expected_progress) {
1088      usleep(5000);
1089    }
1090    usleep(5000);
1091  }
1092
1093 private:
1094  static void WaitThreadFn(pthread_CondWakeupTest* test) {
1095    ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1096    test->progress = WAITING;
1097    while (test->progress == WAITING) {
1098      ASSERT_EQ(0, pthread_cond_wait(&test->cond, &test->mutex));
1099    }
1100    ASSERT_EQ(SIGNALED, test->progress);
1101    test->progress = FINISHED;
1102    ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1103  }
1104};
1105
1106TEST_F(pthread_CondWakeupTest, signal) {
1107  SleepUntilProgress(WAITING);
1108  progress = SIGNALED;
1109  pthread_cond_signal(&cond);
1110}
1111
1112TEST_F(pthread_CondWakeupTest, broadcast) {
1113  SleepUntilProgress(WAITING);
1114  progress = SIGNALED;
1115  pthread_cond_broadcast(&cond);
1116}
1117
1118TEST(pthread, pthread_mutex_timedlock) {
1119  pthread_mutex_t m;
1120  ASSERT_EQ(0, pthread_mutex_init(&m, NULL));
1121
1122  // If the mutex is already locked, pthread_mutex_timedlock should time out.
1123  ASSERT_EQ(0, pthread_mutex_lock(&m));
1124
1125  timespec ts;
1126  ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1127  ts.tv_nsec += 1;
1128  ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1129
1130  // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
1131  ASSERT_EQ(0, pthread_mutex_unlock(&m));
1132
1133  ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1134  ts.tv_nsec += 1;
1135  ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
1136
1137  ASSERT_EQ(0, pthread_mutex_unlock(&m));
1138  ASSERT_EQ(0, pthread_mutex_destroy(&m));
1139}
1140
1141TEST(pthread, pthread_attr_getstack__main_thread) {
1142  // This test is only meaningful for the main thread, so make sure we're running on it!
1143  ASSERT_EQ(getpid(), syscall(__NR_gettid));
1144
1145  // Get the main thread's attributes.
1146  pthread_attr_t attributes;
1147  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1148
1149  // Check that we correctly report that the main thread has no guard page.
1150  size_t guard_size;
1151  ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1152  ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1153
1154  // Get the stack base and the stack size (both ways).
1155  void* stack_base;
1156  size_t stack_size;
1157  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1158  size_t stack_size2;
1159  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1160
1161  // The two methods of asking for the stack size should agree.
1162  EXPECT_EQ(stack_size, stack_size2);
1163
1164#if defined(__BIONIC__)
1165  // What does /proc/self/maps' [stack] line say?
1166  void* maps_stack_hi = NULL;
1167  std::vector<map_record> maps;
1168  ASSERT_TRUE(Maps::parse_maps(&maps));
1169  for (const auto& map : maps) {
1170    if (map.pathname == "[stack]") {
1171      maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
1172      break;
1173    }
1174  }
1175
1176  // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
1177  // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1178  // region isn't very interesting.
1179  EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1180
1181  // The stack size should correspond to RLIMIT_STACK.
1182  rlimit rl;
1183  ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1184  uint64_t original_rlim_cur = rl.rlim_cur;
1185  if (rl.rlim_cur == RLIM_INFINITY) {
1186    rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1187  }
1188  EXPECT_EQ(rl.rlim_cur, stack_size);
1189
1190  auto guard = make_scope_guard([&rl, original_rlim_cur]() {
1191    rl.rlim_cur = original_rlim_cur;
1192    ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1193  });
1194
1195  //
1196  // What if RLIMIT_STACK is smaller than the stack's current extent?
1197  //
1198  rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1199  rl.rlim_max = RLIM_INFINITY;
1200  ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1201
1202  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1203  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1204  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1205
1206  EXPECT_EQ(stack_size, stack_size2);
1207  ASSERT_EQ(1024U, stack_size);
1208
1209  //
1210  // What if RLIMIT_STACK isn't a whole number of pages?
1211  //
1212  rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1213  rl.rlim_max = RLIM_INFINITY;
1214  ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1215
1216  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1217  ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1218  ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1219
1220  EXPECT_EQ(stack_size, stack_size2);
1221  ASSERT_EQ(6666U, stack_size);
1222#endif
1223}
1224
1225struct GetStackSignalHandlerArg {
1226  volatile bool done;
1227  void* signal_handler_sp;
1228  void* main_stack_base;
1229  size_t main_stack_size;
1230};
1231
1232static GetStackSignalHandlerArg getstack_signal_handler_arg;
1233
1234static void getstack_signal_handler(int sig) {
1235  ASSERT_EQ(SIGUSR1, sig);
1236  // Use sleep() to make current thread be switched out by the kernel to provoke the error.
1237  sleep(1);
1238  pthread_attr_t attr;
1239  ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1240  void* stack_base;
1241  size_t stack_size;
1242  ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
1243  getstack_signal_handler_arg.signal_handler_sp = &attr;
1244  getstack_signal_handler_arg.main_stack_base = stack_base;
1245  getstack_signal_handler_arg.main_stack_size = stack_size;
1246  getstack_signal_handler_arg.done = true;
1247}
1248
1249// The previous code obtained the main thread's stack by reading the entry in
1250// /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
1251// relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
1252// switches a process while the main thread is in an alternate stack, then the kernel will label
1253// the wrong map with [stack]. This test verifies that when the above situation happens, the main
1254// thread's stack is found correctly.
1255TEST(pthread, pthread_attr_getstack_in_signal_handler) {
1256  const size_t sig_stack_size = 16 * 1024;
1257  void* sig_stack = mmap(NULL, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
1258                         -1, 0);
1259  ASSERT_NE(MAP_FAILED, sig_stack);
1260  stack_t ss;
1261  ss.ss_sp = sig_stack;
1262  ss.ss_size = sig_stack_size;
1263  ss.ss_flags = 0;
1264  stack_t oss;
1265  ASSERT_EQ(0, sigaltstack(&ss, &oss));
1266
1267  ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
1268  getstack_signal_handler_arg.done = false;
1269  kill(getpid(), SIGUSR1);
1270  ASSERT_EQ(true, getstack_signal_handler_arg.done);
1271
1272  // Verify if the stack used by the signal handler is the alternate stack just registered.
1273  ASSERT_LE(sig_stack, getstack_signal_handler_arg.signal_handler_sp);
1274  ASSERT_GE(reinterpret_cast<char*>(sig_stack) + sig_stack_size,
1275            getstack_signal_handler_arg.signal_handler_sp);
1276
1277  // Verify if the main thread's stack got in the signal handler is correct.
1278  ASSERT_LE(getstack_signal_handler_arg.main_stack_base, &ss);
1279  ASSERT_GE(reinterpret_cast<char*>(getstack_signal_handler_arg.main_stack_base) +
1280            getstack_signal_handler_arg.main_stack_size, reinterpret_cast<void*>(&ss));
1281
1282  ASSERT_EQ(0, sigaltstack(&oss, nullptr));
1283  ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
1284}
1285
1286static void pthread_attr_getstack_18908062_helper(void*) {
1287  char local_variable;
1288  pthread_attr_t attributes;
1289  pthread_getattr_np(pthread_self(), &attributes);
1290  void* stack_base;
1291  size_t stack_size;
1292  pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1293
1294  // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1295  ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1296  ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
1297}
1298
1299// Check whether something on stack is in the range of
1300// [stack_base, stack_base + stack_size). see b/18908062.
1301TEST(pthread, pthread_attr_getstack_18908062) {
1302  pthread_t t;
1303  ASSERT_EQ(0, pthread_create(&t, NULL,
1304            reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1305            NULL));
1306  pthread_join(t, NULL);
1307}
1308
1309#if defined(__BIONIC__)
1310static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
1311
1312static void* pthread_gettid_np_helper(void* arg) {
1313  *reinterpret_cast<pid_t*>(arg) = gettid();
1314
1315  // Wait for our parent to call pthread_gettid_np on us before exiting.
1316  pthread_mutex_lock(&pthread_gettid_np_mutex);
1317  pthread_mutex_unlock(&pthread_gettid_np_mutex);
1318  return NULL;
1319}
1320#endif
1321
1322TEST(pthread, pthread_gettid_np) {
1323#if defined(__BIONIC__)
1324  ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1325
1326  // Ensure the other thread doesn't exit until after we've called
1327  // pthread_gettid_np on it.
1328  pthread_mutex_lock(&pthread_gettid_np_mutex);
1329
1330  pid_t t_gettid_result;
1331  pthread_t t;
1332  pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
1333
1334  pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
1335
1336  // Release the other thread and wait for it to exit.
1337  pthread_mutex_unlock(&pthread_gettid_np_mutex);
1338  pthread_join(t, NULL);
1339
1340  ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
1341#else
1342  GTEST_LOG_(INFO) << "This test does nothing.\n";
1343#endif
1344}
1345
1346static size_t cleanup_counter = 0;
1347
1348static void AbortCleanupRoutine(void*) {
1349  abort();
1350}
1351
1352static void CountCleanupRoutine(void*) {
1353  ++cleanup_counter;
1354}
1355
1356static void PthreadCleanupTester() {
1357  pthread_cleanup_push(CountCleanupRoutine, NULL);
1358  pthread_cleanup_push(CountCleanupRoutine, NULL);
1359  pthread_cleanup_push(AbortCleanupRoutine, NULL);
1360
1361  pthread_cleanup_pop(0); // Pop the abort without executing it.
1362  pthread_cleanup_pop(1); // Pop one count while executing it.
1363  ASSERT_EQ(1U, cleanup_counter);
1364  // Exit while the other count is still on the cleanup stack.
1365  pthread_exit(NULL);
1366
1367  // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
1368  pthread_cleanup_pop(0);
1369}
1370
1371static void* PthreadCleanupStartRoutine(void*) {
1372  PthreadCleanupTester();
1373  return NULL;
1374}
1375
1376TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
1377  pthread_t t;
1378  ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
1379  pthread_join(t, NULL);
1380  ASSERT_EQ(2U, cleanup_counter);
1381}
1382
1383TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1384  ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1385}
1386
1387TEST(pthread, pthread_mutexattr_gettype) {
1388  pthread_mutexattr_t attr;
1389  ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1390
1391  int attr_type;
1392
1393  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1394  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1395  ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1396
1397  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1398  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1399  ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1400
1401  ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1402  ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1403  ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1404
1405  ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1406}
1407
1408struct PthreadMutex {
1409  pthread_mutex_t lock;
1410
1411  PthreadMutex(int mutex_type) {
1412    init(mutex_type);
1413  }
1414
1415  ~PthreadMutex() {
1416    destroy();
1417  }
1418
1419 private:
1420  void init(int mutex_type) {
1421    pthread_mutexattr_t attr;
1422    ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1423    ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
1424    ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1425    ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1426  }
1427
1428  void destroy() {
1429    ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1430  }
1431
1432  DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
1433};
1434
1435TEST(pthread, pthread_mutex_lock_NORMAL) {
1436  PthreadMutex m(PTHREAD_MUTEX_NORMAL);
1437
1438  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1439  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1440}
1441
1442TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
1443  PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK);
1444
1445  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1446  ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
1447  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1448  ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1449  ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1450  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1451  ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1452}
1453
1454TEST(pthread, pthread_mutex_lock_RECURSIVE) {
1455  PthreadMutex m(PTHREAD_MUTEX_RECURSIVE);
1456
1457  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1458  ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1459  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1460  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1461  ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1462  ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1463  ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1464}
1465
1466TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
1467  pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
1468  PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
1469  ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
1470  pthread_mutex_destroy(&lock_normal);
1471
1472  pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
1473  PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
1474  ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
1475  pthread_mutex_destroy(&lock_errorcheck);
1476
1477  pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
1478  PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
1479  ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
1480  ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
1481}
1482class MutexWakeupHelper {
1483 private:
1484  PthreadMutex m;
1485  enum Progress {
1486    LOCK_INITIALIZED,
1487    LOCK_WAITING,
1488    LOCK_RELEASED,
1489    LOCK_ACCESSED
1490  };
1491  std::atomic<Progress> progress;
1492  std::atomic<pid_t> tid;
1493
1494  static void thread_fn(MutexWakeupHelper* helper) {
1495    helper->tid = gettid();
1496    ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
1497    helper->progress = LOCK_WAITING;
1498
1499    ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
1500    ASSERT_EQ(LOCK_RELEASED, helper->progress);
1501    ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
1502
1503    helper->progress = LOCK_ACCESSED;
1504  }
1505
1506 public:
1507  MutexWakeupHelper(int mutex_type) : m(mutex_type) {
1508  }
1509
1510  void test() {
1511    ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1512    progress = LOCK_INITIALIZED;
1513    tid = 0;
1514
1515    pthread_t thread;
1516    ASSERT_EQ(0, pthread_create(&thread, NULL,
1517      reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
1518
1519    WaitUntilThreadSleep(tid);
1520    ASSERT_EQ(LOCK_WAITING, progress);
1521
1522    progress = LOCK_RELEASED;
1523    ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1524
1525    ASSERT_EQ(0, pthread_join(thread, NULL));
1526    ASSERT_EQ(LOCK_ACCESSED, progress);
1527  }
1528};
1529
1530TEST(pthread, pthread_mutex_NORMAL_wakeup) {
1531  MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
1532  helper.test();
1533}
1534
1535TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
1536  MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
1537  helper.test();
1538}
1539
1540TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
1541  MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
1542  helper.test();
1543}
1544
1545TEST(pthread, pthread_mutex_owner_tid_limit) {
1546#if defined(__BIONIC__) && !defined(__LP64__)
1547  FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
1548  ASSERT_TRUE(fp != NULL);
1549  long pid_max;
1550  ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
1551  fclose(fp);
1552  // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
1553  ASSERT_LE(pid_max, 65536);
1554#else
1555  GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
1556#endif
1557}
1558
1559class StrictAlignmentAllocator {
1560 public:
1561  void* allocate(size_t size, size_t alignment) {
1562    char* p = new char[size + alignment * 2];
1563    allocated_array.push_back(p);
1564    while (!is_strict_aligned(p, alignment)) {
1565      ++p;
1566    }
1567    return p;
1568  }
1569
1570  ~StrictAlignmentAllocator() {
1571    for (const auto& p : allocated_array) {
1572      delete[] p;
1573    }
1574  }
1575
1576 private:
1577  bool is_strict_aligned(char* p, size_t alignment) {
1578    return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
1579  }
1580
1581  std::vector<char*> allocated_array;
1582};
1583
1584TEST(pthread, pthread_types_allow_four_bytes_alignment) {
1585#if defined(__BIONIC__)
1586  // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
1587  StrictAlignmentAllocator allocator;
1588  pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
1589                             allocator.allocate(sizeof(pthread_mutex_t), 4));
1590  ASSERT_EQ(0, pthread_mutex_init(mutex, NULL));
1591  ASSERT_EQ(0, pthread_mutex_lock(mutex));
1592  ASSERT_EQ(0, pthread_mutex_unlock(mutex));
1593  ASSERT_EQ(0, pthread_mutex_destroy(mutex));
1594
1595  pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
1596                           allocator.allocate(sizeof(pthread_cond_t), 4));
1597  ASSERT_EQ(0, pthread_cond_init(cond, NULL));
1598  ASSERT_EQ(0, pthread_cond_signal(cond));
1599  ASSERT_EQ(0, pthread_cond_broadcast(cond));
1600  ASSERT_EQ(0, pthread_cond_destroy(cond));
1601
1602  pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
1603                               allocator.allocate(sizeof(pthread_rwlock_t), 4));
1604  ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL));
1605  ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
1606  ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1607  ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
1608  ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1609  ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
1610
1611#else
1612  GTEST_LOG_(INFO) << "This test tests bionic implementation details.";
1613#endif
1614}
1615
1616TEST(pthread, pthread_mutex_lock_null_32) {
1617#if defined(__BIONIC__) && !defined(__LP64__)
1618  ASSERT_EQ(EINVAL, pthread_mutex_lock(NULL));
1619#else
1620  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1621#endif
1622}
1623
1624TEST(pthread, pthread_mutex_unlock_null_32) {
1625#if defined(__BIONIC__) && !defined(__LP64__)
1626  ASSERT_EQ(EINVAL, pthread_mutex_unlock(NULL));
1627#else
1628  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1629#endif
1630}
1631
1632TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
1633#if defined(__BIONIC__) && defined(__LP64__)
1634  pthread_mutex_t* null_value = nullptr;
1635  ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
1636#else
1637  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1638#endif
1639}
1640
1641TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
1642#if defined(__BIONIC__) && defined(__LP64__)
1643  pthread_mutex_t* null_value = nullptr;
1644  ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
1645#else
1646  GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1647#endif
1648}
1649
1650extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
1651
1652static volatile bool signal_handler_on_altstack_done;
1653
1654static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
1655  ASSERT_EQ(SIGUSR1, signo);
1656  // Check if we have enough stack space for unwinding.
1657  int count = 0;
1658  _Unwind_Backtrace(FrameCounter, &count);
1659  ASSERT_GT(count, 0);
1660  // Check if we have enough stack space for logging.
1661  std::string s(2048, '*');
1662  GTEST_LOG_(INFO) << s;
1663  signal_handler_on_altstack_done = true;
1664}
1665
1666TEST(pthread, big_enough_signal_stack_for_64bit_arch) {
1667  signal_handler_on_altstack_done = false;
1668  ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
1669  kill(getpid(), SIGUSR1);
1670  ASSERT_TRUE(signal_handler_on_altstack_done);
1671}
1672
1673TEST(pthread, pthread_barrierattr_smoke) {
1674  pthread_barrierattr_t attr;
1675  ASSERT_EQ(0, pthread_barrierattr_init(&attr));
1676  int pshared;
1677  ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
1678  ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1679  ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1680  ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
1681  ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1682  ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
1683}
1684
1685struct BarrierTestHelperArg {
1686  std::atomic<pid_t> tid;
1687  pthread_barrier_t* barrier;
1688  size_t iteration_count;
1689};
1690
1691static void BarrierTestHelper(BarrierTestHelperArg* arg) {
1692  arg->tid = gettid();
1693  for (size_t i = 0; i < arg->iteration_count; ++i) {
1694    ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
1695  }
1696}
1697
1698TEST(pthread, pthread_barrier_smoke) {
1699  const size_t BARRIER_ITERATION_COUNT = 10;
1700  const size_t BARRIER_THREAD_COUNT = 10;
1701  pthread_barrier_t barrier;
1702  ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, BARRIER_THREAD_COUNT + 1));
1703  std::vector<pthread_t> threads(BARRIER_THREAD_COUNT);
1704  std::vector<BarrierTestHelperArg> args(threads.size());
1705  for (size_t i = 0; i < threads.size(); ++i) {
1706    args[i].tid = 0;
1707    args[i].barrier = &barrier;
1708    args[i].iteration_count = BARRIER_ITERATION_COUNT;
1709    ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
1710                                reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
1711  }
1712  for (size_t iteration = 0; iteration < BARRIER_ITERATION_COUNT; ++iteration) {
1713    for (size_t i = 0; i < threads.size(); ++i) {
1714      WaitUntilThreadSleep(args[i].tid);
1715    }
1716    ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
1717  }
1718  for (size_t i = 0; i < threads.size(); ++i) {
1719    ASSERT_EQ(0, pthread_join(threads[i], nullptr));
1720  }
1721  ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
1722}
1723
1724TEST(pthread, pthread_barrier_destroy) {
1725  pthread_barrier_t barrier;
1726  ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
1727  pthread_t thread;
1728  BarrierTestHelperArg arg;
1729  arg.tid = 0;
1730  arg.barrier = &barrier;
1731  arg.iteration_count = 1;
1732  ASSERT_EQ(0, pthread_create(&thread, nullptr,
1733                              reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &arg));
1734  WaitUntilThreadSleep(arg.tid);
1735  ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
1736  ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
1737  // Verify if the barrier can be destroyed directly after pthread_barrier_wait().
1738  ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
1739  ASSERT_EQ(0, pthread_join(thread, nullptr));
1740#if defined(__BIONIC__)
1741  ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
1742#endif
1743}
1744
1745struct BarrierOrderingTestHelperArg {
1746  pthread_barrier_t* barrier;
1747  size_t* array;
1748  size_t array_length;
1749  size_t id;
1750};
1751
1752void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
1753  const size_t ITERATION_COUNT = 10000;
1754  for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
1755    arg->array[arg->id] = i;
1756    int ret = pthread_barrier_wait(arg->barrier);
1757    ASSERT_TRUE(ret == 0 || ret == PTHREAD_BARRIER_SERIAL_THREAD);
1758    for (size_t j = 0; j < arg->array_length; ++j) {
1759      ASSERT_EQ(i, arg->array[j]);
1760    }
1761    ret = pthread_barrier_wait(arg->barrier);
1762    ASSERT_TRUE(ret == 0 || ret == PTHREAD_BARRIER_SERIAL_THREAD);
1763  }
1764}
1765
1766TEST(pthread, pthread_barrier_check_ordering) {
1767  const size_t THREAD_COUNT = 4;
1768  pthread_barrier_t barrier;
1769  ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
1770  size_t array[THREAD_COUNT];
1771  std::vector<pthread_t> threads(THREAD_COUNT);
1772  std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
1773  for (size_t i = 0; i < THREAD_COUNT; ++i) {
1774    args[i].barrier = &barrier;
1775    args[i].array = array;
1776    args[i].array_length = THREAD_COUNT;
1777    args[i].id = i;
1778    ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
1779                                reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
1780                                &args[i]));
1781  }
1782  for (size_t i = 0; i < THREAD_COUNT; ++i) {
1783    ASSERT_EQ(0, pthread_join(threads[i], nullptr));
1784  }
1785}
1786